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Abstract—Energy harvesting from the surroundings is a
promising solution to perpetually power-up wireless sensor com-
munications. This paper presents a data-driven approach of find-
ing optimal transmission policies for a solar-powered sensor node
that attempts to maximize net bit rates by adapting its trans-
mission parameters, power levels and modulation types, to the
changes of channel fading and battery recharge. We formulate
this problem as a discounted Markov decision process (MDP)
framework, whereby the energy harvesting process is stochasti-
cally quantized into several representative solar states with distinct
energy arrivals and is totally driven by historical data records at
a sensor node. With the observed solar irradiance at each time
epoch, a mixed strategy is developed to compute the belief infor-
mation of the underlying solar states for the choice of transmission
parameters. In addition, a theoretical analysis is conducted for a
simple on-off policy, in which a predetermined transmission pa-
rameter is utilized whenever a sensor node is active. We prove that
such an optimal policy has a threshold structure with respect to
battery states and evaluate the performance of an energy harvest-
ing node by analyzing the expected net bit rate. The design frame-
work is exemplified with real solar data records, and the results are
useful in characterizing the interplay that occurs between energy
harvesting and expenditure under various system configurations.
Computer simulations show that the proposed policies signifi-
cantly outperform other schemes with or without the knowledge of
short-term energy harvesting and channel fading patterns.

Index Terms—Energy harvesting, solar-powered communica-
tion, stochastic data-driven model, Markov decision process,
transmission policy.

I. INTRODUCTION

IN traditional wireless sensor networks, sensor nodes are

often powered by non-rechargeable batteries and distributed

over a large area for data aggregation. But a major limitation

of these untethered sensors is that the network lifetime is often

dominated by finite battery capacity. Since the battery charge

depletes with time, periodic battery replacement is required

for prolonging the sensor node operations, though it becomes

infeasible, costly and even impossible in some environments

such as a large-scale network. As a result, there has been

much research on designing efficient transmission mechanisms/

protocols for saving energy in sensor communications [1].
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Recently, energy harvesting has become an attractive alterna-

tive to circumvent this energy exhaustion problem by scaveng-

ing ambient energy sources (e.g., solar, wind, and vibration)

to replenish the sensors’ power supply [2]. Though an inex-

haustible energy supply from the environments enables wireless

sensors to function for a potentially infinite lifetime, manage-

ment of the harvested energy remains a crucial issue due to

the uncertainty of battery replenishment. In fact, most ambient

sources occur randomly and sporadically in nature. Different

sources exhibit different energy renewal processes in terms of

predictability, controllability, and magnitude, which results in

various design considerations.

In this paper, we focus on solar-powered wireless sensor net-

works, where each node is equipped with an energy harvesting

device and a solar panel to collect surplus energy through the

photovoltaic effect. Since the energy generation rate is uncon-

trollable, the energy is temporarily stored and accumulated up

to a certain amount in the capacity-limited rechargeable battery

for future data transmissions. But in practice, the amount of

energy quanta available to a sensor could fluctuate dramatically

even within a short period, and the level depends on many

factors, such as the time of the day, the current weather, the

seasonal weather patterns, the physical conditions of the envi-

ronment, and the timescale (from seconds to days) of the energy

management, to name but a few. This makes the prediction

of energy harvesting very challenging, even though the solar

irradiance is partially predictable with the aid of daily irradi-

ance patterns [3]. Hence, there is a need for a stochastic energy

harvesting model specific to each node, which is capable of cap-

turing the dynamics of the solar energy associated with real data

records. Besides, overly aggressive or conservative use of the

harvested energy may either run out of the energy in the battery

or fail to utilize the excess energy. Consequently, another essen-

tial challenge lies in adaptively tuning the transmission param-

eters in a smooth way that considers the randomness of energy

generation and channel variation, avoids early energy depletion

before the next management cycle, and maximizes certain

utilities through a finite or infinite horizon of epochs.

Various energy generation models have been adopted in the

literature to study the performance of solar-powered sensor

networks. They can be categorized into two classes: deter-

ministic models [4], [5] and stochastic models [3], [6]–[18].

Deterministic models, which assume that energy arrival instants

and amounts are known in advance by the transmitter, were

applied in [4] and [5] for designing transmission schemes. The

success of the energy management in this category rests on

accurate energy harvesting prediction over a somewhat long

time horizon, whereas modeling mismatch occurs when the
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prediction interval is enlarged. Recently attention has shifted to

stochastic models by accommodating the energy management

to the randomness of energy renewal processes. By assuming

that energy harvested in each time slot is identically and inde-

pendently distributed, the energy generation process has been

described via Bernoulli models with a fixed harvesting rate [7]–

[10]. Other commonly used models that are uncorrelated across

time include the uniform process [3], Poisson process [11], and

exponential process [12]. In [13]–[17], energy from ambient

sources was modeled by a two-state Markov model to mimic

the time-correlated harvesting behavior. A generalized Markov

model was presented in [18] by introducing a scenario param-

eter, and discrete harvested energy was assumed for estimating

the scenario parameter and the transition probability based

on a suboptimal moving average and a Bayesian information

criterion. However, there has been little research to validate the

assumptions, along with exact physical interpretation, of the

aforementioned stochastic models. It is essential to incorporate

a data-driven stochastic model, which is capable of linking

its underlying parameters to the dynamics of empirical energy

harvesting data, into the design of sensor communications to

develop more realistic performance characteristics.

Resource management has been studied to optimize the

system utility and to harmonize the energy consumption with

the battery recharge rate. The optimization of energy usage is

subject to a neutral constraint which stipulates that at each time

instant, the energy expenditure cannot surpass the total amount

of energy harvested so far. With deterministic energy and chan-

nel profiles, a utility maximization framework was investigated

in [19] to achieve smooth energy spending. The authors of [20]

jointly designed power and rate adaption for maximizing data

throughput, but the design is solely subject to an average power

constraint. Directional water-filling was proposed in [21] for

throughput maximization. A major limitation of these works is

the requirement for non-causal energy arrival profiles, and they

primarily focused on short-term objectives, instead of long-

term objectives. Moreover, the optimization problem size grows

exponentially with the scheduling interval, thereby increasing

the computational burden. With stochastic models, the authors

of [12] designed a threshold to decide whether to transmit or

drop a message based on its importance. The outage probabil-

ities were analyzed in fading channels by taking into account

both the energy harvesting and event arrival processes [7], [22].

A simple power control policy was developed in [23] to attain

near optimal throughput in a finite-horizon case. However, joint

power control and adaptive modulation that maximize the bit

rate have not yet been considered. Some pragmatic issues were

neither addressed, e.g., the setting of stochastic models and its

relation to system designs and the adaption of transmission to

measured solar irradiance.

More recently, Markov decision processes (MDP) have been

utilized to deal with the resource management problems for

energy harvesting systems. When the battery replenishment, the

wireless channel, and the packet arrival are regarded as Markov

processes, sleep and wake-up strategies were developed in [6].

Similar investigations were carried out with different reward

functions, e.g., buffer delay [14], [24]. Since very simple chan-

nel fluctuation and energy harvesting models were adopted, the

performance may be considerably degraded in practical sce-

narios. In addition, the aforementioned works all prearranged

stochastic energy generation models for the development of

transmission mechanisms without concern for the reality of the

assumptions underlying the considered models. Further, none

of these works linked the solar irradiance data, gathered by

an energy harvesting node, to the constructions of the design

frameworks and the optimal transmission policies.

In this paper, we present data-driven transmission policies for

an energy harvesting source node that aims to transmit packets

to its sink over a wireless fading channel.1 For this we maximize

the long-term bit rates by adapting transmission power and

modulation to the source’s knowledge of its current battery and

channel status. The novelty of this paper is the development of

realistic and reliable energy harvesting communication, which

enables a sensor node to be aware of the neighborhood environ-

ment to adapt its transmission parameters through measurement

results. Specifically, the novelty and contribution are summa-

rized as follows:

• We employ a Gaussian mixture hidden Markov model to

quantify energy harvesting conditions into several repre-

sentative solar states, whereby the underlying parameters

enable us to effectively describe the statistical properties of

the solar irradiance. Our model is different from the gen-

eralized Markov model in [18] which is constructed with

discrete solar energy as its input regardless of the underly-

ing distribution of solar energy. On the contrary, real solar

irradiance is adopted in our model. We justify the validity

of Gaussian mixture models for illustrating stochastic

solar energy processes and use expectation-maximization

(EM) algorithms to extract the underlying parameters.

• Through the discretization, a novel stochastic model that

describes the generation of energy quanta is proposed

and integrated into our design framework to capture the

interplay between the underlying and the system param-

eters. The adaptive transmission is formulated as a dis-

counted MDP and solved by a value iteration algorithm.

Both the energy wastage and the throughput degradation

caused by packet retransmission are taken into account.

Since the exact solar state is unknown to the sensor, an

observation-based mixed strategy is developed to compute

the belief state information and to decide the transmission

parameters, based on the present measurement of the solar

irradiance. To the best of our knowledge, this is the first

attempt to develop adaptive transmission schemes which

are directly driven by measured data.

• To get more insight, we present a theoretical study on a

simple on-off transmission policy. That means packets are

transmitted at constant power and modulation levels if the

action is “ON,” while no transmission occurs if the action

is “OFF.” In this special case, there exists a threshold

structure in the direction along the battery states, and the

long-term expected bit rate is increased with the amount

of energy quanta in the battery. Our analysis appears to

be more general than the previous work [14] that simply

1Here, “data” means historical records or present measurement of harvested
energy rather than “information-bearing data” in communications.
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TABLE I
BRIEF SUMMARY OF MAJOR SYMBOLS

considers an uncorrelated energy arrival model and a two-

state channel model. By exploiting this structure, we pro-

vide an energy deficiency condition and an upper bound

for the achievable net bit rate to characterize the per-

formance limit. Finally, the existence of structures for a

composite policy which contains multi-levels of power and

modulation actions is discussed.

• Real data records of the solar irradiance measured by

different solar sites in [25] are utilized to exemplify our

design framework as well as performance evaluation. The

performance of the proposed transmission policies is val-

idated by extensive computer simulations and compared

with other radical policies with or without the knowledge

of short-range energy harvesting and channel variation

patterns.

The rest of this paper is organized as follows. A brief

summary of major symbols is listed in Table I. In Section II, we

describe the stochastic energy harvesting model, the training of

its underlying parameters, and its connection to the real data

record. The MDP formulation of the adaptive transmission is

presented in Section III, followed by the optimization of the

policies and the mixed strategy in Section IV. Section V is

devoted to the analysis of a simple on-off transmission policy.

Simulation results are presented in Section VI, and concluding

remarks are provided in Section VII.

II. STOCHASTIC ENERGY HARVESTING

MODELS AND TRAINING

The model for describing the harvested energy depends on

various parameters, such as weather conditions (e.g., sunny,

cloudy, rainy), sunshine duration (e.g., day and night), and

behavior of the rechargeable battery (e.g., storage capacity). We

focus on modeling the solar power from the measurements by

using a hidden Markov chain, and establish a framework to ex-

tract the underlying parameters that can characterize the availa-

bility of solar power.

We begin with a toy example to justify the rationality of the

proposed energy harvesting models. Consider a real data record

of irradiance (i.e., the intensity of the solar radiation in units

µW/cm2) for the month of June from 2008 to 2010, measured

by a solar site in Elizabeth City State University (EC), with the

measurements taken at five-minute intervals [25]. In Fig. 1(a),

the time series of the irradiance is sketched over twenty-four

hours for June 15th, 2010, along with the average results for the

month of June in 2008 and 2010. We can make the following

Fig. 1. Toy examples of solar irradiance measured by solar sites in Elizabeth
City State University (EC) and Savannah State College (SS). (a) Time series
of the daily irradiance. (b) Histogram of the irradiance during a time period of
seven o’clock to seventeen o’clock.

observations. First, the daily solar radiation fluctuates slowly

within a short time interval, but could suddenly change from

the current level to adjacent levels with higher or lower mean

values. Second, the average irradiance value is sufficiently

high only from the early morning (seven o’clock) to the late

afternoon (seventeen o’clock). In fact, the measured irradiance

could be positive during daytime hours or negative at night or in
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Fig. 2. Gaussian mixture hidden Markov chain of the solar power harvesting
model with the underlying parameters (µj , ρj) (NH = 4).

the early morning, depending on the total amount of irradiance

that comes in and goes out the solar panel. Third, the evolution

of the diurnal irradiance follows a very similar time-symmetric

mask, whereas the short-term profiles of different days can

be very different and unpredictable. The other data record,

measured by Savannah State College (SS) in October between

1998 and 2000, also exhibits the same observations, but with a

shorter sunlight active duration. By considering the irradiance

from seven o’clock to seventeen o’clock, Fig. 1(b) shows the

corresponding histogram plotted against the irradiance on the

x-axis, which represents the percentage of the occurrences of

data samples in each bin of width 103 µW/cm2. We see that the

irradiance behaves like a mixture random variable generated by

a number of distributions. The prediction of solar irradiance

has been an open problem in atmospheric science over the

past decades. Some research studies have suggested the use of

the Gaussian distribution as the ingredient for describing the

irradiance [26], [27]. The assertion stems from the fact that the

solar irradiance experiences scattering, diffusion and reflection

by molecules, tiny particles in the air, and obstacles (e.g., cloud

and terrain) in the surrounding of sensors. Motivated by these

discussions, we model the evolution of the irradiance via a

hidden Markov chain with a finite number of states, each of

which is specified by a normal distribution with unknown mean

and variance.

An NH -state solar power harvesting hidden Markov model

is illustrated in Fig. 2, where the underlying normal distri-

bution for the jth state is specified by the parameters of

the mean µj and the variance ρj . The solar irradiance can

be classified into several states SH to represent harvesting

conditions such as “Excellent”, “Good”, “Fair”, and “Poor”.

Without loss of generality, the solar states are numbered in

ascending order of the mean values µj . Let S
(t)
H be the solar

state at time instant t. We further assume that the hidden

Markov model is time homogeneous and governed by the

state transition probability P (S
(t)
H = j|S

(t−1)
H = i) = aij , for

i, j = 0, . . . , NH − 1. The parameters of the model are thus de-

fined as Θ = {µ,ρ,a}, where µ = [µ0, . . . , µ(NH−1)]
T , ρ =

[ρ0, . . . , ρ(NH−1)]
T , and a = [a00, a01, . . . , a(NH−1)(NH−1)]

T .

Let x = {X(1) = x1, . . . , X
(T ) = xT } be a sequence of ob-

served data over a measurement period T , corresponding to

a sequence of hidden states s = {S
(1)
H = s1, . . . , S

(T )
H = sT }.

The probabilistic model is trained by an EM algorithm, which

is a general method of finding the maximum-likelihood (ML)

estimate for the state parameters of underlying distributions

from incomplete observed data, as follows:

Θ
(n)= argmax

Θ

Es

[

logP (x, s|Θ)|x,Θ(n−1)
]

= argmax
Θ

∑

s

logP (x, s|Θ)·P
(

x, s|Θ(n−1)
)

, (1)

where Θ
(n) is the estimation update at the nth iteration. The

problem (1) can be efficiently solved using the well-known

iterative forward and backward algorithms, and further details

can be referred to [28]. The training procedures are repeated for

several iterations until Θ(n) gets converged.

The training results with respect to the example above are

shown in Fig. 1(b) and Table II, where the measurements are

performed every five or fifteen minutes from seven to seven-

teen o’clock. We can observe that the similarity between the

histograms of the training results and the measurement data is

improved as NH is increased from two to four at the expense

of the increased complexity. Our experimental experience sug-

gests that a four-state hidden Markov model is good enough

to achieve acceptable results. Also in Table II, where the data

record of the solar site in EC is used, the transition probabilities

from the current solar state to the other adjacent states are very

small when the measurements are taken at five-minute intervals,

and only a slight increase in the transition probability is ob-

served as the sampling period is increased to fifteen minutes.

The solar power harvesting model is a continuous-time

model. In practice, the solar energy is stored in the battery to

supply the forthcoming communications, and the transmission

strategy is designed on the basis of the required numbers of en-

ergy quanta and remains unchanged over a management period

of several data packets TL. Below, we map the continuous-time

model into a discrete energy harvesting model, in which the

Markov chain states are described by the numbers of harvested

energy quanta. Let PU be the basic transmission power level

of sensors, corresponding to one unit of the energy quantum

EU = PUTL during the management period. For the harvested

solar power PH , the obtained energy over TL is given by

EH = PHTL. At t = nTL, define E
(n)
R as the residual energy

in the capacitor before harvesting, and E
(n)
C as the accumulated

energy after harvesting over TL. Accordingly, the capacitor can

provide at most Q energy quanta to recharge the battery, and

the remaining part, which is smaller than EU , is regarded as the

residual energy in the capacitor at t = (n+ 1)TL:

E
(n)
C =E

(n)
R + EH ; (2)

Q =

⌊

E
(n)
C

EU

⌋

, E
(n+1)
R = E

(n)
C −QEU , (3)

where ⌊·⌋ is the floor function. By assuming that the fluctuation

of the harvested power level is quasi-static over many power

management runs, it can be analyzed that if qEU ≤ EH ≤ (q +
1)EU for some q, then the probability of the number of energy

quanta, Q, can be computed as

P (Q = i) =

⎧

⎨

⎩

EH−qEU

EU
, i = q + 1;

1− EH−qEU

EU
, i = q;

0, otherwise.

(4)
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TABLE II
TRAINING RESULTS OF THE HIDDEN MARKOV SOLAR POWER HARVESTING MODEL FOR THE SOLAR SITE IN EC (NH = 4).

(a) MEAN, VARIANCE, AND STEADY STATE PROBABILITY. (b) STATE TRANSITION PROBABILITY

When a sensor node is operated at the jth solar state with the

normal distribution N (x;µj , ρj), the obtained energy EH is

again a normally distributed random variable, which is equal

to the solar power per unit area x multiplied by the solar

panel area ΩS , the time duration TL and the energy conversion

efficiency ϑ, i.e., EH = xΩSTLϑ. The conversion efficiency

typically ranges between 15% and 20% [2]. Thus, the mean and

variance of EH are respectively given as µ̄j = µjΩSTLϑ and

ρ̄j = ρjΩ
2
ST

2
Lϑ

2, and the probability of the number of energy

quanta is calculated by averaging (4) with respect to the random

variable EH , as follows:

P (Q = i|SH = j)

=

⎧

⎪⎪⎨

⎪⎪⎩

∫ (i+1)EU

iEU

(i+1)EU−EH

EU
N (EH ; µ̄j , ρ̄j)dEH , i = 0;

∫ (i+1)EU

iEU

(i+1)EU−EH

EU
N (EH ; µ̄j , ρ̄j)dEH

+
∫ iEU

(i−1)EU

EH−(i−1)EU

EU
N (EH ; µ̄j , ρ̄j)dEH , i �=0.

(5)

Denote the complementary error function as erfc(·). After some

manipulations, we get

P (Q = i|SH = j)

=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

(

(i+1)− µ̄j

EU

)

g1(i, µ̄j , ρ̄j)−g2(i+1, µ̄j , ρ̄j), i=0;
(

(i+1)− µ̄j

EU

)

g1(i, µ̄j , ρ̄j)−g2(i+ 1, µ̄j , ρ̄j)

+
(

µ̄j

EU
−(i− 1)

)

g1(i−1, µ̄j , ρ̄j)+g2(i, µ̄j , ρ̄j), i �=0,

(6)

where the relevant terms are defined as

g1(i, µ̄j , ρ̄j) =
1

2

(

erfc

(

1
√
2ρ̄j

(iEU − µ̄j)

)

− erfc

(

1
√

2ρ̄j
((i+1)EU − µ̄j)

))

; (7)

g2(i, µ̄j , ρ̄j) =

√

ρ̄j
2πE2

U

(

exp

(

−
1

2ρ̄j
((i− 1)EU − µ̄j)

2

)

− exp

(

−
1

2ρ̄j
(iEU−µ̄j)

2

))

. (8)

III. MARKOV DECISION PROCESS USING STOCHASTIC

ENERGY HARVESTING MODELS

We study the adaptive transmissions for sensor communica-

tions concerning the channel and battery status, the transmis-

sion power, the modulation types, and the stochastic energy

harvesting model. Consider a point-to-point communication

link with two sensor nodes, where a source node intends to

convey data packets to its sink node. Each data packet consists

of LS data symbols at a rate of RS (symbols/sec), and hence,

the packet duration is given by TP = LS/RS .

The design framework is formulated as an MDP with the

goal of maximizing the long-term net bit rate. As illustrated

in Fig. 3, the MDP is mainly composed of the state space,

the action set, and the state transition probabilities, and it is

operated on the time scale of TL, covering the time duration of

D data packets, i.e., TL = DTP . Let S be the state space which

is a composite space of the solar state H = {0, . . . , NH − 1},

the channel state C = {0, . . . , NC − 1} and the battery state

B = {0, . . . , NB − 1}, i.e., S = H× C × B, where × denotes

the Cartesian product. At the nth battery state, we further

denote the action space as A which consists of two-tuple action

spaces: transmission power W = {0, . . . ,min{n,NP − 1}}
and modulation types M = {0, . . . , NM − 1}. Since the tran-

sition probabilities of the channel and battery states are

independent of each other, the transition probability from

(SH , SC , SB) = (j, i, n) to (SH , SC , SB) = (j ′, i′, n′) with re-

spect to the action (W,M)=(w,m) under the jth solar state

can be formulated as

Pw,m ((SH , SC , SB) = (j ′, i′, n′)|(SH , SC , SB) = (j, i, n))

= P (SH = j ′|SH = j)P (SC = i′|SC = i)

· Pw (SB = n′|(SH , SB) = (j, n)) , (9)

where the battery state transition is irrespective of the modula-

tion type, and the transition probability of the solar states can be

directly obtained by using the training results in Section II. We

elaborate on each of the components in Fig. 3 before describing

the solution of the Bellman optimality equation.

A. Actions of Transmission Power and Modulation Types

When the action (w,m) ∈ W ×M is chosen by the sen-

sor node, the transmission power and modulation levels are
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Fig. 3. Markov chain for the Markov decision process (NH = 2, NC = 3
and NB = 3).

respectively set as wPU and 2χm -ary phase shift keying (PSK)

or quadrature amplitude modulation (QAM), e.g., QPSK,

8 PSK and 16 QAM, during the policy management period,

where χm represents the number of information bits in each

data symbol. Remember that PU is the basic transmission

power level of the sensor node if data transmission takes place.

On the other hand, if w = 0, the node remains silent without

transmitting data packets.

B. Channel State and State Transition Probability

The wireless channel is quantized using a finite number of

thresholds Γ = {0 = Γ0,Γ1, . . . ,ΓNC
= ∞}, where Γi < Γj

for all i < j. The Rayleigh fading channel is said to be in the

ith channel state, for i = 0, . . . , NC − 1, if the instantaneous

channel power, γ, belongs to the interval [Γi,Γi+1). We as-

sume that the wireless channel fluctuates slowly and the policy

management period is shorter than the channel coherence time.

Hence, the channel state transition occurs only from the current

state to its neighboring states. The stationary probability of the

ith state is

P (SC = i) = exp

(

−
Γi

γ0

)

− exp

(

−
Γi+1

γ0

)

, (10)

where γ0 = E[γ] is the average channel power. Define h(γ) =
√

2πγ/γ0fD exp(−γ/γ0), where fD is the maximum Doppler

frequency, normalized by 1/TL. The state transition probabili-

ties are determined by [29]

P (SC = k|SC = i)

=

⎧

⎪⎪⎨

⎪⎪⎩

h(Γi+1)
P (SC=i) , k = i+ 1, i = 0, . . . , NC − 2;
h(Γi)

P (SC=i) , k = i− 1, i = 1, . . . , NC − 1;

1− h(Γi)
P (SC=i)−

h(Γi+1)
P (SC=i) , k= i, i=1, . . . , NC−2,

(11)

and the transition probabilities of P (SC = i|SC = i) for the

boundaries are given by

P (SC = 0|SC = 0) = 1− P (SC = 1|SC = 0);

P (SC = NC − 1|SC = NC − 1)

= 1− P (SC = NC − 2|SC = NC − 1). (12)

C. Battery State and State Transition Probability

Consider a rechargeable battery with finite capacity which

is described by NB states. When the sensor node is run at

the nth battery state, the available energy in the battery is

stored up to n energy quanta, i.e., nEU , and the possible action

that can be performed is from 0 to min{n,NP − 1}. The wth

power action will consume a total of w energy quanta for data

transmission. In particular, the sensor is unable to make any

transmission when the energy is completely depleted at the 0th

state. Once the underlying parameters of the NH solar states

are appropriately estimated through the measurement data, the

state transition probabilities for the nth battery state and the

wth power action under the jth solar state can be constructed

by exploiting (6), as follows:

Pw (SB = k|(SH , SB) = (j, n))

=

{

P (Q=k−n+w|SH=j), k=n−w, . . . ,NB−2;

1−
∑NB−2−n+w

i=0 P (Q= i|SH =j), k=NB−1,

(13)

for n = 0, . . . , NB − 1 and w = 0, . . . ,min{n,NP − 1}.

D. Reward Function

We adopt the average number of good bits per packet trans-

mission as our reward function. It is assumed that the sink

node periodically feeds back the channel state information

to the source node for planning the next transmission. Let

Pe,b((SC , SB ,W,M) = (i, n, w,m)) be the average bit error

rate (BER) at the ith channel state and the nth battery state

when the action (W,M) = (w,m) is taken. By applying the

upper bound of the Q-function Q(x) ≤ 1
2 exp

(

−x2

2

)

, it can be

computed as

Pe,b ((SC , SB ,W,M) = (i, n, w,m))

=

∫ Γi+1

Γi

∑

r
αm,rQ

(√
βm,rwPUγ

N0

)

1
γ0

exp
(

− γ
γ0

)

dγ

∫ Γi+1

Γi

1
γ0

exp
(

− γ
γ0

)

dγ

≤
∑

r

αm,r

wβm,rγU+2

exp
(

−Γi

γ0

)

− exp
(

−Γi+1

γ0

)

·

(

exp

(

−
1

2γ0
(wβm,rγU + 2)Γi

)

− exp

(

−
1

2γ0
(wβm,rγU + 2)Γi+1

))

∆
= η(i, n, w,m), (14)

where N0 is the noise power, γU = PUγ0/N0 is the average

signal-to-noise power ratio (SNR) when the basic transmission

power level is adopted, and the BER is expressed as a sum-

mation of Q-functions with modulation specific constants αm,r

and βm,r for QPSK, 8 PSK and 16 QAM in Table III [30],

[31]. Hence, the probability of successful packet transmission
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TABLE III
MODULATION SPECIFIC CONSTANTS

(i.e., all χmLS bits in a packet are successfully detected) is ex-

pressed as

Pf,k ((SC , SB ,W,M) = (i, n, w,m))

= (1− Pe,b(i, n, w,m))χmLS . (15)

If the sensor fails to decode the received data packet, the re-

transmission mechanism is employed in the sensor communica-

tions. Let Z be the total number of retransmissions required to

successfully convey a data packet. By assuming that each trans-

mission is independent, the variable Z can be expressed as a

geometric random variable, and the average number of retrans-

missions for the successful reception of a packet is given by

E[Z] = 1/Pf,k(i, n, w,m). (16)

Since TL = DTP , the number of effective data packets due to

retransmission during each management period is in average

given as

DE =
D

E[Z]
=

TL

E[Z]TP
. (17)

From (14)–(17), the net bit rate can therefore be lower

bounded by

Gw,m ((SC , SB) = (i, n)) =
1

TL
DEχmLS

=
1

TP
χmLS (1− Pe,b(i, n, w,m))χmLS

≥
1

TP
χmLS (1− η(i, n, w,m))χmLS . (18)

Since Q(x) ≤ 1
2 exp

(

−x2

2

)

is asymptotically tight as x is

large, or equivalently, Pe,b(i, n, w,m) ≈ η(i, n, w,m) for a

sufficiently large γU , this implies that the lower bound of the

net bit rate is tight in high SNR regimes.

Definition 1: The reward function for the action (W,M) =
(w,m) at the state (SC , SB) = (i, n) is defined as

Rw,m ((SC , SB) = (i, n))

=

{
0, w =0;
1
TP

χmLS (1−η(i, n, w,m))χmLS, w∈W\{0}. (19)

The reward function has the following properties:

(a) Rw,m((SC , SB) = (i, n)) = 0 for w = 0, because no

data transmission occurs when the transmission power

is zero.

(b) Rw,m((SC , SB) = (i, n)) = Rw′,m((SC , SB) = (i, n′))
for any w = w′, because the immediate reward is

independent of the battery state.

(c) Rw,m((SC , SB) = (i, n)) ≥ Rw,m((SC , SB) = (i′, n))
for any i ≥ i′, which means a higher immediate reward

is obtained as the channel condition improves.

E. Transmission Policies

Two transmission policies are implemented regarding the

affordable actions in the action set A.

Definition 2 (Composite Policy): A transmission policy is

composite, if NP ≥ NB . The action set at the nth battery state

is given by A = {0, . . . , n} × {0, . . . , NM − 1}.

Definition 3 (On-Off Policy): A transmission policy is on-

off, if NP = 2 and NM = 1. The action set at the nth battery

state is given by A = {0, . . . ,min{n, 1}} × {0}.

In the composite policy, the power action could be uncon-

ditional as long as the resultant energy consumption during

the management period is below the battery supply. On the

contrary, only a single power and modulation level is accessible

in the on-off policy whenever the sensor is active. The compos-

ite policy undoubtedly has better performance than the on-off

policy, whereas the later one, as its name suggests, operates in a

relatively simple on-off switching mode for data transmission.

IV. OPTIMIZATION OF TRANSMISSION POLICIES

A. Optimal Policies and Belief Update

The main goal of the MDP is to find a decision policy

π(s) : S → A that specifies the optimal action in the state s
and maximizes the objective function. Since we are interested in

maximizing some cumulative functions of the random rewards

in the Markov chain, the expected discounted infinite-horizon

reward is formulated by using (19):

Vπ(s0)=Eπ

[∑∞

k=0
λkRπ(sk)(sk)

]

, sk ∈ S, π(sk) ∈ A,

(20)

where Vπ(s0) is the expected reward starting from the initial

state s0 and continuing with the policy π from then on, and

0 ≤ λ < 1 is a discount factor. The adjustment of λ provides

a wide range of performance characteristics, and the long run

average objective can be closely approximated by choosing a

discount factor close to one.2 It is known that the optimal value

of the expected reward is unrelated to the initial state if the

states of the Markov chain are assumed to be recurrent. From

(9) and (20), there exists an optimal stationary policy π∗(s) that

satisfies the Bellman’s equation [32]:

Vπ∗(s) = max
a∈A

(

Ra(s) + λ
∑

s′∈S

Pa(s
′|s)Vπ∗(s′)

)

, s ∈ S.

(21)

The well-known value iteration approach is then applied to

iteratively find the optimal policy [32]:

V a
i+1(s)=Ra(s)+λ

∑

s′∈S

Pa(s
′|s)Vi(s

′), s∈S, a∈A; (22)

Vi+1(s) = max
a∈A

{
V a
i+1(s)

}
, s ∈ S, (23)

2A link between average and discounted objective problems is provided
in [32]. Define the long run average reward as V̄π(s0) = lim supN→∞

1
N

·

E[
∑N−1

k=0
Rπ(sk)

(sk)]. For any stationary policy π, V̄π(s0) = limλ→1(1−

λ)Vπ(s0). Hence, a policy that maximizes Vπ(s0) for λ ≈ 1 also approxi-
mately maximizes the average cost V̄π(s0).



1512 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 33, NO. 8, AUGUST 2015

TABLE IV
EFFECT OF PARAMETERS ON SYSTEM PERFORMANCE

where i is the iteration index, and the initial value of V0(s) is

set as zero for all s ∈ S . The update rule is repeated for several

iterations until a stop criterion is satisfied, i.e., |Vi+1(s)−
Vi(s)| ≤ ε. Based on the definition in Section III-E, the optimal

solutions for the two policies can be found by alternatively

executing (22) and (23). In general, the convergence of the

value iteration algorithm is guaranteed, and interested readers

are referred to [32] for more details. To get more insight, we

also summarize the impact of various parameters on the system

performance in Table IV.

In real applications, the channel state of the communication

link can be reliably obtained at the transmitter via channel

feedback information. The belief of the solar state can be

calculated from the observation prior to the action decision.

Let x(t) be the average value of the measured solar data

during the tth management period, and ζ
(t−1)
j = P (S

(t−1)
H =

j|x(1), . . . , x(t−1)) be the belief of the jth solar state according

to the historical observation up to the (t− 1)th period. With the

solar power harvesting model, the belief information at the tth

period is updated using Bayes’ rule as follows:

ζ
(t)
j =

∑NH−1
i=0 ζ

(t−1)
i aijfj

(
x(t)

)

∑NH−1
j′=0

∑NH−1
i′=0 ζ

(t−1)
i′ ai′j′fj′

(
x(t)

) , (24)

where fj(x) = N (x;µj , ρj) and aij are the normal distribution

and the state transition probability, as obtained in the training

results of Section II. The final task is to apply the belief

information for deciding the action at each management period.

We consider the following mixed strategy. Remember that in

the construction of the solar power harvesting model, each

observed data sample contributes to the values of all underlying

parameters at different states in a posteriori probability sense in

the EM training procedures [28]. Thus, the optimization of the

transmission policy inherently accounts for the probability of

the observation that belongs to each solar state. This implies

that the mixed strategy, which randomly plays the optimal

action corresponding to the jth solar state with probability

proportional to ζ
(t)
j , is the optimal strategy for the observations

up to the present time.

B. Computational Complexity

We now discuss the computational complexity of finding

the optimal transmission policies. The main complexity of the

value iteration algorithm arises from the multiplication in (22),

and the required number of multiplications per iteration is

given as

NH−1∑

j=0

NC−1∑

i=0

NB−1∑

n=0

min{n,NP−1}
∑

a=0

NHNC(NB − n+ a)

=

{
(NHNC)

2
(
N2

B+NB−1
)
, on-off policy;

1
6 (NHNC)

2
(
2N3

B+3N2
B+NB

)
, composite policy.

(25)

In summary, the on-off policy has the complexity

of O(N2
HN2

CN
2
B), while the composite policy has

O(N2
HN2

CN
3
B). In real applications, the optimal policy can

be precalculated offline and stored in memory as a look-up

table. Thus, the involved online computation for the sensor

node is to update the belief information in (24), which has the

complexity of O(N2
H).

V. OPTIMAL ON-OFF TRANSMISSION POLICIES

A. Threshold Structure of Transmission Policies

To facilitate analysis, we focus on a simple on-off transmis-

sion policy and drop the modulation type index m, i.e., a =
w ∈ {0, 1}. From (6), (9) and (11)–(13), the expected reward

function with respect to the action a in (22) can be rewritten as

an expected form:

V a
i+1(z, x, y) = Ra(x, y) + λ

NH−1∑

j=0

P (SH = j|SH = z)

·

min{x+1,NC−1}
∑

l=max{0,x−1}

P (SC = l|SC = x)

·
∞∑

q=0

P (Q = q|SH = z)Vi (j, l,min{NB − 1, y − a+ q})

= Ra(x, y)+λ · Ez,x,y [Vi (j, l,min{NB−1, y−a+q})] ,

(26)

where the subscript in Ez,x,y[·] is used to indicate the associated

solar, channel and battery states.

Lemma 1: For any fixed solar state z ∈ H and channel state

x ∈ C, V a
i (z, x, y − 1) ≤ V a

i (z, x, y), ∀ y ∈ B \ {0} and a =
0, 1. Moreover, Vi(z, x, y − 1) ≤ Vi(z, x, y), ∀ y ∈ B \ {0}.

Proof: From (23), if V a
i (z, x, y − 1) ≤ V a

i (z, x, y) is sat-

isfied, it implies

Vi(z, x, y−1)= max
a∈{0,1}

{V a
i (z, x, y − 1)}

≤ max
a∈{0,1}

{V a
i (z, x, y)}=Vi(z, x, y). (27)
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We prove the lemma by the induction. From (26) and the initial

condition V0(s) = 0, the statement is held for i = 1 because

V a
1 (z, x, y − 1) and V a

1 (z, x, y) only relate to the same reward,

for a ∈ {0, 1}. Hence, we obtain V1(z, x, y − 1) = V1(z, x, y).
Assume i = k holds, and for any z ∈ H and x ∈ C, it gives

Vk(z, x, y − 1) ≤ Vk(z, x, y), ∀ y ∈ B \ {0}. Using (26), we

prove that for i = k + 1:

V a
k+1(z, x, y)− V a

k+1(z, x, y − 1)

= λ

NH−1∑

j=0

P (SH = j|SH = z)

·

min{x+1,NC−1}
∑

l=max{0,x−1}

P (SC= l|SC=x)
∞∑

q=0

P (Q=q|SH =z)

· (Vk (j, l,min{NB − 1, y − a+ q})

−Vk (j, l,min{NB − 1, y − 1− a+ q}))
︸ ︷︷ ︸

≥ 0, since the assumption holds for i=k.

≥ 0. (28)

This thereby implies that Vk+1(z, x, y − 1) ≤ Vk+1(z, x, y),
and the statement holds for i = k + 1. �

Theorem 1: For the optimal on-off policy, the long-term

expected reward is non-decreasing with respect to the battery

state. That is, for any z ∈ H and x ∈ C, Vπ∗(z, x, y − 1) ≤
Vπ∗(z, x, y), ∀ y ∈ B \ {0}.

Proof: By applying Lemma 1 and following the value

iteration algorithm, the theorem is proved when the algorithm

has converged. �

Now we turn to describing the structure of the on-off trans-

mission policy. Since no transmission (i.e., a = 0) is the only

action when the battery state is zero, we concentrate on the

actions for y ∈ B \ {0} in the following.

Lemma 2: For each z ∈ H, x ∈ C and y ∈ B \ {0}, define

two difference functions:

Θi(z, x, y) =V 1
i (z, x, y)− V 0

i (z, x, y); (29)

Λi(z, x, y) =Ez,x,y

[
V 1
i (j, l,min{NB − 1, y + q})

−V 0
i (j, l,min{NB − 1, y − 1 + q})

]
. (30)

The function Θi(z, x, y) is monotonically non-decreasing in

y ∈ B \ {0}, if the function Λt(z, x, y) is non-increasing in

y ∈ B \ {0}, ∀ t < i, z ∈ H and x ∈ C.

Proof: We use induction to prove this lemma. When i =
1, the statement is true because Θ1(z, x, y) = V 1

1 (z, x, y)−
V 0
1 (z, x, y) = R1(x, y), for y �= 0, and the reward function

R1(x, y) keeps the same value in y ∈ B \ {0} for any given

x ∈ C. Assume i = k holds, the function Θk(z, x, y) is non-

decreasing in y ∈ B \ {0}, ∀ z ∈ H and ∀x ∈ C. It imme-

diately implies that the following two functions are both

non-decreasing in y:

∆max
k (z, x, y) = max {0,Θk(z, x, y)} ≥ 0; (31)

∆min
k (z, x, y) = min {0,Θk(z, x, y)} ≤ 0. (32)

For i = k + 1, the difference function Θk+1(z, x, y) can be

derived from (23) and (26) as follows:

Θk+1(z, x, y) = V 1
k+1(z, x, y)− V 0

k+1(z, x, y)

= R1(x, y)−R0(x, y)

+ λEz,x,y

[
max

{
V 0
k (j, l,min{NB − 1, y − 1 + q}) ,

V 1
k (j, l,min{NB − 1, y − 1 + q})

}]

− λEz,x,y

[
max

{
V 0
k (j, l,min{NB − 1, y + q}) ,

V 1
k (j, l,min{NB − 1, y + q})

}]
. (33)

Inserting (31) and (32) into (33) yields

Θk+1(z, x, y) = R1(x, y)− λΛk(z, x, y)

+ λEz,x,y [∆
max
k (j, l,min{NB − 1, y − 1 + q})]

+ λEz,x,y[∆
min
k (j, l,min{NB − 1, y + q})]. (34)

According to the non-decreasing property of the functions

∆max
k (z, x, y), ∆min

k (z, x, y) and R1(x, y), it can be shown

from (34) that Θk+1(z, x, y) preserves the non-decreasing

property in y ∈ B \ {0}, if Λk(z, x, y) is non-increasing in

y ∈ B \ {0}, ∀ z ∈ H and ∀x ∈ C. �

In fact, the validity of the non-decreasing property of

Θi(z, x, y) relies on the transition probabilities of the solar

states, channel states and battery states, and this property is

not necessarily satisfied in z ∈ H and x ∈ C. Below we show

that the function Λt(z, x, y) is indeed non-increasing in the

direction along the battery states for a given solar state and

channel state, and the following theorem is provided.

Theorem 2: For any z ∈ H and x ∈ C, the difference func-

tion Θi(z, x, y) is non-decreasing in y ∈ B \ {0}, and the opti-

mal on-off policy has a threshold structure.

Proof: We first show that Λt(z, x, y + 1)− Λt(z, x, y) ≤
0, for y = 1, . . . , NB − 2, in the following. It can be derived

from the definition in Lemma 2 that

Λt(z, x, y + 1)− Λt(z, x, y) =

NH−1∑

j=0

P (SH = j|SH = z)

·

min{x+1,NC−1}∑

l=max{0,x−1}

P (SC= l|SC=x)·
∞∑

q=0

P (Q=q|SH=z)Φy(j, l,q),

(35)

where the term Φy(j, l, q), for y = 1, . . . , NB − 2, is defined as

Φy(j, l, q) =V 1
t (j, l,min{NB − 1, y + 1 + q})

− V 0
t (j, l,min{NB − 1, y + q})

− V 1
t (j, l,min{NB − 1, y + q})

+ V 0
t (j, l,min{NB − 1, y − 1 + q}) . (36)
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The third summation over the variable q in (35) can be further

divided into three cases according to the range of q, and after

some straightforward manipulations, we obtain

Φy(j, l, q)=

⎧

⎪⎨

⎪⎩

0, q = 0, . . . , (NB − y − 2);
−

(
V 0
t (j, l, NB−1)−V 0

t (j, l, NB−2)
)
≤0,

q=(NB−y−1);
0, q = (NB − y), . . . ,∞,

(37)

where the values for q �= NB − y − 1 are equal to zero due to

self-cancellation, and the inequality in the second line comes

from Lemma 1. As a result, Φy(j, l, q) is always non-positive.

From (35) and (37), it leads to Λt(z, x, y + 1) ≤ Λt(z, x, y),
and thus the function Λt(z, x, y) is non-increasing in y. By

applying Lemma 2, it suffices to prove that Θi(z, x, y) is non-

decreasing in y ∈ B \ {0}. When the value iteration algorithm

is converged, a threshold structure κ = {κ0, . . . ,κNH−1},

where κz = {κz,0, . . . , κz,NC−1}, is given by using the non-

decreasing property of Θi(z, x, y):

π∗(z, x, y) =

{
0, y ≤ κz,x;

1, y ≥ κz,x + 1,
(38)

for a threshold κz,x that is satisfied with Θi(z, x, κz,x) < 0 and

Θi(z, x, κz,x + 1) ≥ 0 if κz,x ∈ B \ {0}, and Θi(z, x, κz,x +
1) ≥ 0 if κz,x = 0. �

In fact, whether the threshold structure exists or not strongly

depends on the state transition probabilities. The proof in

Lemma 2 and Theorem 2 also implicitly indicates that the

threshold structures for the solar or channel states do not

necessarily occur, since for any fixed battery and solar (or

channel) state, the function Λi(z, x, y) after taking the expec-

tation over the transition probabilities may not be guaranteed

to be non-increasing with respect to the channel (or solar)

states. By taking the training results in Table II as an example,

a threshold structure is demonstrated in Fig. 4 for SH = 0.

It appears that there exists a threshold κ0 = {7, 7, 0, 0, 0, 0}
above which data transmission occurs to gain the maximum

long-term expected reward. Furthermore, it can be seen that

for a fixed channel state, the long-term expected reward is non-

decreasing with respect to the battery state. The simplicity of

the threshold structure makes the on-off transmission policy

attractive for hardware implementation, and it also helps reduce

the computational burden in obtaining the optimal policy.

B. Energy Deficiency Condition

From (4) and (6), the harvested energy is quantized into two

consecutive levels, Q = 0 and Q = 1, if the harvested power

is less than PU (i.e., the mean and variance of each solar state

are small). The energy level of Q = 0 is referred to as energy

deficiency. A necessary energy deficiency condition for the ex-

istence of an optimal threshold policy at κ = {κ0, . . . ,κNH−1}
is provided in the following.

Theorem 3: Let Vπ∗(z, x, y) be the long-term expected

reward of the on-off policy π∗. Define Ξ(z, x, y) =
Ez,x[Vπ∗(j, l,min{NB − 1, y + 1})− Vπ∗(j, l,min{NB − 1,
y})] as a difference function of Vπ∗(z, x, y) at the two

battery states min{NB − 1, y + 1} and min{NB − 1, y},

Fig. 4. Threshold structure policy and long-term expected reward for the solar
state SH =0 (NC =6, NB=8, RS =105 symbols/sec, LS =103 symbols/
packet, TL = 300 sec, PU = 1.8× 104 µW, γU = 18.5 dB, ΩS = 0.1 cm2,
ϑ = 1, fD = 5× 10−2, Γ = {0, 0.3, 0.6, 1.0, 2.0, 3.0,∞}, λ = 0.5 and
8 PSK).

which is averaged over the channel and solar state transition

probabilities from the state (z, x) ∈ H × C to its adjacent

states. Consider two possible energy quantum levels Q = 0 and

Q = 1. There exists an optimal policy with the threshold

κ = {κ0, . . . ,κNH−1}, only if the energy deficiency

probability belongs to the interval Dz =
⋂NC−1

x=0 Dz,x, where

Dz,x is defined as

Dz,x =

⎧

⎪⎨

⎪⎩

P (Q = 0|SH = z) ≤ φ(z, x, 1), κz,x = 0;
P (Q = 0|SH = z) ≥ φ(z, x, 0), κz,x = NB − 1;
φ(z, x, 0) ≤ P (Q = 0|SH = z) ≤ φ(z, x, 1),

otherwise,
(39)

where φ(z, x, n)=
R1(x)/λ−Ξ(z,x,κz,x+n)

Ξ(z,x,κz,x+n−1)−Ξ(z,x,κz,x+n) and R1(x)=

R1(x, κz,x + 1) = R1(x, κz,x).
Proof: By applying Theorem 2, it is sufficient to show

that κ is the optimal threshold policy, only if the following

conditions are satisfied, ∀ z ∈ H and ∀x ∈ C:
⎧

⎪⎪⎨

⎪⎪⎩

V 1
π∗(z, x, κz,x + 1) ≥ V 0

π∗(z, x, κz,x + 1), κz,x = 0;
V 1
π∗(z, x, κz,x) ≤ V 0

π∗(z, x, κz,x), κz,x = NB − 1;
V 1
π∗(z, x, κz,x) ≤ V 0

π∗(z, x, κz,x) and

V 1
π∗(z, x, κz,x + 1) ≥ V 0

π∗(z, x, κz,x + 1), otherwise.
(40)

From the definition in (26), the condition of V 1
π∗(z, x, κz,x) ≤

V 0
π∗(z, x, κz,x) in (40) becomes

R1(x) ≤ λ

1∑

q=0

P (Q = q|SH = z)Ξ(z, x, κz,x − 1 + q),

z ∈ H and x ∈ C. (41)

On the other hand, the condition of V 1
π∗(z, x, κz,x + 1) ≥

V 0
π∗(z, x, κz,x + 1) implies that

R1(x) ≥ λ
∑1

q=0
P (Q = q|SH = z)Ξ(z, x, κz,x + q),

z ∈ H and x ∈ C. (42)
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Fig. 5. Energy deficiency regions P (Q = 0|SH = 0) versus immediate re-
wards R1(x = 2) for different thresholds κ0,2.

In addition, it can be derived that Ξ(z, x, κz,x − 1)−
Ξ(z, x, κz,x) ≥ 0 as follows:

Ξ(z, x, κz,x − 1)− Ξ(z, x, κz,x)

= Ez,x

[
V 0
π∗ (j, l,min{NB − 1, κz,x})

−V 0
π∗ (j, l,min{NB − 1, κz,x − 1})

]

− Ez,x

[
V 1
π∗ (j, l,min{NB − 1, κz,x + 1})

−V 0
π∗ (j, l,min{NB − 1, κz,x})

]

≥ Ez,x

[
V 1
π∗ (j, l,min{NB − 1, κz,x})

−V 0
π∗ (j, l,min{NB − 1, κz,x − 1})

]

− Ez,x

[
V 1
π∗ (j, l,min{NB − 1, κz,x + 1})

−V 0
π∗(j, l,min{NB − 1, κz,x})

]
≥ 0, (43)

where the threshold structure is used in the first equality;

for instance, Vπ∗(z, x, y) = V 0
π∗(z, x, y), for y ≤ κz,x, and

the last inequality holds due to (36) and (37). Similarly,

we get Ξ(z, x, κz,x)− Ξ(z, x, κz,x + 1) ≥ 0. By applying

P (Q = 0|SH = z) + P (Q = 1|SH = z) = 1 and (41)–(43)

into (40), the necessary conditions can be rewritten as

in (39). Hence, there exists an optimal threshold at κ =
{κ0, . . . ,κNH−1}, only if the probability P (Q = 0|SH = z) ∈

Dz =
⋂NC−1

x=0 Dz,x. �

This necessary condition gives an important insight into how

the energy deficiency probability affects the threshold of the

policy. Taking the long-term expected reward in Fig. 4 and

SH = 0 as an example, the energy deficiency regions versus

the immediate rewards R1(x = 2) for different thresholds κ0,2

are plotted in Fig. 5, where the other thresholds are fixed at

{κ0,0, κ0,1, κ0,3, κ0,4, κ0,5} = {7, 7, 0, 0, 0}. It is observed that

for R1(x = 2) = 2× 104 and 6× 104, the threshold κ0,2 = 1
could be the optimal policy, only if P (Q = 0|SH = 0) ≤ 0.25
and P (Q = 0|SH = 0) ≥ 0.5, respectively.

C. Expected Net Bit Rate Analysis

Here we use the expected net bit rate to assess the perfor-

mance of the optimal threshold policy. Consider a threshold

policy κ = {κ0, . . . ,κNH−1}, and denote νj,i×NB+n as the

stationary probability of the state (SH , SC , SB) = (j, i, n),
for i = 0, . . . , NC − 1 and n = 0, . . . , NB − 1. Define νj =
[νj,0, . . . , νj,i×NB+n, . . . , νj,NC×NB−1]

T , for j=0, . . . ,

NH−1, and ν=[νT
0 , . . . ,ν

T
NH−1]

T
. Let Πj,i be an NB ×NB

battery state transition probability matrix associated with the

threshold policy κ at the jth solar state and the ith channel

state, given by

[Πj,i]p,q =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

P (Q = (p− q)|SH = j) ,

0 ≤ q ≤ κj,i, q ≤ p ≤ NB − 2;

0, 0 ≤ q ≤ κj,i, 0 ≤ p ≤ q − 1;

P (Q = (p− q + 1)|SH = j) ,

κj,i+1 ≤ q ≤ NB−1, q−1 ≤ p ≤ NB − 2;

0, κj,i+1 ≤q ≤NB−1, 0 ≤ p ≤ q − 2,
(44)

and [Πj,i]NB−1,q = 1−
∑NB−2

p=0 [Πj,i]p,q , for q = 0, . . . ,
NB − 1, where the (p, q)th entry of the matrix [Πj,i]
represents the transition probability from the state (SH , SC ,
SB) = (j, i, q) to the state (SH , SC , SB) = (j, i, p). Therefore,

the stationary probability with respect to the threshold policy κ

can be computed by solving the balance equation:

[
Φ− I(NB×NC×NH

)
1
T
(NB×NC×NH)

]

ν =

[
0(NB×NC×NH)

1

]

, (45)

where Φ is the state transition probability matrix of size (NB ×
NC ×NH)× (NB ×NC ×NH), whose (zNC + x, jNC +
i)th sub-matrix is equal to P (SH = z|SH = j) · P (SC =
x|SC = i) ·Πj,i, for z, j = 0, . . . , NH − 1, i = 0, . . . , NC −
1, and x = max{0, i− 1}, . . . ,min{i+ 1, NC − 1}, and the

remaining sub-matrices all equate to zero. By taking the expec-

tation of the reward function in (19), the expected net bit rate

using the 2χm -ary modulation scheme is given by

Rnet,m =
1

TP

NH−1∑

j=0

NC−1∑

i=0

NB−1∑

n≥κj,i+1

νj,(i×NB+n)

· χmLS (1− η(i, n, 1,m))χmLS . (46)

Theorem 4: Define an energy harvesting rate as q̄ =

lim
T→∞

q̄T = lim
T→∞

E

[
1
T

∑T
t=1 qt

]

, where qt denotes the number

of energy quanta obtained by a sensor at the tth policy manage-

ment period. The expected net bit rate of the on-off policy is

upper bounded by

Rnet,m ≤ min{q̄, 1} ·

(
1

TP
χmLS

· (1− η(NC − 1, NB − 1, 1,m))χmLS

)

. (47)

At asymptotically high SNR, the upper bound value converges

to min{q̄, 1} · 1
TP

χmLS .

Proof: Let at ∈ {0, 1} be the optimal action at the tth pol-

icy management period, corresponding to a sequence of channel

states xt and battery states yt, for t = 1, . . . , T . From (19),

the immediate reward can be rewritten as Rm(at, xt, yt) =
at

1
TP

χmLS(1− η(xt, yt, 1,m))χmLS . Thus, the average net
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bit rate, Rnet,m = lim
T→∞

E

[
1
T

∑T
t=1 Rm(at, xt, yt)

]

, is calcu-

lated as

Rnet,m = lim
T→∞

∑

it

P (xt = it, t = 1, . . . , T )

·
1

T

T∑

t=1

E

[

at
1

TP
χmLS (1− η(xt, yt, 1,m))χmLS

∣
∣
∣
∣

xt = it, t = 1, . . . , T

]

≤ lim
T→∞

∑

it

P (xt = it, t = 1, . . . , T )

·
1

T

T∑

t=1

E [at|xt = it, t = 1, . . . , T ]

·

(
1

TP
χmLS (1−η(NC−1, NB−1, 1,m))χmLS

)

, (48)

where the marginal probability is performed in the first equality

by summing over all channel states it, and the BER relationship

of η(NC − 1, NB − 1, 1,m) ≤ η(xt, yt, 1,m) is used in the

second inequality. For any transmission policy, the accumulated

energy consumption cannot exceed the initial energy in the

battery plus the total amount of harvested energy, and it yields

the constraint:

1

T

∑T

t=1
at ≤

1

T
(NB − 1) +

1

T

∑T

t=1
qt. (49)

Besides, the on-off transmission imposes another energy expen-

diture constraint of 1
T

∑T
t=1 at ≤ 1. Substituting this constraint

and (49) into (48), we finally obtain the upper bound of the ex-

pected net bit rate in (47). From (14), it is found that the func-

tion η(NC − 1, NB − 1, 1,m) → 0 as γU → ∞, and the upper

bound converges to min{q̄, 1} · 1
TP

χmLS at asymptotically

high SNR. �

D. Some Structure Results for Composite Policies

Fig. 6 depicts the optimal composite policies with the same

parameters of Fig. 4, except as otherwise stated. A monotonic

policy is observed in the direction along the battery states.

To be explicit, for any fixed z ∈ H and x ∈ C, π∗(z, x, y) �
π∗(z, x, y′), ∀ y ≤ y′, where � is a generalized inequality. From

Lemma 4.7.1 in [33], there exists such a monotonic property,

if V a
i+1(z, x, y) in (23) is a superadditive function on A× B.3

Since it is tough to directly inspect the superadditivity of

V a
i+1(z, x, y), a sufficient condition is provided in the following

theorem.

Theorem 5: The optimal composite policy is a monotonic

policy, if the energy harvesting condition:

∑max{α−n++w+,0}−1

i=max{α−n++w−,0}
P (Q = i|SH = j)

≤
∑max{α−n−+w+,0}−1

i=max{α−n−+w−,0}
P (Q = i|SH = j), (50)

3Let X and Y be two partially ordered sets. If a real-valued function f(x, y)
is superadditive on X × Y , then f(x+, y+)− f(x−, y+) ≥ f(x+, y−)−
f(x−, y−), ∀x+, x− ∈ X and ∀ y+, y− ∈ Y such that x+ ≥ x− and
y+ ≥ y−.

Fig. 6. Monotonic structures of the optimal composite policies with NM = 1
and NM = 3 (SH = 3 and γU = 12.5 dB). (a) NM = 1 and ΩS = 0.1 cm2;
(b) NM = 3 and ΩS = 0.4 cm2.

is satisfied at each solar state, ∀α ∈ B, ∀n+ ≥ n− ∈ B, and

∀w+ ≥ w− ∈ W .

Proof: From (13), let us first define βw(α|j, n) =
∑NB−1

k=α Pw(SB = k|(SH , SB) = (j, n)), for α ∈ B. By apply-

ing Theorem 6.11.6 in [33], V a
i+1(z, x, y) is superadditive, if the

following three conditions hold: (a) Ra(z, x, y) is superadditive

on A× B; (b) V a
i (z, x, y) is nondecreasing in y ∈ B, ∀ a ∈

A; (c) βw(α|j, n) is superadditive on W ×B, ∀α ∈ B. It is

straightforward to show that the condition (a) holds because the

reward is independent of the battery state. Also, the condition

(b) can be assured by extending the proof in Lemma 1 to the

case of multiple power and modulation actions. From (13) and

the condition (c), the sufficient condition (50) is then obtained

after some manipulations. �

The theorem implicitly indicates that the optimal composite

policy tends to be monotonic when the probabilities of har-

vesting higher numbers of energy quanta are large enough to

allow for a quick battery recovery. For example, a monotonic

policy is given, if P (Q = i|SH = j) increases with the number

of energy quanta i. Unlike the on-off policy, where the optimal

threshold structure is always promised, the existence of such
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a monotonic structure in the composite policy indeed depends

on various system parameters, although a sufficient condition

regarding the energy harvesting is presented here. Fortunately,

this elegant structure often appears according to our experimen-

tal observations.

VI. SIMULATION RESULTS

Simulation results are presented in this section to evaluate the

performance of the proposed data-driven transmission policies.

In the system model, the numbers of solar states, battery states,

channel states are set as four, twelve, and six, respectively. The

data record of the irradiance collected by the solar site in EC in

June from 2008 to 2012 is adopted throughout the simulation

[25]. A four-state solar power harvesting model is trained using

the data in the first three years, where the underlying parameters

are given in Table II. The irradiance data of the subsequent

two years are then applied for performance evaluation. Sensor

communications usually require a bandwidth of a few hundreds

of kHz to support a data rate of hundreds of kbps. In the system

configuration, the symbol rate RS is operated at 100 kHz, and a

medium-sized packet of LS = 103 data symbols is used. In

other words, the packet duration TP is given by 0.01 sec.

Depending on sensor network applications, the transmission

power typically ranges on the order of several tens of mW.

Here, we set the basic transmission power level as PU = 40×
103 µW. The modulation types could be QPSK, 8 PSK and

16 QAM. These three modulation types are considered as

potential candidates for the composite policy, while only one

modulation type is preselected for the on-off policy. To avoid

frequent change of transmission actions, the policy manage-

ment period is set to five minutes, i.e., TL = 300 sec. In the

value iteration algorithm, the discount factor λ and the stopping

criterion ε are selected as 0.99 and 10−6, respectively. Since

the size of sensor nodes is small, the solar panel area is set

as ΩS = 1 cm2. From [2], the energy conversion efficiency

is assumed to be ϑ = 20%. We assume that the battery state

is randomly initialized. The channel quantization levels are

randomly selected as Γ1 = {0, 0.3, 0.6, 1.0, 2.0, 3.0,∞}, and

the optimization of quantization levels is beyond the scope of

this paper. By assuming that sensor nodes are located in a rich-

scattering environment, Jakes’ model is applied to generate

channel gains under a deterministic relative mobility between

the transmitter and the receiver [34]. It is assumed that nodes

have low mobility, and for a normalized Doppler frequency

fD = 0.05, the channel coherence time, TL

2fD
, is around one

hour. The above parameters are used as default settings, except

as otherwise stated. Finally, since the average transmission

power for a sensor is unknown and depends on real solar irradi-

ance, a normalized average SNR γC is defined with respect to

the transmission power of 103 µW throughout the simulation.

As a benchmark, two myopic policies are included for perfor-

mance comparisons. For these two policies, the actions are per-

formed without concern for the channel state and battery state

transition probabilities, and data packets are transmitted as long

as the battery storage is non-empty. The first policy (Myopic

Policy I) attempts to transmit data packets at the lowest trans-

mission power level, if the energy storage is positive. Regarding

Fig. 7. Expected net bit rate versus normalized SNR γC for different trans-
mission policies (ΩS = 1 cm2, and fD = 0.05).

with the second one (Myopic Policy II), the largest available

battery power is consumed for data transmission, if the bat-

tery state is non-zero. In addition, we compare the proposed

schemes with a deterministic energy harvesting scheme in

[19], called t-time fair rate assignment (t-TFR), which requires

perfect knowledge of the channel fading and energy harvesting

patterns for determining the optimal transmission power over

a short-term period t to maximize the reward function in (19).

Fig. 7 shows the expected net bit rates for the composite and

on-off transmission policies. The expected net bit rate of the on-

off policy is calculated according to (46), while that for the

composite policy can be analyzed in a similar way although the

accessible transmission actions appear to be more sophisticated.

The performance upper bound of the on-off policy in (47) is

also included for calibration purposes. For the on-off policy, it

is observed that the expected net bit rate is monotonically in-

creased with the operating SNRs, while the performance finally

becomes saturated at 0.6× 105 bits/sec, 0.9× 105 bits/sec and

1.2× 105 bits/sec for QPSK, 8 PSK and 16 QAM, respectively,

when γC is sufficiently high. A saturation effect is observed

because the BER becomes extremely small at high SNR regime

and the net bit rate is thus limited by the permissible modulation

schemes and the energy arrival rate. It is clear that the policy

with QPSK modulation exhibits a better bit rate, as compared

to 8 PSK and 16 QAM modulation when γC ≤ 2 dB. On

the contrary, it is advisable to employ high-level modulation

schemes, e.g., 8 PSK and 16 QAM, to achieve better perfor-

mance. This is because the adoption of high-level modulation

schemes generally requires larger SNRs to guarantee a low

packet error rate. As expected, the composite policy offers an

expected net bit rate better than the on-off policy because it

has more diversified actions, and the performance gap between

these two policies could be as large as 60× 103 bits/sec.

However, the on-off policy with a mixture of QPSK and

16 QAM modulation can still achieve a large fraction of bit

rate regions as available in the composite policy, and its simple

implementation makes it attractive for practical applications.

Besides, we demonstrate the exact performance for the on-off

policy with 8 PSK by applying numerical integration in (18).
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Fig. 8. Average net bit rate performances of the composite policy, Myopic
Policy I, Myopic Policy II and t-TFR with the real data record of irradiance
in June from 2011 to 2012, measured by a solar site in EC (ΩS = 1 cm2, and
fD = 0.05).

There is a minor gap between the exact performance without

applying the lower bound and the expected net bit rate when

γC is small, whereas the curves become identical at high SNRs.

Similar results can be achieved for the proposed policies with

other modulation types, although they are not shown in this

figure.

Fig. 8 shows the average net bit rates of the proposed com-

posite policy and other benchmark schemes, in which the real

data record in EC from 2011 and 2012 is utilized to assess the

performance. We can observe from this figure that Myopic Pol-

icy I with QPSK is superior to Myopic Policy II with 16 QAM

in terms of the average net bit rates for low SNR regions,

whereas the reverse trend is found for high SNR regions. This is

because aggressive energy expenditure merits better bit rate per-

formance when the operating SNR is high, and conservative use

of energy is more preferable at low SNRs. Actually, the average

net bit rate of Myopic Policy II with 16 QAM gets saturated

at 1.2× 105 bits/sec when γC ≥ 46 dB, although this effect is

not depicted. Moreover, the composite transmission policy is

capable of achieving much better average net bit rates than these

two myopic policies under the same modulation type. We can

also find that the average net bit rate of the composite policy

is superior to that of the t-TFR scheme, even if the energy

harvesting and channel variation patterns are assumed to be

perfectly predicted for one or two hours. Though the t-TFR

scheme could attain better performance with an increased pre-

diction interval, it suffers from the problems of larger prediction

error and higher computational complexity for a long prediction

interval. Finally, the composite policy in conjunction with the

three modulation types has much better performance than that

with a single modulation type.

The average net bit rate of the on-off transmission policy is

shown in Fig. 9 for different modulation types. Moreover, the

performances of the Myopic Policy I and the Two Hour-TFR

schemes, in conjunction with various modulation types, are

included in this figure. To make a fair comparison, the t-TFR

scheme also adopts on-off power actions for the short-term

Fig. 9. Average net bit rate performances of the on-off and other benchmark
policies (ΩS = 1 cm2, and fD = 0.05).

Fig. 10. Average net bit rate of the composite policy versus number of battery
states under different Doppler frequencies and solar panel areas.

scheduling of energy expenditure. It can be seen that the

maximum spectrum efficiency provided by our proposed on-

off policy is approximately given by 0.6 bits/sec/Hz and

1.2 bits/sec/Hz for QPSK and 16 QAM, respectively. With a

fixed modulation scheme, the on-off policy offers significant

performance gains over the myopic policy by taking advantage

of channel fluctuation gains. A closer look at this figure reveals

that the performance gap between these two policies becomes

wider as the modulation level increases. When compared with

the Two Hour-TFR scheme, the on-off policy can still achieve

better average net bit rates, no matter which modulation type

is used.

Fig. 10 illustrates the average net bit rate of the composite

policy as a function of the number of battery states. To clearly

understand the relationship between the Doppler frequency and

the battery storage capacity, the normalized Doppler frequency,

fD, is chosen as 0.005 and 0.05. We can observe that the

average net bit rate can be dramatically enhanced by enlarging

the energy buffer size to store more energy quanta, especially

when the operating SNR is low. For instance, the performance
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Fig. 11. Average net bit rate of the on-off policy for other data records
in different locations/months (NB = 12, ΩS = 4 cm2, fD = 0.05, and
16 QAM).

with NB = 16 at γC = 0 dB, ΩS = 8 cm2 and fD = 0.05 is

about 2.5× 105 bits/sec, probably 1.6 times that being achieved

by the same policy with NB = 2. Also, the bit rate is increased

with the increase of the solar panel area due to a higher energy

harvesting rate. The sensor node additionally benefits from

channel fluctuation gains if the energy spending is carefully

governed to respond to the change in channel conditions, and

the bit rate becomes better as fD increases.

Fig. 11 shows the average net bit rate for the data records,

measured by two solar sites in SS (in October from 1998 to

2002) and Mississippi Valley State University (MV) (in March

from 2000 to 2004) [25]. Another channel quantization Γ2=
{0, 1.0, 3.0,∞} (⊆ Γ1) with NC = 3 is applied here. With the

same quantization set, the proposed scheme can still outperform

the One/Two Hour-TFR schemes in different locations and

months. When comparing the results from different quanti-

zation sets, one can see that the performance can be further

improved by partitioning the channel into a larger number of

channel states.

VII. CONCLUSION

In this paper, we have studied the problem of maximizing

long-term net bit rates in sensor communication that solely

relies on solar energy for data transmission. A node-specific

energy harvesting model was developed to classify the harvest-

ing conditions into several solar states with different energy

quantum arrivals. Unlike previous works, which were not con-

cerned with the real-world energy harvesting capability, a data-

driven MDP framework was formulated to obtain the optimal

transmission parameters from a set of power and modulation

actions in response to the dynamics of channel fading and

battery storage. Since different nodes may possess different

energy harvesting capabilities, the parameters of the underlying

energy harvesting process were completely determined by the

solar irradiance observed at a sensor node. In practice, the

exact solar state at each time epoch is unavailable, and a mixed

strategy was proposed to associate the adaptive transmission

parameters with the beliefs of the solar states. The validity of

the proposed data-driven approach was rigorously justified by

the real data of solar irradiance. We also analyzed the properties

and the net bit rates of the optimal on-off transmission policy,

and it was proved that this policy has an inherent threshold

structure in the direction along the battery states. Through

extensive computer simulations, the proposed data-driven ap-

proach was shown to achieve significant gains with respect to

other radical approaches, while it did not require non-causal

knowledge of energy harvesting and channel fading patterns.

As a final remark, this work can be served as an important step

for investigating other upper-layer issues in energy harvesting

sensor networks, e.g., wake-up and sleep cycles and routing

protocols, that involve more sophisticated settings with prac-

tical considerations in the future.

APPENDIX A

EFFECT OF fD AND NB ON THE PERFORMANCE

We explain the idea of how the parameters fD and NB

affect the performance by considering a simple model. As-

sume that NC = 2 and NH = 1, and the solar energy pe-

riodically arrives at a constant rate fE , i.e., the sensor can

harvest one energy quantum every TE(∝ 1/fE) (time unit: TL).

Moreover, the channel alternates between the two states every

TC(∝ 1/fD) time units. It is undoubted that the more the

energy is harvested, the better the performance is; however, a

capacity-limited battery will cause an energy overflow problem

and reduce the chance to harvest energy. Thus, when the sensor

knows the capacity of its battery is going to be saturated, it

should at least spend one energy quantum for data transmission,

even if the current channel is bad. Actually, there is a tradeoff

for the sensor between the risk of energy overflow and the

chance of transition to good channel states. Since the sensor

will take the opportunity to transmit data in the good channel

as long as the battery is nonempty, we focus on the situation

in the bad channel as follows. If the current battery state is y
and (NB − 1− y)TE < TC , the sensor is impelled to spend

the energy in the bad channel, even though the obtained bit

rate is low. On the other hand, if (NB − 1− y)TE ≥ TC ,

the sensor is expected to experience several times of good

channels during (NB − 1− y)TE , and thus, the harvested en-

ergy is spent more efficiently to achieve a higher bit rate as

NB and fD increase.
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