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Rao's score statistic is a standard tool for constructing statistical tests. If departures 
from the null model are described by some k-dimensional exponential family the re- 
sulting score test is called also smooth test or Neyman's smooth test with k components. 
An important practical question in applying a smooth test in the goodness-of-fit problem 
is how large k should be taken. Since a wrong choice may give a considerable loss of 
power, it is important to make a careful selection. Renewed research in this area shows 
that the simple question has no simple deterministic answer. Therefore, Ledwina 
introduced, for testing a simple goodness-of-fit hypothesis, a data driven version of 
Neyman's smooth test. First, Schwarz's rule is applied to find a suitable dimension and 
then the smooth test statistic in the "right" dimension finishes the job. Simulation results 
and some theoretical considerations show that this data driven version of smooth tests 
performs well for a wide range of alternatives, and is competitive with other recently 
introduced (data driven) procedures. This data-dependent choice of the number of 
components is extended in this paper to testing the goodness-of-fit problem with 
composite null hypothesis, being of more practical interest. 

A k-dimensional exponential family for modelling departures from the null hypothesis 
is given and the related Rao's score test is described. A suitable version of Schwarz's rule 
is proposed and some simplifications of it are discussed. 

To check validity of the proposed construction, the method is applied to testing 
exponentiality and normality. In the extensive simulation study, presented in this paper, 
it turns out that the data driven version of smooth tests compares well for a wide range 
of alternatives with other, more specialized, commonly used tests. 

Keywords: Goodness-of-fit; smooth test; Neyman's test; Rao's score test; Schwarz's 
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By taking orthonormal versions $0, 41,.  . . , 4k of $0, &, . . . , & with 

we get Pearson's chi-square test with partition 0 = do < dl < . . . < dk = 1. 
(By lA(x )  the indicator function of the set A is denoted.) 

However, changing k in the last example leads to another ortho- 
normal system and therefore a slightly more complicated structure 
than considered in the rest of the paper. 

Testing Ho reduces in the family (1.1) to testing H : 6 = 0. When P is 
known, the so-called smooth test statistics are given by 

For the terminology (in particular the term "smooth"), a motivated 
introduction and for some properties of Tk(P) we refer to Rayner and 
Best (1989). Here we mention only that Tk@) can be seen as Rao's score 
statistic for the model (1. I), cf. Theorem 4.2.1 in Rayner and Best (1 989). 
It can also be interpreted as the density-based test statistic with k being 
the smoothing parameter, cf. Eubank and LaRiccia (1992). Although 
Neyman's (1937) pioneering paper is considered to be ingenious (cf. Le 
Cam and Lehmann (1974) no.3 p. ix), smooth tests arosed little attention 
for several years. For an overview of the renewed interest in smooth tests 
we refer to Rayner and Best (1990), who conclude in reviewing several 
tests of fit: "don't use those other methods-use a smooth test!", a 
conclusion also derived in Milbrodt and Strasser (1990) p. 14. The 
reasons that Neyman's smooth tests based on Tk(P) have been 
somewhat overlooked might be their lack of consistency for large sets 
of alternatives and the lack of rule for selecting k. 

The important practical question of how large the number k of 
components should be in Tk(P) can be tackled by three different 
approaches. The first one takes k (and the orthonormal system) in 
such a way that, among the broad range of alternatives, some al- 
ternatives of particular interest are represented fairly well using only 
the first k components of the orthonormal system for testing Ho with 
k as small as possible. It forces the user to think on what type of 
alternatives are of particular interest, which may be seen more as an 
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advantage than a disadvantage of the method. A criterion of a simple 
structure to implement the idea is presented and extensively motivated 
in Inglot et al. (1994a). 

The second approach is a more data-analytic approach. If the null 
hypothesis is rejected, the components are used informally to suggest 
the nature of the departure from the null hypothesis. For more details 
we refer to Rayner and Best (1989). 

Returning to formal testing theory, the third approach concerns an 
automatical choice of k, based on the data. Numerical results show 
that a considerable loss of power may occur, when a wrong choice of k 
is made (see e.g., Inglot et al. (1994a), Kallenberg and Ledwina 
(1995a,1997)). Therefore a good procedure for choosing k based on 
the data is very welcome. Schwarz's (1978) selection rule provides such 
a choice. The finishing touch comes from the smooth test statistic in 
the "right" dimension. This data driven approach has also the extra 
advantage lying behind the idea of the second approach, since, when 
rejecting the null hypothesis, automatically a well defined alternative 
model is provided for the data at hand. There is now a lot of interest in 
this kind of procedures as is seen in the papers of Bickel and Ritov 
(1992), Eubank and Hart (1992), Eubank and LaRiccia (1992), 
Eubank et al. (1993), Bowman and Foster (1993), Ledwina (1994), 
Inglot et al. (1994b), Kallenberg and Ledwina (1995a,b), Inglot and 
Ledwina (1996), Bogdan (1995) and Fan (1996). 

When P is known, or, equivalently, for testing uniformity, the 
simulation results and the theoretical support for the data driven 
version of smooth goodness-of-fit tests show that the test has a stable 
and relatively high power for a broad range of alternatives (cf. 
Ledwina (1994), Kallenberg and Ledwina (1995a,b), Inglot and 
Ledwina (1996)). Moreover, in Kallenberg and Ledwina (1995a) 
consistency of data driven smooth tests is proved under essentially all 
alternatives. 

In applications testing a composite null hypothesis is far more 
important. Smooth tests with fixed k when nuisance parameters are 
present are extensively discussed in Rayner and Best (1989). 

In view of the good performance of the data driven smooth test in 
the simple hypothesis case, it is natural to define and investigate a data 
driven version of the smooth test for composite hypotheses. This is the 
topic of the present paper. 
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First of all, Schwarz's rule is extended to the situation where P is 
unknown. Also some modifications of Schwarz's rule are presented. 

Secondly, the score statistic for testing the (composite) hypothesis 
H: 0 = 0 against A : 0 # 0 in the model (1.1) is applied, using the 
dimension given by Schwarz's rule. Simulation results for testing 
normality and for testing exponentiality show that the test works well 
for a wide range of alternatives and is competitive to well-known tests 
as Shapiro-Wilk's test in case of normality and Gini's test for 
exponentiality. 

The paper is organized as follows. In Section 2 the test statistics are 
formally defined. Section 3 provides the simulated critical values and 
powers of the data driven smooth tests. 

2. TEST STATISTICS 

To define the test statistics consider an orthonormal system 

in L2([0,1]) with bounded functions q51, 4J2,. . . and $o(x) = I .  The 
functions $ 1 ,  $9, . . . are not necessarily uniformly bounded. Let 
{ f (x; P) : P E B} be a given set of densities with corresponding distri- 
bution functions { F(x ; P) : /3 E B}, where B c R q .  For k = 1, 2, . . . 
define exponential families by their density 

where 

and . stands for the inner product in [ w ~ .  When there is no confusion, 
the dimension k is sometimes suppressed in the notation. Let ' denote 
the transpose of a matrix or vector, Writing 
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with j depending on the context, the likelihood of the independent 
r.v.'s XI, . . . ,Xn, each having density (2.1) is given by 

For each ,BE B  Schwarz's (1978) rule for choosing submodels 
corresponding to successive dimensions yields 

where 

Although it is not mentioned in the notation, S(,B) depends of course 
on the upper bound d(n) of the exponential families under consider- 
ation. 

Let be the maximum likelihood estimator of P under Ho. Define 

Properties of this extension of Schwarz's rule to the situation where 
nuisance parameters are estimated, are given in Inglot et al. (1994b). 

When ,B is known (and k is fixed), the test statistic (1.2) is the score 
statistic for the model (1.1), cf. Theorem 4.2.1 in Rayner and Best 
(1989). Therefore, when ,f3 is unknown (and k is fixed) we also use the 
score statistic for testing the (now composite) hypothesis H:6'=0 
against A : 19 # 0 (cf. Javitz (1975), Kopecky and Pierce (1979), Thomas 
and Pierce (1979), Neyman (1980), Rayner and Best (1989)). 

It is assumed in the rest of the paper that the set of densities 

{ f (x; P)  : P E B )  is regular 

in the usual CramCr sense. 
Denote by I the k x k  identity matrix and by E(o,p) the expectation 

when X has density f (x; P). Further define 
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The data driven smooth test statistic is now defined by 

ws = WS@) (2.5) 

with Wk given in (2.4), S(P)  given in (2.2) and b the maximum 
likelihood estimator of P under H :  O=0. The null hypothesis is 
rejected for large values of Ws. 

Schwarz's rule S(P)  as given in (2.2) compares (penalized) 
maximized likelihoods. It turns out (cf. Inglot et al. (1994b)) that 
the maximized likelihood (which is in fact the likelihood ratio statistic 
for testing H  : 6 = 0 against A : O f  0 when p is known) is locally 
equivalent to (1 /2)nll Y,(P) 112, where 1 1  . lldenotes the Euclidean norm. 

Inserting the estimator b, the extra term R(P) appears in the inverse 
of the asymptotic covariance matrix. Taking this into account we get 
the modification 

which is easier to calculate. The corresponding test statistic is 

An even more simple modification, which is still easier to calculate, is 

S2 = ~ 2 ( 8 )  = min{k : 1 5 k 5 d(n), nl( yn(b) 

- k log n 2 n/l Yn(fi)$) - j log n, j = 1 . . , d(n)}, 

(2.8) 

where the index of the norm denotes the dimension. Here the 
maximized likelihood is replaced by its locally equivalent form without 
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an "adjustment" for inserting the estimator. Note that in ~ ( a )  there is 
also no "adjustment" for inserting the estimator. In this sense ~ ( p )  
and ~ 2 ( j ) a r e  similar. 

The corresponding test statistic is 

In case of a location-scale family { f (x;P) : P E B) we write = (p cr), 
f (x;P) = a-tf ( ( ~ - ~ ) / a )  and F (x; P) = F((x-p)/a). Now R(P) defined 
in (2.4) does not depend on P. The statistics s@), Sl(B), ~ 2 ( / ? ) ,  Ws, 
Wsl and WS2 all depend on XI, . . . ,Xn by means of 

where (fi, 6) = 1 .  Since (fi, ?) is location-scale equivariant, the 
distribution of 

does not depend on the location-scale parameter if Xi comes from a 
location-scale family. 

Therefore in case of a location-scale family { f(x; P) : ,L? E B) the 
null distributions of s($), s l (B) ,  ~ 2 ( / ? ) ,  Ws, Wsl and WS2 do not 
depend on P. Moreover, if the alternative also belongs to a location- 
scale family, the distributions of s@),  S l  (a) ,  ~ 2 ( ) ) ,  Ws, Ws, and WS 
do not depend on the location-scale parameter of that family. 

The same remark applies to location families and to scale families. 
To facilitate the application of the test statistics we summarize how to 
calculate them. 

1. Calculate the maximum likelihood estimator fi of P under Ho. 
2. Choose d(n). (We recommend d(n) = 6, 7 and 10 for n= 20, 30 and 

50, respectively). 
3. Compute Y, (a)  for dimension j = 1, . . . ,d(n). 
4. Compute Wj for j= 1, . . . ,d(n) in case of Wsl and L~(P)  for j= 

1, .  . . ,d(n) in case of Ws (for computing the maximum likelihood 
estimator e see Ledwina (1994, Section 3.1)). 

5. Calculate SO), S1 (fi) and ~ 2 ( $ )  and compute Ws, Wsl and WS~, 
respectively. 
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Under some regularity conditions all three test statistics have a chi- 
square distribution with 1 degree of freedom as asymptotic null 
distribution. Accurate critical values or p-values can either be obtained 
by simulation (cf. also Section 3) or by the second order null 
approximation given in Kallenberg and Ledwina (1997). 

Finally we mention that the tests are consistent against essentially 
all alternatives. For details we refer to Inglot et al. (1994b). 

3. SIMULATED CRITICAL VALUES 
AND SIMULATED POWERS 

All programs used in this paper have been written by Krzysztof 
Bogdan under the MEN Grant 341 046 and KBN Grant 66512191. 

The simulations are performed in a simular way as described in 
Ledwina (1994). Attention here is focussed on testing exponentiality 
and normality. 

We start this section with presenting simulated critical values of Ws, 
Wsl and WS2 for testing exponentiality with significance level a = 0.05 
and a = 0.10. In the simulation study as orthonormal system we take 
the orthonormal Legendre polynomials on [0, 11 

It is seen from Table I that the critical values do not vary much for 
different values of d(n) in the range 2(3) to 12. Although the 
introduction of Ws, Wsland Ws2 suggests much similarity, the 
differences between the corresponding critical values are not quite 
neglectable for sample sizes n_< 50. On the other hand the critical 
values of Ws and Ws2 come closer to each other when n becomes 
larger. The selection rules concentrate on dimension 1 under Ho, cf. 
Inglot et al. (1994b) for an extensive discussion. Therefore one might 
expect that the critical values were close to the chi-square-one a- 
points, being 3.841 for a = 0.05 and 2.706 for a = 0.10. However, the 
simulated critical values are substantially different. The same 
phenomenon occurs in the simple hypothesis case. An accurate 
approximation when testing a simple hypothesis is given in Kallenberg 
and Ledwina (1995b). A similar approach for the composite null 
hypothesis is given in Kallenberg and Ledwina (1997). 

We proceed with presenting simulated critical values of Ws, Wsl 
and WS2 for testing normality with significance level a = 0.05 and 
a = 0.10 in Table 11. 



TABLE I 5% and 10% critical values of Ws, Wsl and WS1 for testing exponentiality; each case is based on 10000 samples 



TABLE I1 5% and 10% critical values of Ws, Wsl and WS2 for testing normality; each case is based on 10000 samples 
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There is no (much) variation in the critical values of Ws and WS2, 
but there is a difference between the critical values of Wsl and those of 
Ws, WS2. Moreover, the critical values of Ws and Ws2 are for n = 50 
much closer to the corresponding a-points of the chi-square-one 
distribution. For an explanation we refer to Kallenberg and Ledwina 
(1997). The critical values of Wsl do not change much in the range 
d(n) = 3 to 12. 

To see how well the tests, introduced in this paper, perform we 
present the results of an extensive Monte Carlo study of the power. 
The null hypothesis of exponentiality corresponds to 

and = n-' C 2, Xi. For power comparison when testing exponen- 
tiality we consider the Gini statistic 

where Xcl, 1 . . . <  X(,) are the order statistics, cf. formula (2.1) on 
p. 351 of Gail and Gastwirth (1978). This test is called "powerful 
against a variety of alternatives" by Gail and Gastwirth (1978) and 
turned out to perform well in the study of Ascher (1990). It is also used 
for the sake of comparison by Rayner and Best (1989, p. 88) and 
LaRiccia (1 99 1). 

In the simulation study we consider the following broad class of 
alternatives (cf. Chambers et al. (1976), Pearson et al. (1977), Gail and 
Gastwirth (1978), Angus (1982), Baringhaus et al. (1989), Ascher 
(1990), Gan and Koehler (1990), Ebrahimi et al. (1992), Baringhaus 
and Henze (1992)). Here U denotes a N(0;l) r.v., R denotes a uniform 
rev., on (0,l) and Z a standard exponential distribution; R and Z are 
independent. 



D A T A  DRIVEN SMOOTH TESTS 113 

- - -- 

alternative densityldejnition 

Weibull (b;k) b k ( b ~ ) ~ - '  exp { - (bx lk} ,  x > 0 

Gamma (p;q) q-p{r(p)}-l~p-lexp(-~/q), x > 0 

= Gamma($ k;  2)  {2  i k r ( k /2 ) ) - ' x  ik-'exp(- i x ) ,  x > 0 

LN(g;d) d(x&)-'exp{- (d  logx + g)2} ,  x > 0 

Beta ( p ; d  X P - ' ( I  - X ) ~ - ' { B ( ~ ,  q ) ) - l ,  o 5 x 5 1 

Uniform (a;b) ( b  - a)-' , a 5 x 5 b 

Shifted exp. (kb) b exp { - ( x  - l )b},  x 2 I 
Pareto (a ;  k )  a k a ~ - ~ - ' ,  x 2  k 

Shifted Pareto 2(1 + x ) - ~ ,  x > 0 

S%d) ~ = ~ + d s i n h - ' ( x ) ,  - m < X < m  

T W )  X =  R'- (1 - R)', -1 5 X <  1 
Logistic ex( l  +ex)-', -m < x < cc 

SC(p;d)  (2~)-~[(~/d)exp(-fx~/d~) f ( 1  - p )  e x p ( - f x 2 ) ] ,  -cc < x < cc 

L C ( P ~  m) ( 2 ~ ) - i [ p  exp{- f ( x  - m)') + (1 - p) exp (- fx2)1, -cc < x < oc 

S B k d )  U = g + d l o g { X / ( l - X ) } ,  O < X < l  

S(a,b) X = ( X l / X 2 ) ( X 3 )  with 

XI = sin { ~ ( R T  - f n) + f ~ b ( 2  - a ) }  

X2 = { cos (RT - f n)}! 
X3 = [z-' cos { (RT - f ~ ) ( l  - a) - f ~ b ( 2  - a)}]? 

a > 1 , 0 5 b 5 1 , - x < X < m  

Note that the Weibull alternative is a scale family w.r.t. b, the 
Gamma w.r.t. q, the lognormal LN w.r.t. exp(-gld), the Uniform (0,b) 
w.r.t. b, the Shifted exponential w.r.t. b-', the Pareto w.r.t. k. 

The following tables show the powers for testing exponentiality. It is 
indicated, where in literature the same alternatives occur, but note that 
several alternatives are used in more than one paper. In the referred 
papers one may find also simulated power for other tests for those 
alternatives. Many authors present simulation results for n = 20 and 
a =0.05. Although in our opinion this is an extreme situation when 
testing goodness-of-fit, for the sake of comparison Table I11 contains 
also n=20 and a=0.05. Other authors take n=20 and a =0.10. 
Table IV contains this case. The more realistic choice n = 50 and 
a = 0.05 is presented also in Table 111, while Table IV shows n = 50 and 
a = 0.10. In this way the changes are seen, when n is growing. 

The tests Ws and WS2 perform well and, although based on general 
ideas, they can compare even with 'special' tests for exponentiality, 
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TABLE I11 Estimated powers (in%) of G, Ws, Wsl and Wsz testing exponentiality; 
Q. = 0.05, n = 20, 50; each case is based on 10000 samples; d(20) = 6 for S and 12 for S1, 
S2; d(50)= 10 for S and 12 for S1, S2 

alt 

Gail-Gastwirth (1978) and Agnus (1982) 

Weibull(1;O.b) 24 48 19 
Weibull(l;l.5) 50 93 23 
Uniform(0;2) 70 99 63 
Pareto(2;0.5) 79 91 100 
Shifted Pareto 47 81 38 
Shifted exp.(0.2;1) 23 54 18 
X: 48 90 22 
Ascher(l990) 

Gamma(4; 1) 99 100 90 
Beta(2.1) 100 100 100 
Gamma(0.7; 1) 21 39 18 
Beta(0.5;l) 6 5 41 

Gan-Koehler (1990) 

Beta(0.5;0.5) 27 59 72 
SB(0;O.S) 51 93 59 
SB(0;0.707) 90 100 74 
Beta(2;2) 99 100 93 
Beta(3;2) 100 100 100 
Weibull(l;4) 100 100 100 
Weibu11(1;3.6) 100 100 100 
Weibu11(1;2.2) 99 100 86 
Weibull(l;2) 95 100 72 
SB(1;2) 100 100 100 
SB(0.5333;0.5) 4 6 18 
SB(1;l) 76 100 40 
Weibull(l;0.5) 91 100 90 
X? 55 89 54 
LN(0;l) 12 15 16 

Ebrahim et al. (1992) 

Gamma(3;0.333) 89 100 63 
LN(-0.3;0.775) 41 74 34 
LN(-0.2;0.633) 73 98 63 

Baringhaus-Heme (1992) 

Gamma(0.4; 1) 76 99 79 
Gamma(0.6; 1) 35 68 33 
Gamma(l.5; 1) 18 44 8 
Gamma(2.4; 1) 69 99 38 
Weibull(l;0.6) 74 98 69 
Weibull(1; 1.4) 35 79 15 
Weibull(l;l.6) 63 98 31 
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TABLE IV Estimated powers (in%) of G,  Ws, Wsl and Wsz testing exponentiality; 
a = 0.10, n = 20, 50; each case is based on 10000 samples; d(20) = 6 for S and 12 for S1, 
S2; d(50)= 10 for S and 12 for S1, S2 

Agnus (1982) 

xi 

2 
LN(0;0.8) 
LN(0; 1) 
LN(0;1.2) 
Weibull(l;0.8) 
Weibull(l;l.2) 
Weibull(1;l.S) 
Beta(l;2) 
Uniform(0;2) 
Shifted exp.(0.2; 1) 
Shifted exp.(0.2;0.7) 
Pareto(l;0.2) 
Pareto(0.8;0.01) 
Shifted Pareto 

like Gini's test. Also in comparison with other tests for exponentiality 
in literature, the power of Ws and WS2 behaves well. In many cases 
taken from Gan and Koehler (1990), when power of Ws is 100, 
classical goodness-of-fit tests have definitely smaller powers (cf. Tab. 4 
in Gan and Koehler (1990)). As is seen from Table I11 and Table IV, 
for n = 50 Ws and WS2 often have higher power than Gini's test with 
great differences in Shifted exp.(0.2;1), Beta(O.5;1), Beta(0.5;0.5), 
SB(0.5333;0.5), LN(O;l), LN(0;1.2), Shifted exp.(0.2;0.7), Pareto 
(1;0.2). Data driven smooth tests improve considerably (and much 
faster than Gini's test) from n = 20 to n = 50. 

Next we consider the null hypothesis of normality, corresponding to 
(writing p = (p, c)) 

and 

f i  = (i { n  =(Xi - X Y j i )  with 2 = n =Xi. 
i= 1 i= 1 
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Here we use the often recommended Shapiro-Wilk test. According to 
Bowman (1992) the Shapiro-Wilk test in particular sets a very high 
standard as an omnibus test of normality. The corresponding test 
statistic is denoted by W. Table V shows the results for a variety of 
symmetrical and skew alternatives for n=20, 50. A more extensive 
version of Table V is given in Kallenberg and Ledwina (1994). 

As in Pearson et al. (1977) both symmetrical and skew alternatives 
in Table V are ordered according to increasing kurtosis. It turns out 
that except for "picked" symmetrical cases as the first 3 cases, which 
are close to the null hypothesis (in e.g., Kullback-Leibler distance), WS 
performs reasonable in the symmetrical case and works well for skew 
alternatives. That WS performs less for symmetrical alternatives is not 

TABLE V Estimated powers (in%) o f  W,  Ws, Wsl and W.52 testing normality; 
a = 0.05, n = 20, 50; each case is based on 10000 samples; d(20) = 6 for Sand 12 for S1, S2 

alt W 

n=20 n=50 

Pearson et al. (1977) 
Symmetric alternatives 

SB(0;O. 5) 44 99 
TU(1.5) 26 92 
TU(0.7) 12 62 
Logistic(1) 12 13 
TU(10) 82 99 
SC(0.05;3) 19 31 
SC(0.2;5) 71 95 
SC(0.05;5) 36 62 
SC(0.05;7) 45 74 
SU(0;l) 43 68 

Skew alternatives 

SB(0.533;0.5) 73 100 
SB(1;l) 31 81 
LC(0.2;3) 31 60 
Weibull(2) 15 41 
LC(0.1;3) 25 50 
X:O 25 57 
LC(0.05;3) 18 32 
LC(0.1;5) 76 98 
SU(- 1;2) 22 37 
xi 53 95 
LC(0.05;5) 55 85 
LC(0.05;7) 65 92 
SU(1;l) 73 96 
LN(0;l)  94 100 
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a big surprise in view of Kopecky and Pierce's (1979, p. 397) statement 
that Wl provides little or no protection against nearby symmetric 
alternatives. 

As in testing exponentiality Ws2 is close to Ws, while Wsl performs 
better for symmetric alternatives, but is less stable for skew al- 
ternatives. Further comparison with Table 8 of Pearson et al. (1977) 
shows that for most of the skew alternatives considered there, Ws 
dominates moment-based tests. Extensive simulation study of some 
new and classical tests (such as Anderson-Darling, Cramtr-von Mises, 
Kolmogorov, Watson) is given in Gan and Koehler (1990). 
Comparison of Table V with their Table 3 shows that Ws compares 
well to classical and new tests introduced in this paper both for 
symmetrical and skew alternatives. A similar conclusion can be drawn 
from studying Table I11 and Table IV in Baringhaus et al. (1989), 
where W is compared, among others, to the test based on the empirical 
characteristic function, introduced by Epps and Pulley (1983). 

The next table concerns alternatives from the Johnson-system of 
distributions (cf. also Baringhaus et al. (1989)). Parameters of the 
Johnson-system are taken from Pearson and Hartley (1972). 

It is seen that W, Ws and WS2 are close to each other with Ws and 
WS2 slightly better for larger b2 (kurtosis) and not too large dl 

TABLE VI Estimated powers (in%) of W, Ws, Wsl and Ws2 testing normality; 
a = 0.05, n = 50; each case is based on 10000 samples; d(50) = 10 for S and 12 for S1, S2; 
alternatives of the Johnson-system with varying skewness &I and kurtosis b2 cf. 
Baringhaus et al. (1989) 

b2=2.6 b2 = 3.0 

&I w ws Ws, w, 1 w ws  ws, Wsz 
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(skewness), while W performs better for b2 = 2.6. If b2 is large and 
small Wsl is the better one, but in other cases Wsl performs less. 

The last table concerns stable alternatives. 
Clearly, W, Ws and WSZ are competitive, while Wsl is slightly 

better. Power is not varying much with b. 
The simulations confirm the existing consensus of opinion that data 

driven methods are advantageous when the underlying density is 
heavily skewed or long-tailed. For details see Bowman and Foster 
(1993). Moreover, the simulations show that the general construction 
of data driven smooth tests proposed in this paper works well when 
applied to some standard situations. Especially for moderately sample 
size (n=50) it gives results comparable to those provided by re- 
cognized tests proposed in special situations. Needless to say that 
hitherto existing efforts of extending e.g., Shapiro-Wilk's statistic to 
testing exponentiality were ineffective. The solution presented here is 
based on general likelihood methods and hence it can be extended to a 
very wide class of problems. 

One may ask whether the problem of choosing the number of 
components k is replaced by the choice of d(n). This is certainly not the 
case, since in contrast to the power of Wk, the power of Ws, Wsl and 
WS2 is stable for larger d(n), cf. Kallenberg and Ledwina (1997). 

TABLE VII Estimated powers (in%) of W, Ws, Wsl and WS2 testing normality; 
a = 0.05, n = 50; each case is based on 10000 samples; d(50) = 10 for S and 12 for S1, S2; 
stable alternatives S(a, b), cf. Baringhaus et al. (1989) 

a =  1.2 a =  1.4 
b W Ws Wsl Ws2 b W Ws Wsi Ws2 
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Obviously, taking the original Schwarz's rule to choose the number 
of components k is not the only possible solution. Other consistent 
variants of Schwarz's solution as those proposed by Hannan and 
Quinn (1979), Nishii (1984), Bozdogan (1987), Haughton (1988) or 
Haughton et al. (1990) can be taken into account. Our experience is 
that by taking a heavier penalty than in Schwarz's rule the power will 
be larger for smooth alternatives and smaller for highly oscillating 
ones. For a lighter penalty the situation is reversed. This is de- 
monstrated in Kallenberg and Ledwina (1997). Based on simulations 
we have performed, we find that Schwarz's rule is a nice compromise. 

We end with application of the method to a real problem. Consider 
the Mississippi River Data, presented on p. 16 of Rayner and Best 
(1989). Taking d(50)= 10 the dimension chosen by Schwarz's rule 
equals 1. The value of Ws for these data is 3.356 with corresponding 
p-value 0.06. The doubt on normality agrees well with the discussion 
on p. 18 in Rayner and Best (1989). 
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