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In recent years several authors have recommended smooth tests for testing goodness of fit. However, the number of components in 
the smooth test statistic should be chosen well; otherwise, considerable loss of power may occur. Schwarz's selection rule provides 
one such good choice. Earlier results on simple null hypotheses are extended here to composite hypotheses, which tend to be of 
more practical interest. For general composite hypotheses, consistency of the data-driven smooth tests holds at essentially any 
alternative. Monte Carlo experiments on testing exponentiality and normality show that the data-driven version of Neyman's test 
compares well to other, even specialized, tests over a wide range of alternatives. 
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1. INTRODUCTION ues of the number of components and study the behavior of 

In recent years there has been substantial interest in data- 
driven procedures for testing goodness of fit (see, e.g., 
Bickel and Ritov 1992; Eubank and Hart 1992; Eubank, 
Hart, and LaRiccia 1993; Eubank and LaRiccia 1992; Fan 
1996; Inglot and Ledwina 1996; Kallenberg and Ledwina 
1994, 1995a,b; Ledwina 1994). Although smooth tests are 
often recommended for this purpose (see,.e.g., Milbrodt and 
Strasser 1990; Rayner and Best 1990), a wrong choice for 
the number k of components in the test statistic can re- 
sult in a considerable loss of power. Therefore, a good pro- 
cedure is needed for choosing a value for k that can be 
used in practice. Renewed research in the area of smooth 
tests shows that a deterministic procedure gives no sim- 
ple answer (see Inglot, Kallenberg, and Ledwina 1994a). 
Hence Ledwina (1994) introduced a data-driven version of 
Neyman's test for testing uniformity. An important role in 
the data-driven smooth test is played by Schwarz's selec- 
tion rule. It provides the "right" dimension (or, equivalently, 
number of components) for the smooth test. The selection 
rule may be seen as the first step, followed by the finishing 
touch of applying the smooth test in the selected dimension. 

To apply this procedure for testing composite hypothe-
ses (e.g., for testing normality or exponentiality), Schwarz's 
selection rule must be extended. This is done in Section 2 
by inserting an estimator of the parameters involved in the 
composite null hypothesis. 

It turns out that the data-driven smooth test with this se- 
lection rule is consistent against essentially any alternative. 
A modification of the selection rule is also presented, which 
gives a consistent test but is easier to calculate. 

To investigate the behavior of the tests for finite sample 
sizes, Monte Carlo experiments were conducted for testing 
exponentiality and normality. The results from these exper- 
iments are reported in Sections 4 and 5. We also analyze 
the power behavior of smooth tests for different fixed val- 
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Schwarz's selection rule under alternatives. The new tests 
work very well and are even competitive with well-known 
"special" tests, such as Gini's test for exponentiality and 
the Shapiro-Wilk's test for normality. A more detailed de- 
scription of the conclusions is given at the end of Sections 
4 and 5. 

To apply the test in practice, critical values or p values 
can be simulated. One can also rely on a simple and accu- 
rate approximation of critical values and p values, which is 
presented in Section 3. 

Schwarz's selection rule is not the only solution for 
choosing the dimension. However, a comparison of selec- 
tion rules with other penalties in Section 6 gives sufficient 
support to recommend the use of Schwarz's rule for general 
applications. The article concludes with a real example in 
Section 7. 

2. DATA-DRIVEN SMOOTH TESTS 

2.1 Smooth Tests 

Let X I ,  X 2 ,  . . . ,Xn  be iid random variables with density 
f ( x ) .We want to test the null hypothesis 

where B c R4 and { f ( x ;P ) :  ,B E B )  is a given family of 
densities. Of particular interest are the problems of testing 
for exponentiality wherein, for ,8 > 0 

and testing for normality where f ( x ; P )  = ( f i g ) - '  

exp{-: ( x-p)2 /a2 ) ,for P = ( p ,0 )with p E R and 0 > 0. 
To test the null hypothesis, a sequence of exponential 

families is built, which extends from the null model us- 
ing classes of alternatives that become larger and larger as 
the dimension of the exponential family grows. Testing Ho 
within this exponential family then leads to a standard test- 
ing problem. 
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To be more precise, consider an orthonormal system 

in L2( [O ,  11) with bounded functions 41,42: . . . and @O ( x )= 
1. The functions q51: d2:. . . are not necessarily uniformly 
bounded. Typical examples of 00.01... . .q5k are the or-
thonormal Legendre polynomials on [0, I], corresponding 
to Neyman's smooth test and the cosine system, given by 
@j ( z )= 4 j 1,2,. . ..c o s ( j ~ z ) ,= 

Now let F ( z :,3)be the distribution function of X ,  when 
/3 applies. For k = 1,2,. . . define exponential families (with 
respect to 8 ) by their density 

where 

and o stands for the inner product in Rk.In what follows, the 
Euclidean norm in IRk (or Rq) is denoted by . I I . When there 
is no confusion, the dimension k is sometimes suppressed 
in the notation. 

Testing Ho within the exponential family (1) means test- 
ing H: 8 = 0 against 8 + 0.An obvious test statistic 
for this testing problem is the score statistic (see Javitz 
1975; Kopecky and Pierce 1979; Neyman 1980; Rayner and 
Best 1989; Thomas and Pierce 1979). Denoting by I the 
k x k identity matrix and the transpose of a matrix or vec- 
tor by ', the score statistic is given by 

where, writing Ep for the expected value under f ( x ;P ) ,  

and ,h is the maximum likelihood estimator (MLE) of ,L3 
under Ho. 

2.2 Selection Rules and Data-Driven Smooth Tests 

To choose the "right" dimension, an extension of 
Schwarz's (1978) Bayesian information criterion (BIC) to 

the composite hypothesis case is introduced. The likelihood 
of the independent random variables X1:. . . :X,, each hav- 
ing density (I) ,  is given by 

In Schwarz's rule the maximized log-likelihood is penal- 
ized with k / 2  logn  for dimension k. Therefore, when P is 
known, this yields 

where 

1
L ~ ( / ? )= n 	sup ( 8  0Y,,( P )- w k ( 8 ) )- - k l o ~  

O E R ~  2 

The number d ( n )  is the upper bound of the dimension 
of the exponential families under consideration. It turns out 
that S ( P ) is stable for large d ( n ) .A more detailed discus- 
sion on the choice of d ( n ) is given in Section 6.2. 

The extension to the situation where P is an unknown 
nuisance parameter is obtained by inserting $ in formula 
(2) to obtain 

The maximized log-likelihood (which is in fact the log- 
likelihood ratio statistic for testing H: 8 = 0 against 8 # 0 
when ,Q is known) is locally equivalent to ; n Y n ( P )  12. 
This leads to the following modification S2 (with 2 from 
squared norm), which is much easier to calculate: 

- k l o g n  2 nl l~ , , ($ ) f , )- j l o g n ,  j = 1... . . d i n ) ) .  

where the index of the norm denotes the dimension. 
The two data-driven smooth test statistics are now de- 

fined by 

and 

The null hypothesis is rejected for large values of Izlfs 
and I b 2 .  

In the case of a location-scale family {f( x :P ) :  P E B ) ,  
the null distributions of S, S2, IVs, and IVs2 do not depend 
on p .  Moreover, if the alternative also belongs to a location- 
scale family, then the distribution of S, S2, I%, and IVs2 do 
not depend on the location-scale parameter of that family. 
The same remark applies to location families and to scale 
families. 

Theoretical support of the tests Iz/s and is given 
by their consistency. Consider an alternative P. Under this 
alternative, b will as a rule converge to some element of 
B. This element will be called P.  For instance, for testing 
exponentiality f i  = X ,  which converges under P to E p X ;  
therefore, in that case under the alternative P, P will refer 
to EpX.  



1096 Journal of the American Statistical Association, September 1997 

Table 1. 5% and 10% Critical Values of Ws and WS2 for Testing Exponentiality and Normality 


Testing exponentiality 


Testing normality 

NOTE: Each case IS based on 10,000 samples; n = 50. 

We consider alternatives P to the family {f (x:P ) : ,B E 
B )  for which there exists (for the P associated with b and 
P)K ( P ) such that 

E ~ 4 1 ( F ( x :P ) )= . . . = E P O K ( ~ ) - I ( F ( X :P ) )  

= O.  E ~ 4 ~ ( ~ !  (3)( F ( X .P ) )  

Note that if (3)does not then E p d , ( F ( X : P ) )= O for 
all j ,  and thus essentially any alternative of interest satis- 
fies (3). 

~h~~~~~ 2.1. under the conditions given in the 
pendix, the tests based on Ws and Ws2 are consistent 
against any alternative satisfying (3). 

Consequently, the following corollary. 

Corollary 2.1. For testing exponentiality or normality 
the test based on Ws and WS2with {d , ) ,  the orthonormal 
Legendre polynomials on [0, 11 are consistent against any 
alternative P having finite second moment and satisfying (3) 
if d ( n )= o ( { n / log n ) l l g ) .The same result holds if { d , } is 

behavior, the null distribution of the selection rules was 
simulated for testing exponentiality and normality. In all of 
the simulations we take smooth tests and selection rules, 
with the @,'s being the orthonormal Legendre polynomi- 
als on [0, 11. The simulations are performed in a similar 
way to that described by Ledwina (1994). Every Monte 
Carlo experiment reported here was repeated 10.000 times. 
Hence the standard deviation of the simulated powers and 
probabilities concerning the selection rules does not exceed 
(lo-oo0)-l /2 = ,005, 

Let n = 50 and d(50)= 10. Then for testing exponential- 
ity, we found the empirical relative frequencies of choosing 
S = 1, 2, and 3 to be .96, .03, and .01. Similarly, for testing 
normality, these probabilities were .99, .00, and .01. 

The same holds for S2.Thus it appears that the selection 
rules do indeed concentrate on dimension 1, the concentra- 
tion in the case of testing normality being even stronger 
than that for testing exponentiality. 

Under classical regularity conditions, we have under Ho 
that 

J;~Y,,($)3 N ( o .  I  -A,). with Ap= I~I,$I, .  
the cosine system, in which case d ( n )  = o ( { n / l ~ ~ n } ' / ~ )  
suffices for testing exponentiality and for each E > 0, 
d ( n )= ~ ( n ( ' / ~ ) - ~ )suffices for testing normality. 

The proof of Theorem 2.1 was provided by Inglot et al. 
(1994b). (A more general case is treated in Inglot et al. 
1997.) The proof of Corollary 2.1 is provided in the Ap- 
pendix. 

3. CRITICAL VALUES 

The null hypothesis corresponds to 0 = 0 in (1) for any 
dimension. Because the penalty in the selection rules in- 
creases substantially with the dimension, it may be expected 
that under Ho, the lowest dimension is prevalent. Indeed, it 
can be shown that the selection rules S and S2 converge 
under Ho in probability to 1 (Inglot et al. 1994b). To show 
how well this limiting theorem describes the finite-sample 

Table 2. Second-Order Approximation of P(Ws 5 x )  for Testing 
Exponentiality With x the 5% Critical Value From Table 1 

4.445 4.790 4.960 5.020 5.063 5.086 
Appr. ,942 ,947 ,949 ,950 .950 ,950 

Because 

we get 

It now follows that under Ho, Wk3 ~ 2 ,where Xidenotes 
a random variable with a chi-squared distribution with k 
df. Hence, due to the concentration of S and S2 on dimen- 
sion 1, we obtain Ws + 

D 
X: and Ws2 + 

D X y .  Therefore, 
one might expect the critical values to be close to those 
of a chi-squared random variable with 1 df. A summary 
of some simulated critical values for testing exponentiality 
and normality with n = 50 is given in Table 1. 

Although the results are satisfactory for testing normal- 
ity, for testing exponentiality, substantial differences occur 
between the simulated and asymptotic critical values. In 
view of the higher concentration on dimension 1 for S and 

x 
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Table 3. Estimated P ( s ( ~ )  = s) and P ( s ~ ( D )= s) Under 
Alternatives (in %) When Testing Exponentiality 

s 

Alternative 1 2 3 4 5 6 7-10 

NOTE Each case is based on 10,000 samples; n = 50, d(50) = 10. 

S 2  in the case of testing normality, this is not surprising. 
Although in the case of testing exponentiality, S and S 2  also 
tend to concentrate on dimension 1, there is still a differ- 
ence, because as a rule when S or S 2  is large, this implies 
a large value of TVs or TVs2as well. 

To get p values (or critical values), one may perform sim- 
ulations. However, it is also possible to apply an approxi- 
mation, which is much more accurate than the chi-squared 
approximation but is still simple. We may write 

Under Ho, P ( S  > 3 )  is negligible. The event { S  = 1) 
means that dimension 1 "beats" dimension 2, 3, and so on. 

approximation: 

P ( W s  12 )  = 2Q(&) - 1 

- 2 [ l  - Q{(cP1  log n ) ' I 2 ) ]  [ Q ( ~ ( x ) )  - Q ( a ( z ) ) ] ,  

with 

b ( x )= [i-p; {@+d ~ } ]/dm, 

and Q denoting the standard normal distribution function. 
In case of the exponential distribution we get c = 31/36 
and p = - d m .  Inserting for x the simulated criti- 
cal values of Table 1 (with d ( n )  > 2), we get the results 
shown in Table 2. As seen in Table 2, the approximation 
appears to work quite well in the exponential case. For test- 
ing normality, we get p = 0 and c = 1- 15/(2.ir2)= ,2401. 
For instance, if n = 50, then (c-' 1 0 ~ n ) ' / ~4.0366, and= 

hence P(cU; > log n) = 2{1 - Q(4.0366)) = .00005, im-
plying that the approximation above is very close to the 
chi-squared-one approximation. This explains why in the 
normal case, the simulated critical values are close to the 
chi-squared-one critical values (cf. Table 1). 

Both examples (testing exponentiality and normality) 
show that the foregoing approximation gives p values in a 
simple and accurate way and can also serve to find critical 
values. The approximation can be used for TVs2as well. 

The most important event is that dimension 1 "beats" di- 4. POWER FOR TESTING EXPONENTIALITY 
mension 2, and this is approximately equal to { r ~ ( o ~ ( b ) ) ~I 
log n ) .  Similarly, for { S  = 2 ) , the most important part cor- 
responds to dimension 2 "beating" dimension 1. Therefore, 
under Ho, we get the following approximation: 

P ( I V ~< 2 ) = P(TV~< x , T Z ( & ( ~ ) ) ~< l ogn)  

+ P ( I V ~I ~ , n ( & ( b ) ) ~> l ogn) .  

Except for very large x ,  n ( d 2 ( b ) ) 2  > log n  implies 1\12 > x ,  
and hence we omit the second term in the approximation. 
Taking the limit distribution of ,hi(&(b),& ( $ ) ) ,  writing 
A for Ap (note that for location/scale families A does not 
depend on P), and defining a, b, c, and p by 

we get as an approximation [Bickel and Doksum 1977, 
(1.4.18), p. 251 

~ ( 1 . 1 1 ~5 x )  = P({J-u1 + pu2j2 < x .  CU; < l o g n ) ,  

where Ul and U2 are independent and N ( O . l )  distributed. 
A further look at the integration region, noting that a 

N ( 0 . 1)-distributed random variable has almost no probabil- 
ity mass above 2  log n ,  suggests the following very simple 

Let X 1 ,  X 2 :  . . . be iid random variables each distributed 
according to some probability distribution P .  For testing 
exponentiality, b = 2,which converges under P to E p X  
and thus, under alternatives, p = E p X .  We consider P to 
be an alternative if there exists K ( P ) = K ( E p X ) such that 

E P ~ ~ ( F ( X ;P I )  = . . .  = E p d ~ ( p ) - i ( F ( x ; P ) )  

= 0. E P @ K ( P )  (4)( F ( X ;P I )  + 0 ,  

with F ( x ;p )  = 1 - exp( -P- lx ) ,  the distribution function 
of the exponential distribution. 

While under Ho the selection rules concentrate on dimen- 
sion 1, under alternatives we have 

lim P ( s ( ~ )2 K ( p ) )= 1 
n-cc 

and 

lirn ~ ( ~ 2 ( f i )  2 K ( P ) )= 1 
11'00 

(see Inglot et al. 1994b). To illustrate this result, we present 
some Monte Carlo results. For testing exponentiality, we 
present the following alternatives: 
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Alternative e l  :Chi-square 3 df Alternative e2 :Lognormal 

100 100 

70 70 

Alternative e3 :Weibull(0.8) Alternative e4 :WeibuU(l.5) 

power WS = power G 

Alternative e5 :Shifted exp.(0.2;0.7) 

power WS = power G 

Alternative e6 :Shifted Pareto 

Figure 1. Estimated Powers (in %) of Wk (bars), Ws ( - 0  -), WS2 (- + -), 
power WS = power Ws2 

G (-¤-) Testing Exponentiality; cx = . lo,  n = 50; d(50) = 
10. Each case is based on 10,000 samples. 

Notation Alternative Density 

e l  X: {23/2r(q))-1x1/2 exp(-$x), x > 0 
e2 Lognormal (x&)-l exp{- (logx)'), x > 0 
e3 Weibull (3) exp(-x.9,. 8 ~ - . ~  
e4 Weibull (1.5) ;x1/' exp(-x3/'), 
e5 Shifted exponen- .7exp{-(x - .2).7), 

tial ( .2;.7) 
e6 Shifted Pareto 2(1 + x ) - ~ ,  

x > O  
x > O  

x > .2 

x > O  

Table 3 shows the behavior of the selection rules under 
alternatives when testing exponentiality against these alter- 
natives. 

It is seen that the behavior under alternatives may be quite 

different from that under Ho (see Sec. 3). Indeed, according 
to the theory, there is less concentration on dimension 1, 
and the theoretical similarity between ~ ( p )and ~ 2 ( &is 
reflected in the simulation results. 

Theoretical support of the tests Ws and Ws2is given by 
their consistency; see Theorem 2.1 and Corollary 2.1. 

For power comparison in the finite-sample case, we con- 
sider Wk(k= 1,. . . , lo),Ws, Ws2, and G, Gini's test. This 
last test is called "powerful against a variety of alternatives" 
by Gail and Gastwirth (1978) and turned out to perform 
well in the study of Ascher (1990). It is also used for the 
sake of comparison by Rayner and Best (1989, p. 88) and 
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Table 4. Estimated P ( s ( ~ )= s) and P ( S ~ @ )  = s) Under 
Alternatives (in %) When Testing Normality 

Alternative 1 2 3 4 5 6 7 8 9 1 0 

NOTE: Each case is based on 10,000 samples; n = 50; d(50) = 10 

by LaRiccia (1991). 
The conclusions from the simulation results presented in 

Figure 1 and from other simulation results that we have 
performed (see, e.g., Kallenberg and Ledwina 1994) are as 
follows: 

1. A wrong choice of the number k of components in 
Wk may give a considerable loss of power. 

2. The power of Ws and Wsz is high and stable, often 
as high or even higher than the "best" of Wk. 

3. The tests Ws and WS2, although based on general 
ideas, can compare favorably even with "special" tests for 
exponentiality, like Gini's test. Ws and WS2 often have 
higher power than Gini's test and in many cases much 
higher. 

4. In most cases, Ws and Ws2 have similar powers. 

5. POWER FOR TESTING NORMALITY 

Again we consider alternatives of the form (4), 
now with = corresponding to,L3 (EpX,  { v a r p ~ } ~ / ~ ) ,  
the MLE under normality and with F ( z ;  P) = @(z; 
P) = a((. - ~ ~ ~ ) / { v a r p ~ ) ~ / ~ ) .same theoret-The 
ical results as for testing exponentiality apply here. 

We consider the following alternatives. Here Z de-
notes a N ( 0 , l )  random variable and cp denotes its 
density. 

Notation Alternative Density/Definition 

n l  Normal mixture .33{2p(2~))+ .33{29(2[x - 21)) 

+.34{29(2[x - 41))) 
-00 < x < 00 

n2 Logistic ex (1 + ex)-2,  
-00 < x < m 

n 3  LC(O.l; 3) . l q ( x  - 3) + .9q(x),  
- m < x < m  

n4  .65uniform .65 + .35x"l - x ) ~ " B ( ~ o ,  20))-l, 

+ .35beta(10,20) O < x < l  

n 5  SU(-1; 2) Z = -1 + 2 sinhK1 (x), 
- m < X < m  

n6  	 SB(1.580, 1.357) Z = 1.580 + 1.3571og{X(l - X)) ,  

O < X < l  

Note that S B  is the alternative from the Johnson system 
with skewness fi= .8 and kurtosis bz = 3.4. 

Table 4 shows the behavior of the selection rules under 
alternatives when testing normality. Again the behavior un- 
der alternatives is different from that under Ho (see Sec. 
3) with less concentration on dimension 1. The similarity 
between ~ ( b )and S2(b) is also clearly exhibited. 

For power comparison in the finite-sample case, we use 
the prominent and often recommended Shapiro-Wilk's test. 
The corresponding test statistic is denoted by W. 

The conclusions from the simulation results presented in 
Figure 2 and from other simulation results that we have 
performed (see, e.g., Kallenberg and Ledwina 1994) are as 
follows: 

1. A wrong choice of the number k of components in 
Wk may give a considerable loss of power. 

2. For skewed alternatives, the power of Ws and Wsz is 
high and stable, as a rule as high as the "best" of Wk. 

3. The tests Ws and Wsz, although based on general 
ideas, can compare to skewed alternatives even with "spe- 
cial" tests for normality, like the Shapiro-Wilk's test, and 
can dominate moment-based tests. 

4. The tests Ws and Wsz perform reasonably well in 
the symmetrical case. They compare well both to sym- 
metrical and skewed alternatives to classical tests (such 
as Anderson-Darling, Cramer-von Mises, Kolmogorov, and 
Watson) and some new tests such as those given by Gan and 
Koehler (1990). It is not a big surprise that Ws and Wsz 
perform better for skewed alternatives than for symmet- 
rical alternatives. It is well known that Wl provides little 
or no protection against nearby symmetric alternatives (see 
Kopecky and Pierce 1979, p. 397). This is easily under- 
stood by noting that EPq51{@(X;P)) = 0 for symmetric 
alternatives P. 

5. In most cases Ws and WS2 have comparable empirical 
powers. 

In view of the consistency and the simulation results, we 
feel that the conclusion of Rayner and Best (1990, p. 9)- 
"don't use those other methods-use a smooth test!"-may 
be slightly sharpened to "use a data-driven smooth test." 

6. MODIFICATIONS 

6.1 Changing the Penalty 

In the selection rules, the penalty k/2 logn is used for 
dimension k. An obvious question is what happens for other 
penalty functions. The theoretical results, briefly described 
here, can be extended to other penalties as well. It should be 
noted that different penalties have an effect on p values and 
critical values. One should either simulate them or adapt 
the approximation of Section 3 to the situation at hand. 

Of course, taking Schwarz's BIC-rule is not the only solu-
tion for defining a selection rule. By taking smaller weights, 
the power will be smaller for smooth and larger for highly 
oscillating alternatives. For illustration, we consider for n = 

50 again the alternatives e l , .  . . ,e6 when testing exponen- 
tiality and nl, . . . ,n6 when testing normality (Fig. 3). The 
different penalties are (k/2) loglogn = 1.4(k/2) (Hannan 
and Quin 1979), 2.5(k/2), (k/2) logn = 3.9(k/2) (which is 
Schwarz's rule), and k/2(2 log n) = 7.8(k/2) (Haughton, 
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Alternative n l  :Normal Mixture Alternative n2 :Logistic 

1001 

power WS = power W 

Alternative n3 :LC(0.1;3) Alternative n4: .65 Un.+.35 Beta(10,20) 

100 

901. i i i....80 i .  

power WS = power WS2 power Ws = power WS2 

Alternative n5 :SU(-1;2) Alternative n6 :SB(1.580,1.357) 

100 

80 

Figure 2. Estimated Powers (in %) of Wk (bar), Ws ( - 0  -), Ws2 (- + -), W (-¤-) Testing Normality; cu = .05, n = 50; d(50) = 10. 
Each case is based on 10,000 samples. 

Haughton, and Izenman 1990). For every choice, corre-
sponding critical values are simulated. The selection rule 
with penalty c instead of log n is called Sc. 

We conclude from these and other simulations we have 
performed, that, although other penalties can be considered, 
there is sufficient support to adopt the Schwarz rule in gen- 
eral. 

6.2 Choice of d(n) 

One may ask whether the problem of choosing the num- 
ber of components k is replaced by the choice of d ( n ) .  
Such a situation, where the power is not stable as a function 

of d ( n ) , happens to some order selection criteria (Bogdan 
1995). This is certainly not the case if Schwarz's rule is 
used. In contrast to the power of Wk (see Figs. 1 and 2), 
the power of Ws does not change for larger d ( n ) . This is 
clearly illustrated in Figure 4. 

When using Ws, to ensure convergence of the iterative 
procedure searching for the MLEs in the exponential family, 
we recommend d ( n )  = 6, 7, and 10 for n = 20, 30 and 
50, respectively. (For details, see section 3.1 in Ledwina 
1994.) When using WS2,no restrictions on d ( n ) are needed. 
However, in view of the stability of the power, there is no 
need to take very large d ( n ) .  



Kallenberg and Ledwina: Data-Driven Smooth Tests 

Figure 3. Estimated Powers (in %) of Ws, for Different Penalties c ;  (a) for Testing Exponentiality CY = . lo,  n = 50; (b) for Testing Normality 
ci = .05, n = 50; d(50) = 10. Each case is based on 10,000 samples. W, c = log(n) = 3.9; B, c = log log(n) = 1.4; 8 , c = 2.5; 0,c = 2 
log(n) = 7.8. 

6.3 Starting with Dimension 2 

When testing normality against symmetrical alternatives, 
the first component &(p) will be close to 0, because 
Epd)l('(Xz; P I )  = O. Therefore, One might suggest start- 
ing the selection with dimension 2 in that case. Indeed, for 
symmetric alternatives a higher power is obtained, but for 
skew alternatives some power is lost. 

For n = 50 it turns out that Ws with S starting from 2, 
is slightly better than taking the penalty c equal to 2.5. 

7. A NUMERICAL EXAMPLE 

and Pierce 5, and Rayner and Best 
(1989, pp. 15, 16) discussed a survey in which polychlori- 
nated biphenyl (PCB) concentrations for 65 anacapa birds 
were tested for normality. (The data are from Risebrough 
1972.) The values of W l , .. . , wloare 4.09, 8.19, 8.60, 
8.80, 9.26, 12.65, 14.01, 14.35, 16.00, and 16.13. Taking 
d(65) = 10, the dimension chosen by Schwarz's rule equals 
1, and hence Ws equals 4.09. The p value of Ws equals 
$04. The same results are obtained for Wsz.  
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Figure 4. Estimated Powers (in %) of Ws and WS2 for d (n) = 3 . . . 10; Each Case is Based on 10,000 Samples; - Ws j. - - -I W52. (a) 
For testing exponentiality cu = . lo,  n = 50; -o -, - -, XG; -0 -, - - w  - -,Log normal; -0-, - - + - -,shifted exponential. (b) For testing 
normality cu = .05, n = 50; -o -, - - 0  - -,Normal mixture; -0 -, - - w  - -,Logistic; -0-, - - + - -,SU(- 1; 2). 

Thomas and Pierce (1979, sec. 5) gave simply 
W l ,. . . ,W4without making a choice, although in general 
they preferred W2.The p value for W2is .017. Further, they 
present a histogram with an arbitrarily selected number of 
equal-width classes. 

Rayner and Best (1989, p. 15) used the score test (related 
to some exponential family) with four nonzero components 
according to their recommendation on p. 84. The result-
ing p value was about .05. To give information about the 
"distance" from normality, they proposed using the Gram-
Charlier type A density estimate based on the four com-

ponents (see also our Fig. 5). Moreover, they summarized 
the data by presenting also a histogram with equal width 
classes, where the number of classes is arbitrarily chosen, 
but differs from the one of Thomas and Pierce (1979). In 
comparison to the work of Thomas and Pierce (1979) and 
Rayner and Best (1989), we are using the same score test 
as Thomas and Pierce but with the number of components 
chosen by Schwarz's rule. We then summarize the data in 
Figure 5 by providing a likely model (among d(65) = 10 
possible models given by (1)) fitted to the data in the di-
mension given by Schwarz's rule. 
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Fig. 5. Density Estimates for PCB Data; Estimated Null Density (f), 
EstimatedAlternative Density (1) (g) and Estimated Gram-Charlier Type 
A density of Rayner and Best (RB). 

APPENDIX: CONDITIONS AND PROOF 

Conditions of Theorem 2.1 

The conditions are divided in several parts: regularity conditions 
for the null family, conditions concerning the orthonormal system, 
and conditions on the upper bound d ( n ) for the dimension of the 
exponential family. 

Denote by Pp that X ,  density f ( x ;P )  and by Ep and varp 
the corresponding expected value and variance. For the family 
{ f  ( x ;  P ) :  P E B )  and the alternative P ,  we set the following 
regularity conditions. The conditions (r1)-(1-4) should hold on an 
open subset Bo of B .  (The "true" value of P under Ho is supposed 
to lie in Bo .) 

(r l ) .  For t ,u= 1, . . . ,q, (d ldpt  ) f  ( x ;P ) and (d2  ldDtdDu)f ( x ;  P )  
exist almost everywhere and are such that for each Po E Bo 
uniformly in a neighborhood of Po 

I ( 8 l W t ) f  ( x ;  P ) I < Ht ( x )  

and 

l ( a 2 / a D t a p u ) f( x ;P )  < G t u ( x ) ,  

where 

and k Gt, ( x )  dx < m : 

(r2). 	 For t ,  u = 1, . . . ,q, ( d / d p t )  log f ( x ;P )  and (d2  /dptdp,) 
log f ( x ;P )  exist almost everywhere and are such that the 
Fisher information matrix, 

is finite, positive definite, and continuous and, as 6+0,we 
have 

(r3). For each Po E B o , there exists 7 = q(PO)> 0with 

and 

(r4). There exist positive constants e l ,  c2, pl, and nl such that 

for all T = pJrogn with 0< p < pl and n 2 n l .  

(r5). There exists P E B such that 

I I B- PI1 - 0 

under the alternative P. 

(r6). For p from (r5), there exists > 0 that 

sup 	 s u p / & ; ; F ( z ; Y ) ~  < m  t = l , , q .  
l i ~ - P I l < 7 1  xER 

The next conditions concern the orthonormal system. 

(sl). 	~ u p , , ~ , , , ~  = 1 , 2 , .. . ,d ( n ) andl d i ( x ) < c:jjml for each j 

some c3 > 0, ml > 0. 


(s2). 	s ~ p , , , ~ , ~ ~  = 1 , 2 , .. . ,d ( n ) and4 ;  ( x ) < c4 jm2 for each j 

some c4 > 0, m2 > 0.  


Finally, we have conditions on the dimension d ( n ) of the expo- 
nential family: 

(dl). 	{ d ( n ) ~ d ( , ) ) ~ n - '  - 0 as + m, where Vk =logn n 
m a x l s ~ s kS U P z ~ { o , l jI h ( x ) I .  

(d2). 	d ( n )  = as n -+ m, where m~ ( { n / l o g n ) ( ~ " ) - ~ )  = 

max(m1,  m e ) .  

(d3). d ( n ) = o ( n C )as n - oo for some c < c2bP2 if plb 2 1, 
and with c = ~ 2 ~ :otherwise, where c2 and pl are given by 
(r4) and 

Proof of Corollary 2.1 

Conditions (r1)-(r3) and (r6) can be easily checked by direct 
calculations. Condition (r5) follows from the law of large numbers. 
Condition (r4) is obtained by application of standard moderate 
deviation theory. Both in the exponential case and in the normal 
case, it holds with c2 = 1/2(varpX)- ' , whereas pl may be taken 
as large as one wants. We omit the details (see, e.g. Kallenberg 
1983 ex. 2.1, p. 502). Hence (d3) reads as d ( n )= o(nC)for some 
c < 112 in the exponential case and as d ( n ) = o(nc )for some 
c < 116 in the normal case. Therefore, (d3) is satisfied under the 
conditions on d ( n ) stated in the corollary. 

Further, for the orthonormal Legendre polynomials on [0, 11 
(s l )  and (s2) are fulfilled with (Sansone 1959, p. 251) ml = 512 
and ma = 912. For the cosine system, (s l )  and (s2) are fulfilled 
with ml = 1 and m2 = 2. 

Because for the orthonormal Legendre polynomials on [0, 11, 
we get Vk = (2k + 1)'" (Sansone 1959, p. 190), (d l )  reduces in 
this case to { d ( n ) ) 3 n - 1  logn + 0 as n - m, and hence (dl)  
is satisfied. For the cosine system, we have Vk = 4 and hence 
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(dl)  reduces in this case to {d(n))2n-1 l o g n  + 0 as n + m, 
implying that also for the cosine system, (dl)  is satisfied. Finally, 
(d2) exactly equals the condition on d ( n )  in the corollary. 

Because all conditions of Theorem 2.1 are satisfied, the theorem 
may be applied, thus completing the proof of Corollary 2.1. 

[Received March 1995. Revised December 1996.1 
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