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Abstract—Irregular algorithms are algorithms with complex
main data structures such as directed and undirected graphs,
trees, etc. A useful abstraction for many irregular algorithms is
its operator formulation in which the algorithm is viewed as the
iterated application of an operator to certain nodes, called active
nodes, in the graph. Each operator application, called an activity,
usually touches only a small part of the overall graph, so non-
overlapping activities can be performed in parallel. In topology-
driven implementations, all nodes are assumed to be active so
the operator is applied everywhere in the graph even if there is
no work to do at some nodes. In contrast, in data-driven imple-
mentations the operator is applied only to nodes at which there
might be work to do. Multicore implementations of irregular
algorithms are usually data-driven because current multicores
only support small numbers of threads and work-efficiency is
important. Conversely, many irregular GPU implementations use
a topology-driven approach because work inefficiency can be
counterbalanced by the large number of GPU threads.

In this paper, we study data-driven and topology-driven im-
plementations of six important graph algorithms on GPUs. Our
goal is to understand the tradeoffs between these implementations
and how to optimize them. We find that data-driven versions are
generally faster and scale better despite the cost of maintaining
a worklist. However, topology-driven versions can be superior
when certain algorithmic properties are exploited to optimize the
implementation. These results led us to devise hybrid approaches
that combine the two techniques and outperform both of them.

Keywords: irregular algorithms, data-driven, topology-driven,

algorithmic properties, GPGPU

I. INTRODUCTION

GPUs are very effective at exploiting parallelism in regular,

data-parallel algorithms, and there is a broad knowledge base

on the efficient GPU parallelization of these algorithms [7].

However, many problem domains employ algorithms that

build, traverse, and update irregular data structures such as

trees, graphs, and priority queues. Examples of these problem

domains include n-body simulation [2], data mining [25],

Boolean satisfiability [4], optimization theory [9], social net-

works [14], compilers [1], discrete-event simulation [21], and

meshing [8]. We know much less about how to produce

efficient implementations of irregular algorithms on GPUs.

Recently, several case studies of irregular algorithm imple-

mentations on GPUs have appeared in the literature. For exam-

ple, Harish et al. have implemented breadth-first search (BFS)

and single-source shortest-paths (SSSP) algorithms [11], [12],

Burtscher et al. have implemented the Barnes-Hut n-body

(BH) algorithm [6], and Mendez-Lojo et al. have implemented

Andersen-style points-to analysis [19] on GPUs. A common

feature of these implementations is that all the nodes of

the underlying graph are examined at each super-step of the

algorithm even if there is no work to be done at some of

the nodes. In contrast, the recent BFS implementation of

Merrill et al. [20] maintains a global worklist of nodes where

computation needs to be performed, so it avoids visiting nodes

at which there is no work to be done.

A useful abstraction for understanding these differences is

the operator formulation of algorithms [24], which is a data-

centric abstraction for parallel algorithms. In this abstraction,

the algorithm is viewed as the iterated application of an

operator to the active nodes in the graph. Each such activity

usually only touches a small fraction of the graph, allowing

non-overlapping activities to execute in parallel. Implementa-

tions are classified as either topology-driven or data-driven. In

topology-driven implementations, all nodes are assumed to be

active so the operator is applied everywhere even if there is no

work to do at some nodes; the aforementioned BH and SSSP

implementations are examples. Data-driven implementations,

in contrast, apply the operator only to nodes at which there

might be work to do, as in Merrill et al.’s BFS implementation.

In our experience, topology-driven implementations on

GPUs are comparatively easy to write and maintain: one only

needs to worry about a single unit of work when implementing

a kernel, and the kernel is invoked with as many threads

as there are work items. However, the work-efficiency of

topology-driven implementations can be a concern since many

threads end up either performing redundant work or finding

that they do not need to do any work in the current super-

step. Data-driven implementations often need a worklist that

tracks nodes that need processing because nodes may become

active as a result of processing other active nodes. Apart

from the overhead of maintaining this worklist, one needs

to worry about synchronization between thousands of GPU

threads accessing the worklist and the performance of worklist

updates, as these may require costly atomic operations. Of

course, topology-driven and data-driven approaches need not

be mutually exclusive and one may be able to combine them in

a beneficial manner for some problems. Therefore, a system-

atic evaluation of the two approaches is critical to determine

the best implementation strategy for irregular GPU algorithms.



This paper makes the following contributions towards this

goal.

• We perform qualitative and quantitative comparisons of

data-driven and topology-driven irregular GPU codes.

• For each approach, we propose several optimizations to

exploit the GPU’s computation capabilities and avoid

its limitations. Specifically, for data-driven approaches,

we propose and/or evaluate hierarchical worklists, work

chunking, work donating and variable kernel configura-

tion. For topology-driven approaches, we propose and/or

evaluate kernel unrolling, exploiting shared memory and

improved memory layouts.

• We propose two hybrid schemes that combine the benefits

of data-driven and topology-driven approaches. Specifi-

cally, we combine the two schemes temporally and spa-

tially in an attempt to outperform either of the techniques.

• We compare the two approaches using six irregular

programs and find that an optimized data-driven im-

plementation is usually superior. For a topology-driven

implementation to execute faster, it is essential to exploit

additional algorithmic properties. We evaluate the pro-

posed optimizations individually as well as in combina-

tion. We obtained significant performance improvements

with atomic-free worklist updates, variable kernel config-

uration, kernel unrolling and intra-block work donation.

We also find that a spatial hybrid degrades performance

whereas a temporal hybrid can improve performance.

The rest of this paper is organized as follows. Section II

reviews modern GPU hardware as well as the CUDA pro-

gramming model and defines data-driven and topology-driven

implementations. We also describe the six irregular applica-

tions studied in this paper. Section III discusses the data-

driven approach as well as applicable optimizations. Sec-

tion IV discusses the topology-driven approach and applicable

optimizations. Section V proposes two ways to combine the

two approaches to achieve hybrid implementations. Section VI

evaluates the optimized data-driven and topology-driven ver-

sions of our irregular applications and the effect of individual

optimizations. Section VII compares these results with prior

work in the literature. Section VIII presents our conclusions.

II. BACKGROUND

This section introduces data-driven and topology-driven

implementations of irregular algorithms and describes the ir-

regular applications studied in the paper. Although we focus on

Fermi GPUs in this paper, these concepts should be applicable

to other similar architectures.

A. Regular versus irregular algorithms

The terms regular and irregular stem from the compiler

literature (where the terms structured and unstructured are also

used). In regular code, control flow and memory references

are not data dependent. Matrix-vector multiplication is a good

example. Based only on the input size and the data-structure

starting addresses, but without knowing any values of the input

data, we can determine the dynamic behavior of the program

on an in-order processor, i.e., the memory reference stream

and the conditional branch decisions. In irregular code, the

input values to the program determine the program’s runtime

behavior, which therefore cannot be statically predicted and

may be different for different inputs. For example, in a binary

search tree implementation, the values and the order in which

they are processed affect the shape of the search tree and the

order in which it is built.

In most problem domains, irregular algorithms arise from

the use of complex data structures such as trees and graphs. In

general, irregular algorithms are more difficult to parallelize

and more challenging to map to GPUs than regular programs.

For example, in graph applications, memory-access patterns

are usually data dependent since the connectivity of the graph

and the values on nodes and edges may determine which nodes

and edges are touched by a given computation. This informa-

tion is usually not known at compile time and may change

dynamically even after the input graph is available, leading to

uncoalesced memory accesses and bank conflicts. Similarly,

the control flow is usually irregular because branch decisions

differ for nodes with different degrees (neighbor counts) or

labels, leading to thread divergence and load imbalance.

B. Data-driven versus topology-driven approaches

Data-driven implementations visit nodes only if there may

be work that needs to be performed there. Since applying the

operator to an active node may cause other nodes to become

active, data-driven implementations are organized around a

worklist; threads obtain work by pulling active nodes from the

worklist, and they may add new active nodes to the worklist

after processing an active node. To ensure that concurrently

executing threads do not interfere with each other, it is

necessary to insert appropriate synchronization. For exam-

ple, in SSSP (see below for description), synchronization is

needed at the nodes to ensure that updates happen atomically.

Synchronization is also needed at the worklist to ensure that

active nodes are added and removed correctly. Data-driven

implementations on multicores usually implement the worklist

in a physically distributed manner to reduce contention [23].

Implementing an efficient worklist-based approach on a

GPU is non-trivial since it involves managing a central work-

list that is shared by thousands of threads. There are two

aspects of the worklist that an efficient algorithm needs to

handle: pulling active nodes from the worklist and putting

new active nodes onto the worklist. Getting active nodes

from the worklist can be implemented by partitioning the

worklist between threads. Each thread then operates on the

nodes in the partition assigned to it, without synchronizing

with other threads. Putting new active nodes onto the worklist

can be done by atomically incrementing the length of the

worklist and then writing an active node’s identifier to that

location in the worklist. However, this way of writing to the

worklist is inefficient and does not scale on GPUs. A better

way is for each thread to keep track of the number of new

work items it wishes to add to the worklist, and to update

the length of the worklist once by that number instead of



B/M #K Inputs

BFS 2 RMAT22 (4 M nodes, 32 M edges),
RANDOM23 (8 M nodes, 32 M edges),
USA road network (23 M nodes, 58 M edges)

BH 9 1 M – 10 M bodies, 1 time step
DMR 4 1 M – 10 M triangles
MST 8 RMAT12 (4 K nodes, 28 K edges),

NY (0.2 M nodes, 0.7 M edges),
GRID20 (1 M nodes, 2 M edges)

SP 3 1 M – 5 M literals, clauses/lit. = 4.2, 3 lit./clause
SSSP 2 RMAT22 (4 M nodes, 32 M edges),

RANDOM23 (8 M nodes, 32 M edges),
USA road network (23 M nodes, 58 M edges)

TABLE I: LonestarGPU applications and their input charac-

teristics (B/M = benchmark, #K = number of kernels)

incrementing it many times. After this, the thread can write

node identifiers to the reserved range in the worklist without

requiring further communication with other threads. An even

better implementation can be obtained by recognizing that

set/multiset union is a reduction operation, so we can take

advantage of commutativity and associativity to implement

this operation in a hierarchical manner as is done with other

reduction operations like integer addition. The threads in a

thread block can compute the total amount of work to be

added by all threads in the thread block using a prefix sum (in

shared memory) and then use a single atomic instruction per

thread block to reserve space on the worklist. This hierarchical

approach has been shown to be quite effective in achieving a

scalable implementation of breadth-first search [20].

In a topology-driven approach, all graph nodes are consid-

ered to be active nodes, so every node is processed in each

super-step. This approach often results in a work-inefficient

implementation since there may not be any computation that

needs to be performed at many nodes. This limitation prevents

the widespread adaptation of topology-driven approaches in

sequential and multi-core systems for large sparse graphs.

Despite performing unnecessary work, a topology-driven ap-

proach has certain useful characteristics when implemented on

a GPU. First, if the input graph is static, a fixed number of

nodes can be assigned to each thread. Second, a topology-

driven approach eliminates the need for an explicit worklist

and the corresponding centralization bottleneck, enabling the

algorithm in principle to scale better. Third, a fixed work

allotment enables better load balancing and allows the sorting

of nodes (e.g., by out degrees) in a pre-processing step,

which can reduce thread divergence. Finally, a topology-driven

approach is usually easier to implement on a GPU.

C. Applications

We study the following six irregular programs from

the LonestarGPU benchmark suite (available online at

http://iss.ices.utexas.edu). Their properties

(number of static kernels and inputs) are listed in Table I.

• Breadth-First Search (BFS): This graph problem is a

key kernel in many important applications such as mesh

partitioning. The BFS problem is to label each graph node

with the node’s minimum level (or number of hops) from

a designated start node, which is at level zero.

• Barnes Hut (BH): This n-body algorithm simulates the

effect of gravity on a star cluster [2], [6]. In each time

step, the code hierarchically decomposes the space around

the stars into successively smaller volumes, called cells,

and computes the center of gravity of each cell to enable

the quick approximation of the forces. The hierarchical

decomposition is recorded in an octree. We investigate the

kernel that computes the centers of mass of all octants.

• Delaunay Mesh Refinement (DMR): This is a mesh-

refinement algorithm from computational geometry [8],

[17]. It works on a triangulated input mesh in which some

triangles do not conform to certain quality constraints.

The algorithm iteratively transforms such ‘bad’ triangles

into ‘good’ triangles by retriangulating the cavity around

each bad triangle.

• Minimum Spanning Tree (MST): Boruvka’s MST algo-

rithm computes a minimal spanning tree through succes-

sive application of minimum weight edge contractions on

an input graph. This process is repeated until the graph

has just a single node, assuming the input is a connected

graph. If the input graph is not connected, the algorithm

computes a minimum spanning forest.

• Survey Propagation (SP): Survey Propagation is a heuris-

tic SAT-solver based on Bayesian inference [4]. The

algorithm represents the Boolean formula as a factor

graph, i.e., a bipartite graph with variables on one side

and clauses on the other. The general strategy of SP is to

iteratively update each variable with the likelihood that it

should be assigned a truth value of true or false.

• Single-Source Shortest Paths (SSSP): This is another

classic graph problem. It computes the shortest path of

each node from a designated source node in a directed

graph [9]. In the topology-driven version, all edges are

relaxed in each super-step (similar to Bellman-Ford’s

algorithm), whereas in the data-driven version, only the

active nodes, i.e., the nodes whose distances have recently

changed, are processed.

The behavior of these applications is quite diverse, which

proves useful to test different aspects of data-driven and

topology-driven implementations. For instance, SP is compute-

bound whereas BFS and SSSP are memory-bound. The

amount of parallelism in BFS, BH, DMR, MST, SSSP and

varies considerably during execution. DMR is a morph algo-

rithm [24], i.e., it modifies the underlying graph.

III. DATA-DRIVEN APPROACH

In this section, we discuss the implementation and optimiza-

tion of data-driven algorithms on GPUs.

A. Base implementation

Data-driven implementations of graph algorithms use work-

lists to track active elements. The algorithm starts by populat-

ing the worklist with an initial set of graph elements; for exam-

ple, in the single-source shortest-paths problem, the worklist is



main ( ) :
r e a d i n p u t / / CPU

t r a n s f e r i n p u t / / CPU → GPU

i n i t i a l i z e k e r n e l ( ) / / GPU

i n i t i a l i z e w o r k l i s t ( in ) / / GPU

c l e a r out w o r k l i s t / / GPU

whi le in w o r k l i s t n o t empty {
p r o c e s s k e r n e l ( in , out , . . . ) / / GPU

t r a n s f e r out w o r k l i s t s i z e / / CPU ← GPU

c l e a r in w o r k l i s t / / GPU

swap ( in , out ) / / CPU

}
t r a n s f e r r e s u l t s / / CPU ← GPU

Fig. 1: Pseudo code of data-driven implementation

initialized with the source node. A thread extracts an element

(or a set of elements) from the worklist, performs algorithm-

specific processing on it, identifies new active elements based

on the processing, and inserts those new elements into the

worklist. This process is repeated until the worklist becomes

empty. In DMR, for example, the worklist maintains the set of

all bad triangles in the mesh. A thread removes a triangle from

the worklist and processes it by retriangulating the surrounding

cavity, which may create additional bad triangles. The new bad

triangles are added to the worklist. The refinement process

halts when there are no more bad triangles to process.

A general outline of a data-driven implementation is pre-

sented in Figure 1. The comments indicate whether the com-

putation is performed on the host, on the GPU, or involves

a data transfer between the two devices. After reading the

input graph on the host and transferring it to the GPU, the

code initializes the global data structures such as the graph

(e.g., in SSSP, all nodes’ distances are initialized to ∞ and

the source node’s distance is initialized to zero). The kernel

initialize_worklist populates the input worklist. In

SSSP, only the source node is included in the initial worklist.

In MST, all graph nodes are in the initial worklist. Addi-

tionally, the output worklist is cleared. The while loop then

repeatedly calls process_kernel until the input worklist

is empty. The input and the output worklists are swapped

(using pointers) and the accumulated work items in the output

worklist become the input items for the next iteration. Finally,

the computed result is transferred to the CPU for further

processing.

Pseudo-code for process_kernel is presented in Fig-

ure 2. Each thread first calculates the range of worklist items it

must process. This calculation, performed by myworkitems,

can be based on the current size of the worklist and the

number of threads with which the kernel is invoked. For

each of the items retrieved from the worklist (outer for

loop), the thread performs algorithm-specific processing (call

to process) and generates a new set of items to be pushed

onto the output worklist. These items are added to the end

of the worklist (e.g., using atomic instructions). Note that no

global synchronization is necessary for extracting items from

the input worklist because it is only read.

p r o c e s s k e r n e l ( in , out , . . . ) :
myworkitems(& s t a r t , &end , t h r e a d i d )

f o r i n d e x = s t a r t to end {
i t em = in [ i n d e x ]
newi tems = p r o c e s s ( i t em )
f o r each newitem i n newi tems

push newitem on to out

}

Fig. 2: Pseudo code of the processing kernel

B. Hierarchical worklist

Although a two-worklist mechanism reduces synchroniza-

tion, it still suffers from the cost of accessing slow global

memory. Worklists need to be allocated in global memory

because their sizes can easily surpass the amount of fast on-

chip software-managed cache. It is, however, imperative to

exploit the GPU memory hierarchy to improve worklist access

time. This is achieved by implementing a hierarchical worklist

in which threads use the limited shared memory whenever

there is space and push elements onto the global worklist

otherwise. Additional benefits can be reaped by storing a few

graph elements in the registers assigned to each thread. Note

that current high-end Fermis have more total register capacity

than combined on-chip cache capacity.

Exploiting on-chip shared memory is an essential optimiza-

tion for GPU implementations of most algorithms. In case of

data-driven approaches, using a hierarchical worklist often re-

sults in significant performance improvement. By partitioning

the shared memory across threads, both reads and writes to

the per-thread worklists can be atomic free.

C. Work chunking

Accessing shared worklists requires atomic instructions to

add and remove elements. Using two worklists can reduce

but not eliminate the use of atomics. However, on a massively

parallel architecture like a GPU, concurrent atomics are costly.

An alternative is to batch element addition by work chunking.

In work chunking, threads delay writing to the worklist until

they know how many elements they want to add. Based on

this knowledge, the threads issue a single atomic instruction

(atomicAdd) to increment the worklist size by that number

of elements and then insert its elements into the obtained

range. This can enhance implementation efficiency if con-

current updates to the worklist are a performance bottleneck.

However, we did not obtain a significant performance gain

from work chunking, as we discuss in Section VI.

D. Atomic-free worklist update

Further efficiency can be gained by using the prefix compu-

tation. Each thread records in an array at index i the number of

elements it wants to add to the worklist, where i is the thread

ID. A hierarchical scan operation is then performed, which

computes, in log n steps (where n is the number of threads),

the sum of all array elements up to the ith element for all i and

places the sums back into the array. After computing this prefix



d o n a t e k e r n e l ( ) :
shared d o n a t i o n b o x [ . . . ] , t o t a l w o r k = 0 ;

/ / d e t e r m i n e whe ther I s h o u l d do na t e

f o r a l l work i t ems a s s i g n e d t o me
mywork += e s t i m a t e d work p e r i t e m

atomicAdd ( t o t a l w o r k , mywork )
b a r r i e r ( ) ;

/ / do na t e

ave ragework = t o t a l w o r k / t h r e a d s p e r b l o c k
i f mywork > ave ragework + t h r e s h o l d

push e x c e s s work i n t o d o n a t i o n b o x
b a r r i e r ( ) ;

/ / normal p r o c e s s i n g

f o r a l l work i t e m s a s s i g n e d t o me
p r o c e s s i t e m

/ / empty d o n a t i o n box

whi le d o n a t i o n b o x i s n o t empty
i t em = pop work from d o n a t i o n b o x
p r o c e s s i t e m

Fig. 3: Pseudo code of work donation

sum, array entry a[i] can be used as the index into the worklist

where thread (i+1) should start writing its elements. Thread

0 starts at index 0. A thread without any elements to add gets

the same index as the previous thread. This way, all threads

can push work onto the worklist in parallel without requiring

atomic instructions. Note that (global) barriers are needed after

the threads record their number of elements, after each step

of the prefix sum, and before the first write to the worklist;

in effect, fine-grain synchronization with atomics is replaced

by coarse-grain synchronization with barriers. This approach

has been employed in data-driven BFS by Merrill et al. [20]

and we found it to be quite effective in our experiments (see

Section VI).

E. Work donating

Load imbalance is a common problem in irregular algo-

rithms. For instance, in DMR a cavity may consist of between

3 and 12 triangles depending upon the input mesh. Hence,

the cavity sizes cannot be statically predicted, necessitating

dynamic schemes for balancing the load. Even when threads

can easily be assigned the same number of nodes, load

imbalance may occur because different threads have to process

a different numbers of edges (e.g., in BFS and SSSP).

There are two popular mechanisms to handle load imbal-

ance: work stealing [3] and work donating [13]. Work donating

has a better memory footprint on GPUs in comparison to work

stealing [26]. Hence, we focus on work donating.

In work donating, a thread that has more work than others

donates some of its work items to other threads. There are

numerous ways to implement work donation on GPUs. We

implement it at the thread-block level, that is, threads donate

work to other threads within the same block. Inter-block

donation is not performed as it involves either expensive global

barriers or global donation-box synchronization. Implementing

it at the block level allows us to use fast shared memory as a

donation box.

Figure 3 presents our work-donation algorithm executed by

each thread in a thread block. It operates in three phases, sepa-

rated by fast hardware-supported barriers (syncthreads). It

defines a donation box in shared memory as well as a variable

totalwork to track the total amount of work assigned to all

threads in the block.

In the first phase, each thread performs a pass over its

work items and estimates the amount of work to be done.

For instance, in SSSP, a thread may compute the sum of the

out-degrees of all nodes assigned to it. The block-level shared

variable totalwork is updated atomically by each thread to

compute the total work to be performed by the block.

In the second phase, a thread that is assigned an above-

average amount of work donates work into the donation box.

Using the total work indicated by totalwork and the size

of the thread block, the average amount of work per thread is

computed. If the average is lower than the amount of work to

be performed by a thread beyond a threshold, the thread pushes

excess work into the donation box using atomic instructions.

In the third phase, each thread performs its normal process-

ing (e.g., edge relaxation in SSSP) and then helps emptying

the donation box if necessary.

Note that a barrier between the normal processing and the

reading from the donation box is not only unnecessary but

also hurts performance. Without the barrier, one warp may

start emptying the donation box while another may still be

performing the normal processing. Thus, all the threads that

finish their processing early participate in taking up the excess

load and reducing the overall computation time. Care must be

taken not to push too much work into the donation box because

adding work to and removing it from the donation box (which

is essentially a worklist) involves expensive atomic operations

whereas reading from the global input worklist as done in the

normal processing is atomic free.

F. Variable kernel configuration

At any point during computation, the worklist size reflects

the amount of work to be done. This size often changes con-

siderably during the execution of an irregular program. Unlike

in a topology-driven approach, where the worklist size remains

constant, a data-driven approach may necessitate adapting the

kernel configuration to the current amount of work, since it

is natural to assign more threads when the worklist size is

large and reduce the number of threads when the worklist

shrinks. This adaptive behavior can be achieved by variable

kernel configuration in which the number of threads and the

number of blocks per grid are changed dynamically depending

upon the worklist size. Varying the kernel configuration is

possible whenever a GPU kernel is invoked repeatedly from

the host. Variable kernel configuration not only improves the

work efficiency of the GPU threads but often also improves

performance. We demonstrate its effect in Section VI.



main ( ) :
r e a d i n p u t / / CPU

t r a n s f e r i n p u t / / CPU → GPU

i n i t i a l i z e k e r n e l ( ) / / GPU

do {
t r a n s f e r f a l s e t o changed / / CPU → GPU

p r o c e s s k e r n e l ( ) / / GPU

t r a n s f e r changed / / CPU ← GPU

} whi le changed

t r a n s f e r r e s u l t s / / CPU ← GPU

Fig. 4: Pseudo code of topology-driven implementation

IV. TOPOLOGY-DRIVEN APPROACH

In this section, we discuss the implementation and optimiza-

tion of topology-driven algorithms on GPUs.

A. Base implementation

The base implementation of a topology-driven algorithm

is outlined in Figure 4. The difference in comparison to a

data-driven algorithm (cf. Figure 1) is in the processing of

the do-while loop. In the topology-driven algorithm, a single

flag changed is used to indicate whether another iteration of

processing is necessary. The flag is set by a processing thread

whenever it updates the global data. For instance, in SSSP,

the flag is set by a thread when it updates a node’s distance

to a lower value, indicating that the shorter distance should

be further propagated in the graph. This flag is reset at the

start of each iteration and checked by the CPU after running

process_kernel. If the flag is set, at least one thread

modified the global data and another iteration is invoked.

Instead, if the flag is still reset, no thread modified the global

data, indicating that a fixed-point has been reached and no

further iterations are needed. The cost of transferring this

flag between the CPU and the GPU is typically negligible

compared to the total processing cost.

An interesting aspect of topology-driven BFS and SSSP is

that the computation can avoid atomic updates of the global

distances. This is due to the monotonicity of the distance

updates, i.e., the distance of a node never increases. Without

atomics, the computation may result in lost updates, that is,

the smaller distance of a node may be overwritten by a larger

distance from another thread due to a data race. However,

the topology-driven approach ensures that all nodes will be

active in the next iteration and the distance will eventually be

set to the lower value again, guaranteeing forward progress

towards the fixed point. Avoiding atomics by exploiting this

algorithmic property for BFS and SSSP significantly improves

their performance compared to the data-driven approach.

B. Kernel unrolling

In many graph applications, information flows from one

node to another via edges. The speed of information flow de-

termines how fast the fixed-point solution is obtained. Kernel

unrolling is a way to quickly propagate computed information

across the graph. It is implemented by processing a node and

its neighborhood together in a single invocation. For instance,

in case of kernel-unrolled SSSP, each thread computes the

shortest distances of a node’s neighbors and continues to

update the shortest distances of the neighbors’ neighbors. The

order in which the neighboring nodes are processed matters

and we found that processing a subgraph in a breadth-first

manner helps in quick propagation of updated distances. This

can be implemented using a local worklist per thread.

Due to the memory layout optimization discussed in Sec-

tion IV-D, neighboring nodes are stored close to one another

in memory. This improves spatial locality when processing a

subgraph and improves performance (cf. Section VI-C).

C. Exploiting shared memory

Depending on the unroll factor and the number of threads

per block, the local worklist needed for kernel unrolling

(see previous subsection) can be stored in the fast, on-chip

shared memory. The lower the number of threads, the larger

the amount of available shared memory per thread. In our

setup, with 512 threads per block, each local worklist can

accommodate 24 integers, which is sufficient for an unroll

factor of two to six, depending on the program and the input.

Interestingly, in a topology-driven implementation, overflow

of the local worklist due to too high an unroll factor does

not result in incorrect execution. This is because in the next

iteration, all nodes, including the nodes that could not be added

to the local worklist, are again active and will be processed.

D. Optimized memory layout

In many graph algorithms, computation ‘flows’ from a node

to its neighbors. For instance, in DMR, the refinement process

works by identifying a cavity around a bad triangle. Therefore,

neighboring graph elements that are logically close to each

other should also be close to each other in memory to improve

spatial locality. We optimize the memory layout by performing

a scan over the nodes and swapping indices of neighboring

nodes in the graph with those of neighboring nodes in memory.

This optimization is similar in spirit to the data reordering

approach by Zhang et al. [27].

V. HYBRID APPROACH

Data-driven and topology-driven implementations can

sometimes be combined. In this section, we discuss two high-

level methods to create a hybrid implementation based on

temporal and spatial hybridization.

A. Temporal hybrid

A temporal hybrid uses different implementations in dif-

ferent computation steps. For instance, in a data-driven im-

plementation of SSSP, the worklist size is usually small

during the initial and final computation steps but large in the

middle. Therefore, a temporal hybrid would execute the middle

iterations of SSSP in a topology-driven way. This is beneficial

because in the middle iterations, the number of active nodes

is large and the cost of worklist updates can be high.

Alternatively, in applications like MST, the amount of paral-

lelism is high in the initial iterations and drops gradually as the



computation progresses. A temporal hybrid may execute MST

in a topology-driven manner for the first few iterations and

execute the remaining iterations using a data-driven approach

when the graph becomes small.

Switching from a data-driven to a topology-driven approach

is easy: the processing can simply discard the worklist and

start processing all graph elements. However, the reverse,

i.e., switching from a topology-driven to a data-driven ap-

proach, involves extra processing: we need to create the

input worklist. This is achieved by modifying the topology-

driven computation to push modified elements onto a worklist

instead of (or apart from) processing them. Alternatively, an

implementation may employ a separate kernel to populate the

worklist. Although worklist creation involves extra processing

over a pure topology-driven implementation, this extra cost is

incurred only once per switch and, in our experience, results

in negligible overhead. Setting judicious thresholds on when

to switch can offer great benefits but may require tuning.

B. Spatial hybrid

An alternative to temporal hybrids is to combine data-

driven and topology-driven approaches in a spatial manner.

In a spatial hybrid, multiple graph elements are grouped into

partitions and each partition has a representative element. The

data-driven part of the computation involves pushing repre-

sentative elements onto the worklist and the topology-driven

part of the computation involves processing all elements in

the partition corresponding to the representatives popped from

the worklist. Note that a non-representative graph element is

never pushed onto the worklist and even if only a single graph

element requires processing, all graph elements in its partition

will be processed. The optimal partition size depends on the

input and may have to be tuned. A partition size of unity

yields a pure data-driven approach whereas a partition size of

infinity (encompassing all graph elements) results in a pure

topology-driven approach. We illustrate the effectiveness of

hybrid approaches in Section VI-D.

VI. EXPERIMENTAL EVALUATION

We first present a performance comparison of the data-

driven versus topology-driven approaches and then evaluate

the effect of various optimizations. Finally, we analyze the

result of various hybrid implementations.

We perform our experiments on a 1.45 GHz NVIDIA

Quadro 6000 GPU with 6 GB of main memory and 448 cores

distributed over 14 SMs. This Fermi-based GPU has 64 kB of

fast memory per SM that is split between the L1 data cache

and the shared memory. All SMs share an L2 cache of 768 kB.

We compiled the CUDA programs with nvcc v4.2 and the -O3

-arch=sm 20 flags. Our benchmark programs and their inputs

are listed in Table I.

A. Overall performance

Figures 5 and 6 show the relative performance of the

optimized topology-driven and data-driven variants for our

suite of irregular programs. Each program is run on multiple

inputs whose characteristics are presented in Table I. The

best result obtained using the optimizations discussed for each

approach is reported in the figure. Note that both variants

are faster than highly optimized multi-core versions of the

same algorithm from the Galois benchmark suite [17] running

on a high-end Xeon with 48 threads, except for MST whose

performance is comparable to 16 threads.

From Figures 5 and 6, it is evident that the topology-

driven approach turns out to be superior to its data-driven

counterpart for BFS, BH, MST and SSSP. For BFS and SSSP,

it is due to avoidance of atomic instructions in the topology-

driven version. The data-driven versions have to use atomic

instructions (atomicMin) for updating the node distances.

Although the overhead is compensated, in part, by processing

only the active nodes in the data-driven approach, topology-

driven versions benefit from not having to use atomics.

To understand these results better, we plot the number of

edges relaxed in SSSP as a percentage of the total number of

edges when computing the shortest paths for the USA road

network. The plot is shown in Figure 7 with the computation

step (indicating time) on the x-axis and the percentage of edges

relaxed on the y-axis. It is obvious that the optimized topology-

driven version succeeds in processing several edges in the first

few iterations. This is not always a sign of progress because

the non-atomic updates may result in lost updates, but the

performance numbers show that topology-driven SSSP reaches

the fixed-point faster. In contrast, data-driven SSSP starts with

a small worklist size that eventually grows and then gradually

drops. The maximum number of edges relaxed by the data-

driven version in any iteration is less than 10%.

The performance margin between the two variants is highest

for MST (note the log scale in Figure 5). In fact, the results

are for relatively small inputs because for larger inputs the

data-driven version times out. The data-driven version is so

slow because of duplicate entries in the worklist. MST works

by merging nodes into components until a single component

remains (when the graph is connected). As the algorithm

progresses, the number of components decreases and the size

of each remaining component increases. Once a node changes

its component, it adds its new component to the worklist

for processing. Thus, each component gets pushed onto the

worklist by all the nodes it contains. This leads to costly

atomic updates to the component’s data by multiple threads.

Searching the worklist first to avoid pushing duplicates onto

it would likely also be slow.

Neither version of the BH code requires atomics because

the bottom-up octree traversal is implemented in a pull-

based fashion, i.e., each node is updated by one thread using

information from the node’s children. Thus, there is a single

writer per node, and a memory fence followed by the setting

of a ready flag suffices to safely propagate information up the

tree. The performance benefit of the topology-driven approach

is due to the fact that it frequently manages to update children

and their parents in the same iteration (if the parents happen

to be processed later than the children). In contrast, the data-

driven approach uses a worklist per tree level and requires as



Fig. 5: Topology-driven versus data-driven BFS, SSSP and MST

Fig. 6: Topology-driven versus data-driven BH, DMR and SP

many iterations as there are levels, which is roughly 15% more

than the number of iterations of the topology-driven approach.

On DMR and SP, the data-driven approach consistently

beats the topology-driven approach and scales better, as shown

in Figure 6. Note that in DMR, even the topology-driven

approach uses atomics for adding points and triangles to the

mesh during cavity refinement. Moreover, the variable kernel

configuration boosts the work-efficiency and the performance

of the data-driven approach (cf. Section III-F).

The large performance difference for SP is not only due

to processing of only active nodes but also due to faster

convergence. In the data-driven approach, the surveys are

propagated only from the active clauses, which helps in quick

biasing of literals. The topology-driven approach takes advan-

tage of the monotonic computation to avoid atomics when

updating the surveys. However, in our experience, topology-

driven SP results in the propagation of too many outdated

surveys, leading to slow convergence.

B. Effect of optimizations on data-driven implementations

Figure 8 shows the effect of various optimizations on the

data-driven implementation of SSSP (cf. Section III). The plot

indicates execution times relative to the baseline implemen-

tation, which does not implement any of the optimizations

discussed. The performance benefits differ considerably across

inputs. For instance, implementing a hierarchical worklist

improves SSSP’s performance on the RMAT graph by only

2%, whereas for the road network the improvement is 18%

(first bars). This arises from the smaller average node degree

Fig. 7: Work done by data-driven and topology-driven SSSP

in the road network, which makes it possible to hold most

of the worklist in shared memory. In contrast, for the RMAT

and RANDOM graphs with large average degrees, the shared

memory quickly fills up and new work items are spilled to

global memory.

Work chunking does not improve performance (second bars)

because the cost of batched atomics is still considerable. When

atomics are avoided altogether (third bars), the performance

improves by 15% on an average. The benefit of an atomic-

free implementation is higher for higher-degree graphs.

Donating work improves performance by 10% on an av-

erage (fourth bars). As expected, the benefit is higher for

more skewed distributions such as in the road network. This

indicates that load balancing is important for irregular work-

loads. Figure 10 shows the amount of work donated by the



Fig. 8: Effect of data-driven optimizations on SSSP

threads in block 0 in each iteration of SSSP on the USA

road network. The plot illustrates that work donation occurs

in the middle of the computation where the load imbalance

is the highest. The amount of donation quickly rises to 1500

donations and gradually drops to zero. We expect better load-

balancing techniques to further improve performance.

Finally, variable kernel configuration offers the largest bene-

fit (fifth bars). This is because using only the required number

of threads drastically reduces contention over shared data. It

also has the advantage of improving the work efficiency. The

plot also shows that the best performance is obtained by using

a combination of these optimizations (sixth bars).

C. Effect of optimizations on topology-driven implementations

Figure 9 presents the effect of various optimizations on

topology-driven implementations of SSSP (cf. Section IV).

The plot shows execution times of several optimized versions

relative to the baseline implementation, which does not im-

plement any of the optimizations discussed. Recall that the

baseline version performs atomic-free distance updates.

Kernel unrolling is very effective for the topology-driven

approach (first bars). This is the case because unrolling mit-

igates the effect of lost updates. Even with atomics, kernel

unrolling helps propagate information faster in the graph by

avoiding the wait time for the next iteration.

Using on-chip shared memory to store the local worklists

avoids expensive global memory accesses (second bars). On

average, this improves performance by 10%. Similar to the

benefit of hierarchical worklists (cf. Section VI-B), shared

memory offers higher benefits when the local worklist sizes

are small and do not often spill over to global memory (as for

the road network that has a lower out-degree).

Employing a better memory layout to store nearby nodes

nearby in memory helps improve performance by almost 15%

(third bars). The performance improvement is mainly due

to improved spatial locality and is higher for the relatively

sparse road network. Note that improving the layout for some

nodes may adversely affect locality for other nodes, based on

connectivity. This is relatively more common for dense graphs

leading to reduced performance benefits, although a locality-

friendly layout generally improves performance.

Fig. 9: Effect of topology-driven optimizations on SSSP

Fig. 10: Amount of work donated in block 0 for SSSP

Finally, irregularity in the data access pattern prohibits

effective coalescing. However, when feasible, coalescing helps

more with the relatively uniform topology-driven approach

than with the data-driven approach where the nodes assigned

to a thread likely differ in each iteration. The plot also shows

the best performance obtained using a combination of these

optimizations (fourth bars).

D. Effect of hybrid implementations

Figures 11 and 12 show the effect of temporal and spatial

hybrid implementations, respectively, of BFS, SSSP and DMR.

For reference, the execution times of data-driven and topology-

driven SSSP are shown as horizontal lines. The presented

runtimes are relative to the time taken by their data-driven

variant. The results are for the USA road-network input in

case of BFS and SSSP, and for an input mesh with 10 million

triangles in case of DMR.

The x-axis of Figure 11 indicates the threshold worklist size

beyond which the execution switches to the topology-driven

approach (cf. Section V-A). The threshold is the fraction of

the total number of nodes in the input graph. For instance,

for the USA road network with 23 million nodes, we vary

the worklist size from 10% (2.3 million elements) to 120%

(27.6 million elements). Note that the worklist size can exceed

100% because the same node may be pushed onto the worklist

multiple times. For this reason, a 100% size does not imply

that every node is on the worklist. From the plot, we observe

that the temporal hybrid attains an execution time that is better

than either the data-driven or the topology-driven approach for

SSSP and DMR. When the worklist percentage is between 40



Fig. 11: Effect of temporal hybrid on BFS, SSSP and DMR

Fig. 12: Effect of spatial hybrid on BFS and SSSP

and 70, hybrid SSSP performs better than the solo approaches,

peaking at around 60%. Hybrid DMR performs better than the

solo approaches when the worklist percentage is between 70

and 90. As the worklist percentage increases, the execution

time approaches that of the data-driven approach. This occurs

because the number of edges relaxed grows in the initial

iterations, stays high for some time and then drops. Thus,

using a data-driven approach in the beginning and end and a

topology-driven approach in the middle helps these algorithms.

In contrast, hybrid BFS performs comparable to the data-

driven version. This is mainly due to the relatively low

execution time of BFS and, in turn, a large fraction of time

being spent in creating the worklist when switching from a

topology-driven version to a data-driven version. In fact, for

a worklist percentage of 10, the cost is higher than either of

the solo approaches. However, above 20% its performance is

similar to that of the data-driven version.

For the spatial hybrid (cf. Section V-B), we increased the

representative size from 1 to 10. From the performance plot

in Figure 12, we can see that choosing a representative size

greater than 1 is bad for both BFS and SSSP. In fact, the

performance becomes worse with increasing representative

size (note the log scale of the y-axis). Due to irregularity

in the data accesses, static partitioning based on node ID

in the spatial hybrid approach groups unrelated nodes. All

such nodes are processed even if only one is active. This

incurs a large penalty for a relatively sparse computation.

We also experimented with hashing to insert unique elements

into the worklist. However, the cost of accessing the global

hash-table was large enough to nullify the benefit of avoiding

duplicates. We conclude that, without further optimizations,

such a spatial hybrid approach may not be well suited for

data-driven irregular algorithms.

E. Data-structure specific hybrid

Since every node is updated exactly once in the BH sum-

marization, this kernel can be implemented using a special

kind of hybrid between a data-driven and a topology-driven

approach. In particular, all nodes are active like in a topology-

driven approach but the threads wait until all children of the

current node are ready akin to a data-driven approach. This

way, only one kernel call is needed to complete the entire tree

traversal. However, potential deadlock must be avoided [6].

As the first data point (with zero pre-passes) in Figure 13

reveals, this hybrid performs substantially worse than the pure

topology-driven approach because threads often wait rather

than processing other, ready nodes. This shortcoming can be

remedied by further (temporal) hybridization, in particular by

first running a few iterations of the topology-driven kernel,

which we refer to as ‘pre-passes’ over the data structure.

Figure 13 shows the benefit of this approach, which now

outperforms the non-hybrid approaches. One pre-pass works

best, probably because most of the work in this traversal of a

high-fan-out octree is completed in the first iteration.

Since the final iteration waits for any unready children,

there is no need for barriers, either explicit or implied by

kernel calls, to separate the pre-passes from each other or

from the final iteration. Hence, we can include the pre-pass

code in the kernel that performs the final iteration and allow

the warps to run in an unsynchronized way. This approach is

called ‘combined pre-passes’ in Figure 13 and results in the



Fig. 13: Effect of pre-pass on BH with 10 million bodies

fastest implementation of the BH summarization operation.

With five combined pre-passes, it performs 14% better than

the topology-driven approach.

F. Cost of growing the worklist on demand

So far, we have assumed that the worklist is large enough

to accommodate all work items pushed onto it in an iteration.

This is not a serious limitation because Fermi-based GPUs are

single-user devices. However, looking to the future, it might be

useful not to pre-allocate the worklist but to grow it gradually.

We implement this approach by allocating a reasonable amount

of memory for the initial worklist and then doubling the space

whenever it fills up. Since the kernel is invoked by the host

iteratively, we can use CUDA host functions (cudaMalloc

and cudaMemcpy) for the on-demand worklist re-allocation.

Each such re-allocation requires the copying of the old work-

list to the new worklist.

Worklist overflow is detected by a thread when it tries to

push a new work item beyond the current output worklist

capacity. On overflow, the thread stops processing, sets the

overflow flag and terminates. Any other thread noticing the

overflow also terminates. Note that a thread that does not

encounter an overflow continues processing. Thus, the kernel

performs as much computation as possible despite the over-

flow. When all threads have finished (either due to overflow

or due to reaching the end of normal processing), the host

finds the overflow flag set, re-allocates the output worklist as

well as the input worklist, does not swap the input and output

worklists, and restarts the latest iteration with the overflow flag

reset. This time, threads again perform normal processing and

push data items to the output worklist.

The main cost of on-demand re-allocation is copying work

items from the old worklists to the new worklists. Figure 14

shows the relative performance of SSSP with pre-allocated

memory and on-demand memory re-allocation. For on-demand

memory re-allocation, the initial worklist size is heuristically

set to one fifth of the number of graph nodes. We observe that

the cost of copying increases with graph density.

VII. RELATED WORK

To the best of our knowledge, this is the first work that

performs a comprehensive comparison of data-driven versus

Fig. 14: Effect on SSSP of on-demand worklist re-allocation

topology-driven implementations of irregular GPU programs.

Most of the prior work on irregular algorithms on GPUs

uses a topology-driven approach. Examples include graph

algorithms [11], [12], points-to analysis [19], n-body simu-

lation [6] and morph algorithms [22]. Very few GPU im-

plementations are based on data-driven approaches. Tzeng

et al. [26] propose several strategies for managing irregular

tasks. They use queuing techniques for adding work to the

worklist, advocate warp-centric kernel implementations and

uberkernels to avoid kernel-switching overhead, as well as

work-stealing and donating. Based on their finding that work-

donating performs better than work-stealing, we evaluate only

work donation in our experiments.

The concept of persistent threads [10] relies on a data-driven

implementation. The idea is to invoke kernels with only as

many blocks as can remain persistent in the SMs and continue

operating on a worklist in a do-while loop. This avoids the

need of returning to the host and the cost of repeated kernel in-

vocations. However, as the authors point out, persistent threads

are beneficial in only certain situations. First, the workload

should be small with few memory accesses, and second, the

worklist size should have a constrained growth pattern. None

of our irregular graph-based applications satisfy these criteria:

each application involves several memory accesses, workloads

are large and the worklist size grows rapidly and substantially.

Therefore, persistent threads are not typically used for irregular

benchmarks. We use it only in the BH kernel, which is a

special case because it operates on a tree and the nodes

assigned to each thread are partially ordered by tree level.

Merrill et al. [20] implemented a data-driven version of

BFS. They employ prefix sums to populate the worklist in

an atomic-free manner. We use and evaluate their technique

as one of our data-driven optimizations.

Bruant [5] simulated cellular automata on GPUs in a data-

driven manner. He found that removing duplicates from a large

worklist is very slow if the thrust library is used, and that

it performs better when it is done on the CPU despite the cost

of copying data back and forth between the CPU and GPU.

Previous research on GPU implementations of irregular

algorithms generally focuses on optimizing a specific feature

of irregular programs or on tuning a specific application



for GPU execution. The first category includes work on

removing dynamic irregularities from applications [27] and

on optimizing CPU-GPU transfers for dynamically managed

data [16]. G-Streamline is a software-based runtime approach

to eliminate control-flow and memory-access irregularities

from GPU programs [27]. DyManD is an automatic runtime

system for managing recursive data structures (like trees)

on GPUs [16]. The second category includes GPU-specific

optimized implementations of breadth-first search [15], [20],

single-source shortest paths [18], points-to analysis [19] and

n-body simulation [6].

VIII. CONCLUSIONS

We perform qualitative and quantitative comparisons of

data-driven and topology-driven implementations of six irreg-

ular algorithms on GPUs. We found that, in general, a data-

driven implementation achieves better performance because

it is more work-efficient, but in cases where an algorithmic

property can be exploited for optimizing a kernel, a topology-

driven implementation may outperform its data-driven coun-

terpart. For both implementations, we propose several opti-

mizations that yield significant performance improvements,

including atomic-free worklist updates, variable kernel config-

uration, kernel unrolling and intra-block work-donation. We

also combined the two implementation strategies to devise

two hybrid schemes. We found that a spatial hybrid degrades

performance whereas a temporal hybrid can perform better

than the individual approaches. Automating the choice of the

best implementation strategy for a given application seems

difficult, and we leave it for future work.
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