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Abstract. The search for exoplanets is pushing adaptive optics (AO) systems on ground-based

telescopes to their limits. One of the major limitations at small angular separations, exactly where

exoplanets are predicted to be, is the servo-lag of the AO systems. The servo-lag error can be

reduced with predictive control where the control is based on the future state of the atmospheric

disturbance.We propose to use a linear data-driven integral predictive controller based on subspace

methods that are updated in real time. The new controller only uses the measured wavefront errors

and the changes in the deformable mirror commands, which allows for closed-loop operation with-

out requiring pseudo-open loop reconstruction. This enables operation with non-linear wavefront

sensors such as the pyramid wavefront sensor. We show that the proposed controller performs near-

optimal control in simulations for both stationary and non-stationary disturbances and that we are

able to gain several orders of magnitude in raw contrast. The algorithm has been demonstrated in

the lab with MagAO-X, where we gain more than two orders of magnitude in contrast. © 2021

Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JATIS.7.2.029001]

Keywords: adaptive optics; exoplanets; high-contrast imaging; coronagraph; spectroscopy.

Paper 20143 received Sep. 18, 2020; accepted for publication Mar. 9, 2021; published online

Apr. 6, 2021.

1 Introduction

The upcoming generation of Giant Segmented Mirror Telescopes (GSMT) has the light gather-

ing capability and angular resolution to directly image Earth-like planets around other stars,

which allow us to search for bio-signatures. However, these ground-based telescopes do not

operate at their diffraction-limit due to turbulence in the Earth’s atmosphere. And even if these

large telescopes could be used close to their diffraction-limit, the star is usually orders of mag-

nitude brighter than the planet, making it difficult to distinguish the planet from the star.1 High-

contrast imaging (HCI) instruments are designed to overcome these challenges by using extreme

adaptive optics (ExAO) to compensate for atmospheric disturbances and recover the angular

resolution, while advanced coronagraphs are used to remove the influence of starlight.2
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With the current generation of HCI instruments,3–5 we can routinely reach post-processed

contrast levels of 10−4 to 10−6, depending on the angular distance from the host star. With these

contrast levels, we are sensitive to hot and massive self-luminous planets.6 Even though we are

sensitive to massive Jupiter-like planets, only a few planets have been imaged and spectroscopi-

cally characterized. The results from large surveys that targeted massive Jupiters on wide orbits

indicate that the planet occurrence rate drops sharply between 1 and 10 AU.7–10

More planets could be directly imaged if the sensitivity close to the star is improved. The

main limiting factor close to the star is the performance of the adaptive optics (AO) systems.11–13

During the operation of an AO system, a wavefront sensor measures the wavefront aberrations,

which are then fed back to a DM for correction. This causes an inevitable delay because the

system can only compensate after it has measured the disturbance. There are two options to

reduce the servo-lag error in AO systems, either run the full system at a higher speed, which

is currently being tried14 or by the use of predictive control. In predictive control, a model of the

system is used to make a prediction about the future state of the system. This allows the pre-

dictive controller to anticipate future behavior and mitigate errors before they happen. Predictive

control has been proposed some time ago as a solution to the servo-lag error.15 If predictive

control is successfully implemented it could lead to a gain of two or three orders of magnitude

in contrast, under the assumption that much of the temporal evolution is predictable. 16–18

Initial results from predictive control focused on low-order modes, which was mainly due to

restrictions in computing power and the availability of high-order deformable mirrors (DM).19,20

From that point two distinct paths of predictive control appeared, one focused on physical mod-

eling of the atmosphere and its dynamics21–23 and the other focused on data-driven methods.16,24

Recently, a large amount of effort has been put into investigating the application of deep

reinforcement learning for predictive control.25,26 There are also algorithms where model-based

and data-driven approaches are merged.27

Currently, both paths are maturing and are being implemented in laboratory and on-sky dem-

onstrations. The initial results are encouraging, showing increased Strehl ratio in many

conditions.27,28 The gain in contrast for ExAO systems however has been limited.29 A major

limitation for ExAO systems that is common in the previous methods is that they require a

sequence of open-loop wavefront sensor measurements to estimate certain aspects of the system,

e.g, the power spectral density (PSD),20 correlation matrix of all inputs and outputs,16 or the wind

velocity of turbulent layers.21 The wavefront sensor of interest for HCI is the pyramid wavefront

sensor,30 which has limited dynamic range. Due to the limited dynamic range, it may not be

possible to reconstruct the disturbance PSD from open-loop measurements. Furthermore,

variable calibration and inherent non-linearity of the PWFS can change the optical gain, which

effectively changes the modal sensitivity.31 If there is no correction for the optical gain, the

pseudo-open loop reconstruction will under or overestimate the wavefront. Online gain tracking

is necessary to compensate for this effect. And finally, the atmosphere itself is dynamic and

exhibits non-stationary turbulence. This is limiting the application of open-loop predictive

controllers.32

Another complication stems from the use of multi-stage AO systems, where several dynami-

cal components are operated at the same time, but each may be operated at different frequencies.

The temporal dynamics of each component need to be accurately accounted for to reconstruct the

full open-loop disturbance. Any model error in the DM dynamics immediately folds into the

disturbance reconstruction. Additionally, ExAO systems are being operated at very high speeds

close to the operating frequency of DMs, which means that the DM cannot be modeled with a

fixed-lag step response and the temporally resolved dynamics need to be taken into account.

In this work, we propose a completely model-free data-driven method that identifies the

atmospheric and system dynamics in closed-loop and is updated online to track non-stationarity.

Our method is based on a closed-loop data-driven subspace identification algorithm, which has

been gaining traction recently.33,34 The principle of the data-driven closed-loop subspace pre-

dictive controller (DDSPC) is to obtain the predictive controller directly from the measured

input-output pairs during closed-loop operations, without any intermediate parametric model

identification. In this work, we will derive a predictive controller based on the DDSPC method

that uses integral-action, which will drastically lower the influence of model errors and allows it

to be used in closed-loop.
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In Sec. 2, we derive the closed-loop data-driven subspace identification algorithm and its

controller. We numerically demonstrate the power of the algorithm for predictive control in

Sec. 3, and in Sec. 4, we show the verification of the algorithm in a lab setting. Section 5 con-

cludes the paper and gives an outlook on the implementation for on-sky.

2 Data-Driven Closed-Loop Subspace Identification

The proposed DDSPC controller works in a mode space of the DM, e.g., actuator space or

Zernike space. We assume that the modal coefficients are retrieved from a WFS that measures

the wavefront error in closed-loop at regular time intervals. The reconstructed wavefront error at

timestep i is then defined as Δyi. At each time step i there is also a new command that will be

sent to the DM to compensate for the wavefront errors, which is defined as Δui. It is important to

note here that the DDSPC controller is working with the changes in the wavefront and not the full

wavefront and actuator commands. This will allow the predictive controller to retain integral

action.

2.1 Defining the Auto-Regressive Model

The key aspect of the predictive controller lays in its ability to predict the future WFS measure-

ments. The future measurements of the WFS depend on the past wavefront sensor measurements

from the atmosphere changing between time steps and past DM commands due to non-

instantaneous DM dynamics. And finally, the future measurements also depend on the future

commands, because at every time step a new command will be send to the DM which has tem-

poral dynamics that need to be taken into account. We will assume that a linear auto-regressive

(AR) model is enough to capture all dynamics of the system. The AR model for the measurement

at the next time step is

EQ-TARGET;temp:intralink-;e001;116;416Δyiþ1 ¼
X

n¼i

n¼i−N

anΔyn þ
X

n¼i

n¼i−N

bnΔun þ
X

n¼iþM

n¼iþ1

cnΔun: (1)

This equation consists of three parts, the AR model for the past N measurements with coef-

ficient an, the AR model for the past N commands with coefficients bn; and finally, the AR

model for the M future commands with coefficients cn. The order (N) for the past commands

and measurements do not have to be equal. For practical purposes, we kept them equal. The

model of Eq. 1 can be rewritten in a clearer vector notation by defining the data vector which

contains a sequence of length N of either measurements or commands as

EQ-TARGET;temp:intralink-;e002;116;292xiþN∶i ¼ ð xiþN : : : xi ÞT : (2)

Here, xi is the value of variable x at time step i. If a prediction horizon of M steps is con-

sidered with N past measurements, the notation can be further simplified. To do this, the future

measurements at time step i are defined as yif ¼ ΔyiþM∶iþ1 and the past measurements as

yip ¼ Δyi∶i−N . The future and past commands are defined in a similar manner, uif ¼ ΔuiþM∶iþ1

and uip ¼ Δui∶i−N . With the simplified notation the AR model becomes,

EQ-TARGET;temp:intralink-;e003;116;194yif ¼ Ayip þ Buip þ Cuif: (3)

With A the prediction matrix of size M × N that correlates the past N measurements to the

future M measurements, B the prediction matrix of size M × N that correlates the past N

commands to the future M measurements, and C is the prediction matrix of size M ×M that

correlates the future commands to the future measurements.
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2.2 Online Estimation of the Prediction Matrices

The AR model needs to be updated every time step to take into account non-stationary statistics.

Therefore, we need to do an online identification of the AR model. The problem can be reduced

to a single matrix-vector multiplication because it is a linear problem,

EQ-TARGET;temp:intralink-;e004;116;680yif ¼ ½Ai Bi Ci �

2

4

yip
uip
uif

3

5 ¼ Θ
iϕi: (4)

Here, ϕ is the concatenation of yip, u
i
p, and uif, while Θ is the concatenation of A, B, and C.

This can be solved in a straightforward way by defining the least-squares solution,

EQ-TARGET;temp:intralink-;e005;116;598Θ ¼ arg min
Θ

kyif − Θϕik
i
: (5)

Recursive least-squares (RLS) are used to update our prediction matrix at every time step.

RLS consists of four steps, of which the first is the determination of the update gain,

EQ-TARGET;temp:intralink-;e006;116;535Ki ¼ γ−1ϕiPi−1

1þ γ−1ϕiTPi−1ϕi
: (6)

Here, Ki is the gain matrix at time step i, γ is the forgetting factor that is included to reduce

the weight of measurements far in the past, and Pi is the inverse covariance matrix between all

features at time step i. The next step is to calculate the prediction error at step i,

EQ-TARGET;temp:intralink-;e007;116;452ei ¼ yif − Θϕi: (7)

After which the prediction matrix can be updated,

EQ-TARGET;temp:intralink-;e008;116;405Θ
iþ1 ¼ Θ

i þ Kiei: (8)

And finally, the inverse covariance matrix is updated

EQ-TARGET;temp:intralink-;e009;116;361Pi ¼ γ−1Pi−1 − γ−1KiϕiPi−1: (9)

The RLS algorithm is closely related to the Kalman filter. A benefit of the RLS algorithm is

that it is anOðn2Þ algorithm, as opposed to the Kalman filter, which is anOðn3Þ algorithm. This

difference in algorithmic complexity allows the RLS algorithm to update its matrices in real time,

while for the Kalman filter the gain matrix is almost always calculated offline.35

2.3 Derivation of the Controller

The results from the previous two sections can now be used to derive the finite horizon least-

squares optimal controller. First, a cost function has to be defined that the controller will opti-

mize. A logical choice is the mean square error of the future M wavefront errors because those

are the errors that are predicted. This leads to the following cost function,

EQ-TARGET;temp:intralink-;e010;116;194Ji ¼
X

M

k¼1

yTiþkyiþk þ λ
X

M

k¼1

uTiþkuiþk ¼ yiTf yif þ λuiTf uif: (10)

The future commands have been added to the cost function with a scalar λ to penalize large

commands, which effectively regularizes the control algorithm. The best estimate that is avail-

able at time step i of the future measurements is the AR model described in Eq. (3), which upon

substituting into Eq. (10) will provide a relation between the past measurements and control

signals and the future control signals.
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EQ-TARGET;temp:intralink-;e011;116;735Ji ¼ yiTf yif þ λuiTf uif ¼ ½ yiTp uiTp uiTf �

2

4

ATA ATB ATC

BTA BTB BTC

CTA CTB CTC

3

5

2

4

yip
uip
uif

3

5þ λuiTf uif: (11)

The regularisation λ can be absorbed into the cost matrix,

EQ-TARGET;temp:intralink-;e012;116;674Ji ¼ ½ yiTp uiTp uiTf �

2

6

4

ATA ATB ATC

BTA BTB BTC

CTA CTB CTCþ λI

3

7

5

2

6

4

yip
uip
uif

3

7

5
(12)

The optimal controller can now be derived by finding the future control commands that

minimize the cost function

EQ-TARGET;temp:intralink-;e013;116;587uif ¼ arg min
ui
f

Ji: (13)

This is relatively straightforward because the cost function is quadratic. To find the mini-

mum, we take the derivative of the cost function with respect to the future commands and equate

it to zero,

EQ-TARGET;temp:intralink-;e014;116;507

∂Ji

∂uif
¼ 2½ATC BTC �

�

yip
uip

�

þ 2ðCTCþ λIÞuif ¼ 0: (14)

After some algebra we find the optimal control signal as

EQ-TARGET;temp:intralink-;e015;116;447uif ¼ −ðCTCþ λIÞ−1½ATC BTC �
�

yip
uip

�

: (15)

The controller itself isK ¼ −ðCTCþ λIÞ−1½ATC BTC �. This controller calculates the opti-
mal control sequence for the next M steps. However, because the optimal control sequence is

recalculated at every time step, only the next command is important.

2.4 Computational Considerations

Even though the RLS is more efficient than the Kalman filter, it is still a computational challenge

to apply the DDSPC with coupling between all modes for a high-order AO system with thou-

sands of modes. To ease the computation time, we implemented a distributed control scheme

where we create a controller for each mode. This has the advantage that it is naturally parallel and

therefore very easy implement on distributed computing architectures, such as CPU or GPU

clusters. A basis that is close to orthogonal is required for the distributed control. This will pre-

vent the spatial correlations from folding into temporal correlations, which is otherwise very

difficult to correct. The Gaussian actuator basis with low actuator cross talk or the Fourier basis

are examples of possible mode bases. In this work, we will use the actuator basis.

The distributed controller works so long as spatio-temporal correlations between modes can

be ignored. Recent work36 showed with telemetry from VLT/SPHERE4 that using the past his-

tory of a mode is enough to predict the future state. Spatial correlations do not improve the

prediction accuracy if the system is driven at high speeds because it takes too long for the wind

to move the phase across a sub-aperture. For an AO system such as SPHERE, the time history

needs to be at least 13 steps. For this, we assumed a 1-kHz loop speed, a windspeed of 15 m∕s,

and 41 wfs pixels across the pupil. And this is only the case for single-layer frozen flow turbu-

lence. The influence of spatial correlations will be lowered even more if multiple (possibly boil-

ing) layers are moving across the aperture. This implies that the proposed distributed approach is

valid, and we do not have to consider modal correlations for predictive control. Distributed

model predictive control (MPC) also has been shown to work well in simulations.21,35 Later

sections in this work will show that the distributed approximation still results in near-perfect

correction in our end-to-end simulations.
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2.5 Parameter Investigation and Stability

It is not immediately clear that data-driven methods are guaranteed to be stable. A lot of research

has focused on stability of data-driven methods in the past years, of which a lot has been driven

by the advances in (deep) reinforced learning. At first, closed-loop data-driven MPC was shown

to be have stability guarantees.37 Later, the stability was expanded to the data-driven subspace

predictive control scheme.38 The DDSPC that is proposed here is slightly different because we

use the closed-loop residuals and the input-output model is update online. The data-driven MPC

control is guaranteed to be stable if three conditions are met: the cost function needs to have a

quadratic upper bound, the number of total number of data samples needs to be larger than the

number of free parameters in the model, and the history length N needs to be larger than the

future lengthM. While we have not proven that these conditions guarantee a stable controller for

the DDSPC, they can still be used as a guideline when choosing the parameters of the controller.

It is easy to meet the conditions. The quadratic upper bound is guaranteed because we use a

quadratic cost function. The number of data samples puts a constraint on the forgetting factor.

Each time, a new data point is added the old data will be multiplied by γ, which means that after T

steps the weight of the data will be γT . We now assume that the data does not contribute anymore

if its weight is smaller or equal to a threshold value ϵ. So, if we want to retain at least T samples,

the inequality γT ≥ ϵ must hold. The proposed model has M × ð2N þMÞ free parameters.

Consequently, the constraint on the forgetting factor is then γ ≥ ϵ1∕ð2NMþM2Þ. A typical model

has between 40 and 100 free parameters. With a threshold value of ϵ ¼ 0.1, we find a lower

bound of about 0.955 for the small models and a lower bound of 0.975 for the larger models.

In future work, we will investigate if these conditions are also sufficient to guarantee stability for

the DDSPC algorithm. Here, the stability is analyzed with end-to-end simulations.

The stability is tested by applying the DDSPC algorithm with varying history length (N) and

injecting a range of power-law disturbances. The disturbances have the form of P ∝ fβ, with f

the temporal frequency and β the power-law index. Each generated time-series is normalized to a

standard deviation of 1. For these simulations, we used a single frame delay. The prediction

horizon (M) was set to three for these tests. The relative RMS as function of history length

is shown in Fig. 1 and compared against a gain optimized integrator. This Figure shows that

the DDSPC works significantly better than an integrator for power-law indices β ≤ −2. For flat

power spectra (β ≥ −1), the integrator and predictor have about equal performance. Longer

history lengths decrease the performance of the controller for the steeper power laws. While

the shallow power laws prefer a longer history length that can be used to average out the noise.

This also implies that there is an optimal history length when a mixture of shallow and steep

power laws are present in the disturbance.

The DDSPC has the regularization parameter λ as hyper parameter, which was optimized for

each power-law index and each history length. The optimal λ is shown in Fig. 2, which shows

that the optimal regularization parameter should be very small λ ¼ 10−3 for most situations. For

the nosiest cases, a strong regularization is preferred. This is expected because the optimal con-

trol is no control when either the measurements or the disturbance itself consist of pure noise.

The stability of the controllers is verified by inspecting their Nyquist Plot. The open-loop

error transfer function (ETF) is created from the controller (K) using the equation for the fre-

quency response of general linear filter.17 The Nyquist plot of each controller is shown in Fig. 3,

which plots the real versus the imaginary part of the open-loop ETF. The system is stable in

closed-loop if the ETF does not contain −1þ 0i as a pole, which can be determined by the

number of encirclements of the point ð−1;0Þ. All systems do not encircle the unstable pole,

which means that all derived controllers provide stable feedback. From this, we determine that

the DDSPC is stable over a wide range of disturbances and parameter choices. These results do

not guarantee stability for all systems. However, we have not yet encountered a situation, either

in simulation or lab experiments, where the controller is unstable.

2.6 Learning Time

Data-driven algorithms will only have an advantage if they can learn the system parameters fast

enough, which makes it important to examine the learning time scale. A long time sequence of
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30 s is simulated to estimate the scaling behavior of the algorithm. Frozen-flow turbulence with

the parameters from 1 is used as the input disturbance. The initial prediction matrix is set to zero

and inverse covariance matrix is initialized as a diagonal matrix with a large number, such as 109,

on the diagonal. A system identification (SI) approach is used to let the algorithm get familiar

with the system it is controlling. In SI, the system is excited with a known disturbance on the

Fig. 2 The optimal regularization parameter for different power-law indices and different history

lengths. The different colors represent different power-law indices. The optimal value is the small-

est value that was considered for the steep power-laws (β < −2). For the shallow power-laws,

a strong regularization is preferred.

Fig. 1 The standard deviation of the residuals during closed-loop operations. The different colors

indicate different power-law indices. The dashed lines represent the residuals for the gain opti-

mized integrator. The solid lines show the residuals of the DDSPC. For β ≤ −2, the predictive

control has residuals that are at least an order of magnitude smaller. The residuals increase

as the history length is increased for the steeper power-laws. For the shallow power-law disturb-

ances, β ≥ −1, the integrator and predictor behave quite similar.
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control commands. For large systems, it is important to construct information-rich signals that

are able to persistently excite all relevant frequencies. A popular choice is a random binary signal

(RBS). This is a key point of the identification process because it is possible for the algorithm to

get stuck in the null space of the instantaneous prediction matrices. For example, if the system

starts with a zero prediction matrix and no control signal is injected, the algorithm will think that

all temporal effects are intrinsic to the turbulence. This will keep the B and C matrices at zero,

which means that the controller will not be learned regardless of the amount of training steps.

RBSs will allow the control algorithm to explore all possible states and push the controller out of

such null spaces. Therefore, we start the control loop with an additional exploration signal on top

of the atmospheric disturbance. In principle, this can also be done during the day to minimize the

loss of observing time during the night. The identification is most efficient if the amplitude of

the RBS signal is larger than the measurement noise.

An example of the identification process can be seen in Fig. 4. The initial RMS of the

DDSPC shoots up because the system is not yet known. After several tens of iteration, the con-

troller is already performing better than an integral controller. Even with the RBS included, the

DDSPC has lower RMS than a classical integrator. The integrator does not need to train, so the

RBS is not necessary. The RBS signal was still injected to create an equal disturbance between

both controllers. After the exploration period has ended at the 5 s mark, we see that the predictor

is performing substantially better than an integrator. It is important to mention here that the

considered RMS is not the RMS of the wavefront, but of the reconstructed modal coefficients.

This means that the contribution of higher-order modes, e.g., the fitting error, has not been

accounted for and the RMS in the figure cannot be used to determine the improvement in

Strehl. The RMS can however be used to determine the contrast improvement because the modal

coefficients determine the RMS within the control radius to first order. The results show that the

RMS is reduced by more than an order of magnitude, which implies an improvement of almost a

factor 100 in contrast. This is the major gain that predictive control can bring for HCI; while the

Fig. 3 Nyquist plot demonstrating the stability of the DDSPC controller for the cases considered in

this section. The open-loop ETFs are plotted in the imaginary plane. It is noteworthy that frequency

increases as the lines move out from the center. The controllers are stable so long as they do not

encircle the black point ð−1;0Þ. The gray dashed circle has a radius of 1. We show the open-loop

ETFs for each controller. The color represents different power-law indices. All controllers are

stable because they do not encircle the point ð−1;0Þ.
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Strehl improvement is not large, there can be a substantial improvement in the contrast gain.

This has been shown before in previous work.16,17,35

After the exploration period, the DDSPC keeps learning how to improve the RMS even fur-

ther, as can be seen in the part between 5 and 30 s of Fig. 4. The region from 5 to 30 s is plotted

separately in Fig. 5 on a log–log scale to demonstrate the scaling behavior. A second line that

Fig. 4 The standard deviation of the residual modal coefficients during closed-loop operations.

The first 5 s were used for exploration of the system with an RBS, which adds additional noise

to the residuals. The influence of the RBS noise is visible through the drop of the RMS after the

exploration is stopped. The DDSPC controller has learned most of the structure of the system

within the first 100 ms, where the RMS of the DDSPC crosses the RMS of the integrator.

Fig. 5 A log–log plot of the RMS of the residual modal coefficients between 5 and 30 s after start-

ing the control. In black, we show the expected statistical learning curve that scales as 1∕
ffiffi

t
p

. The

RMS of the DDSPC follows the expected learning curve even after more than 29,000 iterations.

This indicates that the algorithm will keep learning to improve the RMS over time until all corre-

lations are learned.
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scales as 1∕
ffiffi

t
p

has been added for comparison. From this figure, we can see that the DDSPC

algorithm is learning close to the rate of 1∕
ffiffi

t
p

. The scaling also puts limits on how fast data-

driven algorithms, such as the DDSPC, can adapt to changing conditions and the precision with

which it adapts on that timescale. It is not clear from the data when DDSPC stops learning, a

considerably longer time series is necessary to see if the model becomes more accurate or not and

at what time it stops learning. This was not explored due to the required computation time.

3 Adaptive Optics Simulations

In this section, the performance of DDSPC is tested with end-to-end Monte Carlo simulations.

We consider two cases: stationary and non-stationary frozen-flow turbulence. Both simulations

use a direct wavefront sensor with infinite SNR. All simulations make use of the High-Contrast

Imaging for Python (HCIPy) package.39 We simulate an AO system similar to MagAO-X, see

Table 1 for all parameters. The temporal response of the DM is simulated as a step response with

one frame delay. The total system delay is then two frames because the act of measuring the

wavefront error also delays the response by 1 frame.

3.1 Stationary Turbulence

In this section, we apply the DDSPC to single-layer atmospheric disturbances which evolve

according to Taylor’s frozen flow.40 The DDSPC is compared to two other controllers. The first

is what we will define as the perfect controller. The perfect controller is an instantaneous con-

troller that perfectly removes all modes from the atmosphere at each time step. The second con-

troller is a classical integrator with a fixed gain of 0.4. For the simulations in this section, we will

use the same parameters as Table 1 except the wind speed that will vary between simulations.

For each wind speed, we simulate 5 s (5000 frames) of data sampled at 1 kHz. The first 2 s (2000

frames) are used for exploration with an exploration noise strength of 2 rad per mode.

Table 1 Parameters of the end-to-end AO simulations.

AO parameter Value Comment

Pupil diameter 6.5 m —

Actuators across pupil 50 Gaussian influence functions.

Integration time 1 ms —

Total loop delay 2 frames —

Atmospheric parameter Value Comment

r 0 0.16 m Median 0.62″ at 0.5 μm

Mean wind speed 15 m∕s —

WFS wavelength 800 nm —

Integral control parameter Value Comment

g 0.4 Integrator gain.

Predictive control parameter Value Comment

M 3 The prediction horizon.

N 4 The number of past samples.

λ 0.01 Regularization parameter

γ 1.0 Forgetting factor

Haffert et al.: Data-driven subspace predictive control of adaptive optics for high-contrast imaging

J. Astron. Telesc. Instrum. Syst. 029001-10 Apr–Jun 2021 • Vol. 7(2)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 04 Aug 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



The history and future length of the DDSPC are 4 and 3, respectively. This choice of the horizon

lengths is driven by the delay of the system. The simulated delay is two frames and to solve for

the future command trajectory, we used a future horizon length that is one frame longer. Longer

horizons can be used, but the states farther in the future are generally harder to predict, which will

effectively introduce additional noise in the future trajectory. The history horizon was chosen

based on the results from Sec. 2.5, which showed that longer history horizons do not necessarily

improve the residuals due to over fitting. The history length was set to N ¼ 4 to make sure that

there is more input data for the prediction than outputs that need to be predicted. The additional

benefit of smaller filters is also that they require less computation time, which is sparse at oper-

ating frequencies of 1 kHz or higher. Section 2.5 also showed that the regularization parameter λ

should be set to something small, so we chose λ ¼ 0.01.

The wavefront residuals for each controller are propagated through a perfect coronagraph41,42

to evaluate the contrast in the focal plane. We choose to evaluate the contrast at a wavelength of

1 μm. An example of such a focal plane contrast map for a windspeed of 15 ms−1 can be seen in

Fig. 6. The contrast of the perfect controller is on the order of 10−6. There is still some residual

structure in the dark hole, which comes from artifacts of the wavefront reconstruction step.

In principle, these residuals could be removed by focal-plane wavefront sensing techniques.

The integrator shows the typical wind-driven halo, which in this case severely limits the contrast.

The DDSPC reaches a contrast that is very similar to the perfect controller. The only difference is

a small decrease in contrast at the smallest angular separations. This can be better seen in the

radial profile, as shown in Fig. 7. The radial profile shows that the contrast of the predictive

controller is within a factor of 2 of the perfect controller.

Even though the DDSPC does not reach the fundamental limit, it still performs order of

magnitude better than the integrator. The strength of the wind-driven halo is directly proportional

to the wind speed. Figure 8 shows how the mean contrast within the dark hole depends on the

wind speed. For very low wind speeds, the integrator reaches the same average contrast as the

DDSPC. Because the atmospheric phase screen changes very slowly, the integrator has enough

time to catch up. But as the velocity increases, the contrast degrades. The degradation as function

of velocity follows the expected trend for Taylor’s frozen flow approximation. Under Taylor’s

frozen flow, the phase screen is shifted by Δr ¼ ΔvΔt, while the integral controller assumes

the phase screen stays static. The variance of the error is then proportional to the phase

structure function because we are essentially comparing the phase screen with a shifted copy.

The phase structure function itself has a power-law dependence under Taylor’s frozen flow,

(a) (b) (c)

Fig. 6 (a) Post-coronagraphic residuals for different controllers. The post-coronagraphic stellar

residuals for a perfect controller. The perfect controller still shows some residuals within the dark

hole that are due to spatial fitting errors. (b) The results of a classical integrator where a strong

wind-driven halo is limiting the contrast. (c) The DDSPC contrast map, where the majority of

the wind driven halo is removed. The contrast has improved by almost two orders of magnitude.

Most of the residual structure is similar to the structure in the dark hole of the perfect controller,

which indicates that the contrast is also limited by the spatial fitting errors.
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DðΔrÞ ∝ ðΔrÞ5∕3 ∝ ðΔvÞ5∕3. The residual contrast of the integrator follows this proportionality,
as can be seen in Fig. 8. The contrast of an optimal predictive controller will also depend on the

wind speed in the same way although with a lower constant of proportionality,43 which is why

the contrast starts to degrade at higher wind speeds. At lower wind speed (<15 ms−1), the

DDSPC stays very close to the perfect controller. For the DDSPC, we kept the forgetting factor

at 1, which effectively means that we are keeping the full history. The performance could still be

improved by optimizing the forgetting factor or adding more data (like Fig. 4).

3.2 Non-Stationary Turbulence

One of the largest challenges of the model-based predictive controllers is the effect of changes in

model parameters such as wind speed and direction.32 Therefore, it is crucial to test the algorithm

Fig. 7 The radial profiles of the post-coronagraphic contrast maps. The DDSPC shows two orders

of improvement in contrast over the integral controller. The performance of the DDSPC at the

diffraction-limit is still a factor 2 higher than the perfect controller.

Fig. 8 The mean contrast within the control radius of the DM after a perfect coronagraph as function

of the wind speed. The contrast is shown for the three different controllers. The black line shows the

expected behavior for an integrator as function of velocity for frozen flow turbulence based on the

phase structure function. The proportionality between contrast and velocity is derived in the Sec. 3.1.

The actual measured contrast of the integrator (orange) follows the frozen-flow relation. The DDSPC

controller stays very close to the perfect controller. Only at high wind velocities does the DDSPC

start to degrade in performance, but it is still within a factor of 2 of perfect control.
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against non-stationary turbulence. Several different simulations were performed to test the

robustness of the DDSPC controller.

In the first simulation, the wind speed is changed by 3 ms−1 every 250 ms. Whether the speed

increases or decreases is randomly chosen. Except for the wind speed, all other parameters of

the simulation are still the same as Table 1. The results can be seen in Fig. 9. The first 1.5 s are

used for training the controller and are not shown. The DDSPC controller is systematically per-

forming better than the integral controller by one or two orders of magnitude. The RMS of

the DDSPC is strongly correlated with the wind speed, which is expected based on the structure

function. The integrator RMS is also correlated with the wind speed, but the relative changes

are smaller than for the DDSPC controller. This indicates that a large fraction of the RMS

of the integrator consists of the temporal dynamics of the DM. For the simulations here, the

temporal dynamics of the DM is the delay because no additional temporal dynamics are

included. This shows that the non-stationary wind velocities are not the limiting factor, but

the delay itself.

Figure 10 shows a zoom-in of the response of the DDSPC between 3 and 4 s. This highlights

the wind step response of the controller. We see that slight over and undershoots happen when

the wind speed suddenly changes. The residuals quickly converge within four frames, which is

the length of the history that is being used. When the wind speed changes, the history vector

contains information about the wind speed before and after the jump. Only after four frames has

the previous wind speed been completely removed from the history vector. Therefore we see that

the RMS converges in about four frames.

The over and undershoots can also be explained from the frequency domain. The DDSPC

controller uses the knowledge of the system dynamics to flatten the PSD of the disturbance.

An optimal predictive controller tries to bring the output PSD as close as possible to a white

output spectrum. This means that a predictive controller acts similar to a temporal deconvolution.

Because we only approximate the system by a finite number of samples (the history length), we

are susceptible to the Gibbs phenomenon. The Gibbs phenomenon shows up when a disconti-

nuity is encountered and creates strong oscillations at the discontinuity. These initial simulations

Fig. 9 The performance during sudden changes in wind speed. The top figure shows the wind

speed and direction. The wind speed is changed by 3 ms−1 every 250 ms. The bottom shows the

RMS of the modal coefficients as function of time for the input disturbance (blue), the integrator

(Orange), and the DDSPC controller (Brown). The predictive controller has significant better per-

formance than the integrator at all times. The performance of both the integrator and predictor is

correlated with the wind speed.
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show that the DDSPC can handle sudden changes in the atmosphere quite well and only very few

frames are required to take the new conditions into account.

The second simulation we perform includes both changes in the wind speed and wind direc-

tion. To stress-test the controller, we decided to create completely random changes in the wind

speed and direction. Both variables perform a random walk. The average wind speed is 21 ms−1

with a standard deviation of 3 ms−1. The wind direction changes by more than 270 deg during

the simulation. This is a significant amount over 5 s. Because there is no pattern to the wind

speed changes, the changes in the atmospheric disturbance become more random. This make it

more difficult to predict. Consequently, the predictive controller will show less gain over the

integrator. The results are shown in Fig. 11. The predictive controller still performs better than

the integrator, but the difference is smaller than in the previous test. We do however still see

improvement as the time increases. The wind speed is relatively constant at 20 ms−1 around

the 2 s mark with a residual RMS of 0.6 rad. At 4.5 s, the wind speed is back to 20 ms−1 again

but this time the residuals are around 0.35 rad RMS. The improvement is roughly a factor of

1.7. This improvement is very similar to the expected gain based on the learning rate,
ffiffi

t
p

, from

Sec. 2.6. That learning rate predicts a gain of
ffiffiffiffiffi

4.5
2.0

q

≈ 1.5. The difference can be explained by the

small differences in the actual wind speed. The wind speed is a little bit higher on average at 2 s if

we compared it against the wind speeds at 4.5 s. This suggests that the controller has been con-

stantly learning over this period, even under varying conditions. Globally, the residuals show that

the performance is correlated with the wind speed similar to the behavior in the wind speed step

response simulation.

We have not explicitly modeled the effects of changing r0, but this was included in all sim-

ulations. Due to the way the phase screens are generated, the r0 that is specified is a temporal

average, which means that there are variations in time. Therefore, we assume that explicitly

adding non-stationarity of r0 will not influence the presented results. The simulations show that

the DDSPC controller can handle non-stationary atmospheric turbulence. The second set of sim-

ulations shows that even completely random changes in the conditions can be handled. The

actual wind speed has more temporal structure,32 therefore, we expect that better performance

can be achieved with more realistic wind models.

Fig. 10 A zoom in on the predictive controller residuals during step changes in the wind speed.

The top figure shows the wind speed and direction. The bottom figure shows the RMS of the modal

coefficients. There is a strong correlation between the wind speed and the controller performance.

The response during a step change shows a small over or undershoot which settles within three

frames. The step response shows behavior similar to the Gibbs phenomenon.
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4 Low-Order Control Verification with MagAO-X

4.1 Setup Description

In this section, we verify the DDSPC algorithm in the lab with MagAO-X. A schematic of

MagAO-X can be seen in Fig. 12. MagAO-X uses a woofer-tweeter architecture with an

ALPAO-97 DM as woofer and a Boston Micromachines 2K tweeter.14,44 The system accepts

an f∕11 beam that first hits the woofer and then the tweeter. This beam is relayed to the lower

bench where the pyramid wavefront sensor (PWFS) and the science cameras sit. Similar to pre-

vious tests of predictive control, we used the woofer DM as the disturbance creator by running

simulated phase screens across the DM.29 In all our tests, we use the PWFS without modulation

and with a disturbance outside of the linear regime to show that non-linearity is not a problem for

the proposed algorithm. The main advantage of the DDSPC algorithm is that it operates in

closed-loop. In closed-loop, the residual wavefront errors are small and within the linear range

of the PWFS. We monitor the PSF with the CAMTIP camera, which monitors the (modulated)

PSF that hits the pyramid prism. All tests were done with an i 0 filter that transmits the wavelength

range from 700 to 820 nm. The internal light source of MagAO-X creates a brightness equivalent

to a 0th magnitude star in the i 0 filter.
The current implementation of the control algorithm is written in Python, which limited the

number of actuators that we could control and the loop speed at which we could run. Therefore,

we tested the algorithm at a frame speed of 200 Hz with the 97-actuator woofer DM. To calibrate

the response of wavefront to the woofer’s actuators, we applied 2000 random patterns on the DM

Fig. 11 The performance with a non-stationary disturbance. The top figure shows the wind speed

and direction, which are both randomly changed at each time step. The bottom shows the RMS of

the modal coefficients as function of time for the input disturbance (blue), the integrator (brown),

and the DDSPC (orange). The predictive controller has significant better performance than the

integrator at all times. The performance of both the integrator and predictor is correlated with the

wind speed.
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with a surface RMS of 40 nm, which becomes 80 nm in total reflected wavefront RMS. This data

set was then divided into a training part (1500 samples) and a validation part (500 samples).

From the training data, we derived the reconstruction matrix as

EQ-TARGET;temp:intralink-;e016;116;398M ¼ VTS
T
TðSTSTT þ αIÞ−1: (16)

With M the reconstruction matrix, VT the applied commands of the training data, ST the

measured slopes of the training data, and α is the regularization parameter. The optimal regu-

larization parameter is chosen as the α which minimizes the residuals of the reconstructed coef-

ficients in the validation dataset,

EQ-TARGET;temp:intralink-;e017;116;317arg min
α

jVV −MðαÞSV j2: (17)

Here, VV and SV are the applied commands and measured slopes of the validation data set.

After finding the optimal regularization parameter, we removed the actuators that were not fully

illuminated, which reduced the number of actuators that were controlled from 97 to 86. For the

illuminated actuators, the reconstruction residuals were below 10%.

The predictive controllers are initially trained by applying a RBS of 2000 samples in time,

with an individual random series for each actuator. Because the controller does not know any-

thing about the system, we started the controller with a strong regularization of λ ¼ 10. This

heavily penalizes the system for any control command, which is desirable if nothing is known

yet. After the first round of RBS, we lowered the regularization parameter by a factor 100 and ran

another RBS. And finally, we reduced λ again by another factor of 100 and did the last training

iteration. The final value of λ ¼ 0.001 was used for the rest of the tests.

4.2 Results

A series of Kolmogorov phase screens generated with HCIPy39 that evolved according to frozen

flow were used to mimic atmospheric disturbances. The phase screens were created with a r0 ¼
0.16 m and L0 ¼ 40 m. The PSF was recorded by the CAMTIP camera at 30 Hz while the phase

screens ran across the DM. Examples of the instantaneous PSFs for a wind speed of 15 ms−1 can

Fig. 12 A solid works render of MagAO-X. On the top bench, the beam enters at f∕11 and then

passes the woofer DM and the tweeter DM. After the periscope, the beam is split into a science

path and a wavefront sensor path (green rays). The green rays hit the pyramid prism and the

subsequent pupils are imaged onto the OCAM 2K. Next to the pyramid prism is the CAMTIP

camera, which is not shown in the figure that monitors the PSF that hits the tip of the pyramid

prism.
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be seen in Fig. 13. There is a defocus visible in the PSFs because the CAMTIP camera is slightly

out of focus. The initial PSF without any correction is heavily distorted and well outside of

the PWFS linear regime. The non-linearity is an important aspect to test for predictive control

because previous data-driven methods relied on the open-loop reconstruction of the

wavefront16,29 and the non-linearities will introduce strong model errors due to saturation or

optical gain variations. Therefore, it is important to test whether the proposed DDSPC will

be influenced or not by non-linearity. Looking at the PSF of the integrator shows that there are

residual aberrations, while the PSF of the DDSPC looks perfect by eye. This first image already

demonstrates the performance boost of DDSPC, even with the non-linearity of the PWFS

included.

Figure 14 shows the performance of both the integrator and DDSPC under a range of wind

speeds. The integrator’s declining performance with increased wind speed follows the expect-

ation from frozen flow. On the other hand, the performance of the DDSPC seems to be inde-

pendent of the wind speed. Another major benefit is also apparent in the stability of the Strehl,

the DDSPC has a significant smaller spread than the integrator. This spread directly translates

into PSF stability, and a more stable PSF will lead to an increased sensitivity to faint companions

after PSF subtraction techniques. However, Fig. 14 also shows that the Strehl of the integrator is

sometimes higher than that of the predictive controller. We think that this is due to the focus

offset of the CAMTIP camera. The DDSPC creates a well-corrected wavefront on the PWFS and

due to the focus NCPA, the CAMTIP PSF will not have the highest possible Strehl. The inte-

grator is not able to reach this performance of control and will have some leftover defocus that

can compensate for the focus NCPA. Therefore, this creates a situation where a less-performing

controller can reach a higher Strehl.

Fig. 13 The PSF during the lab experiments when running a 15 ms−1 wind across the DM. The top

left figure shows the PSF of the system at rest, without any disturbance or control. There is a visible

defocus of the PSF. The top right is a snapshot during the replay of the generated atmospheric

phase screens. The bottom left shows the instantaneous PSF with an integral controller with a gain

of 0.3. The integrator PSF still has distortions of the Airy rings. The bottom right shows the pre-

dictive control PSF which has no visible distortions. A video of the PSFs is available online

(Video 1, MP4, 11 Mb [URL: https://doi.org/10.1117/1.JATIS.7.2.029001.1]).
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Fig. 14 Strehl of the measured PSFs relative to the bench PSF versus wind speed. The shaded

area around each curve is the 16th and 84th percentile of the Strehl in time and corresponds to the

temporal stability of the PSF. The median performance of the integrator follows the theoretical

Strehl according to frozen-flow. The Strehl of the predictive controller has a smaller spread than

the integrator and is independent of wind speed.

(a) (b)

Fig. 15 (a) The measured PSFs and (b) post-processed residuals for a wind speed of 25 ms−1.

The left column shows the results for the integrator while the right shows the results for the pre-

dictor. The control region of the DM extends to 5.5 λ. The integrator shows a strong wind-driven

halo, while the halo is gone with the DDSPC.
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A better performance metric would be the post-processed contrast that can be reached. At the

time of the experiments, MagAO-X did not have coronagraphs installed, so it was not possible to

directly measure the raw contrast. To still estimate the gain in contrast between the two con-

trollers, we created two data sets for each wind speed. The first data set has a wind moving

horizontally, while the second has a wind moving vertically. The temporal error of the integrator

will create a wind-driven halo that is oriented in the direction of the wind (e.g., see Fig. 6).

Because the wind is rotated between the exposures, the wind driven halo also rotates. This cre-

ates a typical butterfly pattern that decrease the post-processed contrast.45 The difference

between the two data sets will remove the static diffraction pattern and show the residuals due

to the time lag. An example of the post-processed focal plane is shown in Fig. 15 where we show

the residuals for a wind speed of 25 ms−1. For both wind directions, we stack all PSFs in time

(10 s of total integration time) to create a single PSF per wind direction. These two PSFs are then

combined to estimate the average PSF. The diffraction pattern is removed by taking the differ-

ence between the PSFs of the two wind directions.

To quantify the contrast gain, we determined the post-processed contrast curve for several

wind speeds with aperture photometry. An aperture diameter of 1.4 λ∕D was used. The contrast

curves are shown in Fig. 16 for three different wind speeds, 5, 15, and 25 ms−1. The mean wind

speed at the Las Campanas Observatory site is 18 ms−1,14 which means that the three chosen

wind speeds are a good range for the actual on-sky conditions. The contrast of the integrator

degrades as the wind speed increases, which is similar to the simulated behavior. The DDSPC

however has close to no dependence on the wind speed. In all cases, the DDSPC has superior

performance. For the low speed (5 ms−1), the predictor gains a factor of 10 to 20 in contrast.

However, for the higher speeds, there is a gain of more than a factor of 100, which was the

prediction for predictive control in earlier work.16–18 These results also show a much higher gain

in contrast than earlier tests that only showed a moderate improvement of a factor of 2.29 Our lab

results clearly show the benefit of predictive control for HCI.

Fig. 16 The contrast curve for different wind speeds. The integrator is shown in orange, while the

predictor is shown in brown. The different line styles correspond to different wind speeds. The

contrast curve for both controllers flattens out at the larger angular separations due to detector

noise. In general, we see a much deeper contrast for the DDSPC than for the integrator. The

achieved contrast of DDSPC is almost independent of the wind speed, similar to the behavior

of the Strehl. For the integrator, we see a clear degradation of the contrast with increasing wind

speed.
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5 Discussion and Conclusion

In this paper, we presented the DDSPC for AO for HCI. The method is completely data-driven;

no a priori knowledge of the system is necessary, and it learns while operating in closed-loop. To

lower the computational burden, we used a distributed implementation of DDSPC where we

control each mode independently. The hyperparameters of the controller have been explored

for various power-law disturbances. This showed that small models result in the lowest

closed-loop residuals and that regularization of the controller is only necessary when shallow

power laws (or noise) are the dominant input. The stability of the controller has been verified

numerically for a wide range of power laws and hyper parameters. This gives us confidence that

the algorithm is stable in most situations.

The controller was tested both in an end-to-end AO simulation with stationary and non-

stationary turbulence and shows an improvement of more than two order of magnitude in con-

trast. To verify that the algorithm can work in real systems, we used it to control the woofer of

MagAO-X with an PWFS. On the bench, we have achieved a contrast improvement of a factor 10

to 20 for low wind speeds, while we gained more than two orders of magnitude for high wind

speeds. This was done in combination with an unmodulated PWFS, showing that the DDSPC

can work even when strong non-linearities are involved.

Several steps need to be taken to move from the bench tests to the on-sky with the DDSPC

algorithm on MagAO-X. The most important step is to completely port the Python implemen-

tation to a lower-level programming language. Because the algorithm mainly consists of matrix-

vector multiplications and matrix inversions, a major speed up is expected if we run the algo-

rithm on the GPU. The first speed and timing tests with a GPU implementation of the DDSPC

have already shown that it is possible to control 1600 modes faster than 1.5 kHz in double pre-

cision and faster than 3 kHz in single precision. Because of the distributed nature of the algo-

rithm, we expect that it is trivial to switch from a single GPU to multiple GPUs, which would

allow us to run DDSPC for the ExAO systems of the future GSMTs on current hardware.

The major focus in this work has been on the data-driven control to suppress the servo-lag

error. The current controller does not explicitly take into account that the measurements contain

noise, however, it can a handle noisy measurements because all our lab measurements contained

noise. The exact behavior of the algorithm with noisy measurements has not been looked at. The

proposed cost function minimizes the future predicted residuals, which would be the correct cost

function for deterministic systems. For a stochastic system with unequal variance on the future

predictions [Eq. (10)], this does not create the optimal controller. For the optimal estimator, each

measurement will need to be weighted by its inverse variance, leading to a modification of

Eq. (15). It has been shown that the DDSPC can converge to the optimal Linear-quadratic-

Gaussian (LQG) controller for an infinite prediction horizon.33 For this, two steps are necessary:

the first step estimates the prediction matrices, while the second step applies a filter based on the

singular values of the prediction matrix. This second step creates the optimal Kalman filter for

the future states. Our implementation with the RLS does not apply this second filter step and

retains all temporal modes. Adding such a step may increase the robustness of the DDSPC con-

troller against measurement noise. Finally, we could add spatial coupling back into the control

matrices. We originally chose to remove those for computational reasons, but the addition of

some spatial coupling may help to reduce the effects of noise. All three modifications will lead

to increased computational demands, so for future work we will need to balance the complexity

of our model against available computational resources.

An on-sky demonstration of the DDSPC with MagAO-X is planned in the near future, which

will be a step toward detecting Earth-like planets around nearby stars.
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