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Abstract—In this paper, we propose a data-driven preventive
security-constrained AC optimal power flow (SC-OPF), which
ensures small-signal stability and N-1 security. Our approach
can be used by both system and market operators for optimizing
redispatch or AC based market-clearing auctions. We derive
decision trees from large datasets of operating points, which
capture all security requirements and allow to define tractable
decision rules that are implemented in the SC-OPF using mixed-
integer nonlinear programming (MINLP). We propose a second-
order cone relaxation for the non-convex MINLP, which allows
us to translate the non-convex and possibly disjoint feasible
space of secure system operation to a convex mixed-integer
OPF formulation. Our case study shows that the proposed
approach increases the feasible space represented in the SC-
OPF compared to conventional methods, can identify the global
optimum as opposed to tested MINLP solvers and significantly
reduces computation time due to a decreased problem size.

Index Terms—Security-constrained OPF, small-signal stability,
convex relaxation, mixed-integer non-linear programming.

I. INTRODUCTION

The Security-Constrained Optimal Power Flow (SC-OPF) is
an important tool for power system operation and planning in
order to maintain power system security. The SC-OPF identi-
fies optimal preventive control actions compliant with the N-1
criterion, which ensure that the system can withstand the loss
of any major component without violating system constraints.
To this end, the constraint set of the conventional OPF is
extended to include all considered contingency scenarios. The
SC-OPF can be applied at different planning stages to either
determine an optimal and N-1 secure dispatch or to identify
optimal redispatching actions closer to real-time. SC-OPFs are
non-linear and non-convex problems with both continuous and
discrete variables. A major drawback of conventional SC-OPF
algorithms is the problem size and the negligence of stability
requirements [1], which cannot be expressed as linear or non-
linear constraints and are therefore difficult to incorporate
in a straightforward way. We address both challenges by
using a data-driven approach to preventive SC-OPF, which
is computationally tractable and based on decision trees that
capture all N-1 and small-signal stability considerations. We
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extend our previous work in [2] to an AC-OPF context with the
intention to bridge the gap between power system operation
and markets. We incorporate the knowledge extracted from the
data in the OPF using convex Mixed-Integer Programming
(MIP) and relax the non-convex AC power flow equations
through a Second Order Cone (SOC) relaxation. We further
use the data to strengthen the relaxation. To the authors’
knowledge, this is the first SC-OPF formulated as a Mixed-
Integer Second Order Cone Program (MISOCP). Our approach
combines the advantages of convex MIP and data analytics and
allows for a fast online solution. It extends the feasible space
in order to reflect the true non-convex area of operation and
includes the true optimal solution.

Research in SC-OPF algorithms has primarly investigated
the N-1 security criterion and the reduction of the associated
computational burden, while less focus has been put on sta-
bility requirements. However, only enforcing the N-1 criterion
does not necessarily guarantee stability and hence, feasiblity
of the solution. In order to translate small-signal stability
constraints to an OPF context, eigenvalue-sensitivities with
respect to OPF decision variables are used in [3] and [4].
However, the required computational effort and the scalability
of the proposed methods are still major challenges. In [5]
hyperplanes are used to approximate the security boundary
and are incorporated in a DC-OPF. Operating points outside
the convex space constructed by the hyperplanes are neglected
though, increasing the likelihood of missing the optimal solu-
tion.

The authors in [6] have identified the Security-Constrained
AC-OPF as the “ultimate goal” for market software to be
used by Independent System Operators (ISO) across the US.
They outline the oversimplification of current software, often
requiring operator intervention and resulting in suboptimal
solutions due to inaccurate ISO models, which only use
estimates for reactive power and voltage constraints. Improved
modeling of voltage and stability constraints can lead to more
realistic dispatch decisions and better market signals, resulting
in up to 10% cost savings worldwide [7]. The relative amount
of potential savings will increase over the course of the coming
decades due to the ongoing electrification of the entire energy
industry. Electricity market participants in the US are already
saving over half a billion dollars annually as a result of the
implementation of MIP in day-ahead and real-time markets



[8]. Due to significant improvements since the 1990s, MIP
has been widely applied accross various industries, increasing
expertise, which only reinforces further development of MIP
approaches.

SOCP has gained increased attention for power system
applications as it is computationally less demanding than
other relaxations, such as Semi-Definite Programming (SDP).
Furthermore, it can be extended to mixed-integer problems,
where the SDP relaxation fails even on small scales. MISOCP
has been introduced for OPF problems incorporating optimal
transmission switching and capacitor placement in [9] and
[10]. The challenge in SOCP for OPF problems lies in
convexifying the coupling contraint between voltage angles
and SOC variables, which are introduced to remove the non-
convexities arising from the AC power flow equations. Several
strengthening techniques have been proposed in [9] and [10],
which significantly contribute to the advancement of MISOCP
for real-life applications. However, these techniques still do not
achieve to avoid optimality gaps and can be computationally
demanding, negating the benefit of convex MIP solvers.

The main contribution of this work is a data-driven SC-
OPF algorithm formulated as a MISOCP, which (a) can be
used by system operators as a security analysis tool (e.g., for
redispatch), (b) can be used by market operators, approaching
the “ultimate goal” for market software [6], (c) incorporates
the N-1 security criterion, (d) ensures small-signal stability
for the base case and all considered contingencies, (e) is
scalable, (f) exploits the maturity of convex MIP solvers
in order to identify the optimal operating point within a
non-convex and possibly disjoint stability area, (g) can be
solved fast, as all computation related to the small-signal
stability assessment and N-1 criterion is done offline and the
OPF problem size is significantly decreased, (h) uses data to
stregthen the relaxation, (i) can be solved to global optimality
where tested non-convex solvers fail and (j) alleviates the need
for iterative contingency analyses, which are currently used by
system operators to define the boundaries of the secure system
space.

The remainder of this paper is organized as follows: Section
II describes the proposed methodology including the deriva-
tion of decision rules from data and focuses mainly on the
incorporation of those rules in nonlinear and non-convex SC-
OPF algorithms. Section III presents results from a case study.
Section IV concludes and gives an outlook on future work.

II. METHOD

Our approach consists of an offline security assessment,
which includes the database generation and derivation of
decision rules, and an online SC-OPF, which incorporates the
decision rules ensuring power system security. The database
generation, stability analysis and knowledge extraction have
been discussed in more detail in our previous work [2] and we
will only highlight the main features here. This work focuses
mainly on the implementation of the decision rules in AC-OPF
algorithms and applications of the proposed method.
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Figure 1. A simple illustrative decision tree.

A. Offline Security Assessment

A large database of operating points is created for various
load levels based on AC power flow calculations. All possible
generation patterns corresponding to the specified load levels
are evaluated using specified step sizes to discretize the space
of possible dispatch combinations. In order to perform the
small-signal stability assessment of the simulated operating
points, small-signal models are derived for the base case and
all considered contingencies. A database is generated, which
contains the operating points together with the information on
whether they are stable or unstable. Challenges related to the
computational demand of the database generation, the appro-
priate choice of discretization intervals and the determination
of the stability boundary have been addressed in [2]. Ongoing
work focuses on further improvements.

Once the database is generated, decision rules based on
appropriate features, that need to be selected, can be derived
for the OPF, which will lead the solution to a stable op-
erating region. These features have to be easily accessible
in an AC-OPF formulation to allow for a fast online com-
putation. Voltage angle differences along transmission lines
are explicitly modeled in both the security analysis and the
AC-OPF, representing coupling variables. Among the tested
features, they have proven to most efficiently capture all
security requirements and are thus chosen as features for the
knowledge extraction (i.e., the derivation of the decision rules).
Additionally, if approximations of the OPF are used, which do
not explicitly model voltage angles, angle differences can be
translated to line capacity limits using appropriate mapping
strategies as explained in [2]. We employ decision trees (DTs)
as the knowledge extraction method, as they are comprehen-
sible and easy to interpret for the operator. They are trained
based on the selected features. Moreover, the conditional rules
defined by the DT can be directly incorporated through binary
variables in an optimization problem. A simple illustrative
example is shown in Fig. 1.

We refer to our previous work for details on the small-
signal models, the DT generation including the reduction of
mislassifications and the dependence of the DT accuracy on
the database size/discretization [2].



B. Preventive SC-OPF - Current Practice

The traditional preventive SC-OPF (PSC-OPF) aims at
finding the optimal least-cost dispatch ensuring N-1 security.
It extends the conventional nonlinear and non-convex AC-
OPF by including additional constraints to ensure feasibility
of the identified solution after the occurrence of any specified
contingency. The AC-OPF is given as follows:

min
x

NG∑
i=1

Ci

(
PG
i

)
, (1)

s.t. PG
i − PD

i = GiiV
2
i

+

NB∑
j=1,j 6=i

ViVj

(
Gij cos(θij) +Bij sin(θij)

)
, ∀i ∈ N

(2)

QG
i −QD

i = −BiiV
2
i

+

NB∑
j=1,j 6=i

ViVj

(
Gij sin(θij)−Bij cos(θij)

)
, ∀i ∈ N ,

(3)
x ≤ x ≤ x, (4)
θref = 0, (5)

where x represents the set of optimization variables including
active power generation PG, reactive power generation QG,
voltage magnitudes V and voltage angles θ. N denotes the
set of buses. The objective function (1) minimizes active
power generation costs. Constraints (2) and (3) ensure active
and reactive power balance at all nodes, where Gij and Bij

represent the real and imaginary parts of the bus admittance
matrix, respectively. Constraint (4) limits all decision variables
within their upper and lower bounds. Equation (5) sets the
voltage angle of the reference bus to zero. Line flow limits
are not explicitly included here, as we derive limits from the
security analysis, which will be introduced later.

Control variables (e.g., active and reactive power genera-
tion, transformer tap position etc.) in the PSC-OPF are not
allowed to change from pre- to post-contingency states. The
problem size of the OPF increases to Nc + 1 compared
to the conventional AC-OPF, where Nc denotes the number
of contingencies, rendering SC-OPFs computationally very
demanding. The computational burden of SC-OPFs, especially
for large systems with many considered contingencies, is a
major challenge. Another challenging factor is the inclusion
of system dynamics, i.e. stability considerations, in SC-OPF
algorithms. Given that they cannot be incorporated as linear
or nonlinear constraints in a straightforward way, common
practice is to impose tighter constraints. Such conservative
bounds on the feasible space should allow the system to return
to a steady-state equilibrium after a fault event, but also lead
to costly and suboptimal solutions.

Net Transfer Capacities (NTC) constitute one example of
such conservatism. NTCs are maximum cross-zonal capaci-
ties available for trade on the day-ahead market, which are
derived based on the N-1 security criterion, accounting for

Figure 2. Security domain of Flow-Based Market Coupling (FBMC) and
Available Transfer Capacity (ATC) [12]. ATCs are NTCs reduced by long-
term capacity nominations.

thermal and stability limitations [11]. NTCs are fixed line flow
limits, which are determined by transmission system operators
(TSOs) in each direction of cross-border lines prior to the day-
ahead market-clearing. Improvements towards a more accurate
representation of the physical reality of power systems have
been achieved by introducing Flow-Based Market Coupling
(FBMC), where a simplified European network representation
is accounted for in the market-clearing. Critical branches
(CBs) inside of and between zones are identified, which could
potentially be congested and limit the cross-border trade.
All CBs are represented through Power Transfer Distribution
Factors (PTDFs) and instead of assuming only one fixed NTC
value for each cross-border line, all constraints imposed by
the CBs are considered. Thus, a larger secure domain is
offered to the market compared to static NTC approaches as
depicted in Fig. 2. The market is then able to determine the
optimal combination of commercial capacities between zones.
Nonetheless, even flow based NTCs only capture one convex
region of the entire feasible space and do not represent the
non-convex reality of power system operations.

C. Improving the Preventive SC-OPF Using Data

To address the challenges described above, we propose a
data-driven approach to SC-OPFs, which we introduced in
previous work [2]. Non-convex and discontinous feasibility
spaces are captured using decision trees, which define con-
ditional constraints on appropriate decision variables, such as
voltage angle differences θij = θi − θj along transmission
lines. Each branch p of the DT contains a set of minimum and
maximum voltage angle differences and leads to a different
region of the feasibility space, one of which contains the least-
cost, optimal solution. A visual illustration of our approach is
depicted in Fig. 3. Instead of defining bounds that contain
only one of the three stable regions depicted in the shades
of blue, conditional rules allow to capture the entire feasible
region within the red frame. The DT is incorporated in the
SC-OPF using Mixed-Integer Programming (MIP). Each full
branch is associated with a binary variable yp, which if
chosen, activates the corresponding upper and lower bounds
on angle differences, or otherwise, leaves the original bounds
unchanged:



Figure 3. Illustrative example of non-convex space.

yp · θij,p − (1− yp) · θij ≤ θij ≤ yp · θij,p + (1− yp) · θij ,
∀(i, j) ∈ L,∀p ∈ P. (6)

L and P denote the set of lines and DT branches/paths,
respectively. Only one DT branch, i.e. one set of minimum
and maximum bounds on angle differences, can be chosen,
which is imposed by adding constraint

∑
p∈P yp = 1.

The data-driven SC-OPF is thus formulated as a Mixed-
Integer Non-linear Program (MINLP), which is a NP-hard
problem. One of the main contributions of this paper is that we
relax the non-convex AC power flow equations using a Second
Order Cone relaxation and obtain a SC-OPF formulated as
a Mixed-Integer Second Order Cone Program (MISOCP),
which is a convex mixed-integer program that can be solved
efficiently by already existing solvers.

D. Relaxing the Data-driven SC-OPF

The SOC formulation of the OPF problem is based on
[13], [14] and [9]. New variables are introduced to capture
the nonlinearities and non-convexities of the AC power flow
equations: (a) ui := V 2

i , (b) cij := ViVj cos(θij) and (c)
sij := −ViVj sin(θij). The AC-OPF is transformed from the
space of x := {PG,QG,V, θ} variables to the space of
xSOC := {PG,QG,u, c, s} variables and is given by:

min
xSOC

NG∑
i=1

Ci

(
PG
i

)
(7)

s.t. PG
i − PD

i = Giiui

+

NB∑
j=1,j 6=i

(
Gijcij −Bijsij

)
, ∀i ∈ N (8)

QG
i −QD

i = −Biiui

−
NB∑

j=1,j 6=i

(
Gijsij +Bijcij

)
, ∀i ∈ N (9)

cij = cji, sij = −sji, ∀(i, j) ∈ L (10)

c2ij + s2ij = uiuj , ∀(i, j) ∈ L (11)

Vi
2 ≤ ui ≤ Vi

2
, ∀i ∈ N . (12)

Active and reactive power generation are constrained by their
usual limits and are not explicitly mentioned. The non-convex
quadratic equality constraint (11) is relaxed through a second-
order cone constraint: c2ij + s

2
ij ≤ uiuj . The SOC formulation

of the OPF problem (7)-(12) is exact for radial networks and
the optimal voltage angles can be recovered by solving:

θi − θj = atan2(s∗ji, c
∗
ij), ∀(i, j) ∈ L, (13)

where ∗ indicates the optimal solution obtained from the
SOC-OPF. For meshed networks the above formulation is a
strict relaxation, potentially resulting in solutions, which are
infeasible for the original AC-OPF [9]. Reintroducing voltage
angle variables and constraint (13) in problem (7)-(12) would
render the SOC formulation exact for meshed networks, but
also non-convex. Various convex approximations of constraint
(13) have been proposed [9], [13]. In this paper we use a
sequential conic procedure as proposed in [13], where the
arctan function is linearized using a Taylor series expansion.

Conditional bounds on voltage angles are introduced using
binary variables as described in Section II-C. Known limits
on angle differences can also be used to define bounds on the
SOC variables c and s:

yp · tan(θij,p) · cij − (1− yp) · tan(θij) · cij ≤ sji,
∀(i, j) ∈ L,∀p ∈ P, (14)

yp · tan(θij,p) · cij + (1− yp) · tan(θij) · cij ≥ sji,
∀(i, j) ∈ L,∀p ∈ P. (15)

Otherwise, the SOC variables cij and sij are only constrained
by their implied upper and lower bounds ±ViVj , which in
practice can be very loose. In order to tighten the relaxation,
we determine the values for cij and sij along all lines (i, j)
for each operating point in the generated database and extract
their minimum and maximum values to obtain tighter variable
bounds.

III. CASE STUDY

We evaluate the performance of the proposed data-driven
SC-OPF ensuring small-signal stability and N-1 security on
a modified version of the IEEE 14 bus test system [15].
Our case study consists of three parts. First, we compare the
convex MISOCP formulation of the algorithm to a data-driven
MINLP implementation and a standard (i.e., not data-driven)
preventive SC-OPF. Its low computational effort makes the
proposed MISOCP suitable for AC based market-clearing auc-
tions as envisaged in the US. In Europe, however, electricity
markets will probably continue to rely on DC approximations.
To this end, we show how the proposed method can also be
used by TSOs for optimizing redispatching actions in order to
ensure N-1 security and small-signal stability after the market-
clearing. Finally, we analyze how the data-driven approach
coupled with MIP notably extends the feasible space of the
OPF.

The network data is given in [16] with some modifications
introduced in [2]. Note that additionally the voltage setpoints
of generators 4 and 5 are changed to 1.02 p.u. and 1.01
p.u., respectively, and the reactive power of generator 1 is
limited within ±990 Mvar. The considered contingencies
include all line and bus faults, except for faults at buses 1,



2 and 6. These would lead to either instability/AVR limit
violations or operating points, which are unstable for the
remaining contingencies. Note that the standard PSC-OPF
does not incorporate stability considerations, but only extends
the constraint set to account for the defined N-1 contingencies.
Bus 1 with generator g1 has been chosen as the slack bus
for the base case and all N-1 cases. A step size of 0.5 MW
was chosen for discretizing the possible operating range and
generating the database of operating points used for deriving
the decision tree. See [2] for a comparison of test cases with
different discretization intervals. The minimum damping ratio
of an operating point over the base case and all N-1 cases is
used as a metric for small-signal stability. As usual in power
system operation, we define a security margin by requiring a
minimum damping ratio of 3%. The derived DT contains 136
leaf nodes, out of which 74 point to operating regions, which
are small-signal stable for the base case and all considered
contingencies. Thus, 74 binary variables are used to define
conditional constraints on voltage angle differences along lines
and incorporate the stable regions in the data-driven SC-OPF.
Note that 1.34 million operating points have been evaluated
for this case study, from which more than 88 000 fulfill the
required minimum damping ratio. We derive the DT based on
three different load levels (base case, ±20%). The data-driven
SC-OPF was performed for all three levels seperately. Given
that they showed very similar results, we present our results for
the base case only. The voltage magnitude at generator buses
is set to the corresponding generator voltage setpoint in order
to ensure an appropriate voltage profile, which is fundamental
to a secure system operation.

The small-signal analysis was performed using Matlab and
Matpower 6.0 [16]. The MISOCP was implemented in Python
using the Gurobi Optimizer. The standard PSC-OPF (i.e.,
NLP) and the MINLP implementation of the data-driven SC-
OPF were carried out in GAMS. BONMIN and COUENNE
were used for solving the MINLPs, while CONOPT was used
for the NLP.

A. Comparison of Preventive and Data-driven SC-OPFs

Table I lists the results of all three SC-OPF implementations.
It can be observed that all implementations based on decision
trees result in operating points, which exhibit minimum damp-
ing ratios that are non-negative and are thus stable for the base
case and all considered N-1 contingencies. The solution of the
standard PSC-OPF however is unstable for a fault at bus 5 and
line 1-2, respectively. Thus, the identified preventive control
actions do not fullfill the system’s security requirements and
would call for redispatching measures. As the PSC-OPF results
in an operating point, which does not reflect the small-signal
stability requirements, its total cost is lower than the other
solutions. All three data-driven implementations result in dif-
ferent leaf nodes of the DT and thus in different regions of the
feasible space with various degrees of conservatism. Higher
damping ratios are also reflected by higher costs. All solutions
include a stability margin, but only the most conservative result
achieves a minimum damping ratio of more than 3%. This can
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Figure 4. Non-convex security domain of the DT as a function of the angle
differences along lines 1 and 2. The blue shaded areas represent the stable
regions defined by all DT branches. The darker the color, the more domains of
different DT branches overlap. Note that the actual security domains covered
by the different leaf nodes do not overlap and might even be disjoint, which
however cannot be depicted by only two dimensions.

be explained by the fact that (a) the OPF is not limited to the
specified discretization intervals of 0.5 MW, as used for the
database generation and (b) DTs are not 100% accurate leading
to missclassifications. For cases, where the minimum damping
ratio is a hard constraint, higher values can be required when
deriving the DT in order to avoid violations. Fig. 4 illustrates
the stable domain covered by all DT leaf nodes as a function
of the angle differences along lines 1 and 2. The rectangles
indicate the domains covered by the three different leaf nodes
obtained from the data-driven SC-OPF implementations with
the location of the corresponding solution pointed out. It can
be seen that the stable domain is non-convex and that safer
operating points exhibiting higher damping ratios are located
further away from the stability boundary.

The known scalability issues of COUENNE [10], which is a
global optimization solver, lead to significantly higher execu-
tion times compared to BONMIN, which employs heurisitic
methods for non-convex MINLPs. Also, the default settings
for both solvers include a relative tolerance gap of 10%
terminating the computation as soon as a solution is found,
which lies within 10% of the true objective value. This
explains the choice of different leaf nodes. However, even
reducing the tolerance value does not change the outcome
indicating that neither of the solvers is able to provide the
best integer solution. The MISOCP is able to find the optimal
integer solution, which has been verified by manually impos-
ing the bounds defined by each DT branch. Specifically, we
solved 74 AC-OPFs consecutively, one for each DT branch
and imposed the corresponding bounds in order to determine
the DT branch, which contains the least-cost, optimal NLP
solution. Leaf node 104 actually contains the bounds, which
result in the least-cost NLP solution. Notably, in this test
case, the MISOCP relaxation is exact, i.e. its solution is
feasible to the nonlinear, non-convex AC-OPF formulation and
corresponds to the global optimum of the non-convex problem.



TABLE I
RESULTS OF STANDARD PSC-OPF AND DATA-DRIVEN SC-OPF IMPLEMENTED AS MINLP AND MISOCP.

Standard PSC-OPF Data-driven SC-OPF

NLP MINLP MISOCPCOUENNE BONMIN
Cost (e/h) 3022.83 3445.09 3381.21 3365.95
Runtime (s) 10.06 1000.16 96.16 5.58
Iterations* (-) - - - 4
Min. damping ratio (%) unstable 3.27 2.97 2.53
Leaf node (-) - 31 133 104

* The number of iterations refers to the sequential conic algorithm used to approximate constraint (13) with a chosen convergence tolerance of 10−6.

Nonetheless, given that the MISOCP formulation is still a
relaxation, identified solutions can be infeasible for the original
problem. Therefore, we propose to use the MISOCP primarily
to identify the optimal DT branch and hence the linear
bounds on the feasible space, such that the optimal solution
is included. Once these are known and the feasible space
has been reduced, the integer variables can be omitted and
a common AC-OPF (i.e., NLP) with the previously identified
bounds on angle differences imposed as linear constraints can
be performed to identify feasible and secure preventive control
actions. The MISOCP solution serves as a lower bound and
can validate the optimality of the AC-OPF solution.

Table I also outlines the savings in online computation time
of the proposed SC-OPF method. The data-driven approach
outperforms the usual PSC-OPF by more than 40%, while
at the same time incorporating more security requirements.
Naturally, the computation time depends on the size of the DT
and the number of binary variables used to represent it. Even
though introducing binaries increases the OPF complexity,
this side effect is offset by a significantly reduced overall
size of the SC-OPF. While the PSC-OPF increases 32-fold
when considering 31 contingencies, the proposed data-driven
approach increases less than 4-fold for the same amount of
contingencies. As indicated by constraint (6), (2 × NL ×
NP + 1) additional linear inequality constraints are added,
where NL and NP denote the number of network lines and
DT paths, respectively. Hence, the complexity of the resulting
MISOCP is primarily determined by the NL SOC constraints
c2ij + s2ij ≤ uiuj and the NP binary variables.

Furthermore, given that the problem is a convex MIP, which
can be solved efficiently by already existing solvers that are
able to handle up to a few thousand binaries, the amount of
discrete variables is not expected to be an obstacle. While
solvers for MISOCPs have not yet reached the maturity of
MILP solvers, recent work has demonstrated how general
convex MIPs can be solved to global optimality by a se-
quence of MILPs using polyhedral outer approximations and
continuous convex programs [17]. Large-scale instances of a
similar type of problem class with up to 3000 binary variables
and quadratic constraints have successfully been solved in
[18] using state-of-the-art solvers and employing heuristic
methods. The size of the DT is directly determined by the
size of the dataset, which it is derived from. Hence, a more
efficient method to generate the database of operating points,
appropriate pruning of the DT and techniques to decompose
the data-driven optimization are aspects that require a deeper

Figure 5. Visualization of redispatch and maximum convex security domain,
which can be covered by one leaf node only.

analysis and are promising approaches to enhance the scala-
bility performance of the method. One approach already used
in the industry would be to focus only on the most critical
N-1 contingencies and angle differences.

B. Optimizing Redispatch

The method can be used by TSOs to identify optimal
redispatching actions, where for example the market-based
day-ahead dispatch, if identified as unstable, is redirected
through the DT to a secure domain. We have reformulated the
MISOCP in order to optimize redispatching actions, assuming
that the costs of generator up- and down-regulation correspond
to its marginal cost. Generators are assumed to be paid for
up-regulation and charged for savings resulting from down-
regulation. We have used the unstable solution of the standard
PSC-OPF listed in Table I as an input to the redispatch and
successfully shifted the operating point to leaf node 104. The
cost of redispatch amounts to 343.12e, which corresponds to
the original difference in objective values between the PSC-
OPF and MISOCP. The MISOCP, if implemented at the market
stage, could result in more than 10% cost savings for the
system operator and better reflects the locational impact of
stability requirements.

C. Enlarging the Feasible Space

The generated database contains 1.34 million operating
points, out of which 6.57% fulfill the 3% minimum damping



ratio and define the feasible space of operation. We have
evaluated how much of the entire stable region is covered by
each individual leaf node, i.e. how many operating points fulfill
the constraints imposed by the corresponding DT branch. All
leaf nodes cover in total 99.91% of the considered stability
region, where leaf node 7 accounts for most of it, capturing
77.78% of the entire feasible space. The implied bounds of leaf
node 7 are depicted in Fig. 5. If we had considered the stability
requirements in the OPF only by imposing bounds, which
define a convex space, as it is currently done in practice, we
would have been able to capture at most 77.78% of the feasible
space, thereby also missing the optimal solution as can be seen
in Fig. 5. Thus, our approach to incorporate the information
provided by the database in the optimization problem through
binary variables allows us to enlarge the feasible space by
more than 28%, enclosing the remaining 22.13%, which are
covered by the DT.

IV. CONCLUSION AND FUTURE WORK

In this paper we propose a data-driven approach to pre-
ventive SC-OPF, which ensures N-1 security and small-signal
stability and uses decision trees to capture the non-convex and
possibly disjoint space of stable operating points. We propose
a new approach to translate data, which operators usually
already have available from dynamic simulations, and include
them in a simple way in an optimization framework. Binary
variables are used to represent the knowledge extracted from
the data giving rise to two levels of non-convexities: one that
refers to the integrality of the binary variables and another
one that concerns the AC power flow equations. We eliminate
the latter using a SOC relaxation and obtain a convex MIS-
OCP. MISOCPs generalize convex mixed-integer quadratic
programs, for which solvers have already reached a high
level of maturity. The proposed method reduces the overall
problem size by avoiding to explicitly include all considered
contingencies and incorporates stability requirements, both of
which have been major challenges in SC-OPFs. Finally, we
have shown that by using data coupled with MIP in (SC-)OPFs
we can enlarge the feasible space represented in the OPF by
more than 28%.

The relaxed data-driven SC-OPF can be used to determine
the optimal bounds (i.e., the optimal DT branch) on the
feasible space, such that secure preventive control actions are
ensured. Considering that the DT represents a non-convex
operating space, identified preventive actions can be less
conservative than those determined by current approaches. The
need for iterative contingency analyses to identify suitable
control actions is alleviated. The MISOCP formulation of
the SC-OPF can be used by market operators as a market-
clearing tool due to its low online computational effort but
also by TSOs to determine optimal redispatching actions and
the bounds on angle differences, which allow accommodating
the redispatch.

In future work, we are planning to: (a) include uncertainty
and corrective control policies for relaxed OPFs, which we
developed in [19], (b) exploit the decomposable structure of

the MISOCP to separate discrete and continuous variables and
apply decomposition techniques with convergence guarantees
resulting from the convex problem properties, (c) improve
the database generation and determination of the stability
boundary, which directly determine the DT size and (d) apply
the method to larger systems.
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