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Abstract

Air quality data prediction in urban area is of great significance to control air pollution

and protect the public health. The prediction of the air quality in the monitoring station is

well studied in existing researches. However, air-quality-monitor stations are insufficient

in most cities and the air quality varies from one place to another dramatically due to

complex factors. A novel model is established in this paper to estimate and predict the

Air Quality Index (AQI) of the areas without monitoring stations in Nanjing. The pro-

posed model predicts AQI in a non-monitoring area both in temporal dimension and in

spatial dimension respectively. The temporal dimension model is presented at first based

on the enhanced k-Nearest Neighbor (KNN) algorithm to predict the AQI values among

monitoring stations, the acceptability of the results achieves 92% for one-hour prediction.

Meanwhile, in order to forecast the evolution of air quality in the spatial dimension, the

method is utilized with the help of Back Propagation neural network (BP), which con-

siders geographical distance. Furthermore, to improve the accuracy and adaptability of

the spatial model, the similarity of topological structure is introduced. Especially, the

temporal-spatial model is built and its adaptability is tested on a specific non-monitoring

site, Jiulonghu Campus of Southeast University. The result demonstrates that the accept-

ability achieves 73.8% on average. The current paper provides strong evidence suggesting

that the proposed non-parametric and data-driven approach for air quality forecasting pro-

vides promising results.

Keywords: Air quality prediction, k-Nearest Neighbor, BP neural network, Non-monitoring

stations

1 Introduction

With the advancement in technology and the de-

ployment of air quality monitoring stations, the air

quality problem has gradually entered the field of

vision. While paying attention to the weather fore-

cast, people also care about the air quality today as

it has always been a significant problem that con-

cerns the future of humanity. However, the rapid

increase in the number of factories and cars leads to

a sharp rise in the contents of particulate matter in

the air, and the problem of environmental pollution

is becoming more and more serious.

Research on air pollution prediction started af-

ter the first National Conference on environmen-

tal protection in 1973. Before 1980, the weather

and meteorological conditions that affected the di-

lution and diffusion of pollutants were mainly stud-

ied. Since the 1980s, the research and prediction of

the level of urban air pollution based on SO2 were
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carried out in Beijing, Lanzhou and Shenyang, et al.

In the 1990s, China made outstanding achievements

in forecasting a condition of air pollution in urban

areas [1]. Note that haze can directly enter and ad-

here to the lower respiratory tract and the lobes of

the human body, which harms the health of the hu-

man body. Therefore, the early warning and predic-

tion work of the heavily polluted weather is partic-

ularly important. It can not only enable the public

to arrange production and life in advance, but also

allow the relevant government departments to take

urgent measures in time [2]. The sources of haze in

cities are emissions from various chemical plants,

vehicle exhausts and heating coal [3]. Although

these factors can not be effectively controlled by in-

dividuals, defensive measures can be found through

research. However, the majority of the researches

on the generation and diffusion of haze are based on

the principles of meteorology, and data mining re-

search based on the intelligent algorithm is still rare

[4, 8]. It has obvious fuzziness, randomness and in-

completeness of information of haze, which is chal-

lenging to use the general method to get an accu-

rate prediction. In recent years, the haze monitoring

equipment has been gradually improved throughout

the country [4]. Up to now, 98 national control sta-

tions have been established in Jiangsu Province, and

a large number of monitoring data and meteorologi-

cal data related to haze have been accumulated [42]

so that intelligent algorithms will be more widely

used in the field of air quality prediction.

The change in the haze is affected by many fac-

tors. Moreover, it is difficult to describe the con-

nection between the factors affecting the formation

of haze accurately. However, the formation of haze

has a nonlinear relationship with the main inhalable

particulate matter [5, 6, 7]. In the past, some scien-

tists did research to evaluate the level of particulate

matter in cities. Deacon et al. [8] analyzed data

from UK monitoring sites in 2 years to describe the

PM10 level at that time. Especially, the contribution

of road traffic to the concentration of PM10 was es-

timated. At the same time, the influence of meteo-

rological factors on the level of PM10 was studied

by utilizing meteorological data in Edinburgh. Har-

rison and Deacon [9] used correlation analysis to

build a prediction model that consider more occa-

sions on exceedances at only one site. Siting differ-

ent stations is possible to give an acceptable predic-

tion. Gravas et al. [10] learned about the temporal

and spatial variation of PM10 volume in Athens by

air quality data from four monitoring stations. The

concentration of PM10 was slightly higher in the

cold season. And compared with the weekend, the

pollution level was significantly higher on week-

days. Finally, considerable spatial heterogeneity

was found in this paper. Kukkonen et al. [11] chose

PM10 events in four European cities, utilizing PM10

data sets and local meteorological data. The conclu-

sion demonstrated that that the event was mainly re-

lated to the high pressure area and inversion events.

The sources of particulate matter in seven European

regions were studied in the work of Quall et al.

[12], the measurements of PM10 and PM2.5 were

used to find out the impact of PM10 level in Athens

in Greece and Bermingham in the UK. The mea-

sured data on the regional background and local

traffic were provided to reach the average annual

levels of PM10and PM2.5. Statheropoulos et al. [13]

used Principal Component Analysis(PCA) applied

on five years’ meteorological data to catch underly-

ing components and to attribute physical meaning

to them. The results presented relationships among

the data with physical meanings. An overview of

the processes influencing levels of PM is presented

in the work of Viana et al. [14]. The results ob-

tained showed that the model could assess the ef-

fects of different types of particulate matter on envi-

ronmental particulate matter levels and particle size

fractions.

Methods of existing researches on the haze

forecasting mainly include Gray System Theory

[15, 16], Fuzzy Theory [17], Artificial Neural Net-

work(ANN) [18, 19, 20] and PCA, etc. Among

these methods, ANN has incomparable advantages:

the ability to approximate non-linear functions and

the process of self-learning to adapt to changes.

Zhou et al. [21] provided a new method of

haze prediction based on multivariate diagnosis and

discussed the influence of variable selection and

threshold on haze prediction. Miao et al. [22] es-

tablished an objective fuzzy logic haze prediction

model based on the relationship between the inac-

curacy of the predictive factors and the occurrence

of haze, then outputted the parameters to a numeri-

cal weather prediction model based on high resolu-

tion. Wang et al. [23] extracted an Autoregressive

Integrated Moving Average Model(ARIMA) model

from data of California Air Resources Board to pre-

dict PM2.5. In particular, The ARIMA model re-
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flected the characteristics of the season. Cobourn

et al. [24] used nonlinear regression and back-

trajectory concentrations to construct an enhanced

model. The 24h back-trajectory concentration is

calculated by integrating back-air-trajectories and

local air quality information. And the advantage

of the model is that it can be adjusted easily if

the availability of forecasting tools changes over

time. Yu et al. [25] integrated three parts of the

Bayesian maximum entropy method(BEM) to pre-

dict the monthly distribution of PM2.5. The re-

sult showed that the predictive ability could be im-

proved effectively by incorporating PM10 and total

suspended particulate(TSP). Sun et al. [26] sug-

gested a hidden Markov model(HMM) with differ-

ent emission distributions. HMMs with log-normal,

Gamma and generalized extreme value distributions

were developed in this paper, and the result showed

that the closer to the observation sequence the dis-

tribution employed in HMM was, the better the

model prediction performance was. Jiang et al. [27]

investigated the effect of ambient air pollution on

premature birth by time series methods. At the

same time, the generalized additive model (GAM)

was used to make sample curves. The time se-

ries approach has also been applied to the urban

air quality of Beirut in the research of Farah et al.

[28]. The autocorrelation function of time series

was introduced to carry out the relationship of fac-

tors other than SO2. Residual analysis of fluctua-

tion of data series of different levels was carried out

simultaneously. Kang et al. [29] evaluated the ef-

fect of the prediction of PM2.5 and air quality index

by using real time deviation adjustment methods in

the United States. Compared with the traditional

kalman filter (KF), real-time deviation adjustment

is more significant, which dramatically reduces the

false alarm rate. Han et al. [30] used a sim-

plified two-dimensionality heating capacity model,

which relied on EnergyPlus simulation results and

enlarged the application of the AQI-Heating (A-

H) model. After that, bias-adjustment techniques

were introduced to decrease systematic biases in

the prediction of surface O3 [31, 32, 33, 34, 35].

The Kalman filter (KF) forecaster dramatically im-

proved the forecasting technology, and the ensem-

ble average method obtained the best overall ozone

forecast. Xu et al. [36] aimed to study the im-

pact of trade liberalization on haze pollution in

China. Therefore the research adopted the impulse

response function and the decomposition method

of the variance of prediction error based on the bi-

nary vector autoregression model. Finally, the ex-

perimental conclusion indicated that trade liberal-

ization significantly alleviates haze pollution. Li er

al. [37] constructed the artificial intelligence model

by using the enhanced Kolmogorov-Zurbenko (KZ)

filter. Results showed that this model recognized

nonlinearities and interactive relationships and ob-

tained accurate results. In order to predict PM2.5‘

concentration accurately, Liu et al. [38] proposed a

Self-organizing Single Hidden-Layer Long Short-

Term Memory Neural Network and employed a

self-organizing algorithm which automatically ad-

justs the number of hidden neurons in the learning

stage by using information processing power (IPC).

Yusof et al. [39] proposed the utilization of Arti-

ficial Neural Networks (ANN) and Multiple Linear

Regressions (MLR) to identify the pollution level

of PM10. Moreover, sensitivity analysis (SA) as an

additional feature was introduced in models to rank

the most contributed parameter to PM10 variations.

Although scientists have suggested models to esti-

mate the relation between air quality and other me-

teorological factors, these models grounded on ex-

perimental assumptions and parameters may not be

applicable to all urban environments.

In this paper, influencing factors in time and

space dimensions are considered respectively to es-

tablish two different models to forecast air quality.

The advanced KNN algorithm with the correlation

coefficient is used to improve the acceptability of

the forecast. Meanwhile, the existing monitoring

stations data and spatial features (e.g. relative lo-

cations and geographical distance) are taken as the

input of the BP neural network to infer the air qual-

ity of non-monitoring areas. In addition, this model

can be applied to sites with similar topology struc-

ture. In order to test the proposed model, the air

quality of the Jiulonghu Campus of Southeast Uni-

versity was measured at 0 am, 8 am, and 4 pm every

day from October 18, 2016, to November 8, 2017,

through experimental equipment. The results of the

research show that the final prediction for the area

without the monitoring station is accurate. The pro-

portion of the Relative Percentage Error within 20%

is about 73.8%.

The remainder of the current paper is organized

as follows. Section 2 gives details on the available
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methodology of the proposed models, including the

k-Nearest Neighbor algorithm and the Back Prop-

agation algorithm. In Section 3, the dataset of air

quality in Nanjing used is introduced for the nu-

merical experiments. Notably, the temporal-spatial

model is established in this Section. Selection of

model parameters and performance evaluation are

also presented. The paper ends in Section 4 with

some concluding remarks and comments on future

work.

2 Methodology

Air prediction is complicated rather than pure

linear research since varieties of factors influence

the air quality. Considering the meteorological fac-

tors, the spatial and temporal relationship of Air

Quality Index values also have an essential impact

on the model. The spatial and temporal dimension

models are proposed to predict air quality for non-

monitoring sites and obtain a reliable forecast re-

sult. The proposed models are based on the avail-

able methodology, including the k-Nearest Neigh-

bor algorithm and the Back Propagation algorithm.

The details of the methodology will be introduced

in the following.

2.1 Temporal dimension model

The temporal dimension model is built based on

the KNN algorithm with the consideration of the

similarities between the attributes of historical and

current data. Several concepts are introduced as fol-

lows before explaining the enhanced K-NN method

in detail:

Prediction duration Y =(yT ,yT+1, ...,yT+T1−1)
is a vector, in which yT represents the AQI value at

T moment and T1 represents the length of time that

needs to be predicted. In other words, the value of

T1 is set to be 8 indicates that the AQI values of

the next 8 hours would be predicted when the time

interval is one hour.

Front lag duration X =(xT−p,xT−p+1, ...,xT−1)
is a state vector where xT−p represents the attribute

value at T moment, and p represents the front lag

length of the attribute values. That means when

p = 4, the attribute values of the advanced 4 hours

are chosen to determine similarity when the time

interval is one hour.

Sample points Q = (X ,Y ) are known values, in

which X and Y are defined above and obtained from

historical data referred to the training set.

Sample points set SP = {Q|Q = (X ,Y )}

Target point G = (X ,Y ), in which Y is an un-

known term to be predicted and X is the correspond-

ing front lag duration.

Target points set T P = {G|G = (X ,Y )}

Measures of similarity between attribute vec-

tor X of the sample point Q ∈ SP and it of the tar-

get point G ∈ T P are used to recognize a similar

pattern, including Euclidean distance and Pearson

correlation coefficient.

Candidate points, also called the K nearest

neighbors, represent the K sample points similar to

the target point.

KNN is a non-parametric pattern recognition

method. For a given target point, the KNN algo-

rithm identifies the K most similar sequences from

the sample points and aggregates the correspond-

ing value of Y. To be more specific, the overall flow

of the KNN algorithm which has been shown in

Figure 1 is: firstly, choose an appropriate method

to measure the similarity, including Euclidean dis-

tance and Pearson correlation coefficient; secondly,

select the optimum number of neighbors K; thirdly,

identify K neighbors that are most similar to the

target point from the historical data; finally, aggre-

gate the value of K neighbors as the final prediction.

KNN needs a large amount of calculation, and there

is a sample imbalance problem in this algorithm.

However, the KNN algorithm has a promising re-

sult in nonlinear regression. Furthermore, it is not

so sensitive to outliers.

2.2 Spatial dimension model

With the consideration of the scarcity of mon-

itoring stations in most cities and the air quality

varies from one place to another dramatically due

to complex factors, a spatial model based on the

BP algorithm is established to figure out the predic-

tion of air quality at non-monitoring sites. As de-

picted in Figure 2, the spatial model treats
{

Q(i),t

}

as input, which include AQI values and geographi-

cal distances between the target site and surround-

ing monitoring stations. The Q(i),t is defined as fol-
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Figure 1. the KNN algorithm

lows

Q(i),t =




AQI(i),t−T

...

AQI(i),t−1

dx̃(i),x̃p


 , (1)

where {x̃i|i = 1,2, ...,N} denotes the set of loca-

tions with monitoring station and x̃p is the target site

to be inferred;
{

x̃(i)|i = 1,2, ...,m
}

denotes the set

of the nearest m locations are known as reference

stations with target site; dx̃(i),x̃p
means the geograph-

ical distance between the location x̃(i) and x̃(p),

which are calculated based on the latitude and lon-

gitude for the locations and introduced in Section

4.1. For each location, x̃(i) (i = 1,2, ...,m), there are

historical AQI values recorded as
{

AQI(i),t−n

}T

n=1
,

where T means the number of history AQI data.

Input: Assuming that the number of monitor-

ing stations is N, each monitoring station in turn is

treated as the target point to be inferred, namely,

x̃p = x̃i (i = 1,2, ...,N) respectively. In order to pre-

dict the air quality of station x̃p at time t, the Q(i),t

of the nearest m reference stations are regarded as

the input of the neural network shown in Figure 2.

This rotation will improve the adaptability to the ge-

ographical distance for the spatial model, owing to

the expansion of the sample.

Artificial neural network: The simplicity and

generality of the BP algorithm can lead to a bright

prospect, so the BP algorithm with hidden layers is

chosen in this paper. In each layer, a linear function

is set for the input data then add the biases. After

that, a nonlinear function ϕ(x) is used to activate

the neurons, which can get a nonlinear fitting result.

Formally defined as follows

ck=ϕ

{

∑
r

wrϕ

[

∑
q

w′
qr ·

(

∑
p

fpwpq+bq

)
+b′n

]
+br

}
,

(2)

where fp is input; bq, b′n, and br are the biases in dif-

ferent layers to make minor adjustments; wpq, w′
qr

and wr denote the different degrees of correlation

between neurons.

Because of excellent generalization ability, non-

linear mapping capability and fault tolerance, the

BP network has become the most extensively ap-

plied artificial neural network in a wide range of ar-

eas. The basic BP neural network is a feed-forward

neural network with a multi-layer structure, which

is trained by the error reverse propagation algorithm

and incorporates two processes: the forward prop-

agation of the signal and the back propagation of

the error. The superiority of the BP is that it owns

a powerful nonlinear mapping ability and network

structure with high flexibility. In the light of spe-

cific conditions, the number of intermediate layers

and the quantity of neurons in each layer are set in

the network to change the structure. Hence the per-

formance of BP algorithm will be improved.

In this study, establishing and applying the spa-

tial model can obtain air quality predictions at these

non-monitoring sites. In the training process, the

following tasks are finished:

1. Modify the parameters involved in the BP neural

network step by step, including network func-

tions, learning rate, and other parameters.
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Figure 2. BP neural network

2. Determine the appropriate number of reference

stations.

3. Verify the impact of topology structure on the

accuracy of the prediction.

3 Experiments

The meteorological data used in this paper is

from the website, http://www.pm25.in/, which con-

tains more than 5,000 monitoring stations in China

from 0:00 on October 1, 2016, to 10:00 on Decem-

ber 25, 2017, obtained every hour. The rate of miss-

ing data is about 24%, and the missing data are im-

puted using linear interpolation. To evaluate the ef-

fectiveness of the spatial model, the AQI values for

the first 10 months of 2017 are utilized to construct

a case database, while the remaining AQI values of

the following two months are served as the test data

set for prediction. In addition, the meteorological

data from 9 monitoring sites in Nanjing, Jiangsu

Province are screened out for the following exper-

iments. Next, through an air-related website, Ur-

banAir (http://urbanair.msra.cn/En), map informa-

tion of Nanjing be found as shown in Figure 3, in

which the red dots represent the location of the air

monitoring stations, and the blue dot means the lo-

cation of the Jiulonghu Campus, Southeast Univer-

sity.

Figure 3. Map-infomation of Nanjing

In order to assess the accuracy and effectiveness

of the method proposed in this paper, the parameter

Relative Percentage Error(RPE) has been chosen,

which is defined as follows

RPE =

|yT − ŷT |

yT

×100%, (3)

where yT and ŷT mean that the real value and the es-

timation of AQI at moment T respectively. A pre-

diction can be considered as an acceptable result,

while the RPE is within 20%. Then, the relative

accuracy rate could be defined r as follows

r =
NRPE

N
, (4)

where NRPE means the amount of forecast data with

RPE less than 20%, and N means the amount of

the forecast data. The higher the relative accuracy

rate, the greater the acceptability of the model per-

formance.
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3.1 Experiments of Time Model

The following experiments are performed to de-

termine time model parameters, compare impacts

by the two methods of the construction of state vec-

tors proposed to forecast the air quality in a long

period of time on prediction accuracy and verify the

effect of enhanced KNN algorithm.

3.1.1 Selection of front lag duration and K

nearest neighbors

In order to obtain an optimal performance of

short-term prediction , a suitable front lag duration

p and the number of candidates are essential. Be-

fore using cross-validation to determining the lag

duration p and the number of candidates K below, a

heat map is displayed in Figure 4 to judge the influ-

ence of p and K on the acceptability. It can be pre-

liminarily observed that choosing large K and small

p lead to great acceptability.

Figure 4. The heat map of K and p

In general, the oversize p makes the front lag

duration contains earlier historical data that has a

low impact on the current value and increases the

time consumed by the algorithm. However, the

small p may reduce the prediction accuracy due to

the accidental errors. According to Figure 4, the ac-

ceptability presents similar trends for any given K

between 1 and 10. Therefore, experiments are per-

formed at monitoring sites in Nanjing respectively

with different values of p for short-term prediction

in the case of T1 = 1 and K = 1. The RPEs between

the real values and the predicted values are calcu-

lated as shown in Figure 5. It can be concluded that

the short-term prediction has the best performance

at p = 4, and the accurate rate r is more than 79%.

Figure 5. Acceptability of different number of lag

duration(p) given K=1

Figure 6. Acceptability of different number of

candidates(K) given p=4

Figure 7. Acceptability of different number of lag

duration(p) given K=9

For further removing the influence of random

errors, it is of great importance to select a suit-

able K for the KNN algorithm. According to the

above experiments, the parameters p and T1 have

been chosen as p = 4, T1 = 1. Simultaneously, the

time model acceptability of different values of K are

compared, as shown in Figure 6. Through Figure 7,

it can be concluded that the prediction acceptability

of each monitoring station becomes higher as we

choose a bigger K within 10 generally. Moreover,
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it is found that the optimal prediction result can be

obtained at K = 9, and the accurate rate r can reach

95% in Figure 7.

3.1.2 Enhanced KNN algorithm

The enhanced KNN algorithm is proposed for

further consideration that there must be certain cor-

relations between the sample points obtained by the

KNN algorithm and the target point. Hence, the

Pearson correlation coefficient is chosen between

the sample points and the target point to measure

their similarities in this paper.

The candidate points with a larger Pearson cor-

relation coefficient have a higher similarity de-

gree. Simultaneously, the contribution to the up-

dated value is more significant. In Eq. (5), each

candidate point is given a weight according to give

weight to candidate points chosen by the KNN algo-

rithm to its corresponding Pearson correlation coef-

ficient.

ŶT =
∑K

i=1 (γi ·Yi)

∑K
i=1 (γi)

, (5)

where γi represents the Pearson correlation coeffi-

cient between the ith candidate point and the target

point. ŶT and Yi mean the predicted AQI value of the

target point at moment T and the AQI value of ith

candidate point at the same moment respectively.

In addition, two methods based on the enhanced

KNN algorithm are proposed to forecast the air

quality in a longer period of time.

Method I: The AQI values of a period of time are

forecasted directly based on historical data. In other

words, when unknown Y = (yT ,yT+1, ...yT+7) need

to be forecasted, these 8 values are predicted based

on the vector X = (xT−p,xT−p+1, ...xT−1) simulta-

neously.

Method II: Once a new predicted AQI value has

been obtained, it will be added to the historical data

to update and enlarge the historical data set, which

can be used for the prediction of AQI value in the

next hour. For example, for T1 = 8, the goal is to

forecast Y = (yT ,yT+1, ...yT+7). When yT is pre-

dicted by historical data, it can be used to construct

the state vector which is applied to predict the value

of yT+1. Then this step is repeated until the final

result of Y could be obtained.

The experiments are carried out by using the

enhanced KNN algorithm and two methods of the

construction of the state vector. The performance

of the two methods are compared by the relative ac-

curacy rate as shown in Table 1.

Table 1. Acceptability of two methods

Method I Method II

1h 92.01% 92.01%

2h 77.76% 78.83%

3h 67.25% 68.48%

4h 59.38% 60.85%

5h 55.16% 55.82%

6h 51.17% 52.75%

7h 47.88% 50.18%

8h 45.53% 48.43%

Comment 3.1. According to Table 1, the accept-

ability of the results of the method I achieves 92%

for one-hour prediction, 78% for two-hour predic-

tion and 60% for four-hour prediction. The accept-

ability is obviously reduced, but is still relatively

high.

Comment 3.2. The accurate rate r of method I

about 2% on average is higher than it of method

I as shown in Table 1, which indicates a significant

improvement in the prediction of AQI values in a

long period of time.

3.2 Experiments of Spatial Model

In this Section, a spatial model is established

with the data of nine monitoring stations in Nanjing

in 2017 to obtain predictions of air quality in areas

without monitoring stations. Moreover, the accept-

ability will be tested with the observing data in one

specific area.

3.2.1 Preliminary of the data

In this part, the coordinates of the latitude and

the longitude of nine monitoring stations and the Ji-

ulonghu Campus, Southeast University are shown

in Table 2. Then, in order to reflect the change of
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spatial dimension, the relative distance will be in-

troduced. The calculation process of the distance

between two sites according to their latitude and

longitude is shown as following [40]. The general

equation of Haversine [41] is utilized as follows

Haversine(θ) = sin
θ

2

2

. (6)

Let θ1 and θ2 be the latitude of the site A and

the site B respectively, λ1 and λ2 be the longitude

of the site A and the site B respectively, the distance

between two sites A and B over the radius R of the

chosen sphere represented as

d = 2R∗ arcsin
√

D1 +D2, (7)

where D1 = sin((θ2 −θ1)/2)2
and D2 =

cosθ1 cosθ2sin((λ2 −λ1)/2)2.

Figure 8. Air quality record from 9 stations

Figure 9. Deviation of AQI values among 9

stations

Figure 10. Graphical representation of AQI

distribution among 9 stations

In order to mine the distribution feature of the

data, Figure 8, Figure 9 and Figure 10 are sketched

to show the air quality at nine monitoring stations in

Nanjing. The trend and the distribution in 24 hours

for each station of the AQI values are shown in Fig-

ure 8 and Figure 9. It is shown that the level of the

AQI values for stations B, D, G, H and I are high,

whereas stations C, D and G have a larger deviation

of AQI values in one specific day. The box diagram

Figure 10 reflects the trend of the average AQI val-

ues per hour in all stations, from which we find that

AQI values from 10 am to 6 pm is higher than the

rest time domain. It is obvious that human activity

and weather conditions have a positive impact on

the increase of AQI values.

3.2.2 Determination of the number of reference

stations

The number of monitoring stations chosen

around the target site P to be predicted is determined

by the test, which is essential in the process of es-

tablishing the spatial model. On the one hand, if

too many stations are added in the process of mod-

eling, poor accuracy will be obtained for the areas

far away from each site. On the other hand, it is

difficult to describe a suitable relationship between

the spatial distributions of various pollutant concen-

trations if fewer stations are used. An appropri-

ate amount of reference monitoring stations will be

explored in this part. Moreover, the spatial depen-

dence between those stations will be observed.

At the same time, in order to establish a univer-

sal model, three kinds of test sets are used to inves-

tigate our algorithm and synthesize various factors

to obtain the final optimal number of stations. In the

following, sites A, B and F will be taken as the tar-

get site to construct dataset I, II and III, respectively.
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Table 2. Latitude and longitude of each site

Label Monitoring Station Longitude(east longitude) Latitude(north latitude)

A Caochangmen 118.745954 32.062848

B Shanxilu 118.775771 32.071374

C Zhonghuamen 118.78829 32.019339

D Ruijinlu 118.823293 32.038076

E Xuanwuhu 118.800398 32.078555

F Pukou 118.650549 32.078911

G Aotizhongxin 118.731268 32.014363

H Xianlindaxuecheng 118.919324 32.10507

I Maigaoqiao 118.816053 32.108986

T Jiulonghu campus of SEU 118.835302 31.889474

The {Q(i),t} of the nearest m reference stations are

regarded as the input of the neural network to pre-

dict the AQI value of the target site from November

to December. Moreover, the acceptability is calcu-

lated with the comparison of the prediction and the

real data. It is noticed that the model with site B

as its center and the model with site A as its cen-

ter have similar geometric topologies, and both site

A and site B are in a relatively central position as

shown in Figure 11. Meanwhile, there are different

geometric topological structures between the model

with site A as the center and the model with site F

as the center as shown in Figure 12, which has a

similar topology structure with our final prediction

target site T as shown in Figure 13. The distribu-

tion of the target site and its adjacent sites is similar

to the umbrella structure as shown in Figure 12 and

Figure 13.

Figure 12. Map of test site F

The spatial experiments are performed on dif-

ferent datasets. Because of the significant diffusion

effect of pollutants in the atmosphere, the AQI val-

ues of sites that are close to each other naturally

have similar performance. Therefore, m nearest sta-

tions are selected as the reference monitoring sta-

tions, and the training matrix will be constructed

using the data of those stations. Then the experi-

ments will be repeated 10 times to reduce the ran-

dom error. The mean values of the acceptability of

those results are shown in Table 3.

Table 3. The acceptability of different sets for

different number of stations

Stations m Data set I Data set II Data set III

1 88.40% 62.87% 64.60%

2 88.09% 73.09% 74.60%

3 91.85% 73.91% 75.92%

4 91.06% 82.10% 74.21%

5 91.13% 80.36% 75.41%

6 89.82% 81.93% 76.78%

7 91.68% 82.16% 76.01%

8 91.61% 83.97% 76.45%

Considering the above experimental results and

the operability in the following experiment process

comprehensively, it is concluded that the number

of reference monitoring stations between 3 and 5 is

suitable. In order to reduce the computation time of

the neural network, this paper chooses four closest

stations of the target site to build the model. Ob-

serving the experimental results, when the dataset

I is used as a training set, the model is able to ac-

curately predict the data and the acceptability is as

high as 90%. In addition, the dataset II is used as a

training set. Although the acceptability is obviously

reduced, it can still be 80%. When the training set

is changed to the dataset III, the acceptability is re-

duced to about 75%, but is still relatively high. The

experimental results of different data sets show that

the choice of four closest stations of the target site

is reasonable.

Comment 3.3: Those results prove that the num-

ber of reference monitoring stations chosen is suit-
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Figure 11. Map of test sites A and B

able and the spatial dimension model has excellent

adaptability and stability among data sets with dif-

ferent topology structures. The limitation of this

experiment is that the types of data sets with differ-

ent geographical topologies are relatively few due

to the low number of monitoring sites in Nanjing.

However, when the spatial model is applied to other

cases with more monitoring stations, the method

proposed in this part can be transplanted to find the

corresponding number of reference stations.

3.2.3 The influence of the distance parameter

The significant influence of the distance param-

eter on the forecast result will be verified in this

part. A control group is set up without considering

the distance element as the input parameter when

the spatial dimension model is built. Thus, the in-

put of the model also changes from the original

2m-dimensional vector to the m-dimensional vector

where m refers to the number of reference monitor-

ing stations. The test uses site A as a target site P to

build a model and applies it to other sites to predict.

The experimental results are shown in Table 4. It

can be seen from the results that the acceptability

is improved when the distance factor is added. Par-

ticularly, the acceptable results of Site D and Site E

are above 70%, whereas that of Site D and Site E

are below 70% without distance factor.

Table 4. The effect of the distance parameter on

the acceptability

Adding Ignoring

distance factor distance factors

Site A 80.94% 79.18%

Site B 74.24% 74.46%

Site C 79.72% 75.17%

Site D 71.35% 68.00%

Site E 72.19% 65.95%

Site F 71.95% 73.29%

Site G 78.86% 73.97%

Site H 72.98% 73.14%

Site I 79.85% 78.52%

3.2.4 The effect of the topology structure

The effect of the topology structure on the ac-

ceptability will be explored in this part. In the ex-

periment process, the scale of the training matrix is

expanded to make full use of the data set. Instead

of just centering on one site, we train many site-

centric situations at the same time. However, the ex-

perimental results demonstrate that the model does

not have a high degree of accuracy. Therefore, the

important model parameters such as weights and

thresholds obtained after neural network training

are highly correlated with the central site. In other

words, the training matrix was simply expanded by

adding sites, which means ignoring the topological

similarities between sites.

So it can be concluded that when a central site

is selected for training, the similarities of the topol-

ogy structure of the sites to be estimated with other
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monitoring stations around it will be considered.

Next, the influence of the topology structure on the

prediction performance will be verified by experi-

ments. Taking site F and site A as centers sepa-

rately, we establish two models, and use the mod-

els to predict AQI values of site B and site H.

Among them, the topology structure of site F with

other monitoring stations is similar with it of site

H, which is the umbrella structure, and the distance

between monitoring stations and the target site is

relatively long. There is a similar relationship be-

tween site A and site B, and the monitoring stations

around them are evenly distributed around them.

Training model
Test Station

Site B Site H

Site A 89.29% 82.14%

Site F 79.27% 96.75%

Table 5. The effect of the topology structure on the

acceptability

According to the results in Table 5, the model

obtained through site F training data is used to pre-

dict AQI values of site H significantly better than

site B. At the same time, the model obtained from

site A is used to predict AQI values of site B, whose

result is better than the prediction of site H. There-

fore, it can be preliminarily concluded that the ef-

fect of the topology structure on the acceptability is

essential. Therefore, we choose site F with a simi-

lar topology structure to site T as a training set, then

predict the AQI value of site T through the spatial

model constructed by site F.

Comment 3.4. The limitation of this experiment is

that the types of data sets with different geograph-

ical topologies are relatively few due to the low

number of monitoring sites in Nanjing. Nonethe-

less, when the spatial dimension model is utilized

to other circumstances with various types of topol-

ogy structures, the method proposed in this part can

be used to find a promising result.

3.3 Experiments of the Temporal-Spatial

Model

The ultimate goal of our model is to predict the

concentration of atmospheric pollutants in a certain

period in the future, which is reflected by AQI val-

ues, including areas with a monitoring station and

areas without monitoring stations. The areas with

the monitoring station can be predicted by the time

model directly, and the areas without monitoring

stations can be predicted through prediction data of

monitoring stations and the spatial model. This can

be achieved by synthesizing the two models men-

tioned above. The adaptability of the temporal-

spatial model is tested on a specific non-monitoring

site, Jiulonghu Campus of Southeast University, as

shown in Figure 13.

Figure 13. Map of test site T

We measure the AQI values of site T at 0 am,

8 am, and 4 pm every day from October 18 to 31

through experimental equipment as the real value

of the comparison. A spatial model is established

taking site F as the target site. Then the parame-

ters of the model are provided by the previous arti-

cle. The prediction data of each monitoring station

from October 18 to 31 can be obtained by the time

model and are used as input of the spatial model. Fi-

nally, the temporal-spatial model prediction results

are shown in Figure 14. It can be found that the

final prediction for the non-detected area site T is

accurate, and the acceptability of the result is about

73.81%.

Comment 3.5. The temporal-spatial model tested

in the non-monitoring area T shows excellent per-

formance of the model with high acceptability and

accurate AQI variation trend. In order to reduce the

influence of the measuring error, more tests could

be carried out in different types of target areas with-

out monitoring stations, and more rigorous verifica-

tion would be obtained.
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Figure 14. Comparison of forecast results with real observations

4 Concluding Remarks

The capability to timely and spatially predict

the variation of air quality in the future is imper-

ative for proactive government strategies and pro-

vision of regular outdoor activities time for citi-

zens. In the current paper, the air quality time model

based on the enhanced K-nearest neighbors is es-

tablished. To match similar patterns precisely, the

Pearson correlation coefficient is used in the en-

hanced KNN. Moreover, the spatial model is con-

structed by the Back-Propagation neural network

using AQI values and relative distance as the in-

put to estimate the AQI values among areas without

monitoring stations. Finally, the temporal-spatial

model is built, and the adaptability is tested on a

specific non-monitoring site, Jiulonghu Campus of

Southeast University. This research provides evi-

dence that indicates the following main findings:

Using the Pearson correlation coefficient and the

state vector, which is updated with prediction, in

the advanced KNN algorithm, can improve the ac-

ceptability of forecast. The prediction for non-

monitoring areas can achieve a promising result by

the spatial-temporal model using the data in exist-

ing stations.

The main limitation of the study is that the ac-

ceptability of forecasting is declining as time goes

by. Moreover, some dynamic factors, like people’s

activities, traffic flow, can be considered to promote

the practicability of the model. Future works will

concentrate on the prediction of AQI in a longer pe-

riod by incorporating exogenous factors that affect

air quality into the forecast model.
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