
IEEE TRANSACTIONS ON BIG DATA 1

Data-Driven Web APIs Recommendation for
Building Web Applications

Lianyong Qi1, Qiang He2,*, Feifei Chen3, Xuyun Zhang4, Wanchun Dou5, Qiang Ni6

Abstract—The ever-increasing popularity of web APIs allows app developers to leverage a set of existing web APIs to achieve

their sophisticated objectives. The heavily fragmented distribution of web APIs makes it challenging for an app developer to find

appropriate and compatible web APIs. Currently, app developers usually have to manually discover candidate web APIs, verify

their compatibility and select appropriate and compatible ones. This process is cumbersome and requires detailed knowledge of

web APIs which is often too demanding. It has become a major obstacle to further and broader applications of web APIs. To

address this issue, we first propose a web API correlation graph built on extensive data about the compatibility between web

APIs. Then, we propose WAR (Web APIs Recommendation), the first data-driven approach for web APIs recommendation that

integrates web API discovery, verification and selection operations based on keywords search over the web API correlation

graph. WAR assists app developers without detailed knowledge of web APIs in searching for appropriate and compatible web

APIs by typing a few keywords that represent the tasks required to achieve app developers’ objectives. WAR can significantly
save app developers’ time and effort in searching for web APIs. We conducted large-scale experiments on 18,478 real-world

web APIs and 6,146 real-world apps to demonstrate the usefulness and efficiency of WAR.

Index Terms—Web APIs recommendation, Keyword search, Steiner Tree, Dynamic Programming

————————————————————

1 INTRODUCTION

ith the increasing popularity of web of things, a lot
of enterprises and organizations, including software

vendors like Google1, Amazon2, Spotify3 have published
their business functions online as web APIs that can be
accessed remotely. The statistics published on several
reputable web APIs repositories, e.g., programmable-
web.com and mashape.com, indicate a rapid growth in
the number of published web APIs and their users in the
past few years.

The web of things allows mobile and web apps
(together referred to as apps hereafter) to invoke
appropriate web APIs to achieve their goals. For example,
a mobile app developer can find and select the right web
APIs to be integrated into their app so that it can invoke
these web APIs to fulfill its end-user’s sophisticated needs.
Figure 1 shows the common process for building an
interview app that needs to perform four app tasks: (1)
voice recording for recording interviews; (2) speech
recognition for transforming interview recordings into
transcripts; (3) document translation for translating the

1 https://developers.google.com/maps/get-started/
2 https://developer.amazon.com/services-and-apis/
3 https://developer.spotify.com/web-api/

interview transcripts into target language(s) as necessary;
and (4) file synchronization for saving the transcripts online.
Some web APIs may be available that can perform some
or all of those required app tasks, e.g., Scribie Audio and
SoundCloud for voice recording, Web Speech and Google’s
Speech Recognition for speech recognition, Google
Translate and Microsoft Translator for document
translation, DropBox and OneDrive for file synchronization.
If those web APIs can be identified and found, the app
developer can integrate those web APIs into the app for
performing those tasks.

As formally depicted in Figure 1, the process for
building this app consists of three phases. The first phase
is app planning where the app developer analyses the
functional requirements and determines the tasks needed
to be performed, as well as the execution order of the
tasks. The second phase is web API discovery where,
through manual web search, the app developer identifies
four sets of candidate web APIs, each containing a num-
ber of candidate web APIs that can perform the tasks. The
third phase is web APIs selection where the app developer
selects one web API from each set of candidate services
that collectively realize the app.

This process, sometimes referred to as web mashup [1],
can be excessively sophisticated even for experienced app
developers due to the large number of available web APIs
and their wide variety. It has become a major obstacle to
further and broader applications of web of things. Google
has even developed an API Picker4 that assists developers
understand its APIs and select appropriate ones.
However, such assistance tools are still too complicated
for non-experts and do not address the following two
critical issues:

4 https://developers.google.com/maps/documentation/api-
picker

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

W

————————————————

 Lianyong Qi is with the School of Information Science and Engineering,
Qufu Normal University, China. E-mail: lianyongqi@qfnu.edu.cn.

 Qiang He is with the Faculty of Information and Communication
Technologies, Swinburne University of Technology, Australia. E-mail:
qhe@swin.edu.au. (Corresponding author)

 Feifei Chen is with the School of Information Technology, Deakin
University, Australia. E-mail: feifei.chen@deakin.edu.au.

 Xuyun Zhang is with the Department of Computing, Macquarie
University, Australia, 1010. E-mail: xuyun.zhang@mq.edu.au.

 Wanchun Dou is with the State Key Laboratory for Novel Software
Technology, Department of Computer Science and Technology, Nanjing
University, China, 210023. E-mail: douwc@nju.edu.cn.

 Qiang Ni is with the School of Computing & Communications, Lancaster
University, UK. E-mail: q.ni@lancaster.ac.uk.

* Correspondence should be address to: Qiang He.

2 IEEE TRANSACTIONS ON BIG DATA, MANUSCRIPT

(1) In the web APIs discovery phase, the app developer
needs to perform an intensive manual search over the
web to identify candidate web APIs. This requires the
identification of and visits to a large number of software
vendors’ API websites.

(2) Even if the candidate web APIs can be identified, in
the web APIs selection phase, the app developer needs to
evaluate and verify the compatibility between the candi-
date web APIs, i.e., whether the output of one web API
can be directly fed to the next web API as input without
making significant changes. This requires in-depth anal-
yses of all candidate APIs.

The above operations are often too cumbersome and
time-consuming, especially for non-experts. Thus, there
has a rapid increase in the need for an approach that al-
lows app developers to find web APIs for developing
their apps without having to go through the above cum-
bersome and time-consuming phases individually.

Online web APIs repositories, such as
programmableweb.com and mashape.com provide a
large amount of data about web APIs and allow app
developers to search for web APIs by keywords. This
keyword search method has long been popularised by
web search engines like Google and Bing in locating
information from web documents [2][3], as well as the
databases community in locating information from
databases [4][5][6]. However, none of the existing
keyword search techniques can be directly applied to
effectively address the abovementioned two critical issues.

In this paper, we propose WAR (Web APIs Recom-
mendation), a novel approach to web APIs recommenda-
tion that assists app developers in searching for multiple
compatible web APIs based on keyword search. As
shown in Figure 1, WAR integrates and automates the app
planning, web APIs discovery and web APIs selection opera-
tions, offering a novel data-driven approach for building
apps. It allows app developers to search for multiple ap-
propriate and compatible web APIs by entering only a
few keywords that represent the required tasks for the

app. WAR runs on a directed data graph, where web
APIs are modeled as nodes connected by edges repre-
senting whether the web APIs are compatible. Given a
set of keywords, WAR returns subgraphs of the data
graph that represent diversified solutions to target app.
Each solution includes the web APIs that perform the
app tasks, the bridging web APIs (if any) needed how-
ever not specified by the keywords, and the composabil-
ity of those web APIs, i.e., whether and how they can be
integrated.

An app developer, without having to manually dis-
cover and evaluate candidate web APIs from the web,
can easily use WAR to find the web APIs needed to
build the interview app depicted in Figure 1. Suppose
the app developer would like this app to be able to rec-
ord voices, recognize speeches from voice recordings,
translate speech transcripts and synchronize translated
speech transcripts online. Using WAR, the app develop-
er only needs to enter the keywords that describe those
app tasks: voice recording, speech recognition, document
translation and file synchronization. WAR will take those
keywords, search its web API repository, and return
diversified app solutions that consist of different sets of
compatible web APIs. The app developer can select one
of the app solutions that best suits their needs and im-
plement the app according to the selected solution.
WAR can find an app solution even when the app de-
veloper is not able to provide all the keywords for de-
scribing the app tasks. For example, an app developer
enters three keywords voice recognition, document transla-
tion, and file synchronization, hoping to build an inter-
view app. However, this app requires a speech recognition
web API that succeeds the voice recording web API and
precedes the document translation web API. WAR can
automatically identify the missing speech recognition web
API and provide the app developer with a complete app
solution. This way, WAR can save app developers a lot
of time and efforts for finding out what web APIs are
needed and can be used to implement their apps.

App Process

Task 1:
voice

recording

Task 2:
speech

recognition

Task 3:
document

translation

Task 4:
file

synchronization

v1,1

candidate
web APIs

{v1,1, v1,2, ...}
1

.
a

p
p

 p
la

n
n

in
g

Functional
Requirements

2. web APIs discovery

3. web APIs selection

App Implementation

WAR
candidate
web APIs

{v4,1, v4,2, ...}

v2,4 v3,2 v4,3

Figure 1. An example interview app. (Note: Here, we assume that all four app tasks are implemented by remote web APIs, which is not

always necessary.)

LIANYONG QI ET AL.: A STRUCTURAL BALANCE THEORY-BASED E-COMMERCE RECOMMENDATION APPROACH OVER BIG RATING DATA 3

In summary, we make the following main
contributions:

(1) We propose a novel data-driven approach for

efficiently building apps by integrating and

automating the app planning, web APIs discovery

and web APIs selection operations and relieving app

developers of the detailed knowledge of potentially

enormous candidate web APIs for building their

target apps.

(2) We propose a web API correlation graph where web

APIs are modeled as nodes and their compatibility as

edges. This correlation graph is built based on

extensive data about web APIs’ compatibility
obtained from mining online software repositories.

(3) Based on the API correlation graph, we model app

developers’ queries for web APIs as minimum group
Steiner tree problem and solve it with dynamic

programming technique to recommend diversified

solutions.

(4) We conduct experiments on a dataset that contains the

functional information about 18,478 real-world web

APIs and 6,146 real-world apps crawled from

programmableweb.com, to evaluate the usefulness

and efficiency of WAR.

The rest of paper is organized as follows. Section 2

presents the API correlation graph. Section 3 formulates

the research problem. Section 4 introduces how WAR

answers keyword queries for app solutions based on the

API correlation graph. Section 5 evaluates WAR with

experimental results. Section 6 reviews the related work.

Section 7 concludes the paper.

2 WEB API CORRELATION GRAPH

Many web apps developed with web APIs have been

published on many of the online software repositories.

For example, a total number of 6,146 web apps have been

developed and published on programmableweb.com.

Such apps provide valuable information about their con-

stituent web APIs’ compatibility. For example, a web app

{api1, api2} published on programmableweb.com indicates

that api1 and api2 are compatible because its developer

has verified their compatibility and successfully integrat-

ed them into the web app. Such compatibility information

allows a web API correlation graph to be built through

connecting compatible web APIs mined from the online

software repositories. Suppose another published web

app {api2, api3} in addition to {api1, api2}. In the correlation

graph, api1 is connected to api2 and api2 is connected to api3.

As more APIs are included, the correlation graph will

grow larger and denser, offering a solid base for queries

for building apps.

WAR does not stop other methods from being

employed to evaluate and verify the web APIs to be

included into the correlation graph. It runs any

correlation graphs that fulfill the requirements specified

by the following definitions:

DEFINITION 1. Nodes: For each web API in the reposito-
ry, correlation graph G has a corresponding node v. Each
node in G contains one or multiple keywords k1, …, kn that
represent the functions offered by the corresponding API.

In the remainder of this paper, we will speak
interchangeably of a web API and its corresponding node
in G, both denoted as v. Please note that voice recognition
has two terms, however is considered as one keyword,
not two. Please also note that the issues of synonymy,
word inflections and polysemy are handled with
automatic query expansion techniques [7]. It is, however,
out of the scope of this paper.

DEFINITION 2. Edges: For each pair of compatible v1
and v2, the correlation graph contains an edge e(v1, v2)
between v1 and v2. e(v1, v2) is directed, pointing from v1 to
v2 if v2 can be the succeeding node of v1 when they are
integrated. An edge e can be bidirectional if v1 can also be
the succeeding node of v2. Moreover, each edge e(vi, vj) in
E is assigned a weight wi,j (wi,j = wj,i holds here) to indicate
the total times that vi and vj have ever been invoked sim-
ultaneously before by all users.

DEFINITION 3. Correlation Graph: A correlation graph
is represented by G(V, E) where V and E denote its sets of
nodes and edges, respectively.

According to Definition 2, relevant web APIs in the
same domain are connected, either directly or indirectly,
forming a connected correlation graph. However, a web
API repository might contain APIs in different domains,
e.g., voice recognition and sunset times query, which belong
to different correlation graphs. It is possible that a API
repository has multiple disconnected correlation graphs.
However, an app developer usually will not enter entirely
irrelevant keywords that belong to two domains. Thus, in
this research, we do not consider such keyword queries.

To answer keyword queries for building apps (as will
be detailed in Section 4), WAR prebuilds an inverted in-
dex for G. For each keyword in G, the nodes covering the
keyword are stored in this index. For example, if nodes v1,
v5 and v8 cover keyword k6, there is V(k6) = {v1, v5, v8}. This
way, given an individual keyword k, WAR can easily find
all the web APIs that can perform the task described by k.

3 PROBLEM FORMULATION

Given a correlation graph G and a keyword query Q con-
taining l (l 2) keywords (Q = {k1, …, kl}), the problem of
answering the query over G consists of two steps: (1) to
find an answer tree, denoted as T(Q) in G, containing con-
nected nodes that cover all the keywords in Q; (2) to in-
duce the final answer based on the T(Q).

Consider the example in Figure 2. The graph in Figure
2 is part of a correlation graph G. It contains 14 nodes
(web APIs), i.e., v1, …, v14 covering 14 keywords (func-
tions), including k1, …, k14. The notation v1{k1} indicates
that v1 offers k1. Note that v2{k1, k4} indicates that API v2 is
able to offer two functions, k1 and k4, which is allowed by
WAR. Edge e(v1, v10) and weight w1,10 = 2 indicate that v1
and v10 are compatible and have been integrated twice in
the past. Note that other edges and weight values are
omitted to ensure the concision of Figure 2.

4 IEEE TRANSACTIONS ON BIG DATA, MANUSCRIPT

Figure 2. API correlation graph: an example

The app developer enters three keywords {k1, k2, k3} to

query a set of web APIs as an app solution that performs

tasks described by {k1, k2, k3}. We can see that v1 and v2

contain k1, v3 and v4 contain k2, v5 and v6 contain k3. Given

query Q{k1, k2, k3}, we are looking for an answer tree that

connects one node from {v1, v2}, one node from {v3, v4} and

one node from {v5, v6}. This answer tree will need to con-

nect nodes that do not cover any of k1, k2 and k3, e.g., v10,

v11, v12 and v13. Thus, it is a Steiner tree [8], formally de-

fined below:

DEFINITION 4. Steiner Tree. Given a graph G = (V, E)

andV' V , T is a Steiner tree of V’ in G if T is a connect-

ed subtree in G that covers all nodes in V’.
Using the inverted index introduced in Section 2, we

can identify the groups of nodes in G corresponding to

individual keywords in Q ={k1, …, kl}, denoted as V1, …,
Vl where Vr (1 ≤ r ≤ l) is the set of nodes in G that cover kr

(1 ≤ r ≤ l). The problem is now to find a group Steiner tree,

formally defined below:

DEFINITION 5. Group Steiner Tree: Given a graph G =

(V, E) and groups V1, …, Vl V, where Vi∩Vj = Ø, Vi,

Vj (0 ≤ i, j ≤ l and i≠j), T is an group Steiner tree of V1, …,
Vl in G if T is a Steiner tree that contains exactly one node

from each group Vr (1 ≤ r ≤ l).

In response to a query, there are usually multiple

group Steiner trees. WAR aims to find the minimum group

Steiner tree with the minimum number of nodes, includ-

ing keyword nodes, i.e., nodes containing the query key-

words, and bridging nodes, i.e., nodes that do not contain

the keywords but are necessary to connect the keyword

nodes. This optimization objective is employed because

the solution will require the fewest web APIs. This poten-

tially simplifies the app developer’s web app and reduces
the cost for building the web app. A minimum group

Steiner tree is defined as follows:

DEFINITION 6. Minimum Group Steiner Tree. Given a
set of exact group Steiner trees in G, T1, …, Tn, Ti (0 ≤ i ≤ n)
is the minimum exact group Steiner tree if |Ti| =
min(|T1|, …, |Tn|) where |Ti| (0 ≤ i ≤ n) represents the
cardinality of Ti, i.e., the number of nodes in Ti.

The computation of a minimum group Steiner tree is
already NP-complete [9]. WAR finds the minimum group
Steiner tree with the dynamic programming (DP) tech-
nique, which is to be discussed in the next section.

4 WAR MECHANISMS

This section discusses the DP-based search method WAR
which is employed to answer keyword queries. In this
section, we denote all the keywords entered by the app
developer in query Q as K, e.g., K = {k1, k2, k3} in Figure 2,
the minimum group Steiner tree rooted at node v and
containing all keywords in K’ as T(v, K’) where K’ K and
K’≠Ф . Given a query Q, WAR finds Tmin(v, K), the mini-
mum group Steiner tree rooted at v and containing all
keywords in K.

4.1 Finding Optimal Solution

Dynamic programming technique solves a given complex
optimization problem by breaking it down into a collec-
tion of simpler subproblems. Each of the subproblems is
solved only once and the corresponding result is stored.
Through examining and combining previously solved
subproblems, a dynamic programming algorithm can
solve the given complex optimization problem exactly. In
this research, a minimum group Steiner tree T(v, K) of
height h (the length of the longest downward path from
the root of the group Steiner tree to any leaf) can be found
by expanding the group Steiner trees of heights h = 0,
1, …, that cover K’ K [10]. Let T(v, K’) be a state in the
dynamic programming model, and w(T(v, K’)) be the
weight of T(v, K’), i.e., the total number of the nodes in
T(v, K’), the state-transition equation in the dynamic pro-
gramming model is:

min((

kv V

w T

v, K’)) = 1 IF |K’|=|{k}|=1 (1)

 w(Tmin(v, K’)) = min(w(Tg(v, K’)), w(Tm(v, K’))) (2)

 w(Tg(v, K’)) =
()

min
u N v

{w(Tmin(u, K’)+v)} (3)

 w(Tm(v, K’)) =
' ' '

1 2
' '
1 2

min
K K K

K K

{w(Tmin(v, K1’)⊕Tmin(v, K2’))} (4)

where N(v) is the set of node v’s neighbors in G, i.e., v ∈
G(V, E) and e(u, v) ∈ E. Formula (1) indicates that the
weight of any tree with only one node is 1. Formula (2)
indicates that T(v, K’) can be obtained through either one
of two operations, tree growth, formally represented by
Formula (3), and tree merging, formally represented by
Formula (4). The tree growth operation generates a new
minimum group Steiner tree Tmin(v, K’) by adding node v
to Tmin(u, K’) rooted at u (one of v’s neighbors). The tree
merging operation generates Tm(v, K’) by merging two
trees both rooted at v, one covering K1’ and the other cov-
ering K2’ such that K’ = K1’ K2’ and K1’ K2’= .

Q{k1, k2, k3} app solutions

v1{k1} v2{k1, k4} v5{k3} v3{k2} v4{k2, k5} v6{k3, k6}

WAR

v10{k10} v11{k11} v12{k12}

v14{k14}
●

● ● ●

● ● ● ● ● ●

v13{k13}
●

e(v1, v10)

w1,10=2 v7 {k7}
● ●

v8 {k8}
●

v9 {k9}

app developer

LIANYONG QI ET AL.: A STRUCTURAL BALANCE THEORY-BASED E-COMMERCE RECOMMENDATION APPROACH OVER BIG RATING DATA 5

Figure 3. Tree growth and tree merging operations.

Figure 3 illustrates the tree growth and tree merging op-
erations. In the left part of Figure 3, u1, u2 and u3 are the
neighboring nodes of node v. Tree T(v, K’) is generated by
selecting the tree with the minimum weight from the
three trees generated from adding v to T(u1, K’), T(u2, K’)
and T(u3, K’). The right part of Figure 3 shows two trees
rooted at node v and containing K1’ and K2’, i.e., Tmin(v, K1’)
and Tmin(v, K2’) can be merged into a larger tree that is root-
ed at node v and contains more keywords, i.e., K1’∪K2’.

Through repeating the tree growth and tree merging op-
erations, the trees are continuously expanded until K’ = K,
meaning the minimum group Steiner tree is found. Based
on Formulas (1)-(4), WAR employs Algorithm 1 to answer
a query Q. Here, “1 + T” means the number of nodes of
tree T plus one.

Algorithm 1: MST (G, K)

Input:
G(V, E): the correlation graph
K = {k1, k2, …, kl}: query keywords in Q

Output:
Tmin(v, K): a minimum group Steiner tree rooted at v
and containing all keywords in K

1 Let QT be a queue in ascending order of number of
tree nodes

2 QT = Ф
3 for each v ∈ V do
4 if v contains any nonempty keyword set K’ K
5 then enqueue Tmin(v, K’) into QT
6 Min_count = ∞ // number of nodes of minimal Stei-

ner Trees
7 while QT≠Ф do
8 dequeue QT to Tmin(v, K’)
9 if K’ = K

10 then if count (Tmin(v, K’)) ≤ Min_count
11 then Min_count = count (Tmin(v, K’))
12 return Tmin(v, K’)
13 else break
14 else
15 for each u ∈ N(v) do
16 if 1 + Tmin(u, K’) < Tmin(v, K’)
17 then Tmin(v, K’) = 1 + Tmin(u, K’)
18 enqueue Tmin(v, K’)
19 update QT
20 K1’ = K’
21 for each K2’ s.t. K1’∩K2’ = Ф do
22 if Tmin(v, K1’)⊕Tmin(v, K2’) < Tmin(v, K1’∪K2’)
23 then Tmin(v, K1’∪K2’) = Tmin(v, K1’)⊕Tmin(v, K2’)
24 if K1’∪K2’ = K
25 then if count (Tmin(v, K)) ≤ Min_count
26 then Min_count = count (Tmin(v, K))
27 return Tmin(v, K)
28 else brea
29 else enqueue Tmin(v, K1’∪K2’)
30 update QT

Algorithm 1 maintains a queue QT that stores and
ranks the generated trees in ascending order by the num-
ber of their constituent nodes. It uses three operations, the
enqueue operation that inserts a tree into queue QT, the
dequeue operation that removes the top tree in queue QT,
and the update operation that ranks the trees in QT in as-
cending order by the total number of the nodes in the
trees. Lines 3-5 locate nodes that contain individual key-
words in K. For each node v in G, v ∈ V, if v contains any
keywords K’ in K, K’ K, the algorithm enqueues tree T(v,
K’) into QT. At this stage, for each such tree in QT, there is
|T(v, K’)| = 1 because there is only one node in each of
the trees in QT. Lines 15-19 implement the tree growth
operation (Formula 3); Lines 20-30 denote the tree merging
operation (Formula 4) of a tree. If a tree in QT contains all
the keywords in K, the tree is outputted.

Next, we utilize the example in Figure 4 (Figure 4(a) is
the same as Figure 2) to demonstrate the execution pro-
cess of Algorithm 1 in response to Q containing K = {k1, k2,
k3}, which are highlighted in bold. The trees rooted at the
nodes containing k1 or k2 or k3, i.e., v1, v2, v3, v4, v5, v6 are
enqueued first, which are shown in Figure 4(b). These six
trees cannot be merged, but the tree growth operation can
be performed on them. Specifically, the edges connecting
any one of v1, …, v6 are added to the corresponding trees
and the generated trees are enqueued, which are shown
in Figure 4(c). The trees in Figure 4(c) will not be merged
as the tree merging operation cannot increase the number
of query keywords covered by the generated trees. For
example, the first tree {v10, v1} and third tree {v10, v2} in
Figure 4(c) can be merged into a new tree rooted at node
v10, i.e., {v10, v1, v2}. However, this new tree does not cover
more query keywords than trees {v10, v1} and {v10, v2}, as
they all contain k1 only. Thus, the tree growth operation is
performed on the trees in Figure 4(c). The results are
shown in Figure 4(d). Here, note that some trees after the
tree growth operation are of no use and hence are not
shown in Figure 4(d). For example, the second tree {v7, v1}
in Figure 4(c) can grow to v10 to generate tree {v10, v7, v1}.
However, the new tree {v10, v7, v1} contains the same que-
ry keyword (i.e., k1) as tree {v10, v1} but has one more node.
The trees in Figure 4(d) are then merged and the results
are presented in Figure 4(e). After that, the trees in Figure
4(e) grow and the results are shown in Figure 4(f). Finally,
after tree merging operations, eight minimal Steiner trees
are found, as presented in Figure 4(g).

Theorem 1 ensures that the returned answer tree is the
one with the minimum number of nodes covering K.

THEOREM 1. The tree returned by Algorithm 1, T(v, K) is
the group Steiner tree with the minimum number of
nodes.

PROOF. This can be proven by contradiction. Let T’(v’, K)
be a tree rooted at v’ with a total number of nodes smaller
than T(v, K). There are |T(v, K) – T’(v, K1’)| < |T(v’, K) –
T’(v’, K2’)|, where “–” is the inverse operation of “+”.
Line 8 in the second last iteration of Algorithm 1 would
dequeue T(v’, K’) – T’(v, K1’) from QT and merge T(v’, K’)
and T’(v, K1’) to reach T’(v’, K’) because QT always has the
tree with the minimum number of nodes at the top to be
dequeued. The tree dequeued from QT in the last iteration

●

v

● u2 ● ● u3 u1
●

●

v

● ●

●

v

● ●

●

v

● ● ●

T(u2, K’)
T(u3, K’)

T(v, K1’) T(v, K2’) T(v, K1’ K2’)

T(u1, K’)

6 IEEE TRANSACTIONS ON BIG DATA, MANUSCRIPT

Figure 4. Minimal Steiner tree generation process.

of Algorithm 1 as the result of Algorithm 1 would be
T’(v’, K). This contradicts with T(v, K’) being returned by
Algorithm 1.

We now analyze, in the worst-case scenario, the com-
plexity of Algorithm 1 answering a query Q with a set of
keywords K = {k1, …, kl} on a data graph G = (V, E), where
|V| = n and |E| = m. The complexity of finding all solu-
tions is the same as finding the first solution, because the
worst-case scenario for finding the first solution is to
search all possible trees which is the same as finding all
solutions. Thus, we analyze the complexity of Algorithm
1 for finding the first solution below.

Let T(v, K’) be the tree with the minimum number of
nodes of all trees rooted at v containing a subset of key-
words K’ K. There are 3 major components in Algo-
rithm 1, i.e., queue maintenance, tree growth and tree
merging.

Queue maintenance. In total, there are 2l subsets of K.
Thus, the maximum length of QT is 2ln, i.e., every tree
rooted at any v ∈ V containing any K’ K is enqueued
into QT. The complexity of enqueue/update operations
and dequeue operations is dependent on the type of the
queue. Here, we employ the Fibonacci Heap, which has
the complexity of O(1) for the enquene/update opera-
tions and O(log2ln) for dequeue operations respectively
[11]. Because Algorithm 1 will enqueue or dequeue any
T(v, k) into/from QT at most once, the complexity of
enqueuing and dequeuing all 2ln trees in QT is O(2ln(l +
logn)).

Tree growth. Lines 15-19 handle the tree growth opera-
tions implementing Eq. (3). The for loop iterates for
|N(v)| times, trying to find the T(u, K’) grown from T(v,
K’) + u with the minimum number of nodes. Here, |N(v)|
is the total number of neighbors of v. Thus, the total time
for Algorithm 1 to execute the comparison operations in
lines 15-19 is O(2l ()

v V
| N v |

) = O(2lm).

Tree merging. Lines 20-30 handle the tree merging opera-

tions implementing Eq. (4). For each T(v, K1’) dequeued in

line 8, the for loop in lines 20-30 enumerates every K2’
that fulfils K1’∩K2’ = Ø, where K1’, K2’ K. Given | K | =

l, the total number of possible K2’ is 2l-|K2’|. Thus, the total

time for Algorithm 1 to execute the comparison opera-

tions in lines 16-25 is n
1

1
2

l l i
l ,ii

C

 = O(3ln).

Overall, the complexity of Algorithm 1 is O(2ln(l +
logn) + 2lm + 3l). This indicates that the efficiency of Algo-
rithm 1 relies on the number of nodes and edges in the
data graph, and exponentially on the number of query
keywords. In real world problems where l is a small con-
stant, the complexity of Algorithm 1 becomes O(nlogn +
m). We will evaluate it experimentally in Section 5.

4.2 Inducing Final Solution

The minimum Steiner tree T(v, K) obtained by Algorithm
1 in response to keyword query is a subgraph of G. How-
ever, it is not the final solution for the query because
some edges from G that connect T(v, K)’s constituent
nodes in G might be missing from T(v, K). Figure 5 pre-
sents an example, where T(v, K) = {v1, v2, v3}. Suppose
there is an edge in G that connects v1 and v3 in G. Algorithm

● ● ●

v1 v2 v3
(b)

● ● ●

v4 v5 v6

● ● ●

v1 v1 v2
● ● ●

v2 v3 v3
●

v4

● ● ●

v10 v7 v10
● ● ●

v7 v11 v8
●

v11

●

v4
● ● ●

v5 v5 v6
●

v6

●

v8
● ● ●

v12 v9 v12
●

v9

(c)

●

● v10

v1

v13 ●

●

● v10

v2

v13 ●

●

● v11

v3

v13 ●

●

● v11

v4

v13 ●

●

● v12

v5

v14 ●

●

● v12

v6

v14 ●

(d)

●

● v10

v1

v13

●

● v11

v3

●

●

● v12

v5

v14 ●

●

● v12

v6

v14 ●

●

● v10

v1

v13

●

● v11

v4

●

●

● v10

v2

v13

●

● v11

v3

●

●

● v10

v2

v13

●

● v11

v4

●

(e)

(a)

v10{k10} v11{k11} v12{k12}

v14{k14}
●

● ● ●

● ● ● ● ● ●

v1{k1} v2{k1,k4} v5{k3} v3{k2} v4{k2,k5} v6{k3,k6}

v13{k13}
●

v7 {k7}
● ●

v8 {k8}
●

v9 {k9}
e(v1, v10)

●

● v10

v1

v13

●

● v11

v3

●

●

● v12

v5

v14 ●

●

● v12

v6

v14 ●

●

● v10

v1

v13

●

● v11

v4

●

●

● v10

v2

v13

●

● v11

v3

●

●

● v10

v2

v13

●

● v11

v4

●

(f)

v14 ● v14 ● v14 ● v14 ●

●

● v10

v1

v13

●

● v11

v3

●

v14 ●

●

● v12

v5
●

● v10

v1

v13

●

● v11

v4

●

v14 ●

●

● v12

v5
●

● v10

v2

v13

●

● v11

v3

●

v14 ●

●

● v12

v5
●

● v10

v2

v13

●

● v11

v4

●

v14 ●

●

● v12

v5

●

● v10

v1

v13

●

● v11

v3

●

v14 ●

●

● v12

v6
●

● v10

v1

v13

●

● v11

v4

●

v14 ●

●

● v12

v6
●

● v10

v2

v13

●

● v11

v3

●

v14 ●

●

● v12

v6
●

● v10

v2

v13

●

● v11

v4

●

v14 ●

●

● v12

v6

(g)

LIANYONG QI ET AL.: A STRUCTURAL BALANCE THEORY-BASED E-COMMERCE RECOMMENDATION APPROACH OVER BIG RATING DATA 7

Figure 5. Inducing final solution

1 did not include this edge in T(v, K) because T(v, K) must

not contain cycles. This missing edge might be useful for

the app developer and thus needs to be included in the

final solution. To induce the final solution based on T(v,

K), WAR inspects every pair of web APIs in T(v, K) that

are not connected. To increase its efficiency, WAR main-

tains a neighbor set for each node in G. A neighbor set

Vn(v) contains all v’s neighbors in G.

5 EXPERIMENTS

We have conducted a range of experiments on 18,478

real-world web APIs and 6,146 real-world web apps to

evaluate the usefulness and efficiency of WAR.

5.1 Dataset and Deployment

We crawl from programmableweb.com a PW dataset con-

taining information on 18,478 web APIs and 6,146 web

apps. Based on the information, a correlation graph G is

built. Keywords are used on programmableweb.com to

describe the functions of the web APIs. Accordingly, we

label the nodes in the correlation graph with those key-

words. Two nodes are linked in G if they are both used by

any of the 6,146 web apps with one of them succeeding or

preceding the other directly. For example, suppose a web

app in the dataset uses three consecutive web APIs, v1, v2

and v3. Two directional edges will be included in G, one

pointing from v1 to v2 and the other from v2 to v3, but none

from v1 to v3. In total, there are 7006 edges in G. This way,

the edges in G accurately describe the composability of

the 18,478 real-world web APIs used by the 6,146 real-

world web apps.

A total of 6,146 queries are created, one corresponding

to each of the 6,146 web apps. For each query, the query

keywords are extracted from the web APIs used by the

corresponding web app. This way, we can evaluate the

usefulness of WAR with its success rate in finding those

6,146 web apps from G. In real-world applications, an app

developer rarely enters a large number of keywords to

search for web APIs. This is evidenced by the web apps in

the PW dataset. Of all the 6,146 web apps we crawled

from programmableweb.com, only 223 (3.6% of all) have

more than 6 keywords. Thus, we create queries with up to

6 query keywords. Three sets of experiments are conduct-

ed, i.e., set A, set B, set C. In experiment set A, the key-

words in a query correspond to all the keywords of a web

app. By testing 6,146 queries, we inspect whether WAR

can find the web APIs needed for building each of the

6,146 web apps on programmableweb.com with all the

keywords. In experiment set B, each query contains two

keywords corresponding to the first and the last key-

words of a web app. This way, we inspect the ability of

WAR to find solutions exactly the same as or similar to

the 6,146 web apps with only two keywords. In experi-

ment set C, a number of keywords are selected randomly

from G to generate each query. This allows us to evaluate

the ability of WAR to find web app solutions more com-

prehensively with more keyword combinations. This way,

we evaluate WAR’s ability to find a complete solution
through connecting keyword nodes and necessary bridg-

ing nodes.

As discussed in Section 3, WAR finds the minimum

group Steiner tree in response to a query. Thus, WAR

might be able to find solutions with fewer web APIs than

the corresponding web apps in the dataset. Such solutions

are considered new solutions. This ability allows WAR to

find the simplest app solutions, which is usually prefera-

ble. Accordingly, we compare the number of nodes in the

solutions with the corresponding web apps in the PW

dataset. Besides, a feasible solution requires the mutual

compatibility between the web APIs in the solution, i.e.,

the corresponding nodes are connected. In this regard, we

compare the connected rate of the solutions returned by

each of the approaches. It is the ratio of the solutions

whose nodes are connected.

To evaluate the efficiency of WAR, we measure the

computation time taken by WAR to answer queries. Fast

responses will allow app developers to trial different

keyword combinations to find suitable solutions for their

apps.

WAR offers a new data-driven approach for finding

multiple web APIs. Thus, we compare WAR with four

baseline approaches:

 Random: This approach randomly selects a set of

nodes from G that collectively cover the query key-

words, and then finds a minimum spanning tree to

connect the selected nodes with the fewest nodes

among all spanning trees.

 Greedy: This approach randomly selects a set of nodes

from G that collectively cover the query keywords. It

then takes those nodes as the initial root nodes and

continuously grows the trees until the selected nodes

are interconnected. While the trees grow, a greedy

heuristic is applied so that the neighbor containing the

most query keywords is selected first.

 SSR [12]: Given the input text description and the re-

quired number of web APIs N for a web app, this ap-

proach first finds N sets of web APIs of N different cat-

egories that are most similar to the text description.

Then, it selects all the solutions with the highest score

calculated based on the web API similarity, popularity

and correlation degree.

 SPR_CR [13]: This approach employs a methodology

similar to SSR. There are three differences. The first is

that SPR_CR mainly focuses on the popularity of web

APIs. Second, it determines whether two web APIs

would be recommended based on their co-occurances,

which may lead to redundant APIs. Finally, it returns

only one solution.

v1 ●

v2
●

v3 ●

8 IEEE TRANSACTIONS ON BIG DATA, MANUSCRIPT

The experiments were conducted on a machine with
2.60 GHz CPU and 8.0 GB RAM. The software configura-
tion environment is: Windows 10 and Python 3.6. Each
experiment was repeated 50 times and their average ex-
periment results were adopted. The source code and da-
taset used in the experiments are available at
https://github.com/qlyseven/source-code.

5.2 Experiment Results

Concretely, six profiles are tested and compared to vali-
date the feasibility of our proposal.

Profile-1: Number of web APIs returned by three
approaches.

In this profile, we compare the average number of

nodes (i.e., web APIs) in the solutions found by the five

approaches for each set of query keywords. The number

of query keywords, i.e., l, is varied from 2 to 6. The results

are shown in Fig.6.

Fig.6(a) compares the number of web APIs in the solu-

tions found by the five approaches in experiment set A. It

shows that the solutions returned by the Random, Greedy

and SPR_CR approaches consist of more nodes than those

by the WAR and SSR approaches. This is because (1)

when the Random and Greedy approaches grow a tree, a

random or greedy strategy is applied so that they are often

trapped within local optimua; (2) the SPR_CR approach

may generate redundant web APIs. Therefore, the num-

ber of returned nodes is often large. WAR can find solu-

tions with the fewest nodes, which is usually preferable.

This indicates the ability of WAR to find the optimal app

solutions.

Fig.6(b) shows the results in experiment set B where

similar results can be observed as in Fig.6(a). Fig.6(b)

shows the ability of WAR to recommend light-weight app

solutions when app developers’ requirements for their
apps are uncertain. Overall, the results presented in Fig.6

show that WAR can find light-weight app solutions with-

out having to include unnecessary nodes. This is very

important because otherwise app developers need to

spend a lot time on pruning unnecessary nodes in the app

solutions. This may violate the connectedness of the re-

maining nodes in the app solution. In most cases, app

developers will find app solutions that contain too many

unnecessary nodes useless.

In Fig.6(c), as l increases, the sizes of the solutions

found by the WAR, Greedy and Random approaches in-

crease compared to Fig.6(a) and Fig.6(b). The reason is

that the keywords are randomly selected from G. Thus, a

large number of bridging nodes are needed to construct a

connected tree. In addition, the SPR_CR and SSR ap-

proaches return smaller solutions than the WAR, Greedy

and Random approaches. The reason is that when the

keywords are randomly selected from G, the probability

of finding a set of co-occurrent APIs that collectively cov-

er the keywords declines. This decreases the number of

returned nodes as well as the success rate and connected

rate (see Fig.7 and Fig.8).

Figure 6. Number of web APIs in the solutions found by five ap-

proaches

Profile-2: Success rate of three approaches.

In this profile, we compare the success rates of three

recommendation approaches. Here, a web API recom-

mendation solution is successful iff 1) the web APIs in the

returned solution are compatible; 2) the number of APIs

in the returned solution is not larger than twice the num-

ber of query keywords, i.e., 2l. The value of l is varied

from 2 to 6 here. The success rate is defined in this man-

ner because an app developer usually does not want an

app solution that is overly sophisticated with too many

(a) experiment set A

(b) experiment set B

(c) experiment set C

LIANYONG QI ET AL.: A STRUCTURAL BALANCE THEORY-BASED E-COMMERCE RECOMMENDATION APPROACH OVER BIG RATING DATA 9

Figure 7. Success rate of finding solutions

web APIs. This might not be exactly what every app de-

veloper wants. However, it allows us to compare the abil-

ities of WAR with the Greedy and Random approaches to

find an app solution in a reasonable manner. Please note

that according to the definition of success rate in this pro-

file, the success rates of the SPR_CR and SSR approaches

are zero because 1) they do not consider the web APIs

compatibility; and 2) their solutions often contain more

than 2l nodes. Thus, their success rates are not included in

Fig. 7.

Figure 8. Connected rate of finding solutions.

Fig.7(a) shows the success rates of the three approach-

es in finding solutions for the 6,146 keyword queries in

experiment set A. We can see that WAR can answer all

the queries regardless of the number of query keywords

with a consistent success rate of 100%. Compared with

WAR, it is much more difficult for the Random and

Greedy approaches to find a successful solution, especial-

ly when l is large. This is indicated by their significantly

lower success rates in the experiments, 26%, 30% and 20%

for Random and 82%, 76% and 68% for Greedy in the ex-

(a) experiment set A

(b) experiment set B

(a) experiment set A

(b) experiment set B

(c) experiment set C

(c) experiment set C

10 IEEE TRANSACTIONS ON BIG DATA, MANUSCRIPT

periments where l = 4, 5 and 6 respectively. Fig.7(b) shows

the results in experiment set B. Again, WAR manages to

obtain a 100% success rate consistently across all different

cases in the experiments, versus 77% and 96% obtained

by the Random and Greedy approaches on average. Simi-

lar results are shown in Fig.7(c). This demonstrates the

ability of our proposed WAR to identify necessary bridg-

ing web APIs to find a complete app solution. The results

presented in this profile demonstrate the usefulness of

WAR - it can be used for app developers to find web APIs

from G for building any of the 6,146 web apps in the PW

dataset.

Profile-3: Connected rate of five approaches.

The connected rate (%) of different approaches are
presented in Fig.8 with l increasing from 2 to 6. As Fig.8(a)
shows, the connected rates of the WAR, Greedy and Ran-
dom approaches are always 100% as these three ap-
proaches grow trees which are always connected.
SPR_CR considers web APIs’ functionalities, popularity
and co-occurrences simultaneougly. As a result, its con-
nected rate is lower than 100% in most cases. SSR takes
APIs correlation degree as its major consideration and
does not consider web APIs’ compatibility directly. Thus,
its connected rate is very low. Similar results are shown in
Fig.8(b). In Fig.8(c), the keywords are randomly selected
from G. Therefore, for the SPR_CR and SSR approaches,
the probability of finding a set of co-occurrent APIs col-
lectively covering the keywords declines. As a result, the
connected rates decrease accordingly. The results pre-
sented in this profile demonstrate that the WAR approach
can always guarantee the compability of the returned
web APIs.

Profile-4: Number of web APIs in solutions found
by WAR and corresponding success rate.

The usefulness of WAR is not limited to only those
6,146 web applications. To demonstrate this, we have also
selected random keywords to generate keyword queries
to find out whether WAR can handle other queries. The
results are presented in Fig.9 with l increasing from 2 to 6.
As demonstrated in Fig.9(a), the app solutions to queries
with random keywords contain more web APIs than
those to queries generated based on the web applications
in the PW dataset. The web applications in the PW da-
tasets are real-world web applications. The web APIs
used in each of those web applications are closely related
to each other. They belong to the same domain or similar
domains. Thus, they are close to each other in G. On the
contrary, when random keywords are selected to generate
queries, their relevance are not ensured. Thus, the web
APIs that contain those keywords can be far away from
each other in G. As a result, more bridging nodes are
needed to connect the corresponding keyword nodes in G.
This leads to more web APIs in the app solutions com-
pared to the solutions to the queries generated based on
the web applications in the PW dataset, as demonstrated
in Fig.9(a). Fig.9(b) shows the success rate achieved by
WAR in response to those two different types of queries.
Not surprisingly, WAR achieves a consistent success rate

Figure 9. Number of web APIs in solutions found by WAR in re-

sponse to queries with random keywords and corresponding success

rate.

of 100%. This indicates that WAR can always connect all
the keyword nodes in G to find an app solution despite
the number of necessary bridging nodes, zero or many.

Profile-5: Computation time of five approaches.
In this profile, we compare the efficiency of the three

approaches, measured by the computation times taken to
find app solutions in response to app developers’ key-
word queries.

Fig.10(a) shows the results of experiment set A. As
demonstrated, the time cost of SPR_CR stays approximate-
ly stable with the growth in l as SPR_CR is not correlated
with l. The time cost of SSR increases linearly with l as the
candidate web APIs need to be divided into l categories
according to their functionalities in the first step of SSR;
the Random and Greedy approaches are much faster than
WAR, taking significantly less time to find an app solu-
tion. When l increases, all WAR, Greedy and Random
approaches take more time to find an app solution. The
increase in the computation of WAR is more significant
than the Random and Greedy approaches. This confirms
with the complexity analysis at the end of Section 4.1.
When l increases, the number of possible solutions in-
creases exponentially. Finding the optimal solution with
the fewest web APIs from such tremendous web APIs is
extremely time consuming. Thus, WAR takes a lot of time
to respond to app developers’ queries when l is large.

(a) number of nodes

(b) success rate

LIANYONG QI ET AL.: A STRUCTURAL BALANCE THEORY-BASED E-COMMERCE RECOMMENDATION APPROACH OVER BIG RATING DATA 11

Figure 10. Computation time of five approaches

In Fig.10(b), only two keywords (i.e., the first keyword
and last keyword) are entered regardless of l. Therefore,
the time costs of the Greedy, Random, SSR and SPR_CR
approaches stay stable as l increases. The computational
time of WAR increases when l increases as more bridging
nodes are needed to connect the keyword nodes.

The results in Fig.10(c) show that WAR takes more
time to find a solution when the query keywords are ran-
domly selected. The reason is the same as why WAR
needs to find more web APIs to constitute an app solution,
which is discussed above with respect to Fig.10(a) and
Fig.10(b). Compared to the query keywords in experi-
ment sets A and B, randomly-selected keywords are far

Figure 11. Other performances of five approaches

away from each other in G. Thus, more bridging nodes
are needed to connect the keyword nodes. Accordingly,
the number of candidate solutions increases, which re-
quires WAR to evaluate more candidate solutions to find
the optimal one. This is not a significant issue because in
real-world cases, app developers would not need to build
apps that require completely irrelevant web APIs, e.g., a
hotel booking web API and an image processing web API.

Profile-6: Other performance comparisons of five
approaches.

In this profile, we evaluate and compare the five ap-

(a) experiment set A

(b) experiment set B

(c) experiment set C

(a) Precision

(b) Recall

(c) F-score

12 IEEE TRANSACTIONS ON BIG DATA, MANUSCRIPT

proaches by the metrics of Precision, Recall and F-score.
The experimental results are obtained from experiment
set A, where l varies from 2 to 6 and 50 real-world web
apps are randomly selected from the PW dataset for ex-
periment. The results are shown in Fig. 11.

Fig.11(a) indicates that WAR outperforms the other
four approaches in precision. This is because WAR can
guarantee the minimum number of nodes in the solution
("true positive" nodes and "false positive" nodes) when a
query is executed, which leads to a higher recommenda-
tion precision. In Fig. 11(b), the recall value of WAR is
worse than that of SPR_CR because SPR_CR often returns
more nodes than WAR and hence often a higher recall
value. However, the recall value of WAR is higher than
those of SSR, Greedy and Random. Given the precision
and recall values, the F-score values achieved by the five
approaches are presented in Fig. 11(c). It shows that WAR
outperforms other four approaches in F-score. This indi-
cates that WAR achievces the highest overall performance.

6 RELATED WORK

Some recent work has advanced the research on web API
correlation and laid the groundwork for WAR. Zhong et
al. proposed a method in [14] that constructs profiles for
web APIs based on historical information about how web
APIs are used in web apps. Gu et al. proposed in [15] a
method that discovers the correlation among web APIs.
Through discourse analysis of web apps’ functional speci-
fications, the semantic correlation between web APIs can
be learned. A method named Targeted Reconstructing
Service Descriptions (TRSD) is proposed in [16] that dis-
covers information about possible application scenarios
for web APIs for enriching the description of web APIs. In
[17], Cao et al. clustered web APIs into different categories
to discover the correlations. Based on the clustering results,
similar web APIs can be recommended with collaborative
filtering techniques. Liang et al. [18] also attempted to en-
rich the description of web APIs. They applied a Random
Walk with Restart model to find keywords from structural
and semantic information on web APIs for describing them.

In recent years, many researchers have investigated
the recommendation of web APIs based on the correlation
between web APIs. To name a few, Huang et al. proposed
a network model that describes the interactions among
web APIs [19]. They employed a link prediction method
based on rank aggregation to predict the evolution of the
interactions over time. This way, web APIs are recom-
mended in pairs and their compatibility is ensured. The
major limitation of this method is that web APIs can only
be recommended in pairs. The authors later improved
their method so that web APIs can be recommended in
groups if they constitute a community [20]. Each web API
clique is considered a group of web APIs that are poten-
tially useful together. However, this recommendation
method is static because it is entirely based on the topo-
logical features of the web API network. App developers
cannot search for multiple web APIs that specifically and
collectively fulfill their objectives. Zhong et al. proposed
in [21] a method that exploits latent Dirichlet allocation to
extract web API evolution patterns over time. Then, fol-
lowing a simple “the more popular, the better” rule, pop-

ular web APIs in popular domains are recommended. To
find web APIs that are not popular but potentially useful
for a given partial web app, Rahman et al. proposed a
recommendation method based on matrix factorization in
[22]. This method as well as the one proposed in [21] suf-
fers from the same major limitation as the one proposed
in [20]. App developers can only receive recommenda-
tions passively. They cannot search for web APIs that
they need for building their own web apps.

The authors of [23] also proposed a correlation graph
for describing web APIs and their correlations, where the
compatibility between two web APIs is evaluated
through matching the tag-based semantics of their input
and output. Then, given a set of web APIs preselected by
an app developer, web APIs that might be of the app de-
veloper’s interest are recommended to the app developer.
The major limitations of this approach are twofold. First,
their correlation graph is not entirely reliable because tag-
based semantics can be easily misinterpreted. Suppose
two web APIs api1 and api2, api1 for booking drive test ap-
pointments and api2 for querying sunset time. When a
drive test appointment is booked, api1 generates a location
and a time as output. To query the sunset time, api2 re-
quires a location and a time. Accordingly, it can be con-
cluded that api1 and api2 are compatible and must be
linked in the correlation graph. However, in real-world
applications, the edge between api1 and api2 is useless be-
cause it is meaningless to integrate api1 and api2. A corre-
lation graph built based on such semantic information
will include many such useless edges that significantly
impact the usefulness of the answers to keyword queries.
The second major limitation of their method is that app
developers are navigated through web APIs based on
their preselected web APIs step by step. It focuses on the
prediction of web APIs that might be of app developers’
interest rather than finding web APIs that app developers
actually need.

In [24], the authors assume there are a group of func-
tional-qualified but quality-varied candidate services for
each task requested by a user. A quality-optimal service
composition solution is then produced when a user re-
quires multiple tasks to execute his/her business applica-
tion while guaranteeing the privacy-preservation of ser-
vice quality. This work focuses more on composite service
quality optimization with privacy-preservation instead of
functional-qualified and compatible web APIs recom-
mendations. In [25], the authors propose a novel ap-
proach called combinatorial auction for service selection
(CASS) to support effective and efficient service composi-
tion by considering both the complementarities between
services and the competition among service providers.
However, this approach does not consider the compatibil-
ity between different web services or APIs. In [26], the
composability of two services is evaluated by the match-
ing degree between the inputs and outputs of the two
services. Concretely, if service A’s outputs match the in-
puts of service B, the two services are regarded as com-
posable and compatible. However, similar to [23], this
I/O matching-based service compatibility measurement
approach may include many useless edges in the service

LIANYONG QI ET AL.: A STRUCTURAL BALANCE THEORY-BASED E-COMMERCE RECOMMENDATION APPROACH OVER BIG RATING DATA 13

correlation graph and impact the usefulness of the an-
swers to keyword queries.

In [12], an approach named SSR is proposed. Given

the input text description and the required number of

web APIs N for a web app, this approach first finds N sets

of web APIs of N different categories that are most similar

to the text description. Then, it selects all the solutions

with the highest score calculated based on the web API

similarity, popularity and correlation degree. In [13], an

approach named SPR_CR is proposed. This approach

employs a methodology similar to SSR. There are three

differences. The first is that SPR_CR mainly focuses on

the popularity of web APIs. Second, it determines wheth-

er two web APIs would be recommended based on their

co-occurances. Finally, it returns only one solution. How-

ever, APIs compatibility is not the major focus of these

two approaches; as a result, the success rates and con-

nected rates are not high, which have already been vali-

dated by the experiment results in Profile 2 and Profile 3.

Mining valuable and useful information from online

software repositories has become a popular approach for

increasing the productivity of software development [27].

In recent years, it has been a very active and attractive

field of research on software engineering since the ap-

pearance of centralized online software repositories, such

as app stores [28], SourceForge, GitHub and Google Code

[29]. Online repositories of web APIs, such as program-

mable.com and mashape.com, contain a large amount of

data on SBSs and the web APIs used by those SBSs. Those

data can be mined to uncover useful and helpful infor-

mation about the interactivity between web APIs [30].

Based on information mined from online software reposi-

tories, we proposed a web API correlation graph where

web APIs are modeled as nodes and their compatibility as

edges. Based on this correlation model, WAR employs the

keyword search technique to allow app developers to

search for web APIs for their apps by entering only a few

keywords that represent the required app tasks. WAR

addresses the abovementioned issues and offers a novel

data-driven approach for efficiently building apps.

7 CONCLUSIONS

In this paper, we propose WAR, a novel approach that

integrates and automates the app planning, web API dis-

covery and web API selection operations for building

mobile and web apps based on extensive data mined

from online software repositories. It assists app develop-

ers without detailed knowledge of web APIs in finding

app solutions with only a few keywords that describe the

required app tasks. WAR offers a new data-driven ap-

proach for building apps and can significantly save the

time and effort during the process for building apps. The

results of experiments on 18,478 real-world web APIs and

6,146 real-world web apps demonstrate the usefulness

and efficiency of WAR.

In our future work, we will enhance WAR to increase

the diversity of the multiple solutions to offer app

developers with higher flexibility in building their apps.

Keyword search is still an open research topic. We will

follow up the advances in keyword search techniques and

enhance WAR accordingly. In real-world applications,

app developers might have other objectives, e.g., quality-

of-service [31] and privacy [32, 33], other than minimizing

the number of web APIs in the solution. We will

investigate the approaches for answer queries with such

optimization objectives. We will also enhance WAR with

automatic query expansion techniques [7] to handle

synonymy, word inflections and polysemy.

ACKNOWLEDGMENT

This paper is partially supported by the National Key
Research and Development Program of China (No.
2017YFB1400600), Natural Science Foundation of China
(No. 61872219, 61672276), the Natural Science Foundation
of Shandong Province (ZR2019MF001), and the
Collaborative Innovation Center of Novel Software
Technology and Industrialization, Nanjing University.

REFERENCES

[1] M. B. Blake, and M. E. Nowlan. Knowledge discovery in

services (kds): Aggregating software services to discover

enterprise mashups. IEEE Transactions on Knowledge and

Data Engineering, 23(6): 889-901, 2011.

[2] A. Borodin, G. O. Roberts, J. S. Rosenthal, and P. Tsapa-

ras. Finding authorities and hubs from link structures on

the world wide web. Proc. of the 10th International Confer-

ence on World Wide Web (WWW 2001), Hong Kong, China,

pp. 415-429, 2001.

[3] A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B. J. P. Hsu,

and K. Wang. An overview of microsoft academic ser-

vice (mas) and applications. Proc. of the 24th International

Conference on World Wide Web (WWW 2015), Florence,

Italy, pp. 243-246, 2015.

[4] S. Bergamaschi, E. Domnori, F. Guerra, R. T. Lado, and

Y. Velegrakis. Keyword search over relational databases:

a metadata approach. Proc. of 2011 ACM SIGMOD Inter-

national Conference on Management of Data (SIGMOD

2011), Athens, Greece, pp. 565-576, 2011.

[5] V. Hristidis and Y. Papakonstantinou. DISCOVERY:

Keyword search in relational databases. Proc. of the 28th

International Conference on Very Large Data Bases (VLDB

2002), Hong Kong, China, pp. 670-681, 2002.

[6] M. Jiang, A. W.-C. Fu, and R. C.-W. Wong. Exact top-k

nearest keyword search in large networks. Proc. of 2015

ACM SIGMOD International Conference on Management of

Data (SIGMOD 2015), Melbourne, Australia, pp. 393-404,

2015.

[7] C. Carpineto and G. Romano. A survey of automatic

query expansion in information retrieval. ACM Compu-

ting Surveys, 44(1): 1-50, 2012.

[8] F. K. Hwang, D. S. Richards, and P. Winter. The Steiner

tree problem. vol. 53, Elsevier, 1992.

[9] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S.

Sudarshan. Keyword searching and browsing in data-

14 IEEE TRANSACTIONS ON BIG DATA, MANUSCRIPT

bases using BANKS. Proc. of the 18th International Confer-

ence on Data Engineering (ICDE 2002), San Jose, CA, USA,

pp. 431-440, 2002.

[10] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin.

Finding top-k min-cost connected trees in databases.

Proc. of IEEE 23rd International Conference on Data Engi-

neering (ICDE 2007), Istanbul, Turkey, pp. 836-845, 2007.

[11] Cormen, T.H., Introduction to Algorithms. MIT Press,

2009.

[12] W. Gao, and J. Wu. A novel framework for service set

recommendation in mashup creation. Proc. of IEEE Inter-

national Conference on Web Services (ICWS 2017), Honolu-

lu, USA, pp. 65-72, 2017.

[13] Q. Gu, J. Cao, and Q. Peng. Service package recommen-

dation for mashup creation via mashup textual descrip-

tion mining. Proc. of IEEE International Conference on Web

Services (ICWS 2016), Francisco, USA, pp. 452-459, 2016.

[14] Y. Zhong, Y. Fan, W. Tan, and J. Zhang. Web service

recommendation with reconstructed profile from

mashup descriptions. IEEE Transactions on Automation

Science and Engineering, 2016. DOI:

10.1109/TASE.2016.2624310.

[15] Q. Gu, J. Cao, and Q. Peng. Service package recommen-

dation for mashup creation via mashup textual descrip-

tion mining. Proc. of IEEE 23rd International Conference on

Web Services (ICWS 2016), San Francisco, USA, pp. 452-

459, 2016.

[16] Y. Hao, Y. Fan, W. Tan, and J. Zhang. Service recom-

mendation based on targeted reconstruction of service

descriptions. Proc. of IEEE 24th International Conference on

Web Services (ICWS 2017), Hawaii, USA, pp. 285-292,

2017.

[17] B. Cao, X. Liu, M. M. Rahman, B. Li, J. Liu, M. Tang.

Integrated content and network-based service clustering

and web APIs recommendation for mashup develop-

ment. IEEE Transactions on Services Computing, 2017. DOI:

10.1109/TSC.2017.2686390.

[18] T. Liang, L, Chen, J. Wu, A, Bouguettaya, Exploiting

Heterogeneous Information for Tag Recommendation in

API Management, Proc. of 23rd International Conference on

Web Services (ICWS 2016), San Francisco, USA, pp. 436-

443, 2016.

[19] K. Huang, Y. Fan, W. Tan, and X. Li. Service recommen-

dation in an evolving ecosystem: a link prediction ap-

proach. Proc. of 20th International Conference on Web Ser-

vices (ICWS 2013), Santa Clara, USA, pp. 507-514, 2013.

[20] K. Huang, Y. Fan, and W. Tan. Recommendation in an

evolving service ecosystem based on network predic-

tion. IEEE Transactions on Automation Science and Engi-

neering, 11(3): 906-920, 2014.

[21] Y. Zhong, Y. Fan, K. Huang, W. Tan, and J. Zhang.

Time-aware service recommendation for mashup crea-

tion. IEEE Transactions on Services Computing, 8(3): 356-

368, 2015.

[22] M. M. Rahman, X. Liu, and B. Cao. Web API recommen-

dation for mashup development using matrix factoriza-

tion on integrated content and network-based service

clustering. Proc. of IEEE International Conference on Ser-

vices Computing (SCC 2017), Hawaii, USA, pp. 225-232,

2017.

[23] G. Huang, Y. Ma, X. Liu, Y. Luo, X. Lu, and M. Brian

Blake. Model-based automated navigation and composi-

tion of complex service mashups. IEEE Transactions on

Services Computing, 8(3): 494-506, 2015.

[24] W. Dou, X. Zhang, J. Liu, and J. Chen. HireSome-II: to-

wards privacy-aware cross-cloud service composition

for big data applications. IEEE Transactions on Parallel

and Distributed Systems, 26(2): 455-466, 2015.

[25] Q. He, J. Yan, H. Jin, and Y. Yang. Quality-aware service

selection for service-based systems based on iterative

multi-attribute combinatorial auction. IEEE Transactions

on Software Engineering, 40 (2): 192-215, 2014.
[26] N. Chen, N. Cardozo, and S. Clarke. Goal-driven service

composition in mobile and pervasive computing. IEEE Trans-
actions on Services Computing, 11(1): 49-62, 2018.

[27] H. Kagdi, M.L. Collard, J.I. Maletic. A survey and taxon-

omy of approaches for mining software repositories in

the context of software evolution. Journal of Software

Maintenance and Evolution: Research and Practice, 19(2): 77-

131, 2007.

[28] W. Martin, F. Sarro, Y. Jia, Y. Zhang, M. Harman. A sur-

vey of app store analysis for software engineering. IEEE

Transactions on Software Engineering, 43(9): 817-847, 2017.

[29] R. Dyer, H.A. Nguyen, H. Rajan, T.N. Nguyen. Boa: Ul-

tra-large-scale software repository and source-code min-

ing. ACM Transactions on Software Engineering and Meth-

odology, 25(1): 7, 2015.

[30] L. Qi, Q. He, F. Chen, W. Dou, S. Wan, X. Zhang, X. Xu.

Finding all you need: web apis recommendation in web

of things through keywords search. IEEE Transactions on

Computational Social Systems, 2019. (DOI:

10.1109/TCSS.2019.2906925).

[31] Q. He, G. Cui, X. Zhang, F. Chen, S. Deng, H. Jin, Y.

Yang. A game-theoretical approach for user allocation in

edge computing environment. IEEE Transactions on Par-

allel and Distributed Systems, 2019. DOI:

10.1109/TPDS.2019.2938944, 2019.

[32] W. Gong, L. Qi, Y. Xu. Privacy-aware multidimensional

mobile service quality prediction and recommendation

in distributed fog environment. Wireless Communications

and Mobile Computing, vol. 2018, Article ID 3075849, 8

pages, 2018.

[33] L. Qi, X. Zhang, W. Dou, Q. Ni. A distributed locality-

sensitive hashing-based approach for cloud service rec-

ommendation from multi-source data. IEEE Journal on

Selected Areas in Communications, 35(11): 2616-2624, 2017.

LIANYONG QI ET AL.: A STRUCTURAL BALANCE THEORY-BASED E-COMMERCE RECOMMENDATION APPROACH OVER BIG RATING DATA 15

Lianyong Qi received his PhD degree in
Department of Computer Science and
Technology from Nanjing University, China, in
2011. In 2010, he visited the Department of
Information and Communication Technology,
Swinburne University of Technology, Australia.
He is currently a full professor of Qufu Normal
University of China. His research interests
include recommender systems and services
computing.

Qiang He received his first Ph. D. degree from
Swinburne University of Technology (SUT),
Australia, in 2009 and his second Ph. D.
degree in computer science and engineering
from Huazhong University of Science and
Technology (HUST), China, in 2010. He is a
senior lecturer at Swinburne University of
Technology.

Feifei Chen received her PhD degree from
Swinburne University of Technology, Australia
in 2015. She is currently a lecturer at Deakin
University. Her research interests include soft-
ware engineering, cloud computing and green
computing.

Xuyun Zhang is a senior lecturer in the De-
partment of Computing at Macquarie University,
Australia. Prior to his current appointment, he
worked as a lecturer at the University of Auck-
land, New Zealand, and a postdoctoral fellow in
the Machine Learning Research Group of NIC-
TA (currently Data61, CSIRO) in Australia. He
received his PhD degree from University of

Technology, Sydney (UTS, Australia) in 2014, as well as his ME and
BS degrees in Computer Science from Nanjing University (China) in
2011 and 2008, respectively. His primary research interests include
big data, cloud computing, data privacy & security, and Web service
technology.

Wanchun Dou received his PhD degree in
Mechanical and Electronic Engineering from
Nanjing University of Science and Technology,
China, in 2001. From Apr. 2001 to Dec. 2002,
he did his postdoctoral research in the
Department of Computer Science and
Technology, Nanjing University, China. Now,
he is a full professor of the State Key
Laboratory for Novel Software Technology,

Nanjing University, China. His research interests include workflow,
cloud computing, big data and service computing.

Qiang Ni (M’04–SM’08) received the B.Sc., M.Sc.,
and Ph.D. degrees from the Huazhong University
of Science and Technology, China, all in
engineering. He is a Professor and the Head of
Communication Systems Research Group, School
of Computing and Communications, Lancaster
University, InfoLab21, Lancaster, U.K. His
research interests include future generation
communications and networking systems,

including green communications and networking, cloud systems,
cognitive radio network systems, heterogeneous networks, 5G, SDN,
IoTs, big data analytics and vehicular networks in which areas he
had already published more than 180 papers. He is a Voting
Member of IEEE 1932.1 standard. He was an IEEE 802.11 Wireless

Standard Working Group Voting member and a Contributor to the
IEEE Wireless Standards.

