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Data-driven supply chain orientation and financial performance: The moderating effect of 

innovation focused complementary assets 

 

Abstract 

Drawing on the complementary assets framework, this study explores the moderating effect of 

innovation focused complementary assets (CA-I) on the relationship between a data-driven 

supply chain orientation (DDSCO) and firm financial performance. To test the moderating effect, 

survey data gathered from 329 manufacturing firms in China were analysed using a moderated 

regression analysis. The results indicate that DDSCO has a significant positive effect on financial 

performance and that capabilities for product and process innovation function as complementary 

assets moderating the DDSCO–performance relationship. The findings suggest that innovation 

focused complementary assets are performance differentiators when paired with a DDSCO and 

explain why some firms obtain financial benefits from the development of a DDSCO while 

others do not.  Specifically, competitive advantage from a DDSCO may not be realized unless 

CA-I and potentially other complementary assets, are harnessed thus providing useful practical 

guidance to managers. Hence the study provides empirical support for the complementary assets 

framework. 

 

Keywords: Data-driven supply chains; Complementary assets; Innovation; Performance 
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1. Introduction 

Recent advances in information and communications technologies (ICT) have empowered 

firms to manage and analyse data to drive performance improvement and gain new market and 

business insights (Chong et al., 2016; Manyika et al., 2011; Sanders, 2014). For example, 

Amazon has successfully leveraged transaction data from buyers to both tailor offerings and set 

stocking levels at warehouses.  The result has been increased revenue while curtailing growth in 

cost.  Because of the scale, applications such as the Amazon example have been characterized as 

employing “big data”.  Big data refers to data that is in such volume, velocity, and variety that 

typical computing infrastructures cannot process it (Gandomi and Haider, 2015; McAfee and 

Brynjolfsson, 2012; Sanders, 2014); an orientation and ability to exploit such data in the supply 

chain context for improved performance is what we conceptualize as a data-driven supply chain 

orientation (DDSCO). Research suggests that supply chain managers effectively leveraging such 

data may derive useful insights into improving competitiveness (Davenport, 2006; Huang and 

Handfield, 2015) and as such managers are increasingly embracing data-driven supply chains as 

a critical source of value creation and competitive advantage (Chavez et al., 2017; Davenport, 

2006; Tan et al., 2015). Recently, conceptual and case-based research has highlighted the 

importance of big data applications in operations and supply chain management (e.g., Dutta and 

Bose, 2015; Fosso Wamba et al., 2015; Schoenherr and Speier-Pero, 2015; Tan et al., 2015; 

Waller and Fawcett, 2013). However, since the research topic is in its infancy there is little 

published empirical evidence supporting the effect on business performance (Schoenherr and 

Speier-Pero, 2015; Waller and Fawcett, 2013; Yu et al., 2018). As such, there is a need for 

theoretical development (Chae et al., 2014). 

This study employs Teece’s (1986) complementary assets (CA) framework, which builds 

on the resource-based view of the firm (Wernerfelt, 1984) in its treatment of assets, and as such 

conceptualizes a DDSCO as an intangible firm resource (Waller and Fawcett, 2013); resources 

taking on characteristics of assets (Barney, 1991). CA suggests that leveraging effectively a 

resource such as DDSCO can lead to significant profit (Manyika et al., 2011; McAfee and 

Brynjolfsson, 2012) when in the context of another resource/asset. Big data applied to supply 

chains holds the promise of improving profit through reducing costs, enhancing revenue, and 

creating competitive advantage (Manyika et al., 2011; Sanders, 2014). While widespread use of 

increasingly granular customer and supplier data may improve the effectiveness of supply chain 
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operations (Manyika et al., 2011; Sanders, 2014), merely possessing such resources does not 

guarantee a firm will achieve superior financial performance (Priem and Butler, 2001). More 

attention needs to be paid to the circumstances under which DDSCO strategies contribute to firm 

financial performance as there may be complementary variables that explain performance 

differentials (Christmann, 2000; Sousa and Voss, 2008). The present study investigates one such 

variable, innovation focused complementary assets. 

This study employs Teece’s (1986) concept of complementary assets in the empirical 

investigation of the contingency role of innovation focused complementary assets (CA-I) on the 

relationship between DDSCO and firm financial performance. Complementary assets include 

resources or capabilities that are required for capturing benefits associated with a primary asset 

(Christmann, 2000; Teece, 1986). According to Teece (1986), in dynamic and competitive 

environments firms need to possess complementary assets in order to gain an advantage from 

primary assets such as a DDSCO (Christmann, 2000). By investigating the moderating role of 

innovation assets this study provides insights that may enable managers to more fully understand 

how improved financial performance can be realized. 

Drawing upon CA this study contributes to the literature by shedding light on the 

significance of CA-I in leveraging a DDSCO for performance improvement. In this study, we 

address two main research questions: 1) does developing a DDSCO drive superior financial 

performance? and 2) do innovation assets moderate the relationship between DDSCO and 

financial performance? The answers to these two questions will contribute to both theory and 

practice. 

This study extends existing research by providing an empirical analysis that begins to 

reveal how DDSCO contributes to financial performance improvement.  From a practical 

perspective, answering the first research question is important because guidance to managers for 

maximizing value from data to drive supply chain performance has been underdeveloped.  From 

a methodological perspective, unlike recent research drawing of inferences based on a single 

case study (e.g., Dutta and Bose, 2015; Fosso Wamba et al., 2015; Tan et al., 2015), our study 

used survey data gathered from a cross section of 329 manufacturing firms in China.  The second 

contribution of this study is the development and testing of theoretical arguments for the 

importance of CA-I as a moderator on the DDSCO–performance relationship. 
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China provides an interesting setting for this study as it has become a global manufacturing 

centre that is rapidly evolving and playing an increasingly important role in global supply chains 

(Zhang, 2016; Zhao et al., 2011).  The Ministry of Industry and Information Technology (MIIT, 

2015) issued the “Made in China 2025” plan in 2015, with an emphasis on the application of 

smart manufacturing and big data analytics.  A national big data strategy was first introduced in 

China’s 13th Five-Year Plan (2016-2020) in 2015, and listed as one of the important national 

strategies for promoting innovation-driven development (China Daily, 2017).  With the state 

backing, many Chinese manufacturers (e.g., Lenovo, TCL and Haier) have adopted big data 

analytics to boost smart manufacturing and supply chain processes (China Daily, 2017). 

However, manufacturing firms face problems including the management and sharing of data, 

return on investment for big data analytics initiatives (China Daily, 2017; Yu et al., 2018). By 

addressing the two research questions in the context of the Chinese manufacturing industry, this 

study provides useful guidance to managers on how to develop data-driven supply chains for 

performance improvement. 

 

2. Theoretical background and hypotheses development 

2.1. Theoretical background 

The present study uses Teece’s (1986) concept of complementary assets, which stems from 

the resource-based view (Wernerfelt, 1984), to investigate the moderating effect of CA-I on the 

relationship between DDSCO and firm financial performance (see Figure 1). 

Previous researchers have identified the importance of the contribution of new 

knowledge/technology resources and combinations of existing resources to securing competitive 

advantage (Helfat, 2000; Kogut and Zander, 1992).  Resources are integrated to create 

capabilities, with each capability representing a unique combination of resources enabling such 

outcomes as improved market share (Lai et al., 2010a).  Teece (1986) introduced the concept of 

complementary assets, which are resources or capabilities that facilitate capturing profits 

associated with a technology, innovation, or another asset (Helfat, 2000; Teece, 1986).  

Resources involved in forming complementary assets may be physical, human, or organizational 

(Barney, 1991). 

--------------------------------- Insert Figure 1 --------------------------------- 
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2.2 Data-driven supply chain orientation 

The conceptualizations of big data have evolved rapidly and various authors focus on 

different dimensions (Fosso Wamba et al., 2015; Gandomi and Haider, 2015).  Herein we follow 

the work of Fosso Wamba et al. (2015, p. 235), and define a big data capability as “a holistic 

approach to manage, process, and analyse 5V’s in order to create actionable insights for 

sustained value delivery, performance measurement, and establishing competitive advantage”. 

Researchers and practitioners have used the notion of “5V’s” to describe big data: volume (large 

amounts of data), variety (multiple sources and formats of data), velocity (speed and frequency 

of data generation/delivery), veracity (quality of data and the level of trust in various data 

sources), and value (economic value generated from data) (Fosso Wamba et al., 2015; Gandomi 

and Haider, 2015; McAfee and Brynjolfsson, 2012; Russom, 2011).  In the present study, we 

define data-driven supply chain orientation (DDSCO) as the presence of an infrastructure to 

process and analyse big data and the strategic intent to leverage the resulting insights to improve 

supply chain performance (Chavez et al., 2017; Yu et al., 2018). 

Big data has become available to almost every sector and function of the global economy 

(Manyika et al., 2011) and is growing in importance as a driver of better decision making and 

improved business performance for those firms able to leverage it (Stank et al., 1999).  Today’s 

supply chain professionals are inundated with data that has the potential to enable new ways of 

organizing and analysing supply chain processes and hence potentially improve supply chain 

performance.  For example, performance improvement could be realized through access to dash 

boards that are updated in real time.  Such dash boards could include not just inventory positions 

and production output, but also dynamic demand forecasts.  Hence alerts could be provided to 

managers that call attention to supply-demand imbalances.  Such decision support tools would 

facilitate improved managerial decision making (Jacobs, 2013) with a logical outcome being 

improved firm financial performance. 

Cross functional databases such as those found in product lifecycle management (PLM) 

software suites can facilitate concurrent engineering and the rapid design of prototypes.  These 

prototypes can be brought to focus groups linked to market segments identified by the data.  The 

feedback can be quickly embodied in the new product and then released to the market.  Such 

speedy release to the market may provide a first mover advantage resulting in a larger market 

share.  Conversely for firms more risk adverse, access to big data and the capacity to act upon it 
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may facilitate a fast follower strategy.  The firm could offer a widget better than the 

competition’s quickly upon discerning from the data that the nascent market will be important. 

The ability and willingness to use big data could reveal opportunities to cross sell or even 

opportunities to create a product / service to complement one already offered.  The ability to 

aggregate and analyse customer data may lead to insights into which features should be added to 

a product to maximize its appeal to the market.  Firms with exceptional data management 

capabilities may actually be able to build data related capabilities into their products that allow 

the product to be perfectly tailored to the customers need and in doing so enhance its value, 

which may lead to the ability to extract a price premium. 

Firms with a big data capable infrastructure have the potential to revolutionize supply 

chain performance (Chavez et al., 2017; Waller and Fawcett, 2013).  This is evidenced by recent 

nascent successes with successful exploitation of big data that have caused leading industry 

practitioners to claim that leveraging big data is the next “blue ocean” in nurturing business 

performance (Kwon et al., 2014).  In fact, some firms are already attempting to harness big data 

to gain new insights and identify business opportunities or to understand elements of product and 

process design, suppliers and customers, and market demand (Sanders, 2014; Schoenherr and 

Speier-Pero, 2015; Tan et al., 2015).  For example, Hopkins and Brokaw (2011) described how 

leveraging big data could enhance call centre responsiveness.  Deploying a big data strategy to 

the supply chain could potentially lead to improvements in efficiency and effectiveness through 

activities such as monitoring the location, transfer and acceptance of products and services, 

advanced demand forecasting and supply planning, and understanding behaviour of customers 

and suppliers (Davenport, 2006; Davenport et al., 2012; Kwon et al., 2014; Waller and Fawcett, 

2013). 

Recently, a few studies using case study methodology (e.g., Dutta and Bose, 2015; Fosso 

Wamba et al., 2015; Tan et al., 2015) have highlighted the importance of using big data 

strategies in operations and supply chain management.  For example, Tan et al. (2015) indicate 

that a data analytic orientation enables firms to leverage big data to gain competitive advantage 

by enhancing their supply chain capabilities.  Drawing upon the findings from a systematic 

review and a longitudinal case study, Fosso Wamba et al. (2015) presented an interpretive 

framework analysing definitional perspectives and applications of big data. The main findings 

suggest that creating organizational value from big data can further real-time access and 



 9 

information sharing across local and national government agencies, which in turn leads to 

enhanced emergency service response through more effective decision-making. However, all of 

these studies involved deriving conclusions purely based on a single case study, which could be 

fraught with bias (Dutta and Bose, 2015).  Furthermore, these studies assume gains will accrue to 

financial performance, and as such examining the DDSCO–financial performance link using 

cross sectional data is a logical next step in the development of the topic in the literature.  The 

present study seeks to fill that gap in part.  Consistent with published case research, we posit that 

firms employing a DDSCO will manifest enhanced financial performance and as such propose 

the following hypothesis. 

H1: DDSCO is positively associated with financial performance. 

 

2.3 Moderating effect of innovation focused complementary assets 

Teece (1986) defined complementary assets as resources or capabilities that allow firms to 

capture the profits associated with a strategy, technology, or innovation which could include 

capabilities in manufacturing, logistics and distribution channels, after-sales service, and related 

technologies.  Previous studies have suggested that complementary assets include product and 

process innovation (Christmann, 2000) and may include assets relating to IT (Feng et al., 2012), 

design–manufacturing integration (Swink and Nair, 2007), R&D, and production (Rothaermel 

and Hill, 2005).  In this way, we follow the work of Christmann (2000) and define innovation 

focused complementary assets (CA-I) as those associated with product and process innovation.  

In a supply chain context CA-I are resources and/or capabilities which include trying new 

methods and technologies, investing in new equipment and machinery, and introducing product 

and process innovations in the supply chain context (Christmann, 2000; Lai et al., 2010b; Yu, 

2015).  If Teece’s (1986) theorization is correct, then firms will manifest performance 

differentials to the extent they leverage complementary assets.  In this study, that theory will be 

tested and found true to the extent that a moderating relationship between CA-I and DDSCO is 

confirmed.  

Previous research (e.g., Christmann, 2000; Lai et al., 2010b) has suggested that if 

successful implementation of supply chain management practices requires complementary assets, 

only firms that possess such assets will be able to gain and sustain a competitive advantage; the 

advantage being reflected in better financial performance.  In other words, it could be argued that 
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CA-I may act as a moderator of the relationship between DDSCO and financial performance.  

Consistent with Christmann (2000) this study uses measures of product and process innovation, 

use of the latest technology, and the acquisition of new equipment to represent CA-I. 

Firm culture is a candidate to consider when pursuing the question of why the moderating 

relationship may exist (Kull and Wacker, 2010).  There is a distinct culture associated with 

innovation and one aspect of it is market experimentation (Yoo and Kim, 2015).  The willingness 

to try new products in the market goes hand in hand with DDSCO.  Where DDSCO requires that 

firms use the data based resources to enhance the value of products and leverage selling 

opportunities across the product portfolio, the culture associated with CA-I provides the impetus 

for it (Closs et al., 2008).  Further, synergies may be gained from an organization that is aligned 

(Jacobs and Swink, 2011).  If engineering and marketing are pushing new products to the market, 

then having a manufacturing function that is willing to adopt new tooling and production 

techniques will support the rapid transition from ideation to market. 

Another aspect of culture associated with innovation entails the inquisitiveness and 

exploration manifested in the product development process (Waguih, 2017).  Inquisitiveness 

drives science and technology forward.  The DDSCO organization through its ability to 

synthesize information has the ability to inform the decisions and subsequent directions 

engineers take as they develop a new product, technology, or service.  The resulting 

complementarity should lead to better products released more quickly to the market with a 

corresponding increase in revenue and profit. 

Reaching out beyond the company boundaries is common in corporate innovation settings 

(Waguih, 2017).  It is often a requirement because seldom does all the knowledge on a topic 

reside within the company.  Hence to solve technical problems engineers reach out to suppliers 

and other resources to secure the information needed to solve the problem at hand.  The notion of 

collaborating beyond the company bounds is exactly the trait needed to collaborate on matters of 

trade within the supply chain (Koufteros et al., 2005; Petersen et al., 2005).  As such, the 

longstanding perspective of innovation related workers of suppliers as collaborators rather than 

as competitors or an expense to be reduced is an essential perspective for the DDSCO 

organization.  Working together with suppliers will likely yield a better market outcome 

(Petersen et al., 2005) 
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The focus on the customer is another aspect where CA-I and DDSCO can complement one 

another.  A DDSCO organization can provide specific information to engineers about attributes 

important to the market.  In fact, the customer orientation resident in DDSCO and the data 

associated with it can be infused into the stage gate decision process supporting product 

development.  Conversely a development organization’s focus on creating technologies than can 

be successfully commercialized may cause the development organization to leverage the data 

processing and analysing capabilities resident within a DDSCO firm to better target the market.  

Indeed, when firms focus on the customer in this way, financial performance has been shown to 

improve (Droge et al., 2012).    

An advantage that could be achieved from the infrastructure associated with a DDSCO is 

the ability to identify the strategic usefulness of a new technology or manufacturing technique.  

Toward that end, the willingness to make new capital investments and embrace new technologies 

could be exploited for gain in the market place.  Essentially the firm can roll out features not 

available in competing products or provide products at a price point that competitors cannot 

match. Both scenarios may enhance revenue and market share 

While previous studies (e.g., Christmann, 2000; Feng et al., 2012; Lai et al., 2010a, b; 

Swink and Nair, 2007) have not considered the CA-I to DDSCO relationship, they have provided 

empirical support for the moderating role of generic complementary assets in different business 

contexts and as such are supportive of the prior logical arguments.  For instance, Christmann 

(2000) examined the role of complementary assets in gaining a cost advantage from 

environmental management practices, and found that capabilities for process innovation 

moderate the relationship between best practices of environmental management and cost 

advantage.  Additionally, Lai et al. (2010b) found that complementary assets moderate the 

negative relationship between technological diversification and organizational divisionalization 

and Feng et al. (2012) found that IT implementation plays a role of complementary asset to 

customer involvement and communication with customers. 

We therefore suggest that CA-I plays an important moderating role in the DDSCO–

financial performance relationship. Specifically, product and process innovation are required 

when firms become oriented toward the leveraging of big data for performance improvement 

(Christmann, 2000; Colombo et al., 2006; Lai et al., 2010a, b; Rothaermel and Hill, 2005; Teece, 

1986). The new technologies are of little value in the absence of complementary assets, 
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especially in the absence of the specialized or co-specialized complementary assets, such as high 

levels of capability for process innovation and implementation (Christmann, 2000; Lai et al., 

2010b; Teece, 1986).  Even if other firms can imitate the data-driven supply chain practices, they 

will not be able to achieve competitive advantage from imitation if they do not have access to the 

necessary complementary assets (Christmann, 2000). Thus, drawing upon the CA theory we 

argue that firms possessing a high level of capability for product and process innovation are able 

to achieve superior financial performance when CA-I is coupled with the development of a 

DDSCO. Given the forgoing we propose the following hypothesis. 

H2: Innovation focused complementary assets moderate the relationship between a data-

driven supply chain orientation and financial performance. 

 

3. Research method and data 

3.1. Sample and data collection 

Survey data for this study was gathered from manufacturing firms in China during June 

2014 to January 2015.  The Chinese manufacturing industry provides an interesting setting for 

this study.  As noted above, China’s 13th Five-Year Plan (2016-2020) and the “Made in China 

2025” plan issued in 2015 presented new opportunities for manufacturing firms to expand the 

use of big data in their operations and supply chain processes.  Many Chinese manufacturers 

(e.g., Lenovo, TCL and Haier) have developed big data strategies to boost smart manufacturing 

and improve business performance (China Daily, 2017). 

With regard to the sample pool, we chose five regions that represent different stages of 

economic development in China including Bohai Sea Economic Area, Central China, Pearl River 

Delta, Southwest China, and Yangtze River Delta (Zhao et al., 2006).  To obtain a representative 

sample we randomly selected 1500 manufacturing firms from China Enterprises Directory across 

the five regions.  We contacted the key informants by telephone and email before sending out the 

questionnaires to obtain their preliminary agreement to take part in the study.  We then sent the 

questionnaires with a cover letter explaining the main purpose of the study and assuring 

confidentiality to 1230 firms that agreed to participate and provide information for this research. 

Most of the informants held a position such as CEO, president, director, or general manager, and 

had been in their current position for more than five years.  Thus, based on position and tenure it 

is reasonable to expect that the informants could offer deep insights into the functional activities 
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and be knowledgeable about the content of the inquiry (Jacobs et al., 2007).  After several 

reminders, a total of 337 questionnaires were returned.  Eight returned questionnaires were 

discarded because of significant missing data, which resulted in 329 completed and useable 

questionnaires representing an effective response rate of 26.8%.  Table 1 provides a summary of 

demographic characteristics of respondents.  As shown in Table 1 data were obtained from 

respondents in a wide variety of manufacturing firms. 

------------------------------- Insert Table 1 -------------------------------- 

 

3.2. Measures and questionnaire design 

We developed first the English version of the questionnaire and then translated it into 

Chinese, then conducted a back-translation to ensure conceptual equivalence.  We also checked 

the back-translated English version against the original English version to ensure the reliability 

of the questionnaire (Flynn et al., 2010; Zhao et al., 2011).  Some questions were reworded to 

improve the accuracy of the translation and relevance to business practices in China.  Even 

though the measurement scales were used prior and demonstrated to be valid we took extra steps 

before administering the survey.  Due to the unique characteristics of the Chinese manufacturing 

industry (Zhao et al., 2006) we modified in minor ways the existing measurement scales in order 

to account for language and cultural differences.  To assess the content validity of the scales we 

consulted three academic experts who were selected on the basis of their research and consulting 

activities.  Furthermore, we conducted a pilot test with five randomly selected manufacturers 

using semi-structured interviews.  Based on the feedback redundant and ambiguous items were 

eliminated or modified. 

The resulting measurement items used in this study are reported in Table 2.  Since there 

was no existing measurement instrument for DDSCO, we developed new items based on 

feedback from senior executives, our observations during company visits, and the guidance from 

knowledgeable academic experts (e.g., Manyika et al., 2011; Sanders, 2014).  In addition, the 

newly developed items were reviewed and assessed by five senior managers during the survey 

pretesting to ensure the reliability and validity of measurement instruments.  Additionally, a 

series of analyses were conducted in order to further assess the reliability and validity of the 

scales.  The results presented in Sections 3.4. and 3.5 confirm the reliability and validity of the 

DDSCO construct.  In this study, we measured DDSCO using five items: establish a flexible and 



 14 

open central data environment, build consistent interoperable and cross-functional department 

databases, aggregate customer data and make them widely available to improve service level, 

implement advanced demand forecasting and supply planning across suppliers, and implement 

lean manufacturing and model production virtually.  Respondents were asked to respond using a 

seven-point scale, namely from 1 “strongly disagree” to 7 “strongly agree”. 

The measures for CA-I were adapted from Christmann (2000) and focus on the capabilities 

related to product and process innovation.  A total of four items were used to measure CA-I: 

being the first in the industry to try new methods and technologies, investing in new equipment 

and machinery, being leaders in introduction of product innovations, and being leaders in 

introduction of process innovations. All these items were measured on a 1-7 scale (1 = strongly 

disagree and 7 = strongly agree). 

Financial performance was measured using four perceptual measures including growth in 

sales, growth in return on investment, return on assets (ROA), and growth in ROA (Flynn et al., 

2010; Narasimhan and Kim, 2002; Yu et al., 2013).  In accordance with the previous studies 

respondents were asked to assess their firm’s performance relative to the performance of main 

competitors over the last three years.  The indicators were measured using a seven-point Likert 

scale (ranging from 1 “much worse than your major competitors” to 7 “much better than your 

major competitors”). 

------------------------------- Insert Table 2 ------------------------------- 

We included five control variables in our conceptual model:  firm age, firm size, industry 

type, firm ownership and geographical region (see Table 1).  First, firm size was measured as the 

number of employees.  Larger firms may have more resources for managing supply chain 

activities in a data-rich environment, and thus may achieve higher business performance than 

small firms (Yu et al., 2013).  Second, firm age was measured by the number of years since firm 

foundation.  Firm age might be related to business performance (Terjesen et al., 2011) because 

older firms may be more likely to overcome performance-threatening liabilities (Stinchcombe, 

1965).  Third, firm ownership as a form of control and governance may influence the 

implementation of supply chain activities and thus business performance (Zhao et al., 2011).  In 

this study, the dummy variable Ownership1 refers to state-owned manufacturer, Ownership2  

refers to private Chinese manufacturer, and Ownership3 refers to wholly foreign-owned 

manufacturer. The base group is joint venture manufacturer.  Fourth, the type of industry was 
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controlled because firms in the different manufacturing industries may develop different levels of 

DDSCO for performance improvement (Yu, 2015).  The dummy variable Industry1 refers to 

automobile, Industry2 refers to chemicals and petrochemicals, Industry3 refers to electronics and 

electrical, and Industry4 refers to textiles and apparel.  As shown in Table 1 they are the four 

largest manufacturing industries in this study.  The base group is other industries.  Fifth, China is 

not a homogenous country and companies in different geographical regions that are at different 

stages of economic development may have different levels of DDSCO and performance (Zhao et 

al., 2006, 2011).  The dummy variable Region1 refers to Southwest China, Region2 refers to 

Central China, Region3 refers to Bohai Sea Economic Area, and Region4 refers to Yangtze 

River Delta.  The base group is Pearl River Delta. 

 

3.3. Non-response bias and common-method bias 

To assess non-response bias, we followed the method suggested by Lessler and Kalsbeek 

(1992) comparing early and late responses on the demographic characteristics of number of 

employees, annual sales, and industry type.  The t-test results reveal that there was no significant 

statistical difference (p < 0.05) among the category means for the demographic characteristics. 

Thus, non-response bias is not likely to be a concern in this study. 

We adopted several approaches to assess potential common method bias (Podsakoff et al., 

2003; Podsakoff and Organ, 1986).  First, when designing the questionnaire, we used different 

instructions for different scales and the adjacent variables in the conceptual framework were put 

in distinct sections (Zhao at al., 2011).  Furthermore, when contacting the key informant in each 

randomly selected firm we suggested that the relevant senior functional or departmental 

managers should be consulted when answering the sections of the questionnaire aligned with that 

manager’s responsibilities (Li et al., 2008).  Second, we performed confirmatory factor analysis 

(CFA) based Harman’s single-factor test (Flynn et al., 2010; Podsakoff et al., 2003; Zhao at al., 

2011).  The model fit indices of χ2/df = 25.12, RMSEA = 0.27, CFI = 0.57, IFI = 0.57, TLI = 

0.49, and SRMR = 0.20 were unacceptable and significantly worse than those of the 

measurement CFA model.  This result indicates that a single factor model is not acceptable and 

that common method bias is unlikely.  Third, we used a latent factor to capture the common 

variance among all observed variables in the measurement model (Podsakoff et al., 2003; 

Williams and Anderson, 1994; Zhao et al., 2011).  The resulting model fit indices were not 
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significantly different from those of the measurement model and the item loadings for their 

factors were still significant in spite of the inclusion of a common latent factor.  In summary, we 

conclude that common method bias is not a serious concern in this study. 

 

3.4. Unidimensionality and reliability 

We performed a series of analyses to assess the unidimensionality and reliability of the 

theoretical constructs. The results are reported in Tables 2 and 3.  

We conducted a CFA to assess the unidimensionality of the theoretical constructs (Gerbing 

and Anderson, 1988).  The CFA results shown in Table 2 (χ2/df = 2.966, RMSEA = 0.077; CFI = 

0.967; IFI = 0.967; TLI = 0.958; SRMR = 0.046) reveal a good model fit (Hair et al., 2010; Hu 

and Bentler, 1999).  Thus, unidimensionality is ensured. 

Cronbach’s alpha and composite reliability (CR) were used to examine construct reliability. 

Table 2 shows that the Cronbach alpha and CR of all the constructs were well above the 

recommended lower limit of 0.70 (Hair et al., 2010; Nunnally, 1978; O’Leary-Kelly and 

Vokurka, 1998).  Thus, the theoretical constructs are reliable. 

 

3.5. Validity 

In this study, we evaluated content, discriminant and convergent validity of each 

measurement scale (Bollen, 1989; O’Leary-Kelly and Vokurka, 1998). 

Content validity was established through our comprehensive analysis of the relevant 

literature, iterative construct review, and the pilot test with academic and industrial experts 

(Flynn et al., 2010; Zhao et al., 2011). 

With regard to convergent validity, as shown in Table 2, all indicators in their respective 

constructs had statistically significant (p < 0.001) factor loadings greater than 0.50, which 

suggests convergent validity of the theoretical constructs (Hair et al., 2010).  Furthermore, the 

CFA results reported in Table 2 also reveal that the standardized coefficients for all items greatly 

exceeded twice their standard errors and that the t-values were all larger than 2 which further 

demonstrates convergent validity (Hair et al., 2010).  Additionally, the average variance 

extracted (AVE) of each construct greatly exceeded the recommended critical value of 0.50 

(Fornell and Larcker, 1981), which indicates strong convergent validity.  In summary, we 

conclude that our theoretical constructs express sufficient convergent validity. 
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Discriminant validity was examined by comparing the correlation between the construct 

and the square root of AVE.  Discriminant validity is indicated if the AVE for each multi item 

construct is greater than the shared variance between constructs (Fornell and Larcker, 1981).  

The results reported in Table 3 indicate that the square root of AVE of all the constructs was 

greater than the correlation between any pair of them.  Thus, discriminant validity is ensured 

(Fornell and Larcker, 1981). 

------------------------------- Insert Table 3 ------------------------------- 

 

4. Data analysis and results 

Ordinary least square (OLS) regression was used in this study to test the relationship 

between DDSCO and financial performance and the moderation effect of CA-I on the DDSCO –

financial performance relationship (Hair et al., 2010). In the OLS regression a dependent variable 

was regressed on an independent variable, a control variable (if any), a moderator variable, and a 

product term between the independent and the moderator variables (Hair et al., 2010).  The 

impact of the moderator variable was assessed using a three-stage regression: (1) control 

variables, (2) main effect variables, and (3) moderator variables (Hair et al., 2010). 

Table 4 provides the results of the OLS regression.  In all models financial performance is 

the dependent variable and the variance inflation factor (VIF) values are lower than 5.0 

suggesting that multicollinearity is not an issue (Mason and Perreault, 1991).  As shown in Table 

4, DDSCO is significantly and positively associated with financial performance (β = 0.405, p < 

0.001) which lends support to H1.  Table 6 also shows that the coefficient of cross-product term 

(DDSCO × CA-I) is significant (β = 0.097, p < 0.05) which indicates that CA-I moderates the 

relationship between DDSCO and financial performance.  Thus, H2 is supported.  To gain 

further insights into the moderating effect, following Aiken and West (1991) we plotted the 

relationship between DDSCO and performance (see Figure 2) to demonstrate how CA-I 

moderates the relationship.  Figure 2 shows that the effect of DDSCO on financial performance 

is more pronounced when CA-I is high.  Thus, showing that the greater the level of CA-I the 

stronger the positive impact of DDSCO on financial performance. 

------------------------------- Insert Table 4 ------------------------------- 

------------------------------ Insert Figure 2 ------------------------------- 
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5. Discussion and implications 

This study employed the complementary assets framework (Teece, 1986) to empirically 

investigate the moderating effect of CA-I on the DDSCO – performance relationship.  We found 

that DDSCO is positively and significantly associated with financial performance and that CA-I 

positively moderates the relationship between DDSCO and financial performance.  Our findings 

suggest that innovation focused complementary assets are a significant part of successfully 

leveraging a DDSCO and may explain why some firms obtain financial benefits from the 

development of DDSCO while others do not. 

 

5.1. Theoretical implications 

There has been much discussion among academics and practitioners about big data 

applications in supply chain operations and the benefits and challenges of developing a data-

driven supply chain (Dutta and Bose, 2015; Fosso Wamba et al., 2015; Manyika et al., 2011; Tan 

et al., 2015).  The important question is whether using big data in supply chain processes is just 

hype or if it has a real effect in enabling performance improvement (Chae et al., 2014).  One 

finding of this study is that DDSCO significantly influences financial performance and as such 

suggests performance impacts from big data are real, and that a DDSCO is a resource in the 

resource-based view sense.  A data-driven supply chain orientation may be a “resource” because 

it transforms the decision-making process by facilitating enhanced visibility of supply chain 

operations, which can be synthesized to achieve superior financial performance.  DDSCO leads 

to new frontiers in supply chain transparency, visibility, and process automation which enables 

multiple supply chain partners to seamlessly interact in the joint design, production, delivery, and 

service of complex customer orders.  Our findings suggest that developing such data-driven 

supply chains should drive greater financial performance. 

Another important finding confirmed by this study is the moderating role of CA-I.  More 

specifically, we found that the capabilities for product and process innovation are important 

complementary assets moderating the relationship between DDSCO and financial performance. 

This is an important finding since there has been no previous empirical investigation of this 

effect in a data-driven supply chain orientation context.  Thus, the application of the CA 

framework to the analysis of DDSCO highlights the importance of heterogeneity in firm 

resources and capabilities; a variable that has so far been ignored in the examination of the 
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financial benefits of developing data-driven chains (Christmann, 2000; Teece, 1986).  The results 

provide strong evidence of a moderating effect, which supports the perspective that innovation 

focused complementary assets are an important resource for firms in order to achieve the 

maximum potential financial benefits from developing DDSCO.  As shown in Figure 2, the 

higher a firm’s CA-I the greater the financial performance it derived from a DDSCO.  Thus, our 

study extends the prior literature (e.g., Christmann, 2000; Feng et al., 2012; Lai et al., 2010a, b; 

Swink and Nair, 2007) by providing empirical evidence supporting the moderating role of 

innovation focused complementary assets in the supply chain context. 

 

5.2. Managerial implications 

Our results hold important implications for managerial practice.  First, the results of this 

study reveal that the effect of DDSCO on financial performance is positive and significant; thus 

demonstrating that leveraging big data across the supply chain has a real effect in enabling 

performance improvement.  As such this study suggests that managers employing strategies to 

incorporate big data in supply chain contexts can expect to realize returns for their investments. 

In an increasingly complex data-driven environment, analysing and interpreting big data in 

supply chain operations has become an imperative for today’s supply chain executives.  These 

executives should understand that a DDSCO can be instrumental in managing supply chain 

complexity and driving performance. 

However, supply chain executives should not lose sight of the role of complementary 

assets.  Our finding of the moderating effect of CA-I suggests that in conjunction with 

developing a DDSCO firms should examine their existing innovation resources and capabilities. 

Improvements in these resources and capabilities will serve to amplify the benefits found from a 

DDSCO.  The importance of CA-I suggests that managers maintain an awareness that the 

starting point for developing DDSCO has to be the resources and capabilities that firms can 

leverage or readily acquire.  In fact, we suggest that firms lacking in CA-I may be better off 

developing DDSCO later than other firms so that they can learn from early implementers.  The 

lack of complementary resources such as CA-I provides insight into why some firms are not able 

to gain competitive advantage from developing DDSCO. 

Third, capabilities for product and process innovation were found to be complementary 

assets that moderated the DDSCO – performance relationship.  Managers can use the finding as a 
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starting point for determining the particular mix of assets required to achieve superior firm 

performance in their unique context.  However, they should recognize that even if they imitate 

the DDSCO of other firms they may not be able to achieve competitive advantage if they do not 

properly harness CA-I and potentially other complimentary resources.  Managers can use the 

validated measures of CA-I provided in this study as a benchmark for assessing their own 

company’s level of product and process innovation. 

Lastly, because the fundamental nature of business competition has shifted from that of 

competition between individual firms to competition between entire supply chains, managers 

need to identify, utilize, and analyse data as effectively as possible in order to drive improved 

financial performance.  Developing such capabilities should be a managerial priority as it will 

lead better financial performance. 

 

5.3. Limitations and future research directions 

Several limitations in our study provide potential directions for further research.  First, this 

study established the importance of innovation focused complementary assets (i.e., capabilities 

for product and process innovation) in moderating the relationship between DDSCO and 

financial performance.  However, developing a supply chain that can leverage big data in 

tomorrow’s dynamic and competitive environments may require different complementary assets, 

e.g. the use of data science and predictive analytics (Waller and Fawcett, 2013), IT (Feng et al., 

2012), design–manufacturing integration (Swink and Nair, 2007), R&D, production, and sales 

force assets (Rothaermel and Hill, 2005).  Future research should identify and empirically 

investigate which particular complementary assets associated with a DDSCO are also required to 

enhance business performance and in which industries they are most effective.  Second, future 

work could evaluate the importance of factors such as competitive environment, environmental 

uncertainty, and information exchange because these may influence the application of big data in 

logistics and supply chain management.  Further, future research could investigate the relative 

importance of differing types of complementary assets within these various contexts and extend 

the conceptual model proposed in the present study by investigating how these factors influence 

DDSCO and performance.  Further still, there may be intermediate outcomes between DDSCO 

and performance and we encourage future studies investigating the nature and identity of such 

outcomes.  Third, our sample is from companies within the Chinese economy.  For cross-country 
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validation purposes future research may test our proposed model in different countries or explore 

the evolution of capabilities over time. 

 

6. Conclusions 

Drawing on Teece’s (1986) framework of complementary assets this study investigated the 

moderating effect of CA-I on the relationship between DDSCO and financial performance using 

survey data gathered from 329 manufacturing firms in China, and made significant contributions 

to both theory and practice.  The major contributions are as follows. 

First, we found that firms with higher levels of DDSCO are more likely to have better 

financial performance.  Our study thus extends the prior literature by providing empirical 

evidence to support the significant relationship between DDSCO and financial performance. This 

finding is important since there has been much debate recently among academics and 

practitioners about whether DDSCO can drive performance improvement; possibly because 

DDSCO research is still in its infancy (Chae et al., 2014; Schoenherr and Speier-Pero, 2015; 

Waller and Fawcett, 2013) and most recent research has involved drawing conclusions from a 

single case. 

Second, the study extends existing research on the effect of DDSCO on performance by 

examining the moderating effect of CA-I.  Although complementary assets have been found 

valuable in previous studies (e.g., Feng et al., 2012; Lai et al., 2010a, b; Lin and Wang, 2015; 

Swink and Nair, 2007) the role that innovation focused complementary assets play in the 

DDSCO – performance relationship has not yet been investigated. 

Third, this study contributes to managerial practice.  Our study established the importance 

of capabilities for product and process innovation as complementary asses in moderating the 

DDSCO – performance relationship.  Executives can use the findings as guidance for selecting 

assets particular to their environment to achieve superior firm performance through a DDSCO. 
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Appendix: questionnaire 

1. Data-driven supply chains. Please indicate the degree to which you agree to the following 

statements relating to your company’s big data analytics (1 = strongly disagree; 7 = strongly 

agree) 

 Our company establishes a flexible and open central data environment. 

 Our company builds consistent interoperable, cross-functional department databases to 

enable concurrent engineering, rapid experimentation and simulation, and co-creation. 

 Our company aggregates customer data and make them widely available to improve 

service level, capture cross- and up-selling opportunities, and enable design-to-value. 

 Our company implements advanced demand forecasting and supply planning across 

suppliers. 

 Our company implements lean manufacturing and model production virtually (such as 

digital factory) to create process transparency, develop dashboards, and visualize 

bottlenecks. 

2. Financial performance. Please provide an estimate of and evaluate in the scale below how 

your firm compares to your major industrial competitors over the last three years (1 = much 

worse than your major competitors; 7 = much better than your major competitors) 

 Growth in sales. 

 Growth in return on investment. 

 Return on assets (ROA). 

 Growth in ROA. 

3. Complementary assets. Please indicate the degree to which you disagree or agree with the 

following statements by comparing your firm to your major industrial competitors (1 = strongly 

disagree; 7 = strongly agree) 

 We focus on being the first in the industry to try new methods and technologies. 

 We focus on investing in new equipment and machinery. 

 We have been leaders in introduction of product innovations over the last 3 years. 

 We have been leaders in introduction of process innovations over the last 3 years. 
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Table 1: Demographic characteristics of respondents (n=329) 

 Percent (%)  Percent (%) 

Industries  Number of employees  
Automobile 34.3 1 – 100 17.0 
Chemicals and petrochemicals 15.2 101 – 200 10.9 
Electronics and electrical 7.9 201 – 500 19.8 
Fabricated metal product 2.4 501 – 1000 8.2 
Food, beverage and alcohol 2.7 1001 – 3000 16.4 
Rubber and plastics 4.0 > 3000 27.7 
Textiles and apparel 33.4   
Firm age (years)  Firm ownership  
≤10 31.3 State-owned manufacturer 32.8 
11 – 20 31.6 Private Chinese manufacturer 39.5 
21 – 30 10.6 Wholly foreign-owned manufacturer 10.9 
> 30 26.4 Joint venture manufacturer 16.7 
Respondent location (geographical regions)  Years in current position   
Pearl River Delta* 5.2 ≤ 5 41.3 
Yangtze River Delta 10.0 6-10 30.7 
Bohai Sea Economic Area 6.6 > 10 28.0 
Central China 8.2   
Southwest China 69.9   

Note: * It includes one firm in Taiwan and one firm in Hong Kong. 
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Table 2: Reliability and validity analysis 

Measurement Items Factor 
loadings 

t-
values 

α CR AVE 

1. Data-driven supply chain orientation (Sanders, 2014)   0.907 0.908 0.663 
Establish a flexible and open central data environment 0.819 –    
Build consistent interoperable, cross-functional department databases to 

enable concurrent engineering, rapid experimentation and simulation, and 
co-creation 

0.850 17.976 
   

Aggregate customer data and make them widely available to improve service 
level, capture cross- and up-selling opportunities, and enable design-to-
value 

0.835 17.534 
   

Implement advanced demand forecasting and supply planning across 
suppliers 

0.811 16.833 
   

Implement lean manufacturing and model production virtually (such as digital 
factory) to create process transparency, develop dashboards, and visualize 
bottlenecks 

0.754 15.227 
   

2. Financial performance (Flynn et al., 2010)   0.941 0.946 0.815 
Growth in sales 0.739 –    
Growth in return on investment 0.955 18.436    
Return on assets (ROA) 0.931 17.911    
Growth in ROA 0.966 18.663    
3. Innovation focused complementary assets (Christmann, 2000)   0.879 0.886 0.667 
We focus on being the first in the industry to try new methods and 

technologies 
0.678 

–    

We focus on investing in new equipment and machinery 0.652 11.075    
We have been leaders in introduction of product innovations over the last 3 

years 
0.943 15.276 

   

We have been leaders in introduction of process innovations over the last 3 
years 

0.946 15.299 
   

Model fit statistics: χ2 = 183.870; df = 62; χ2/df = 2.966; RMSEA = 0.077; CFI = 0.967; IFI = 0.967; TLI = 0.958; SRMR = 0.046 

 
 
 
 
 

Table 3: Descriptive statistics 

 Mean S.D. DDSCO FP CA-I 

Data-driven supply chain orientation (DDSCO) 4.314 1.272 0.814a   
Financial performance (FP) 4.376 1.362 0.540** 0.903  
Innovation focused complementary assets (CA-I) 4.402 1.378 0.507** 0.444** 0.817 

Note: a Square root of AVE is on the diagonal. 
** Correlation is significant at the 0.01 level (2-tailed). 
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Table 4: Results of hypothesis testing 

 Model 1 Model 2 Model 3 

Control variables    
Firm age -0.006 (-0.090a, 1.792b) 0.013 (0.222, 1.820) 0.016 (0.268, 1.821) 
Firm size 0.052 (0.802, 1.627) -0.047 (-0.826, 1.709) -0.051 (-0.899, 1.711) 
Industry1 0.316 (3.318, 3.459)*** 0.235 (2.876, 3.499)** 0.216 (2.653, 3.537)** 
Industry2 -0.113 (-1.443, 2.325) -0.056 (-0.842, 2.342) -0.051 (-0.772, 2.344) 
Industry3 0.115 (1.680, 1.789)† 0.114 (1.951, 1.790)† 0.112 (1.924, 1.790)† 
Industry4 0.139 (1.522, 3.178) 0.179 (2.304, 3.185)* 0.167 (2.157, 3.201)* 
Ownership1 0.037 (0.456, 2.564) 0.026 (0.370, 2.579) 0.025 (0.366, 2.579) 
Ownership2 0.087 (1.062, 2.564) 0.084 (1.198, 2.564) 0.084 (1.209, 2.564) 
Ownership3 0.106 (1.612, 1.646) 0.060 (1.073, 1.670) 0.059 (1.046, 1.670) 
Region1 0.077 (0.684, 4.849) 0.069 (0.716, 4.876) 0.067 (0.696, 4.876) 
Region2 0.097 (1.143, 2.744) 0.040 (0.549, 2.804) 0.043 (0.591, 2.805) 
Region3 0.114 (1.464, 2.326) 0.029 (0.437, 2.368) 0.023 (0.346, 2.372) 
Region4 0.205 (2.367, 2.849)* 0.152 (2.056, 2.862)* 0.152 (2.080, 2.862)* 

Independent variables    
DDSCO  0.405 (7.404, 1.577)*** 0.409 (7.515, 1.579)*** 
CA-I (moderator)  0.189 (3.590, 1.467)*** 0191 (3.640, 1.467)*** 

Interaction effect    
DDSCO × CA-I   0.097 (2.187, 1.041)* 

R2  0.174 0.405 0.414 
Adjust R2 0.140 0.377 0.384 
F-value 5.122*** 14.228*** 13.798*** 
*** p < 0.001; ** p < 0.01; * p < 0.05; † p < 0.10. 
Note: The numbers in parentheses are: a t values and b variance inflation factor (VIF); dependent variable is financial 
performance. 
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Figure 1: Conceptual framework 

 
 
 
 
 
 

Figure 2: Moderating effect of CA-I on the relationship between DDSCO and financial performance 
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