
1

Data Driven Service Orchestration

for Vehicular Networks
Anestis Dalgkitsis, Student Member, IEEE, Prodromos-Vasileios Mekikis, Member, IEEE,

Angelos Antonopoulos, Senior Member, IEEE, Christos Verikoukis, Senior Member, IEEE,

Abstract—As technology progresses, cars can not only be
considered as a transportation medium but also as an intelligent
part of the cellular network that generates highly valuable
data and offers both entertainment and security services to
the passengers. Therefore, forthcoming 5G networks are said to
enhance Ultra-Reliable Ultra-Low-Latency that will allow for a
new breed of services that will disrupt the industry as we know it
today. In this work, we devise a unique fusion of Deep Learning
based mobility prediction and Genetic Algorithm assisted service
orchestration to retain the average service latency minimal by
offering personalized service migration, while tightly packing as
many services as possible in the edge of the network, for maximiz-
ing resource utilization. Through an extensive simulation based
on real data, we evaluate the proposed mobility orchestration
combination and we find gains in low latency in all examined
scenarios.

Index Terms—Mobility Prediction, Deep Learning, Proactive
Resource Allocation, 5G Wireless Mobile Networks, Vehicular
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I. INTRODUCTION

F IFTH Generation (5G) networks are ante portas and it is

expected to bring a whole new ecosystem of innovative

applications. They can support the broad expansion of cellu-

lar Vehicle-to-Everything (V2X) to enhance both passenger

and pedestrian security in advanced automotive scenarios.

Intelligent autonomous driving vehicles can benefit from the

existing cellular network architecture to enable data-intensive

and latency-sensitive abilities such as situational awareness,

proactive collision warning, intersection management, high-

definition maps, real-time alerts, Augmented Reality and even

lower the cost of autonomous driving [1].

The modern vehicles are equipped with various sensors that

generate hundreds to thousands of megabytes per second [2].

Nowadays, location-based services are flourishing, providing

an unprecedented opportunity to collect fine-grained spa-

tiotemporal data about the places users visit [3]. Accumulating

user location data is a gateway to the future location prediction

and movement behavior of the user. [4]. Human daily mobility

presents a high degree of temporal and spatial regularity.

Each individual is characterized by a time-independent travel

distance and a significant probability to return to a few highly

frequented locations [5]. It is easy to record the movement as

a sequence of time-stamped locations, which can be analyzed
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and used to predict the future movement [6]. Practically,

human mobility prediction is of great importance in a wide

range of applications, ranging from personalized recommen-

dation systems to intelligent transportation, urban planning,

and mobility management in the 5G mobile communication

systems [7], [8].

The expansion from Cloud Data-Centers (DCs) to Edge

Computing overcomes many obstacles, the greater of all is

the distance, in terms of latency or hops, between the end-

user and the services. The concept of Multi-Access Edge

Computing (MEC), pushes the boundaries of cloud computing

technologies advancements, such as Software-Defined Net-

working (SDN) and Network Function Virtualization (NFV),

to the proximity of the user [9]. Services should now be

capable of following the user geographically in the network

and offer the best Quality of Service (QoS), without hindering

the back-end network performance.

By deploying MEC servers throughout the city, it is possible

to move cloud services to the edge of the mobile network

and introduce intelligence and connectivity in the field, which

is crucial for the success of delay-critical V2X use cases.

The ETSI Standardization covers numerous use-cases, such as

Intersection Movement Assist, Advanced Driving Assistance

or Vulnerable Road User [10]. It also defines the standards to

make such scenarios attainable.

In this article, we propose a method to decrease the latency

between the users and their services by relocating them to

the nearest edge at any given time. Our implementation is

based on Convolutional Neural Networks (CNNs) and Genetic

Algorithms (GAs). It can foresee the next step of each user

according to their a priori mobility habits and live migrate the

services between the MEC servers in a way that retains the

End-to-End (E2E) latency as low as possible. Our contribution

is twofold by:

• Using a CNN to determine a posteriori user mobility

trajectory in conjunction with existing street network data

and Live Migrate the services proactively,

• Utilizing a GA to tightly pack as many services as

possible close to the users, with respect to their priority.

The remainder of the paper is organized as follows. Section

II shows various related works currently available in the

literature. Section III offers an overview of the System Model

and defines all entities that make it apart. Section IV presents

the problem formulation and analyzes in detail the background

needed to describe the work. Section V showcases the simu-

lation setup and the results produced. Finally, in Section VI

we conclude our work and reveal our future intentions.
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II. LITERATURE REVIEW

Technologies such as SDN and NFV can be exploited to

further reduce the service latency between the user and the

applications [11]. Most of the existing research works try

to accomplish this by dynamically placing Virtual Machine

(VM) service instances, that be transferred in an instant with

Live Migration (LM) and allow them to follow the user

geographically in the network [12].

Many works in recent literature have studied the idea of

proactive service migration in edge computing environments,

such as [13]. They provide an extensive analysis in proactive

Service Instance Migration at the mobile network edge to

support the viability of the idea based in ETSI MEC specifi-

cations [10]. Ultra-Dense networks in conjunction with edge

computing can offer such a solution, by adding computational

resources that can host services in the edge. There is a need

for an efficient algorithm that can orchestrate and control

the entire virtual infrastructure with such a colossal number

of users. The system needs to track and predict the user

movement so it can proactively calculate the placement of

user services, as the user moves. Ivan Farris et al. [14],

formulate the problem of proactive service migration in multi-

edge cellular 5G networks by leveraging on the prediction

of user mobility patterns. They consider the deployment of

multiple service replicas to guarantee fast relocation of user

services. By taking advantage information about the user

position and orientation, they perform a simple user path

prediction and replicate services only at the edges towards the

user mobility direction. As stated in their work, the proposed

approach introduces additional cost per service However, a

more advanced prediction could be developed, that can exploit

mobile service usage cartography [15], road map data for

urban environments or geographical information, and leverage

big data techniques on past measurements [16]. Such an

intelligent scheme could deliver superior performance. In our

work, we propose a system based on Deep Learning (DL).

Not only it can predict the movement direction, but also

actually learn user mobility preferences by training on user

historical data as well. We utilize LM to avoid data overhead

introduced by instance replication and migrate the service

based on personalized predictions.

Recent works in dynamic Virtual Network Function (VNF)

placement include [17], which advocates allocating services

to a distributed edge infrastructure, minimizing E2E latency

from all users to their associated services. Unlike similar

works, they offer a smart scheduler that re-calculates the

optimal placement automatically, in such a way that keeps

the services migration cost as low as possible. The proposed

solution is based on an Integer Linear Programming algorithm

and identifies the appropriate allocation for all services that

have the least E2E latency from all users. Although the results

seem promising at first sight, the comparison with the cloud-

only deployment is weak. Another major challenge towards

efficient service placement in edge computing environments is

to understand and predict the mobility of users. The abundance

of data in modern networks can be beneficial for trajectory

prediction in urban environments. Choi et al. in [18] introduce

a DL approach to learn and predict network-wide vehicle

movement patterns in urban networks. Specifically, their study

employs a Recurrent Neural Network (RNN) that is capable

of predicting the next locations in a vehicle’s trajectory,

given the previous locations. They take advantage of the

similarity between trajectory sequence prediction and language

modeling, in which RNNs proved a great success. On the

other hand, Lv et al. in [19], introduce an algorithm which

adopts CNNs to model vehicle trajectories as images and

achieve precise destination prediction. To study the problem

of precise destination prediction, they utilize a lengthy taxi

dataset. Unlike many prediction approaches, they capture the

diverse two-dimensional patterns of trajectories in different

spatial scales.

Regarding the studies around movement prediction, the

unpredictable movement of the users makes it difficult to main-

tain low latency and service performance in edge computing

scenarios. Ouyang et al. in [20], design a novel mobility-

aware online service placement framework to achieve the

desired balance between user-perceived latency and migration

cost. Tackling this issue requires to find a trade-off since

frequent service migrations can increase the operational cost

and degrade QoS. The authors utilize a Lyapunov optimization

technique to incorporate the long-term cost budget constraints

into a series of real-time optimization problems, they develop

two efficient heuristic schemes based on the Markov approx-

imation and best response update techniques to approach a

near-optimal solution. Further, Yu et al. in [21] investigate the

problem of service migration in multiple V2N services with

different QoS requirements. The main focus is the optimization

of long-term service latency in MEC. They propose a partial

dynamic optimization algorithm that utilizes priority queue.

They evaluate the performance of the proposed algorithm

by simulating the real world taxi trajectory in Rome and

they prove that the proposed algorithm can keep a stable

service latency and approximate the optimal solution of the

above-mentioned problem. The proposed algorithm has a time-

complexity with an upper bound, which means the algorithm

can be finished in each slot.

Inspired by these successful researches, we develop an

algorithm that can offer both personalized and low latency

service to multiple users with high mobility. Throughout the

next sections, we extend these works by combining a CNN

for personalized mobility prediction and a GA based recurrent

algorithm responsible for resource allocation in the network

edge to tackle the latency issue.

III. SYSTEM MODEL

We consider a city-wide vehicular network divided into c
Cells organized together into groups that form a Region r.

We assume that every region has a Regional Server. The role

of the regional server is to provide SDN signaling to the

underlying part of the network. Optionally, it can also host

user services, in case of severe network congestion in the

edge of the network. Every cell c includes a MEC Server

m with limited computational resources, collocated with one

Base Station (BS) whose coverage area defines the size and
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shape of the cell. Furthermore, there are several remote DCs

with abundant computational resources for vehicular service

hosting, along with an orchestrator that connects to the SDN

controllers of the regional servers. Additionally, we assume

a set of self-driving vehicles V that cruise through the city

cells. They communicate with each BS through a millimeter

Wave (mm-Wave) 5G transceiver and require a specific amount

of computational resources from the network to host their

services Sv . A graphical representation can be seen in Fig. 1

and the notations of this work are summarized in Table II. The

proposed architecture is composed of several interconnected

entities, all discussed in detail in the following subsections.
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Fig. 1. 3D Orthographic representation example of the proposed architecture
with MEC computing servers connected their respective BS.

A. System Model Entities

1) Self-Driving Vehicles: We assume that each Self-Driving

Vehicle v ∈ V , requires access to external processing power

and storage to provide smart functionalities, such as proac-

tive driving assistance, remote monitoring, security, real-time

communication, and entertainment to the passengers. Every

vehicle is equipped with a 5G transceiver capable of mm-

Wave connectivity and requires an uninterruptible connection

with an assigned set of services hosted in the network.

2) Services: A Service consists of several VMs or Con-

tainers, interconnected in a way that all collectively respond

to a request made from a Self-Driving Vehicle v, with an

end goal to enhance the passenger safety and experience

while commuting. As s ∈ S and s ∈ Sv , we denote a

service, where S is the set of all network services and Sv

a subset of S assigned to a specific vehicle v. Services can be

considered as a software package requires a specific amount of

computational resources to operate properly. Regarding their

requirements, a service s can be summarized in the terms

Rproc
s , Rmem

s and Rstor
s , where Rproc

s is the number of cores

required for the operation of the service, Rmem
s and Rstor

s

the Gigabytes of memory and storage required respectively.

Every service, depending on its functionality, has a priority

index that defines its Quality-of-Service (QoS) requirements.

The QoS requirements are essentially the round-trip latency

between any vehicle v and the services sv assigned to it.

It is expressed with the variable Rqos
s and is measured in

milliseconds. This scheme is agnostic to the type of services

hosted and it categorizes them by their QoS requirements as

it can be seen in Table I.

TABLE I
SERVICE CATEGORIES

Category Application Examples

Critical Auto-breaking, remote control, accident prevention
High Priority Navigation, Information Services
Low Priority Multimedia, Entertainment, AR, Cloud Gaming

3) Data-Centers: Typically, the DCs host all kinds of

services, both user and networking. In this approach, we

also consider a unique networking service that is capable of

exploiting user location data and modelling user behaviour that

the orchestrator can utilize to spatially distribute user services

in the network. We use d ∈ D, where D is a set of DCs. The

latency from the edge of the network to the DC is denoted as

Dlat
d . The DCs are located in a remote area far from the access

network. That suggests a dramatic rise of the round-trip delay,

making it impossible to satisfy the QoS of critical and even

some high priority services that require instant communication.

4) Multi-Access Edge Computing Servers: In an effort to

reduce the round-trip communication delay between the users

and their services in DC, we employ MEC servers with limited

processing power next to every BS [10]. The MEC servers

are denoted with m ∈ M. We consider that each MEC server

has available computational resources to host both user and

network services and the BSs equipped with 5G mm-Wave

capable equipment directly connected to their respective MEC

m. Regarding the computational capacity, we refer to Cproc
m ,

Cmem
m and Cstor

m to the capacity of every MEC m for cores,

Gigabytes of memory and storage apiece. There is a specific

utilization threshold that if exceeded the MEC server enters a

critical mode and new services can no longer be instantiated.

New requests to instantiate or migrate a service will be rejected

and automatically redirected to a neighbouring MEC server.

This threshold is called T critical
m and it depends on the capacity

percentage of each server to prevent unstable behaviour or

crashing. The MEC servers of each cell are interconnected

with their adjacent cells by local, cell border switches. These

connections are used to transfer user services and data at high

speeds and extremely low delays during operation. They all

have access to DC via a network of multi-mode optical fibres

and switches.

5) Regional Servers: The Regional Servers are interme-

diary servers between the DCs and the MEC Servers. They

are used to host the SDN controller that is managed by

the orchestrator, controls and collects statistics from all local

cell border switches. Also, it serves passenger services from

vehicles with high velocities, when their velocity is high

enough that service migration time is enough to move the

services between adjacent cells. Similar to MEC Servers, the

computational capacity, we refer to Cproc
r , Cmem

r and Cstor
r to

the capacity of every Regional DC r ∈ R for cores, Gigabytes
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of memory and storage each.

6) Network Switches: The network Switches are hardware

devices that receive, process and forward data between devices

within the network. They are denoted with w ∈ W , where W
is the total number of switches in the network. Every switch

needs a specific amount of processing time from receiving to

re-transmitting the packet from a different port, we note this

delay as Dcomp
w and measured in milliseconds. As Dport

n we

name the transmission delay of its ports.

7) Network Links: We think of network Links that directly

connect the two network entities. We express all links as

l ∈ L, where L is the total number of links. Every link

has a propagation delay noted as Dpd
l and measured in

microseconds.

B. Connectivity

To have an overview of the entire architecture, it is impor-

tant to recognize the connections between all network entities

discussed in the previous subsection.

As the self-driving vehicles v enter a new cell c while

cruising in the city, they connect to the BS of the current cell.

The BS is connected with the local MEC server that processes

the services of the current cell c, to minimize the round-trip

service delay with the vehicle. This offers the opportunity

for extremely fast response times that can be proven useful

for critical applications. In some circumstances, it could even

save a life with a smarter auto-braking assistant. The MEC

servers of adjacent cells are connected to the switches that are

located in every intersection of the border of each adjacent

cell, as represented in Fig. 2. That type of connectivity

between the MEC servers and the switches provides one-hop

communication to the MEC server of the adjacent cell. This

way, services of vehicles that transition between two adjacent

cells can be moved fast and reliable. Every switch between

the cells is also directly connected to the regional switch that

covers the entire region r. In the same region is also located a

regional server dedicated to fast users and times where MEC

servers are heavily congested.

The complete connectivity plan can be examined in detail

in the top view diagram of Fig. 2.

IV. DEEP LEARNING BASED MOBILITY PREDICTION

This section presents the proposed method for predicting the

future cell of the users in a personalized manner. By predicting

the next cell the user is going to be located shortly, we can

migrate the services upfront, before the user handover to the

next cell and increase the latency. It is clear that if we want

to minimize the perceived latency, the user should be served

by the nearest edge [20]. The proposed orchestration algorithm

attempts to minimize round-trip latency between the users and

their services. All notations required are shown in Table. II.

All vehicles show distinct mobility patterns based on the

most significant locations of their users, such as home or work.

To make predictions for every vehicle, we have to generate a

mobility model that represents the vehicle’s mobility pattern

from its historical trajectory. New vehicles are handled by a

generic model that has generalized the mobility of all vehicles

in that region.
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Fig. 2. Network top view layout representation. It is easy to distinct the
direct connections between the switches and the MEC servers for fast, 1-hop
service migration between neighbouring nodes without limiting the throughput
of the back-end links. This layout can be achieved also in arbitrary shaped cell
structures by using a switch in every intersection between 3 or more adjacent
areas.

TABLE II
NOMENCLATURE

Services

S Set of services

R
proc
s Service computing cores requirement

Rmem
s Service memory requirement

Rstor
s Service storage Requirement

R
qos
s Service QoS requirement

Self-Driving Vehicles

V Total number of vehicles
Sv Subset of services assigned to vehicle v

Data-Centers

D Set of DCs

Dlat
d

Total network edge to DC delay

MEC Servers

M Set of MEC Servers

C
proc
m MEC computing cores capacity

Cmem
m MEC memory Capacity

Cstor
m MEC storage capacity

T critical
m MEC critical threshold

Regional Servers

R Set of Regional Servers

C
proc
r Regional Server computing cores capacity

Cmem
r Regional Server memory capacity

Cstor
r Regional Server storage capacity

T critical
r Regional Server critical threshold

Network Switches

W Set of switches

D
comp
w computational delay of the switch

D
port
n Port transmission delay of the switch

Network Links

L Set of links

D
pd

l
Link propagation delay

A. Vehicle Trajectory Data Representation

The trajectory of every vehicle can be considered as tuples

of coordinates that correspond to a two-dimensional plane.

Formally, given a self-driving vehicle v, it’s trajectory Tv can

be represented by duets of Global Positioning System (GPS)

coordinates:
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Tv = [(x1, y1), (x2, y2), ..., (xt, yt)], (1)

where (xt, yt) represents the longitude and latitude coordi-

nates at the timeslot t.
Considering the massive amounts of data produced by the

vehicles, there are infinite possible data points used to describe

each trajectory due to the longitude and latitude coordinates

being continuous in space [18]. A commonly used mechanism

to overcome such an issue is to convert the continuous space

to a finite set of locations or cells to combine adjoining spatial

points into one divisible unit. Various practices have been used

in the literature such as Voronoi Polygons [22], [23] or Dense

Grids [4], [18], [19]. Any implementation can be used with

our solution as long as it assigns a unique id to every cell.

We adopt the Dense Grid approach in our work for the

following reasons:

• It retains only the global mobility trend of every vehicle

we need to extract and removes unnecessary moves.

• It enables the mapping of two-dimensional patterns into

one-dimensional sequences.

• Utilizing number sequences instead of two-dimensional

matrices enables using proven approaches for sequence

classification and prediction.

• Avoiding learning matrices with long dimensions that

only contain a trace, helps avoid sparse input for our

neural network and prevents low accuracy fitting.

• It notably reduces the amount of data for storage and

processing and makes the prediction time possible in

microseconds.

First, we divide the city plane into a square grid of c
cells, where K represents the length of each side. Starting

from left to right, bottom to top, we give every cell a unique

identification code to perform the conversion as depicted in

Fig. 3.

The resolution of the Dense Grid is a quid pro quo between

feature retention and information reduction. In general, such

trajectories contain information that do not directly influence

the prediction accuracy and can be abstracted, like corners

or curves. Keeping such features may cause sparsity problem

because it requires much greater resolution and less cells now

contain useful information. In contrast, lower resolutions tend

to keep general information about the mobility.

Considering the above, we group the set Tv from the

Equation 1 to a cell sequence form:

Dv = [c1, c2, ..., ct], (2)

where v is the self-driving vehicle and Dv its trajectory

described in cells ct.

B. Convolutional Neural Networks personalized prediction

For the personalized user mobility prediction, we utilize

CNNs. They gained great success not only in research but

also in everyday life because of their performance and agility.

They are mostly used for feature extraction from raw-pixel

images and pattern recognition in various dimensional spaces,

for audio, image or 3D object representations.
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Fig. 3. Illustration of the trajectory conversion.

Similar to the pattern recognition in a one-dimensional

problem, such as word recognition in an audio stream, we

identify mobility patterns by assigning probabilities to specific

sequences from data to the next cell. That way we can make

predictions by producing a measurable number of confidence

for each prediction.

Formulating the problem as a time-slotted model offers a

way to describe every transformed trajectory Dv as a uni-

variable time-series. Each time-series expresses as a sequence

of cells.

An abstract representation of the model is presented below

in Fig 4.
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Fig. 4. Sequence mobility prediction Neural Network architecture. The inputs
are three sets of the last three positions with a lag factor of one and the output
is a vector with all the adjacent cells that are most likely to be the next cell
in the trajectory of the vehicle.

At first, we feed the input sequences into the CNN model.

The CNN model is a compound of convolution, max-pooling

and Fully Connected (FC) layers.

The first layer L1 convolves Dt to generate a feature map

FC×L2 with C channels.
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Each channel can be expressed by the following equation:

FC×L2 = σ(

[k/2]
∑

h=−[k/2]

θc,h ∗ (t+ h)) + bc), (3)

where θc,h is the convolution parameter, k is the length

of the sliding window, bc the bias parameter and σ(x) the

activation function. These layers are typically rectified by

a ReLu activation function, that can also be represented as

σ(x) = max(x, 0). The objective of the first layer is to extract

the spacial dependency of the cell sequences we used as input.

In the following a max-pooling layer L2 is used to down-

sample the extracted input feature maps and generate high-

level features on a larger scale. It reduces the input sequence

Dv by keeping only the maximum value between as sliding

window. The reduced feature maps are now described as

FC × L/p× L/p, with each element:

Fc,t = max0 <= h, Fc,t∗p+h, (4)

where p indicates the pooling size.

The output is then flattened into a vector S and exposed

into consecutive FC layers L3 L4, that each output element of

every layer is calculated as following:

ei = tanh(
∑

j

Wi,j × Sj + bi), (5)

where Wi,j , W ′

i,j and bi are the parameters of these layers

and need to be learned.

Finally in the output layer L5, we calculate the probabilities

set P , as the weighted sum of the frequently significant visited

locations for each (cell) to be the next one that will serve the

user v. In particular, for every neuron of the output layer we

have:

ei = φ(
∑

j

Wi,j × Sj + bi), (6)

where φ(x) is the Sigmoid activation function φ(x) =
1

1+e−z and φ(x) ∈ (0, 1).

C. Confidence & Decisions

We define Confidence as an integer that is used for the

decision making of the service placement and it shows the

level of sureness for a specific prediction. If the output is not

accurate enough, the orchestration and placement algorithm

has to take that into account to be able to guarantee low latency

to as many services as possible.

The output vector of the neural network O ∈ (0, 1) because

of the Sigmoid activation function. We set a threshold toutput
that defines when the term ao becomes 1, so that ao ∈ {0, 1}.

We sort the output vector O descending and pass it through

the following function:

Qconfidence =

S
∑

s=1

ao, (7)

where ao ∈ {0, 1} is whether the output accuracy for every

service surpassed the confidence threshold tconfidence and:

Qcase =















No Confidence, if Qconfidence = 0

Confident, if Qconfidence = 1

Dilemma, if Qconfidence > 1

, (8)

The placement actions taken for each specific Qcase are

shown below:
1) No confidence, Flood Service: When the algorithm does

not pose any confidence, if the service is critical we create

duplicated in all neighbouring cells and keep only the one

that the user uses after the handover.

2) Confident, Migrate Service: If the algorithm poses great

confidence in only one cell, we migrate directly the service

upfront.

3) Dilemma, Duplicate Service: If the confidence level is

high for more than one MEC servers, we create multiple copies

of the original service and keep on only the one that the user

uses after the handover.

V. DYNAMIC SERVICE ORCHESTRATION WITH GENETIC

ALGORITHMS

In the following paragraphs, we tackle the orchestration

of user services inside a region, by designing a recursive

algorithm that is based on a GA solution of the famous 1/0

Multidimensional Knapsack Problem (MKP).

A. Knapsack Problem Preliminaries

The Knapsack Problem (KP) is an optimization problem.

Its goal is to determine which items should be included in a

collection, so that the total weight is less or equal to a given

limit, given a set of items that each item has weight and a

value. It is a known NP-Hard problem, often used for resource

allocation, where there is a fixed budget or constraint.

1) 0/1 Knapsack Problem Definition: Given n objects with

value vi and m knapsacks, each with a capacity constraint cj ,

maximize the value to satisfy each m constraint. Each of the

m constraints have i weights w associated with it.

We want to maximize the term:

n
∑

i=1

xivi, (9)

such that:

n
∑

i=1

xiwi,j ≤ cj , j : 1...m. (10)

Here xi ∈ 0, 1 represents the number of instances of weight

i to include in the knapsack j.

2) Multi-dimensional Knapsack Problem Definition: In

continuation of the previous definition, the main major dif-

ference is that the weight of a knapsack item is given by a D-

dimensional vector wi = (wi1, wi2, ..., wiD) and the knapsack

has a D-dimensional capacity vector (W1,W2, ...,WD). The

target is to maximize the sum of the values of the items in

the knapsack so that the sum of weights in each dimension d
does not exceed Wd. MKP is very computationally intensive

and for that reason use will use a GA to approach its solution

and avoid NP-hard complexity.
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B. Multi-dimensional Knapsack Problem solution with Ge-

netic Algorithms

Solving the aforementioned multidimensional knapsack

problem using dynamic programming is difficult. We leverage

a solution studied multiple times in literature and it involves

the use of a GA [24]. It is based on [24], that uses greedy

crossover for the 0/1 knapsack problem and it shares similar-

ities with the work [25] by also using surrogate multipliers.

This algorithm, according to this work [24], is able to exceed

the greedy estimate and find an optimal solution.

We leverage Lagrangian multipliers to augment the utility

ratio for the multidimensional knapsack problem. It can be

summarized with the following steps:

• For each object and constraint for the given object, the

constraint value is multiplied with the corresponding

Lagrangian multiplier lj and the sum of these values is

obtained.

• This sum is then divided by the number of constraints.

• The ratio of the profit and the divided sum is obtained and

forms the profit-to-weight ratio for the specific object.

In mathematical form, the steps can be summarized in the

following equation

ratioi =
vi

∑
m
j=1

lj∗Wi,j

m

, (11)

where lj is the jth Lagrangian multiplier and m is the

number of constraints. The greedy crossover takes objects

from the parents in a non-increasing order of the ratio and

constructs one offspring such that it satisfies all constraints.

C. Service Orchestration and Recursive Placement

Based on the future predictions of the CNN, we devise a

recurrent algorithm that generates the placement for the next

timeslot recursively. This algorithm determines the optimal

service placement for all vehicles and their services in a

region, by taking into account the predicted vehicle location,

the formed confidence, and the resources of the next timeslot.

The algorithm works by generating and assigning a value

for every service s according to its latency requirement Rqos
s .

1) Initialization Sequence: The sequence begins by at-

tempting a placement in a cell MEC. If there are multiple

services expected to be served by the specific MEC according

to the CNN predictions and confidence values, it performs a

selection with the MKP algorithm to prioritize the placement

of services with higher prices, such as critical. After the

successful placement of these services, the algorithm proceeds

to place the rest services.

2) Recursive Sequence: The recursive part of the algorithm

starts by examining the total service latency in different

placement scenarios. If the total service latency of the given

placement decision and user position is greater than placing

the service in the closest DC, it directly migrates the service

that DC. If the previous statement is false, it proceeds to

investigate if there are any available resources to host the

service in question in this MEC. Given that there are available

computational resources, the algorithm assigns the service to

the specific MEC and returns the function. In case there are no

available resources, it sets a flag variable as false and receives a

list of all neighbouring cells. If the flag variable is still false,

it calls itself pointing at the next neighbouring cell of the

first list. When the placement occurs, the function returns. In

case that the placement could not be performed in any of the

neighbouring cells of the list, the flag variable is still false

and can access the next neighbouring cell from the initial call

in greater depth. The operation repeats itself until there is a

placement with total service latency lower than placing the

service on the closest DC. The visual result is a clockwise

search for resources, each time in a longer distance from the

desired MEC until the service is placed. A graphical example

of the recursive operation can be seen in Fig. 5 below.

Placement Complete

1

2

3

4 5 6

7

8

Resources Search

1

2

3

4 5 6

Fig. 5. On the left side of the figure, we can see a snapshot of the algorithm
during the recursive search for resources, while on the right side we can see
the search completed.

VI. SIMULATION RESULTS & EVALUATION

In this section, we conduct a simulation study to evaluate

the latency and QoS for the critical services of the proposed

algorithm. The performance evaluation takes place in six

distinct traffic scenarios in an urban environment to verify the

theoretical results in a more realistic manner.

A. Dataset

For the mobility of the vehicles, we leveraged real data from

taxis roaming the San Francisco Bay Area [26]. This dataset

contains the GPS coordinates and timestamps of 536 taxis,

collected for over 30 days.

The motivation and criteria for the dataset selection were

the following:

• The dataset should contain GPS coordinates and time-

stamps to derive the vehicle trajectories and extract

features such as speed and direction.

• It should include enough data to train our model appropri-

ately. More data can help the algorithm generalize better

the movement of the vehicles in the city.
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• The vehicle trajectories should present hot-spots to emu-

late the different points of interest individual users have

in their daily lives, such as homes, workplaces, malls, etc.

In our case, the hot-spots are tourist attractions and taxi

pickup areas.

• It should cover the entire investigation area at least 2

times per day to emulate a typical work-home mobility

sequence with distinct patterns.

Real-life user location data were not available at the time

of this research, mainly due to privacy and security reasons.

The dataset can be found available online in the community

of Crawdad.

B. Simulation Setup

The simulation of both physical and virtualized network

entities was simulated with Python language. For the con-

struction of the CNN model, we used TensorFlow and the

high level Keras API [27]. We utilized the pyeasyga library

for the implementation of the Genetic Algorithm solution of

the 0/1 Multi-dimensional Knapsack Problem.

For the simulation results presented in the following sub-

section, we performed simulation scenarios from groups of

V = {5, 25, 50, 100, 150, 200} vehicle trajectories. We pre-

sume that each vehicle v carries one passenger and moves at

a variable speed, never exceeding 65 kilometers per hour. We

simulated the mobility of every vehicle for 65 timeslots, in

all studied traffic scenarios. The 2/3 of the total length of all

traces was used for training and mobility pattern extraction.

We used Dense Grids to divide the area into small cells. This

simulation covers one region r = 1 with a Dense Grid of

K = 16 slices that correspond to 3km× 3km, approximately

0.1875 kilometers per side of every cell and a total of c = 256
cells. The physical network is composed of one remote DC

D = 1 with overall latency Dlat
1 = 22 milliseconds as well as

a Regional Server with Cproc
1 = 28 cores, Cmem

1 = 1.5 TB

RAM and Cstor
1 = 2 TB storage. In addition, all MEC Servers

m ∈ M are designed with Cproc
m = 4 cores, Cmem

m = 8 GB

RAM, Cstor
m = 32 GB storage with a co-located BS. The

Service Categories include:

• Critical Services such as Object Recognition, with the

requirement of Rproc
s = {2, 3} cores, Rmem

s = {1, 2}
GBs RAM, Rstor

s = {1, 2} GB Storage and Rqos
s = 1

ms strict limit.

• High Priority Services, such as AR Navigation, with the

requirement of Rproc
s = {1, 2} cores, Rmem

s = {2, 3, 4}
GBs RAM, Rstor

s = {2, 3, 4} GB Storage and Rqos
s = 10

ms limit.

• Low Priority Services, such as Caching Database or

Cloud Gaming, with the requirement of Rproc
s =

{2, 3, 4} cores, Rmem
s = {2, 3, 4} GBs RAM, Rstor

s =
{4, 5, 6, 7, 8} GB Storage and Rqos

s = 20 ms limit.

Every vehicle has at least one Critical Service that we

consider as mandatory for the self-driving capability and safety

of the passengers. The rest of the Critical, High or Low Priority

services are generated and assigned to the vehicles in a random

manner with Gaussian distribution.

C. Performance Evaluation

In our simulations, we examine the performance of the

proposed algorithm by comparing both the average service

latency from the vehicles and the average number of QoS

violations that occur during every mobility scenario.
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Fig. 6. (a) average service latency between the vehicles and their services. (b)
average QoS violations that took place in a scenario with 100 active services.

As we can observe in Fig. 6, increasing the number of

vehicles in the network increases at the same time the average

service latency due to insufficient MEC resources. Specifically,

we can observe that our algorithm in Fig. 6a, outperforms

the option without mobility and orchestration, by offering

considerably lower average service latency, especially for a

high number of vehicles. Moreover, according to Fig. 6b, on

average only 3.9 of the critical services exceeded their latency

QoS compared to the 20.2, which showcases that our proposed

GA based MKP orchestration can tightly fit more services

per cell in average without having to reject the requests. As

demonstrated, with proper service distribution in the same

space, there is a noticeable improvement in the average service

latency, since our proposed DL algorithm migrates proactively

the services in the network one step ahead of the vehicle.

It is evident that our proposed orchestration algorithm can

keep more services close to the vehicles, even when the

nearest MEC is under full load. This is possible by recursively

searching for available resources in the adjacent cells that are

one network hop away.

In Fig. 7, we examine a simulation snapshot with 100

vehicles that shows the number of occupied CPU cores in

all cells of a region. We can clearly observe a high traffic spot

in the middle of the grid due to the vast lack of unoccupied

CPU cores in that area. As we can see, spreading the services

with lower priority across the network can help to avoid

overload. It also prevents the congestion of the back-end links

by performing most of the computation at the edge of the

network, near the vehicles.

Next, with Fig. 8 we measure the spread of computational

load in the region under investigation. We support that the

variance with our implementation remains lower in the case of

100 services, even with an ongoing congestion in this region.
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Fig. 7. CPU Utilization snapshot from a scenario with 100 active services,
that corresponds to the QoS Violation presented in the previous figure.
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Fig. 8. Variance of computational resources with 100 active services.

The results from Fig. 8 infer to evenly spread computational

and network load throughout the entire examined region,

sharing and retaining additional room to support new users

with critical services. This form of spatial load balancing keeps

the latency uniform throughout the network and thus, offering

consistent user Quality of Experience while commuting.

Finally, in Fig. 9 we present the results of our study for the

optimal computational resources required to cover all simu-

lated traffic configurations. Each bar in the figure shows the

minimum number of CPU cores needed on average to avoid

migrating services to neighbouring cells. Keeping services to

the nearest MEC, while never exceeding their capacity, can

deliver service with lower latency. Even in the highest traffic

scenario of 200 vehicles, our proposed implementation can

retain minimal latency when the available MEC capacity is

equipped with 12 cores.
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Fig. 9. Optimal CPU Cores for every traffic scenario studied.

VII. CONCLUSIONS & FUTURE WORK

It is well studied in the literature that using location data

to place the services at the edge of the network reduces the

latency of the services. However, we go a step further to

predict the next move of the vehicle and proactively rearrange

the services according to their requirements. This kind of

awareness enables a whole new ecosystem of innovative

applications, such as a life saving proactive collision warning.

Motivated by the potential benefits, the contribution of this

paper focuses on employing a CNN to exploit the past location

data of vehicles to estimate their next position and developing

a GA based recurrent orchestration algorithm to organize

services at the edge of the network. We have evaluated the

performance of the proposed algorithm by simulating six

traffic scenarios with real location data from taxis in San

Francisco Bay Area. The simulation results show that our

algorithm was able to reduce the average rejection rate of

critical services from 20.2 to 3.9. We proved that the GA

based recursive service orchestration algorithm we designed

was able to search for available resources close to the vehicles

and prioritize the placement in a scenario with congestion.

The results also supported that our algorithm performs a

form of spatial load balancing that keeps the latency uniform

everywhere in the network. Finally, we conducted a simulation

study to identify the optimal number of CPU cores needed to

satisfy each traffic scenario.

As future work, we intend to use Deep Reinforcement

Learning to substitute the MKP in the orchestration part of

our work. By approximating the optimal placement, we will

decrease further the time required for orchestration.
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