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Abstract. In the process of the deep learning, we integrate more integrable information of 

nonlinear wave models, such as the conservation law obtained from the integrable theory, into the 

neural network structure, and propose a conservation-law constrained neural network method with 

the flexible learning rate to predict solutions and parameters of nonlinear wave models. As some 

examples, we study real and complex typical nonlinear wave models, including nonlinear 

Schrödinger equation, Korteweg-de Vries and modified Korteweg-de Vries equations. Compared 

with the traditional physics-informed neural network method, this new method can more 

accurately predict solutions and parameters of some specific nonlinear wave models even when 

less information is needed, for example, in the absence of the boundary conditions. This provides 

a reference to further study solutions of nonlinear wave models by combining the deep learning 

and the integrable theory. 

Keywords: Conservation-law constraint; neural network; flexible learning rate; nonlinear 

Schrödinger equation; Korteweg-de Vries and modified Korteweg-de Vries equations.  

1. Introduction 

Soliton theory has been deeply studied and widely used in mechanics, physics, biology, 

hydrodynamics and other engineering fields [1-3], and the essence of soliton is a special wave-like 

solutions of nonlinear wave models, namely nonlinear partial differential equations (NPDEs) [4]. 

When the nonlinear term and dispersion term in these NPDEs are balanced, a stable solitary wave 

solution can be formed [5]. The integrable NPDEs with soliton solutions have become the key 

research objects in the fields of applied mechanics and engineering, including some typical 

nonlinear wave models, such as nonlinear Schrödinger equation (NLSE), Korteweg-de Vries (KdV) 

equation, modified Korteweg-de Vries (mKdV) equation and so on. Moreover, these integrable 

NPDEs have many invariant properties. Noether [6] theorem points out that there is a specific 

invariance, and there is a corresponding conservation law. Space invariance corresponds to the law 

of conservation of momentum, and time translation invariance corresponds to the law of 

conservation of energy [7,8]. Most of NPDEs with these conservation laws are completely 

integrable nonlinear wave models .  
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The study of soliton solutions of NPDEs mainly focuses on analytical methods and numerical 

simulation. However, some equations are difficult to solve by analytical methods. The traditional 

numerical methods are faced with the problems of high calculation cost and long calculation time. 

Therefore, it is urgent to introduce a new method to study NPDEs. In recent years, with the 

explosive growth of available data and computing resources, the development of artificial neural 

network has been promoted. Deep learning in the form of deep neural network has been involved 

in various fields, from image recognition and language translation [9,10] in classification 

problems to the solution of nonlinear discontinuous functions [11] in regression problems. 

However, their applications in the field of scientific computing are rarely studied. Researchers 

found that neural network has a strong ability to deal with strong nonlinear and high-dimensional 

problems [12]. It has been shown that deep neural network, as a general function approximator 

[13], can overcome the dimension disaster in some problems [14-16], which also makes neural 

network have a bright application prospect in the field of scientific computing and become a 

popular alternative modeling method. 

The problem of traditional machine learning can only learn from the marked data, but can not 

know the mechanism behind the system. On the contrary, for the modeling of physical systems, 

the governing equations are usually known, but it is difficult to solve them effectively. As early as 

the late 1990s, it was proposed to use the states at some points in the parameter space and 

combined with the known governing equations to restrict (or even drive) learning, which can 

make up for the lack of data [17,18]. However, limited by the neural network technology and 

computing power at that time, this pioneering work did not have much impact.  

Recently, Raissi et al. proposed a physics-informed neural network (PINN) to solve NPDEs 

[19]. Due to the addition of NPDEs as physical information, it also provides a good physical 

explanation for these predicted solutions. Yan et al. used the PINN method to solve the forward 

and inverse problems of NLSE with the PT-symmetric harmonic potential [20] and also discussed 

the data-driven rogue wave solutions of defocusing NLSE [21]. Chen et al. studied the soliton 

solutions of KdV equation, mKdV equation and KdV-Burgers equation by using the PINN method 

[22]. Jagtap et al. proposed PINN method of regional conservation on discrete domain to solve 

Burgers and KdV equations [23].  

As we all know, by minimizing the loss of the initial / boundary sampling points and the loss 

of NPDEs at the configuration points, the PINN method can feed back the optimal parameters of 

the neural network and the physical parameters of NPDEs. But data with known initial and 

boundary conditions are required for the PINN method, which is a very stringent requirement. 

Recent studies relax the requirment of initial and boundary conditions for the PINN method 

[24,25]. Raissi et al. proposed hidden fluid machine learning, added the Navier-Stokes (NS) 

equation derived from the conservation laws of mass, momentum and energy to the neural 



network, and predicted the pressure field and velocity field of NS equation [24]. Sun et al. 

proposed an alternative modeling method of incompressible fluid with mass conservation and 

momentum conservation without initial and boundary data to study the forward problem of NS 

equation [25].  

It is obviously not enough to restrict the PINN only by using NPDEs in Refs.[19-23]. More 

recently, Chen et al. designed a two-stage PINN method to optimize this single restriction in the 

traditional PINN method. In the second stage, they used the local conserved quantity to constrain 

the output of PINN, and studied the local wave solutions of classical Boussinesq-burgers 

equations [26]. However, the conservation laws of NPDEs given by integrable system theory are 

added to the neural network structure has not been reported to predict soliton solutions of NPDEs. 

The conservation laws of NPDEs have corresponding conserved quantities. In the theory of 

integrable systems, the existence of conserved quantities is closely related to whether the 

evolution equations of physical systems can be solved by the inverse scattering method. The 

conservation laws of NPDEs are often used in the analysis of analytical theory, and rarely used in 

the calculation of numerical algorithms. We propose a conservation-law constrained neural 

network(CLCNN) method with less data to predict soliton solutions of NPDEs. The novelties of 

this paper include the following three aspects. (I) Compared with the traditional PINN method, 

this new CLCNN method can more accurately predict solutions and parameters of some specific 

NPDEs even when less information and data is needed, for example, in the absence of the 

boundary conditions; (II) The learning rate of previous neural network algorithms is a fixed 

parameter, but in this paper, we introduce a learning rate that decreases with the increase of 

training times, which has a positive effect on the prediction of results; (III) The CLCNN method 

have a wide range of applications, that is, it has good prediction results for soliton structures of 

different physical models and different soliton structures of the same physical model. 

2. Conservation-law constrained neural network method 

In most physical systems, the interaction between nonlinearity and dispersion is considered, 

and the dissipation can be ignored. Therefore, in this paper, we will study time-varying NPDEs, 

which often play an important role in many scientific applications and physical phenomenons. The 

specific form of (1+1) -dimensional NPDEs is as follows 

( , , , ).t x xx xxxQ N Q Q Q Q                               (1) 

Where subscripts x and t represent the partial derivatives relative to space and time, and N

represents the nonlinear function combination of solution Q and its arbitrary partial derivatives 

relative to space variable x . Specifically, we utilize the depth neural network to approximate the 

solution of Eq. (1), and then calculate the derivative of Q  relative to space x and time t with the 

help of automatic differentiation network. Therefore, the NPDE is defined as 

: ( , , , ),t x xx xxxf Q N Q Q Q Q                             (2) 



which is a complex equation. After separating the real and imaginary parts, we can get 
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                        (3) 

where ,r m  represent the real and imaginary parts of solution Q  respectively. The neural network 

learns shared parameters (such as weights and deviations) by minimizing the mean square error 

(MSE) sum caused by the initial conditions, NPDEs, and conservation laws related to the 

feedforward neural network. The specific form of the loss function is as follows 

0 ,c hloss MSE MSE MSE                            (4) 
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Here   0

1
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 represent the sampling points on the mean square error caused by the initial 

conditions of solution Q ,  
1

,
fN

j j

j
r m


denote the configuration points on the mean square error 

hMSE  caused by the NPDE and the mean square error cMSE  caused by the conservation laws 

derived from integrability of NPDEs in soliton theory. ,ECr ECmf f  and ,MCr MCmf f represent the 

real and imaginary parts of the mean square error caused by the energy and momentum 

conservation laws of the NPDE, respectively. In this article, we choose 

0 50, 10000, 0,1, 0,1,fN N a b     the activation function is the adaptive sin function and the 

optimizer is Adam. At the same time, we set the learning rate of the optimizer to a flexible 

learning rate, and its size becomes 90% of the original size every 300 training sessions. The 

schematic diagram of the CLCNN method is given in Fig. 1. 

 



Fig.1. The schematic diagram of the CLCNN method. Here ,o cMSE MSE and hMSE denote mean 

square errors caused by initial conditions, conservation laws and NPDE, respectively. 

 

If Eq. (2) is a real solution equation, the output of the CLCNN become an output, and the 

mean square error of the imaginary part in the loss function is 0, the complex solution algorithm 

degenerates to a real solution algorithm. 

The integrability in soliton theory gives an infinite number of conservation laws for NPDEs. 

At present, some conservation laws related to the integrability in soliton theory are found to have 

physical explanations, such as the conservation of energy, the conservation of momentum, or their 

combination, which are introduced into the loss function to replace the residual of the boundary 

condition in the CLCNN method. Our research indicates that the CLCNN method has good 

performance on the prediction of solutions and parameters for NLSE, KdV and mKdV equations, 

which also hints that this method has universality and generalization. 

3. Prediction of soliton solutions of NLSE 

In fluid mechanics, NLSE can describe the formation of vortices and deep water waves [27]. 

In optics, the propagation of picosecond optical soliton in a single-mode fiber is controlled by the 

standard NLSE, which is a fully integrable NPDE. This equation has rich soliton solutions, and its 

specific form is as follows 

2
2 0.t xxiQ Q Q Q                              (6) 

In nonlinear optics [28], Q  represents the pulse slowly varying amplitude envelope, and ,x t  

represent the normalized distance and time coordinates. In Bose Einstein condensates [29], Q  

represents the order parameter and ,t x  represent the time and space coordinates. 

According to the integrable theory, starting from the standard NLSE, we use the Lax pair to 

construct the corresponding Darboux transformation, and then can deduce its energy conservation 

and momentum conservation laws [30]. Separating their real and imaginary parts yields. 

3 3 2 2

: ,

: 0,

: ,

: 4 4 4 4 .

ECr t t xx xx

ECm

MCr t x t x xt xt xx x xx x xxx xxx

MCm t x t x xt xt xx x xx x xxx xxx x x x x

f rr mm r m m r

f

f r r m m rr mm r m m r rm mr

f m r r m rm mr r r m m rr mm r r m m rr m mm r

   



       

           

(7) 

Next, we will consider the following combinations of conservation laws constraint to train 

the neural network. 
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where , ,MC EC Eq represent momentum conservation law, energy conservation law and NLSE 

respectively. 5L is the loss function combination used in the traditional PINN method. In all 



examples of NLSE, in terms of the relative error of the real and imaginary parts of network 

prediction, we find that the best combination is the form 4,L that is, the combination of the original 

equation and the energy conservation law. The loss for this specific combination is as follows 
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3.1. One-soliton solution 

The exact one-soliton solution [31] of Eq. (6) reads 

   ( , ) 0.6sech(0.6 ) , 15,15 , 0,3 .iQ x t x e x t                   (10) 

From the known range of local spatiotemporal region ,x t , we can obtain the initial and 

boundary conditions of the equation. The data set can be obtained by pseudo spectral method, and 

the exact one-soliton solution can be dissociated into data points. The corresponding number of 

sampling points is given in the section 2. 

 

Table.1. Comparison of prediction results with different types of learning rates for one-soliton 

Learning rate type Loss  Relative error of ( , )Q x t  

Fixed learning rate 63.501 10  
38.776445 10  

Flexible learning rate -62.000 10  
33.670414 10  

 

The learning rate is a relatively important parameter of neural network. In the past, when the 

neural network method were used to solve NPDE, the learning rate was always a fixed value, 

which would make the loss function fluctuate greatly during the training process, and the network 

optimization is extremely easy falling into a local minimum, and thus is not conducive to 

prediction. To solve the above problems, we introduced a variable learning rate, that is, the initial 

learning rate is 0.001, and the learning rate becomes 90% of the original size after every 200 steps 

of training. Next, we use the one-soliton solution of the NLSE as a model to discuss the influence 

of this flexible learning rate on the convergence speed and convergence size for the loss function 

combination 5L used in the traditional PINN method. From Fig. 2, we find that the flexible 

learning rate makes the loss curve smoother, the convergence speed is faster, and the convergence 

size is small. Table 1 shows that the flexible learning rate makes relative error for ( , )Q x t of the 

network prediction smaller. Here the relative error is ˆ[ ( , ) ( , ) ] / ( , )Q x t Q x t Q x t with exact solution

( , )Q x t  and predicted solution ( , )Q x t . Therefore, we use this flexible form of learning rate in this 

article.  



 

Fig.2. The impact of different types of learning rates on the loss function 

 

Fig.3. One-soliton solution ( , )Q x t of (10). (a) Predicted result of one-soliton, (b) comparison 

between exact and predicted solutions at different propagation distances, (c) diagram of error 

between exact and predicted solutions, and (d) relative errors of the predicted solution for different 



loss combinations. 

We use the CLCNN method to predict the dynamic behavior of one-soliton for NLSE . In the 

training process, the Latin sampling [32] method is used to only obtain the initial configuration 

points, and the data of the boundary condition are not used. Fig. 3(a) shows the dynamic behavior 

of one-soliton solution reconstructed by the CLCNN method. Fig. 3(b) shows the detailed 

comparison between the predicted solution and exact solution at the distances 

0.6, 1.5, 2.7t t t   . It is found that the predicted result fits well with the evolution described by 

exact solution. Fig. 3(c) shows the gap ( , ) ( , )Er Q x t Q x t  between the exact solution ( , )Q x t  and 

predicted solution ( , )Q x t , we find that the gap between the exact and predicted solutions is very 

small, reaching level -310 .  Fig. 3(d) presents predicted results of NLSE with four different 

combinations of conservation laws and compares them with result by the loss function 

combination 5L used in the traditional PINN method.  

In Fig. 3(d), the upper, middle and lower figures exhibit the relative errors of one-soliton 

solution and its imaginary and real parts respectively. The relative errors of imaginary and real 

parts is ˆ ˆ[ ( , ) ( , ) ] / ( , ),[ ( , ) ( , ) ] / ( , )m t x m t x m t x r t x r t x r t x   respectively. From Fig. 3(d), the relative 

error for the loss combination 4L  of NLSE, the energy conservation law and initial conditions is 

the smallest, while that for the loss combination 2L of the energy conservation law, momentum 

conservation law and initial conditions is the largest. The reason for this is that the lack of a 

dynamic model will lose important physical information, which makes it difficult for the neural 

network to predict an excellent solution. 

3.2. Two-soliton solution 

Exact solution two-soliton [31] of Eq. (6) is 
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  (11) 

From the scope of the local space-time region of the interaction between two solitons as 

[ 8,8], [ 2,2],x t    and the scope of the space-time region of the soliton molecule as 

[ 15,15], [0,3],x t   we get the initial and boundary conditions of NLSE. Other operation is 

similar to one-soliton solution in the section 3.1. 

 

Table.2. Relative errors of two-soliton solution with different types of loss 

 Loss type 

Soliton type relative error 1L  2L  3L  4L  5L  

Soliton 

interaction 

r  0.115076 1.356908 0.125183 0.071768 0.077711 

m  0.255874 1.663534 0.289671 0.159936 0.178356 

Q  0.068093 0.145672 0.064015 0.037836 0.047003 

Soliton r  0.079548 1.184964 0.088480 0.068112 0.137107 



molecule m  0.034496 0.938924 0.038073 0.029569 0.062584 

Q  0.021590 0.041609 0.024117 0.018582 0.039642 

 

 

 

Fig.4. Two-soliton solution ( , )Q x t of (11). Predicted results of (a) two interacting solitons and (c) 

two-soliton molecule, comparison between exact and predicted solutions of (b) two interacting 

solitons and (d) two-soliton molecule at different propagation distances. The blue solid line is 

exact solution, the red dotted line and green dash line denote the predicted solutions with the 

combinations 4L  and 5L  respectively. 

 

In the training process, the Latin sampling method is used to only obtain the initial 

configuration points, and the data of the boundary condition are not used. Table 2 presents the 

predicting results of two-soliton solution by the CLCNN method with four different combinations 

of conservation laws. The same conclusion is reached for two interacting solitons and two-soliton 

molecule, that is, the relative errors of solution and their real and imaginary parts for the loss 

combination 4L  of original equation, the energy conservation law and initial conditions are all 

smallest, while those for the loss combination 2L of the energy conservation law, momentum 

conservation law and initial conditions are all largest. This result is consistent with that of 



one-soliton solution in the section 3.1. 

Figs. 4(a) and 4(c) show dynamic behaviors of two interacting solitons and two-soliton 

molecule reconstructed by the CLCNN method without boundary information, respectively. Figs. 

4(b) and 4(d) show the detailed comparison between the predicted solution and the exact solution 

at distances 1.6, 0t t   and 1.5, 2.7t t  ，respectively. Compared with results for the loss 

function combination 5L used in the traditional PINN method, we find that predicted results for 

the loss function combination 4L is closer to exact solutions at all distances in Figs. 4(b) and 4(d). 

From the detailed comparison of these illustrations in Fig. 4(b) and 4(d), as the distance increases, 

the predicted results for both 4L and 5L will become worse. 

3.3. Rogue wave solution 

Exact rogue wave solution [31]of Eq. (6) reads 
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   (12) 

All operation is similar to one-soliton solution in the section 3.1. In the training process, the 

Latin sampling method is used to only obtain the initial configuration points, and the data of the 

boundary condition are not used.  

 

 



Fig.5. Rogue wave solution ( , )Q x t of (12). (a) The prediction result, (b) the relative errors of the 

predicted solutions with different combinations of conservation laws, and (c) comparison between  

exact solution and predicted solution at different propagation distances. The blue solid line is the 

exact solution, and the red dotted line and green dash line denote the predicted solution with the 

combination 4L  and 5L  respectively. 

 

In Fig. 5(a), it is shown that the complex local rogue wave solution of the NLSE can be 

accurately predicted using the CLCNN method without boundary information. Fig. 5(b) shows the 

relative errors of the real part r , imaginary part m  and solution Q . The result is consistent with 

that of the previous examples, that is, the relative errors of solution and their real and imaginary 

parts for the loss combination 4L  of original equation, the energy conservation law and initial 

conditions are all smallest, while those for the loss combination 2L of the energy conservation law, 

momentum conservation law and initial conditions are all largest. Fig. 5(c) shows detailed 

comparison between the predicted solution and exact solution at -1.2, 0, 1.2t t t   . Compared 

with results for the loss function combination 5L used in the traditional PINN method, predicted 

results for the loss function combination 4L is closer to exact solutions at all distances in Fig. 5(c).  

From the prediction results of the above three local structures, we can see that the CLCNN 

method without boundary information has good applicability to the complex NLSE, and a suitable  

loss combination of conservation laws is found, that is, the loss prediction with original equation, 

energy conservation law and initial condition is the best. 

4. Prediction of soliton solutions of KdV equation 

In the section 3, we have studied the applicability of the the CLCNN method to complex 

equation. However, whether this method is applicable to real equations, and whether there are 

similar loss combination of conservation law need to be further elucidated. Next, we take KdV 

and mKdV equations as examples to study the case of real equations. 

The KdV equation is widely used in the fields of physics such as hydrodynamics, plasma, ion 

acoustic waves, non-resonant lattice vibration [33,34], etc. This equation has abundant soliton 

solutions. In this section, we will consider the neural network with four different combinations of 

conservation laws to predict one-soliton and two-soliton solutions of the KdV equation, and 

compare them with the predicted results of the traditional PINN method. 

The form of the KdV equation is as follows 

6 0,t x xxxQ QQ Q                               (13) 

where Q  represents the amplitude of the solitary wave, and the subscript ,x t denote the 

normalized distance and time coordinate. 

Starting from Eq. (13), We use the Lax pair of integrable theory to construct the 

corresponding Darboux transformation, and we can deduce its energy conservation and 



momentum conservation laws [35,36,37] as follows 
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Next, soliton solutions of the KdV equation predicted by 1, 2, 3, 4, 5L L L L L will be considered. 

1, 2, 3, 4, 5L L L L L types are the same as NLSE in the section 3. In all examples of KdV, we find that 

the loss function combination of the original equation and the momentum conservation law is best, 

and the relative error of the prediction result is the smallest, namely L3 form. The loss for this 

specific combination is as follows 
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4.1. One-soliton solution 

The exact one-soliton solution [38] of Eq. (13) is 

   21 1
( , ) sech ( ( )), 20,20 , 0,5 .

2 2
Q x t x t x t                    (16) 

Similar to one-soliton case of the NLSE in the section 3.1, the above exact one soliton is 

discretized into data points. In the training process, the Latin sampling method is used to only 

obtain the initial configuration points, and the data of the boundary condition are not used. The 

corresponding sampling points are given in the section 2. 

 

 

Fig.6. One-soliton solution ( , )Q x t of (16). (a) Prediction result, (b) comparison between exact and 



predicted results at different time, (c) diagram of error between exact and predicted solutions, and 

(d) relative errors of the predicted solution for different loss combinations. 

 

For the one-soliton case of the KdV equation, it is shown that our proposed method is also 

applicable to real equations. Fig. 6(a) shows the dynamic behavior of one-soliton reconstructed by  

the CLCNN method without boundary information. Fig. 6(b) shows the detailed comparison 

between the predicted solution and the exact solution at 1.5, 2.5, 3.5t t t   . Fig. 6(c) shows 

shows the gap between the exact solution ( , )Q x t  and predicted solution ( , )Q x t , we find that as the 

transmission distance increases, the error will gradually increase. Fig. 6(d) presents the results of 

neural network prediction for one-soliton solution with four different combinations of 

conservation laws, and compares them with result by the loss function combination 5L used in the 

traditional PINN method.  

It can be seen from Fig. 6 that the loss function combination including the original equation 

itself has a good prediction result. When the constraint information contains the original equation 

and momentum conservation law, the prediction obtains the best result with a relative error of 

0.01181331 , which is different from the result of complex NLSE. When the constraint information 

is the energy and momentum conservation laws, the prediction results are the worst with a relative 

error is 0.1218068 , which is consistent with the result of complex NLSE. 

4.2. Two-soliton solution 

The exact solution two-soliton [38] of Eq. (13) reads 

   

   

2 2

2 2

3 3 1 1
( , ) sech ( ( 3 )) sech ( ( )), 20,20 , 3,3 , (Interaction)

2 2 2 2

1 1 1 1
( , ) sech ( ( 8)) sech ( ( 5)), 20,20 , 0,5 , (Molecule).

2 2 2 2

Q x t x t x t x t

Q x t x t x t x t

       

        

     (17) 

From the known range of local spatiotemporal region ,x t , we can obtain the initial and 

boundary conditions of the equation. The data set can be similar to the KdV One-soliton 

discussion through the pseudo-spectrum. We found that the neural network with four different 

combinations of conservation laws predicts soliton interaction and soliton molecule, and the 

combination of 3L  has the best prediction result. It can be seen from Table 3 that in the 

prediction of the interaction of the two soliton, we found that the prediction result of 3L  are not 

much different from the classic PINN. For the prediction of soliton molecule, we found that the 

prediction result of 3L  is better than the classical result. At the same time, it is found that the loss 

of 1L  is smaller than the loss of 5L , but the prediction result is not as good as that of 5L . The 

reason is that there have the energy and momentum constraint equations in the combination of 1L , 

but they are missing in the combination of 5L , that is, the combinations of 1L and 5L are not the 

same type of loss. 

 

 



Table.3. Predicted results of two-soliton for KdV equation with different loss combinations 

 Loss type 

Soliton 

type 

Different  

parameters 
1L  2L  3L  4L  5L  

Soliton 

interaction 

ˆ[ ] /Q Q Q
 0.095279 0.316740 0.066259 0.069018 0.014017 

loss 44.893 10  43.668 10  42.010 10  42.361 10  51.206 10  

Soliton 

molecule 

ˆ[ ] /Q Q Q
 0.026965 0.248771 0.008644 0.009645 0.015984 

loss 68.144 10  67.966 10  62.114 10  62.434 10  51.025 10  

 

Figs. 7(a) and 7(c) show that the complicated nonlinear behaviors of the two-soliton 

interaction and two-soliton molecule of the KdV equation can still be accurately predicted by the 

CLCNN method without boundary information. From Figs. 7(b) and Fig. 7(d), with the increase of 

time, the errors for the loss combinations 3L and 5L both increase, and this increasing tendency of 

error for the predicted solution is more obvious for 5L used in the traditional PINN method. This 

further shows that the stability of predicted solutions by the traditional PINN is worse 

 

Fig.7. Two-soliton solution ( , )Q x t of (17). Predicted results of (a) two interacting solitons and (c) 

two-soliton molecule, comparison between exact and predicted solutions of (b) two interacting 

solitons and (d) two-soliton molecule at different time. The red line and green dash line denote the 

predicted solutions with the combinations 3L  and 5L  respectively. 

 



5. Prediction of soliton solutions of mKdV equation 

The mKdV equation has related applications in hydrodynamics and plasma physics, and can 

be used to describe the kink density wave of traffic jam in hydrodynamics[39]. In plasma physics, 

it can be used to describe dust acoustic solitary waves in dusty plasma[40]. It can be regarded as a 

cubic nonlinear KdV equation and an integrable model. Similar to KdV equation, it has a rich 

family of soliton solutions [41,42]. The specific form of mKdV equation is as follows 

26 0,t x xxxQ Q Q Q                              (18) 

where Q  represents the amplitude of the solitary wave, and the subscript ,x t denote the 

normalized distance and time coordinate 

Starting from Eq. (18), we construct the corresponding Darboux transformation by using the 

Lax pair of integrable theory, and we can deduce its energy conservation and momentum 

conservation laws [35] as follows 

3 2 2 2

2 2 4

: 4 ( 6 ) 2 ( 6 12 ),

: ( ) (2 3 ) .

EC t x xxx x tx xx x xxxx

MC t xx x x

f Q Q Q Q Q Q Q Q Q Q Q Q

f Q QQ Q Q

       

   
    (19) 

Next, we will consider the case of 1, 2, 3, 4, 5L L L L L to predict soliton solutions of the mKdV 

equation, which are the same as that of NLSE in the section 3. Similar to the KdV equation, the 

result of the loss combination 3L  is the best in the prediction for solution of mKdV equation, and 

its loss form is 

0 2 2 2

1 10

1 1
( , ) ( ( , ) ( , ) ).

fNN
i i i j j j j

r MCr

i jf

loss r x t r f x t f x t
N N 

                (20) 

5.1. One-soliton solution 

The exact one-soliton solution [38] of Eq. (18) is 

   ( , ) sech( ), 20,20 , 0,5 .Q x t x t x t                        (21) 

All operation is similar to one-soliton solution of KdV equation in the section 4.1. In the 

training process, the Latin sampling method is used to only obtain the initial configuration points, 

and the data of the boundary condition are not used.  

Fig. 8 shows the prediction results of one-soliton solution for mKdV equation. Fig. 8 (a) 

shows the dynamic behavior of one-soliton solution reconstructed by the CLCNN method without 

boundary information. Fig. 8 (b) displays detailed comparison between the predicted solution and  

exact solution at 1, 2.5, 4.5t t t   . Fig. 8 (c) exhibits the gap between the exact solution and the 

predicted solution. In the whole spatio-temporal region, we find that the gap between the predict 

value from the CLCNN method and the exact value is very small, and the maximum value is only 

-0.030. Fig. 8 (d) presents the comparison of neural network prediction for one-soliton solution 

between four different conservation-law combinations and the loss function combination 5L used 



in the traditional PINN method. Similar to the KdV equation, the prediction of one-soliton 

solution by the loss function combination 3L with the momentum conservation law, the original 

equation and the initial condition performs best with the relative error as 0.01757 , while the 

prediction by the loss function combination 2L with the momentum and energy conservation laws 

and the initial condition performs worst with the relative error as 0.06712 . 

 

 

Fig.8. One-soliton solution ( , )Q x t of (21). (a) Prediction result, (b) comparison between exact and 

predicted results at different time, (c) diagram of error between exact and predicted solutions, and 

(d) relative errors of the predicted solution for different loss combinations. 

5.2. Two-soliton molecule solution 

The exact two-soliton molecule solution [43] of Eq. (18) is 

   ( , ) sech( 4) sech( 4), 15,15 , 0,3 ,Q x t x t x t x t                   (22) 

All operation is similar to two-soliton molecule solution of KdV equation in the section 4.2. 

In the training process, the Latin sampling method is used to only obtain the initial configuration 

points, and the data of the boundary condition are not used. 

 

Table.4. Relative error of two-soliton molecule with different loss combinations 

Loss combination 1L  2L  3L  4L  5L  

Relative error 0.027180 0.066714 0.006351 0.009333 0.008945 

 



Table 4 shows the comparison of the relative errors of two-soliton molecule for mKdV 

equation predicted by different types of loss. From Table 4, we find that the 3L  prediction with 

momentum conservation is the best and the relative error of the solution is the smallest, the 

predicted result for mKdV equation is same as that for KdV equation in Table 3.  

Fig. 9(a) displays dynamical behavior of two-soliton molecule reconstructed by the CLCNN 

method without boundary information. Fig. 9(b) shows the detailed comparison between the 

predicted solution with loss combinations 3, 5L L and exact solution at 1.2, 2.7.t t   From the 

insets in Fig. 9(b), the prediction by the loss combination 3L without boundary information is 

better than the loss function combination 5L used in the traditional PINN method. Fig. 9 (c) 

displays the gap between the exact solution and the predicted solution. In the whole space-time 

region, the predicted solution and exact solution can fit well. Fig. 9 (d) shows the loss curve of the 

neural network with four different loss combinations. We find that the convergence value of the 

loss curve is the smallest for the loss function combination 5L used in the traditional PINN method, 

but the prediction result is not the best. That's because 5L  has no conservation law equation 

constraints, which is different from other types of loss. 

 

 

Fig.9. Soliton molecule solution ( , )Q x t of (22). (a) Prediction result, (b) comparison between exact 

and predicted results at different time, (c) diagram of error between exact and predicted solutions, 

and (d) the loss curve of the neural network with four different loss combinations. 



6. Parameter prediction of physical model 

In this section, we will consider the parameter prediction for some NPDEs, such as 

data-driven NLSE, KdV and mKdV equaitons. The first example, we study a complex NPDE, 

namely NLSE in the form  

2

1 2 0,t xxiQ Q Q Q                               (23) 

where the slowly varying envelope Q  contains a real part r  and an imaginary part m , and the 

coefficients 1 2   are the unknown dispersion and nonlinearity coefficients to be trained by the 

CLCNN method. 

Separating real and imaginary parts of Eq.(23) gets 

2 2

1 2

2 2

1 2

: ( ) ,

: ( ) .

r t xx

m t xx

f r m r m m

f m r r m r

     

   
                         (24) 

In the inverse problem, due to need to predict the coefficients of the NPDE, the loss function 

combination of conservation-law constraints, must include the original equation. Therefore, we 

will consider the following loss combinations to train the neural network 

,

2  ,

3  ,

1

4

L

M

Eq M

L Eq C

L Eq EC

L E

C

q

C E

 

 





 

，

                             (25) 

where 4L  is the physical information constraint of the traditional PINN method. 

We obtain the unknown parameters of the equation by minimizing the mean square error of 

the related constraints and the corresponding configuration points. After 10000 times of training, 

the results show that the performance of the CLCNN method is still very stable, and the relative 

error of the predicted unknown parameters is smaller than that predicted by the traditional PINN 

method. 



 

Fig.10. The relative errors of parameters 1 2   for NLSE predicted by the CLCNN method with 

different data sets of (a) one-soliton, (b) two-soliton molecule, (c) two-soliton interaction and (d) 

rogue wave. 

From Fig. 10, we find that no matter what kind of data sets including one-soliton in Fig. 10(a), 

two-soliton molecule in Fig. 10(b), two-soliton interaction in Fig. 10(c) and rogue wave in Fig. 

10(d), and no matter what conservation-law constraints as L1, L2 and L3 is added to the neural 

network, the accuracy of equation parameters predicted by the CLCNN method is better than that 

of the traditional PINN method. Moreover, for simple one-soliton and two-soliton molecule, we 

find that the prediction results from the CLCNN method are best, and the accuracy of the 

parameters from the CLCNN method is much higher than that from the traditional PINN method. 

For the two-soliton interaction, the prediction results from the CLCNN method with energy 

conservation law is best, and the accuracy of the parameters from the CLCNN method is much 

higher than that from the traditional PINN method. For the rogue wave, we find that the prediction 

result from the CLCNN method with the energy conservation and momentum conservation laws is 

most accurate. The experiment further shows that the CLCNN method is also effective in the 

inverse problem to predict the parameters of complex equation. 

Next, we study the real NPDEs, namely the KdV and mKdV equations respectively as 

1 2

2

1 2

0,

0,

t x xxx

t x xxx

Q QQ Q

Q Q Q Q

 

 

  

  
                             (26) 



where Q  represents the solution of the real equation, and the variable 1 2   are the unknown 

nonlinearity and dispersion coefficients to be trained by the CLCNN method. 

 

Table.5. Comparison of different identified KdV equations obtained by the CLCNN method with 

the correct KdV equation 

Item 

KdV 

Dataset 

type 
Loss Equation 

Relative error 

1  2  

Correct  

equation 

  
6 0t x xxxQ QQ Q      

Identified 

equations 

one-soliton 

1L  
6.00071 1.00021 0t x xxxQ QQ Q    

0.01215% 0.01155% 

2L  
6.00130 1.00040 0t x xxxQ QQ Q    

0.01939% 0.05772% 

3L  
5.99850 0.99926 0t x xxxQ QQ Q    

0.02993% 0.07513% 

4L  
5.96147 0.98569 0t x xxxQ QQ Q    

0.62601% 1.41114% 

two-soliton 

molecule 

1L  
5.99907 0.99980 0t x xxxQ QQ Q    

0.01628% 0.01928% 

2L  
5.99812 0.99968 0t x xxxQ QQ Q    

0.03124% 0.03355% 

3L  
5.99792 0.99914 0t x xxxQ QQ Q    

0.03533% 0.07936% 

4L  
5.97886 0.99219 0t x xxxQ QQ Q    

0.34479% 0.75708% 

two-soliton 

interaction 

1L  
6.00465 1.00107 0t x xxxQ QQ Q    

0.07746% 0.10691% 

2L  
6.01980 1.00470 0t x xxxQ QQ Q    

0.32922% 0.46905% 

3L  
6.01149 1.00329 0t x xxxQ QQ Q    

0.19089% 0.32829% 

4L  
5.96446 0.98655 0t x xxxQ QQ Q    

0.58544% 1.33091% 

 

 

 



Table.6. Comparison of different identified mKdV equations obtained by the CLCNN method 

with the correct mKdV equation 

Item 

mKdV 

Dataset 

type 
Loss Equation 

Relative error 

1  2  

Correct  

equation 

  26 0t x xxxQ Q Q Q      

Identified 

equations 

one-soliton 

1L  25.99629 0.99916 0t x xxxQ Q Q Q    0.08376% 0.06188% 

2L  25.99790 0.99952 0t x xxxQ Q Q Q    0.03490% 0.04784% 

3L  25.99450 0.99882 0t x xxxQ Q Q Q    0.09154% 0.11744% 

4L  25.63551 0.90756 0t x xxxQ Q Q Q    6.02932% 9.17620% 

two-soliton 

molecule 

1L  26.02260 1.00510 0t x xxxQ Q Q Q    0.37770% 0.47556% 

2L  26.00030 1.00006 0t x xxxQ Q Q Q    0.00449% 0.00634% 

3L  25.98276 0.99606 0t x xxxQ Q Q Q    0.28436% 0.39175% 

4L  25.90562 0.97281 0t x xxxQ Q Q Q    1.57563% 2.68242% 

 

In Tables 5 and 6, we take different types of soliton solutions as data sets, and observe the 

training results and relative errors of unknown coefficients in the case of 1, 2, 3, 4L L L L . No matter 

what conservation-law constraints as 1, 2,L L  and 3L  is added to the neural network, the 

accuracy of equation parameters predicted by the CLCNN method is better than that of the 

traditional PINN method, which is consistent with the result in NLSE. For different data sets, in 

the KdV equation, the relative error of parameters predicted by CLCNN with energy and 

momentum conservation laws is the smallest. In the mKdV equation, CLCNN with momentum 

conservation law has the highest accuracy in predicting the equation parameters. It further shows 

that the CLCNN method is still effective in the inverse problem to predict the parameters of real 

NPDEs. 

7. Conclusion 

In this paper, we first propose the CLCNN method to predict soliton solutions of NPDEs 

without the boundary information. This is achieved by deriving integrable information such as 

conservation laws from the equation itself, integrating more integrable information into the neural 

network, and forming more severe constraints on the network output. Similar to the PINN method, 

our proposed method can be used to solve any integrable NPDEs. For KdV and mKdV equations,  



the best loss combination to predict all soliton solutions is the form 3L , namely, the loss 

combination of the original equation and the momentum conservation law. For the NLSE, we find 

that the best loss combination to predict all soliton solutions is the form 4,L that is, the loss 

combination of the original equation and the energy conservation law. These predictions to various 

soliton solutions of the NLSE, KdV and mKdV equations are all better than results from the 

traditional PINN. The above examples also prove that incorporating more conservation-law 

constraint information can well replace the role of boundary condition and realize the prediction of 

solutions for NPDEs without the boundary information.  

In the inverse problem, we find that the parameter accuracy of the CLCNN method is much 

higher than that of the traditional PINN method. Results from the forward and inverse problems of 

the physical models show that the CLCNN method has the advantages of high accuracy and wide 

applicability. Moreover, the variable learning rate introduced in this paper can improve the 

convergence speed and is not easy to fall into local minimum. 

Although we have obtained excellent results, we still need to continue to study some 

problems, including the optimization of the neural network and combination of these results in this 

paper with experiments. 
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