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Abstract—The ever-increasing popularity of web APIs allows app developers to leverage a set of existing web APIs to achieve 

their sophisticated objectives. The heavily fragmented distribution of web APIs makes it challenging for an app developer to find 

appropriate and compatible web APIs. Currently, app developers usually have to manually discover candidate web APIs, verify 

their compatibility and select appropriate and compatible ones. This process is cumbersome and requires detailed knowledge of 

web APIs which is often too demanding. It has become a major obstacle to further and broader applications of web APIs. To 

address this issue, we first propose a web API correlation graph built on extensive data about the compatibility between web 

APIs. Then, we propose WAR (Web APIs Recommendation), the first data-driven approach for web APIs recommendation that 

integrates web API discovery, verification and selection operations based on keywords search over the web API correlation 

graph. WAR assists app developers without detailed knowledge of web APIs in searching for appropriate and compatible web 

APIs by typing a few keywords that represent the tasks required to achieve app developers’ objectives. WAR can significantly 
save app developers’ time and effort in searching for web APIs. We conducted large-scale experiments on 18,478 real-world 

web APIs and 6,146 real-world apps to demonstrate the usefulness and efficiency of WAR. 

Index Terms—Web APIs recommendation, Keyword search, Steiner Tree, Dynamic Programming 

———————————————————— 

1 INTRODUCTION

ith the increasing popularity of web of things, a lot 
of enterprises and organizations, including software 

vendors like Google1, Amazon2, Spotify3 have published 
their business functions online as web APIs that can be 
accessed remotely. The statistics published on several 
reputable web APIs repositories, e.g., programmable-
web.com and mashape.com, indicate a rapid growth in 
the number of published web APIs and their users in the 
past few years. 

The web of things allows mobile and web apps 
(together referred to as apps hereafter) to invoke 
appropriate web APIs to achieve their goals. For example, 
a mobile app developer can find and select the right web 
APIs to be integrated into their app so that it can invoke 
these web APIs to fulfill its end-user’s sophisticated needs. 
Figure 1 shows the common process for building an 
interview app that needs to perform four app tasks: (1) 
voice recording for recording interviews; (2) speech 
recognition for transforming interview recordings into 
transcripts; (3) document translation for translating the 

 

1 https://developers.google.com/maps/get-started/ 
2 https://developer.amazon.com/services-and-apis/ 
3 https://developer.spotify.com/web-api/ 

interview transcripts into target language(s) as necessary; 
and (4) file synchronization for saving the transcripts online. 
Some web APIs may be available that can perform some 
or all of those required app tasks, e.g., Scribie Audio and 
SoundCloud for voice recording, Web Speech and Google’s 
Speech Recognition for speech recognition, Google 
Translate and Microsoft Translator for document 
translation, DropBox and OneDrive for file synchronization. 
If those web APIs can be identified and found, the app 
developer can integrate those web APIs into the app for 
performing those tasks. 

As formally depicted in Figure 1, the process for 
building this app consists of three phases. The first phase 
is app planning where the app developer analyses the 
functional requirements and determines the tasks needed 
to be performed, as well as the execution order of the 
tasks. The second phase is web API discovery where, 
through manual web search, the app developer identifies 
four sets of candidate web APIs, each containing a num-
ber of candidate web APIs that can perform the tasks. The 
third phase is web APIs selection where the app developer 
selects one web API from each set of candidate services 
that collectively realize the app. 

This process, sometimes referred to as web mashup [1], 
can be excessively sophisticated even for experienced app 
developers due to the large number of available web APIs 
and their wide variety. It has become a major obstacle to 
further and broader applications of web of things. Google 
has even developed an API Picker4 that assists developers 
understand its APIs and select appropriate ones. 
However, such assistance tools are still too complicated 
for non-experts and do not address the following two 
critical issues: 
 

4  https://developers.google.com/maps/documentation/api-
picker 
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(1) In the web APIs discovery phase, the app developer 
needs to perform an intensive manual search over the 
web to identify candidate web APIs. This requires the 
identification of and visits to a large number of software 
vendors’ API websites.  

(2) Even if the candidate web APIs can be identified, in 
the web APIs selection phase, the app developer needs to 
evaluate and verify the compatibility between the candi-
date web APIs, i.e., whether the output of one web API 
can be directly fed to the next web API as input without 
making significant changes. This requires in-depth anal-
yses of all candidate APIs. 

The above operations are often too cumbersome and 
time-consuming, especially for non-experts. Thus, there 
has a rapid increase in the need for an approach that al-
lows app developers to find web APIs for developing 
their apps without having to go through the above cum-
bersome and time-consuming phases individually. 

Online web APIs repositories, such as 
programmableweb.com and mashape.com provide a 
large amount of data about web APIs and allow app 
developers to search for web APIs by keywords. This 
keyword search method has long been popularised by 
web search engines like Google and Bing in locating 
information from web documents [2][3], as well as the 
databases community in locating information from 
databases [4][5][6]. However, none of the existing 
keyword search techniques can be directly applied to 
effectively address the abovementioned two critical issues. 

In this paper, we propose WAR (Web APIs Recom-
mendation), a novel approach to web APIs recommenda-
tion that assists app developers in searching for multiple 
compatible web APIs based on keyword search. As 
shown in Figure 1, WAR integrates and automates the app 
planning, web APIs discovery and web APIs selection opera-
tions, offering a novel data-driven approach for building 
apps. It allows app developers to search for multiple ap-
propriate and compatible web APIs by entering only a 
few keywords that represent the required tasks for the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

app. WAR runs on a directed data graph, where web 
APIs are modeled as nodes connected by edges repre-
senting whether the web APIs are compatible. Given a 
set of keywords, WAR returns subgraphs of the data 
graph that represent diversified solutions to target app. 
Each solution includes the web APIs that perform the 
app tasks, the bridging web APIs (if any) needed how-
ever not specified by the keywords, and the composabil-
ity of those web APIs, i.e., whether and how they can be 
integrated. 

An app developer, without having to manually dis-
cover and evaluate candidate web APIs from the web, 
can easily use WAR to find the web APIs needed to 
build the interview app depicted in Figure 1. Suppose 
the app developer would like this app to be able to rec-
ord voices, recognize speeches from voice recordings, 
translate speech transcripts and synchronize translated 
speech transcripts online. Using WAR, the app develop-
er only needs to enter the keywords that describe those 
app tasks: voice recording, speech recognition, document 
translation and file synchronization. WAR will take those 
keywords, search its web API repository, and return 
diversified app solutions that consist of different sets of 
compatible web APIs. The app developer can select one 
of the app solutions that best suits their needs and im-
plement the app according to the selected solution. 
WAR can find an app solution even when the app de-
veloper is not able to provide all the keywords for de-
scribing the app tasks. For example, an app developer 
enters three keywords voice recognition, document transla-
tion, and file synchronization, hoping to build an inter-
view app. However, this app requires a speech recognition 
web API that succeeds the voice recording web API and 
precedes the document translation web API. WAR can 
automatically identify the missing speech recognition web 
API and provide the app developer with a complete app 
solution. This way, WAR can save app developers a lot 
of time and efforts for finding out what web APIs are 
needed and can be used to implement their apps. 
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Figure 1. An example interview app. (Note: Here, we assume that all four app tasks are implemented by remote web APIs, which is not 

always necessary.) 
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In summary, we make the following main 
contributions:  

(1) We propose a novel data-driven approach for 

efficiently building apps by integrating and 

automating the app planning, web APIs discovery 

and web APIs selection operations and relieving app 

developers of the detailed knowledge of potentially 

enormous candidate web APIs for building their 

target apps.  

(2) We propose a web API correlation graph where web 

APIs are modeled as nodes and their compatibility as 

edges. This correlation graph is built based on 

extensive data about web APIs’ compatibility 
obtained from mining online software repositories.  

(3) Based on the API correlation graph, we model app 

developers’ queries for web APIs as minimum group 
Steiner tree problem and solve it with dynamic 

programming technique to recommend diversified 

solutions.  

(4) We conduct experiments on a dataset that contains the 

functional information about 18,478 real-world web 

APIs and 6,146 real-world apps crawled from 

programmableweb.com, to evaluate the usefulness 

and efficiency of WAR.  

The rest of paper is organized as follows. Section 2 

presents the API correlation graph. Section 3 formulates 

the research problem. Section 4 introduces how WAR 

answers keyword queries for app solutions based on the 

API correlation graph. Section 5 evaluates WAR with 

experimental results. Section 6 reviews the related work. 

Section 7 concludes the paper. 

2 WEB API CORRELATION GRAPH 

Many web apps developed with web APIs have been 

published on many of the online software repositories. 

For example, a total number of 6,146 web apps have been 

developed and published on programmableweb.com. 

Such apps provide valuable information about their con-

stituent web APIs’ compatibility. For example, a web app 

{api1, api2} published on programmableweb.com indicates 

that api1 and api2 are compatible because its developer 

has verified their compatibility and successfully integrat-

ed them into the web app. Such compatibility information 

allows a web API correlation graph to be built through 

connecting compatible web APIs mined from the online 

software repositories. Suppose another published web 

app {api2, api3} in addition to {api1, api2}. In the correlation 

graph, api1 is connected to api2 and api2 is connected to api3. 

As more APIs are included, the correlation graph will 

grow larger and denser, offering a solid base for queries 

for building apps. 

WAR does not stop other methods from being 

employed to evaluate and verify the web APIs to be 

included into the correlation graph. It runs any 

correlation graphs that fulfill the requirements specified 

by the following definitions: 

DEFINITION 1. Nodes: For each web API in the reposito-
ry, correlation graph G has a corresponding node v. Each 
node in G contains one or multiple keywords k1, …, kn that 
represent the functions offered by the corresponding API. 

In the remainder of this paper, we will speak 
interchangeably of a web API and its corresponding node 
in G, both denoted as v. Please note that voice recognition 
has two terms, however is considered as one keyword, 
not two. Please also note that the issues of synonymy, 
word inflections and polysemy are handled with 
automatic query expansion techniques [7]. It is, however, 
out of the scope of this paper. 

DEFINITION 2. Edges: For each pair of compatible v1 
and v2, the correlation graph contains an edge e(v1, v2) 
between v1 and v2. e(v1, v2) is directed, pointing from v1 to 
v2 if v2 can be the succeeding node of v1 when they are 
integrated. An edge e can be bidirectional if v1 can also be 
the succeeding node of v2. Moreover, each edge e(vi, vj) in 
E is assigned a weight wi,j (wi,j = wj,i holds here) to indicate 
the total times that vi and vj have ever been invoked sim-
ultaneously before by all users. 

DEFINITION 3. Correlation Graph: A correlation graph 
is represented by G(V, E) where V and E denote its sets of 
nodes and edges, respectively. 

According to Definition 2, relevant web APIs in the 
same domain are connected, either directly or indirectly, 
forming a connected correlation graph. However, a web 
API repository might contain APIs in different domains, 
e.g., voice recognition and sunset times query, which belong 
to different correlation graphs. It is possible that a API 
repository has multiple disconnected correlation graphs. 
However, an app developer usually will not enter entirely 
irrelevant keywords that belong to two domains. Thus, in 
this research, we do not consider such keyword queries.   

To answer keyword queries for building apps (as will 
be detailed in Section 4), WAR prebuilds an inverted in-
dex for G. For each keyword in G, the nodes covering the 
keyword are stored in this index. For example, if nodes v1, 
v5 and v8 cover keyword k6, there is V(k6) = {v1, v5, v8}. This 
way, given an individual keyword k, WAR can easily find 
all the web APIs that can perform the task described by k. 

3 PROBLEM FORMULATION 

Given a correlation graph G and a keyword query Q con-
taining l (l  2) keywords (Q = {k1, …, kl}), the problem of 
answering the query over G consists of two steps: (1) to 
find an answer tree, denoted as T(Q) in G, containing con-
nected nodes that cover all the keywords in Q; (2) to in-
duce the final answer based on the T(Q). 

Consider the example in Figure 2. The graph in Figure 
2 is part of a correlation graph G. It contains 14 nodes 
(web APIs), i.e., v1, …, v14 covering 14 keywords (func-
tions), including k1, …, k14. The notation v1{k1} indicates 
that v1 offers k1. Note that v2{k1, k4} indicates that API v2 is 
able to offer two functions, k1 and k4, which is allowed by 
WAR. Edge e(v1, v10) and weight w1,10 = 2 indicate that v1 
and v10 are compatible and have been integrated twice in 
the past. Note that other edges and weight values are 
omitted to ensure the concision of Figure 2. 
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Figure 2. API correlation graph: an example 

 

The app developer enters three keywords {k1, k2, k3} to 

query a set of web APIs as an app solution that performs 

tasks described by {k1, k2, k3}. We can see that v1 and v2 

contain k1, v3 and v4 contain k2, v5 and v6 contain k3. Given 

query Q{k1, k2, k3}, we are looking for an answer tree that 

connects one node from {v1, v2}, one node from {v3, v4} and 

one node from {v5, v6}. This answer tree will need to con-

nect nodes that do not cover any of k1, k2 and k3, e.g., v10, 

v11, v12 and v13. Thus, it is a Steiner tree [8], formally de-

fined below: 

DEFINITION 4. Steiner Tree. Given a graph G = (V, E) 

andV' V , T is a Steiner tree of V’ in G if T is a connect-

ed subtree in G that covers all nodes in V’. 
Using the inverted index introduced in Section 2, we 

can identify the groups of nodes in G corresponding to 

individual keywords in Q ={k1, …, kl}, denoted as V1, …, 
Vl where Vr (1 ≤ r ≤ l) is the set of nodes in G that cover kr 

(1 ≤ r ≤ l). The problem is now to find a group Steiner tree, 

formally defined below: 

DEFINITION 5. Group Steiner Tree: Given a graph G = 

(V, E) and groups V1, …, Vl  V, where Vi∩Vj = Ø, Vi, 

Vj (0 ≤ i, j ≤ l and i≠j), T is an group Steiner tree of V1, …, 
Vl in G if T is a Steiner tree that contains exactly one node 

from each group Vr (1 ≤ r ≤ l). 

In response to a query, there are usually multiple 

group Steiner trees. WAR aims to find the minimum group 

Steiner tree with the minimum number of nodes, includ-

ing keyword nodes, i.e., nodes containing the query key-

words, and bridging nodes, i.e., nodes that do not contain 

the keywords but are necessary to connect the keyword 

nodes. This optimization objective is employed because 

the solution will require the fewest web APIs. This poten-

tially simplifies the app developer’s web app and reduces 
the cost for building the web app. A minimum group 

Steiner tree is defined as follows: 

DEFINITION 6. Minimum Group Steiner Tree. Given a 
set of exact group Steiner trees in G, T1, …, Tn, Ti (0 ≤ i ≤ n) 
is the minimum exact group Steiner tree if |Ti| = 
min(|T1|, …, |Tn|) where |Ti| (0 ≤ i ≤ n) represents the 
cardinality of Ti, i.e., the number of nodes in Ti. 

The computation of a minimum group Steiner tree is 
already NP-complete [9]. WAR finds the minimum group 
Steiner tree with the dynamic programming (DP) tech-
nique, which is to be discussed in the next section. 

4 WAR MECHANISMS 

This section discusses the DP-based search method WAR 
which is employed to answer keyword queries. In this 
section, we denote all the keywords entered by the app 
developer in query Q as K, e.g., K = {k1, k2, k3} in Figure 2, 
the minimum group Steiner tree rooted at node v and 
containing all keywords in K’ as T(v, K’) where K’ K and 
K’≠Ф . Given a query Q, WAR finds Tmin(v, K), the mini-
mum group Steiner tree rooted at v and containing all 
keywords in K. 

4.1 Finding Optimal Solution 

Dynamic programming technique solves a given complex 
optimization problem by breaking it down into a collec-
tion of simpler subproblems. Each of the subproblems is 
solved only once and the corresponding result is stored. 
Through examining and combining previously solved 
subproblems, a dynamic programming algorithm can 
solve the given complex optimization problem exactly. In 
this research, a minimum group Steiner tree T(v, K) of 
height h (the length of the longest downward path from 
the root of the group Steiner tree to any leaf) can be found 
by expanding the group Steiner trees of heights h = 0, 
1, …, that cover K’ K [10]. Let T(v, K’) be a state in the 
dynamic programming model, and w(T(v, K’)) be the 
weight of T(v, K’), i.e., the total number of the nodes in 
T(v, K’), the state-transition equation in the dynamic pro-
gramming model is: 

min( (

kv V

w T
 

v, K’)) = 1    IF |K’|=|{k}|=1 (1) 

 w(Tmin(v, K’)) = min(w(Tg(v, K’)), w(Tm(v, K’))) (2) 

 w(Tg(v, K’)) = 
( )

min
u N v

{w(Tmin(u, K’)+v)} (3) 

 w(Tm(v, K’)) =
' ' '

1 2
' '
1 2

  

 

min
K K K

K K

 
  

{w(Tmin(v, K1’)⊕Tmin(v, K2’))} (4) 

where N(v) is the set of node v’s neighbors in G, i.e., v ∈ 
G(V, E) and e(u, v) ∈ E. Formula (1) indicates that the 
weight of any tree with only one node is 1. Formula (2) 
indicates that T(v, K’) can be obtained through either one 
of two operations, tree growth, formally represented by 
Formula (3), and tree merging, formally represented by 
Formula (4). The tree growth operation generates a new 
minimum group Steiner tree Tmin(v, K’) by adding node v 
to Tmin(u, K’) rooted at u (one of v’s neighbors). The tree 
merging operation generates Tm(v, K’) by merging two 
trees both rooted at v, one covering K1’ and the other cov-
ering K2’ such that K’ = K1’ K2’ and K1’ K2’=  . 

Q{k1, k2, k3} app solutions 

v1{k1} v2{k1, k4} v5{k3} v3{k2} v4{k2, k5} v6{k3, k6} 

WAR 

 

v10{k10} v11{k11} v12{k12} 

v14{k14} 
● 

● ● ● 

● ● ● ● ● ● 

v13{k13} 
● 

e(v1, v10) 

w1,10=2 v7 {k7} 
● ● 

v8 {k8} 
● 

v9 {k9} 

app developer 
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Figure 3. Tree growth and tree merging operations. 

Figure 3 illustrates the tree growth and tree merging op-
erations. In the left part of Figure 3, u1, u2 and u3 are the 
neighboring nodes of node v. Tree T(v, K’) is generated by 
selecting the tree with the minimum weight from the 
three trees generated from adding v to T(u1, K’), T(u2, K’) 
and T(u3, K’). The right part of Figure 3 shows two trees 
rooted at node v and containing K1’ and K2’, i.e., Tmin(v, K1’) 
and Tmin(v, K2’) can be merged into a larger tree that is root-
ed at node v and contains more keywords, i.e., K1’∪K2’.  

Through repeating the tree growth and tree merging op-
erations, the trees are continuously expanded until K’ = K, 
meaning the minimum group Steiner tree is found. Based 
on Formulas (1)-(4), WAR employs Algorithm 1 to answer 
a query Q. Here, “1 + T” means the number of nodes of 
tree T plus one. 

 
Algorithm 1: MST (G, K) 

Input: 
G(V, E): the correlation graph 
K = {k1, k2, …, kl}: query keywords in Q 

Output: 
Tmin(v, K): a minimum group Steiner tree rooted at v 
and containing all keywords in K 

1 Let QT be a queue in ascending order of number of 
tree nodes 

2 QT = Ф 
3 for each v ∈ V do 
4     if v contains any nonempty keyword set K’ K 
5     then enqueue Tmin(v, K’) into QT 
6 Min_count = ∞  // number of nodes of minimal Stei-

ner Trees 
7 while QT≠Ф do 
8     dequeue QT to Tmin(v, K’) 
9     if K’ = K  

10     then if count (Tmin(v, K’)) ≤ Min_count  
11              then Min_count = count (Tmin(v, K’)) 
12                       return Tmin(v, K’) 
13              else break 
14     else  
15         for each u ∈ N(v) do 
16             if 1 + Tmin(u, K’) < Tmin(v, K’) 
17             then Tmin(v, K’) = 1 + Tmin(u, K’) 
18                      enqueue Tmin(v, K’) 
19                      update QT 
20         K1’ = K’ 
21         for each K2’ s.t. K1’∩K2’ = Ф do 
22             if Tmin(v, K1’)⊕Tmin(v, K2’) < Tmin(v, K1’∪K2’) 
23             then Tmin(v, K1’∪K2’) = Tmin(v, K1’)⊕Tmin(v, K2’) 
24                 if K1’∪K2’ =  K 
25                 then if count (Tmin(v, K)) ≤ Min_count 
26                          then Min_count = count (Tmin(v, K)) 
27                                   return Tmin(v, K) 
28                          else brea 
29                 else enqueue Tmin(v, K1’∪K2’) 
30                        update QT 

Algorithm 1 maintains a queue QT that stores and 
ranks the generated trees in ascending order by the num-
ber of their constituent nodes. It uses three operations, the 
enqueue operation that inserts a tree into queue QT, the 
dequeue operation that removes the top tree in queue QT, 
and the update operation that ranks the trees in QT in as-
cending order by the total number of the nodes in the 
trees. Lines 3-5 locate nodes that contain individual key-
words in K. For each node v in G, v ∈ V, if v contains any 
keywords K’ in K, K’ K, the algorithm enqueues tree T(v, 
K’)  into QT. At this stage, for each such tree in QT, there is 
|T(v, K’)| = 1 because there is only one node in each of 
the trees in QT. Lines 15-19 implement the tree growth  
operation (Formula 3); Lines 20-30 denote the tree merging 
operation (Formula 4) of a tree. If a tree in QT contains all 
the keywords in K, the tree is outputted.  

Next, we utilize the example in Figure 4 (Figure 4(a) is 
the same as Figure 2) to demonstrate the execution pro-
cess of Algorithm 1 in response to Q containing K = {k1, k2, 
k3}, which are highlighted in bold. The trees rooted at the 
nodes containing k1 or k2 or k3, i.e., v1, v2, v3, v4, v5, v6 are 
enqueued first, which are shown in Figure 4(b). These six 
trees cannot be merged, but the tree growth operation can 
be performed on them. Specifically, the edges connecting 
any one of v1, …, v6 are added to the corresponding trees 
and the generated trees are enqueued, which are shown 
in Figure 4(c). The trees in Figure 4(c) will not be merged 
as the tree merging operation cannot increase the number 
of query keywords covered by the generated trees. For 
example, the first tree {v10, v1} and third tree {v10, v2} in 
Figure 4(c) can be merged into a new tree rooted at node 
v10, i.e., {v10, v1, v2}. However, this new tree does not cover 
more query keywords than trees {v10, v1} and {v10, v2}, as 
they all contain k1 only. Thus, the tree growth operation is 
performed on the trees in Figure 4(c). The results are 
shown in Figure 4(d). Here, note that some trees after the 
tree growth operation are of no use and hence are not 
shown in Figure 4(d). For example, the second tree {v7, v1} 
in Figure 4(c) can grow to v10 to generate tree {v10, v7, v1}. 
However, the new tree {v10, v7, v1} contains the same que-
ry keyword (i.e., k1) as tree {v10, v1} but has one more node. 
The trees in Figure 4(d) are then merged and the results 
are presented in Figure 4(e). After that, the trees in Figure 
4(e) grow and the results are shown in Figure 4(f). Finally, 
after tree merging operations, eight minimal Steiner trees 
are found, as presented in Figure 4(g). 

Theorem 1 ensures that the returned answer tree is the 
one with the minimum number of nodes covering K. 

THEOREM 1. The tree returned by Algorithm 1, T(v, K) is 
the group Steiner tree with the minimum number of 
nodes. 

PROOF. This can be proven by contradiction. Let T’(v’, K) 
be a tree rooted at v’ with a total number of nodes smaller 
than T(v, K). There are |T(v, K) – T’(v, K1’)| < |T(v’, K) – 
T’(v’, K2’)|, where “–” is the inverse operation of “+”. 
Line 8 in the second last iteration of Algorithm 1 would 
dequeue T(v’, K’) – T’(v, K1’) from QT and merge T(v’, K’) 
and T’(v, K1’) to reach T’(v’, K’) because QT always has the 
tree with the minimum number of nodes at the top to be 
dequeued. The tree dequeued from QT in the last iteration  
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Figure 4. Minimal Steiner tree generation process. 

 

of Algorithm 1 as the result of Algorithm 1 would be 
T’(v’, K). This contradicts with T(v, K’) being returned by 
Algorithm 1.  

We now analyze, in the worst-case scenario, the com-
plexity of Algorithm 1 answering a query Q with a set of 
keywords K = {k1, …, kl} on a data graph G = (V, E), where 
|V| = n and |E| = m. The complexity of finding all solu-
tions is the same as finding the first solution, because the 
worst-case scenario for finding the first solution is to 
search all possible trees which is the same as finding all 
solutions. Thus, we analyze the complexity of Algorithm 
1 for finding the first solution below. 

Let T(v, K’) be the tree with the minimum number of 
nodes of all trees rooted at v containing a subset of key-
words K’  K. There are 3 major components in Algo-
rithm 1, i.e., queue maintenance, tree growth and tree 
merging. 

Queue maintenance. In total, there are 2l subsets of K. 
Thus, the maximum length of QT is 2ln, i.e., every tree 
rooted at any v ∈ V containing any K’   K is enqueued 
into QT. The complexity of enqueue/update operations 
and dequeue operations is dependent on the type of the 
queue. Here, we employ the Fibonacci Heap, which has 
the complexity of O(1) for the enquene/update opera-
tions and O(log2ln) for dequeue operations respectively 
[11]. Because Algorithm 1 will enqueue or dequeue any 
T(v, k) into/from QT at most once, the complexity of 
enqueuing and dequeuing all 2ln trees in QT is O(2ln(l + 
logn)). 

Tree growth. Lines 15-19 handle the tree growth opera-
tions implementing Eq. (3). The for loop iterates for 
|N(v)| times, trying to find the T(u, K’) grown from T(v, 
K’) + u with the minimum number of nodes. Here, |N(v)| 
is the total number of neighbors of v. Thus, the total time 
for Algorithm 1 to execute the comparison operations in 
lines 15-19 is O(2l ( )

v V
| N v |

 ) = O(2lm). 

Tree merging. Lines 20-30 handle the tree merging opera-

tions implementing Eq. (4). For each T(v, K1’) dequeued in 

line 8, the for loop in lines 20-30 enumerates every K2’ 
that fulfils K1’∩K2’ = Ø, where K1’, K2’  K. Given | K | = 

l, the total number of possible K2’ is 2l-|K2’|. Thus, the total 

time for Algorithm 1 to execute the comparison opera-

tions in lines 16-25 is n
1

1
2

l l i
l ,ii

C
 
  = O(3ln). 

Overall, the complexity of Algorithm 1 is O(2ln(l + 
logn) + 2lm + 3l). This indicates that the efficiency of Algo-
rithm 1 relies on the number of nodes and edges in the 
data graph, and exponentially on the number of query 
keywords. In real world problems where l is a small con-
stant, the complexity of Algorithm 1 becomes O(nlogn + 
m). We will evaluate it experimentally in Section 5. 

4.2 Inducing Final Solution 

The minimum Steiner tree T(v, K) obtained by Algorithm 
1 in response to keyword query is a subgraph of G. How-
ever, it is not the final solution for the query because 
some edges from G that connect T(v, K)’s constituent 
nodes in G might be missing from T(v, K). Figure 5 pre-
sents an example, where T(v, K) = {v1, v2, v3}. Suppose 
there is an edge in G that connects v1 and v3 in G. Algorithm  
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Figure 5. Inducing final solution 

1 did not include this edge in T(v, K) because T(v, K) must 

not contain cycles. This missing edge might be useful for 

the app developer and thus needs to be included in the 

final solution. To induce the final solution based on T(v, 

K), WAR inspects every pair of web APIs in T(v, K) that 

are not connected. To increase its efficiency, WAR main-

tains a neighbor set for each node in G. A neighbor set 

Vn(v) contains all v’s neighbors in G. 

5 EXPERIMENTS 

We have conducted a range of experiments on 18,478 

real-world web APIs and 6,146 real-world web apps to 

evaluate the usefulness and efficiency of WAR. 

5.1 Dataset and Deployment 

We crawl from programmableweb.com a PW dataset con-

taining information on 18,478 web APIs and 6,146 web 

apps. Based on the information, a correlation graph G is 

built. Keywords are used on programmableweb.com to 

describe the functions of the web APIs. Accordingly, we 

label the nodes in the correlation graph with those key-

words. Two nodes are linked in G if they are both used by 

any of the 6,146 web apps with one of them succeeding or 

preceding the other directly. For example, suppose a web 

app in the dataset uses three consecutive web APIs, v1, v2 

and v3. Two directional edges will be included in G, one 

pointing from v1 to v2 and the other from v2 to v3, but none 

from v1 to v3. In total, there are 7006 edges in G. This way, 

the edges in G accurately describe the composability of 

the 18,478 real-world web APIs used by the 6,146 real-

world web apps. 

A total of 6,146 queries are created, one corresponding 

to each of the 6,146 web apps. For each query, the query 

keywords are extracted from the web APIs used by the 

corresponding web app. This way, we can evaluate the 

usefulness of WAR with its success rate in finding those 

6,146 web apps from G. In real-world applications, an app 

developer rarely enters a large number of keywords to 

search for web APIs. This is evidenced by the web apps in 

the PW dataset. Of all the 6,146 web apps we crawled 

from programmableweb.com, only 223 (3.6% of all) have 

more than 6 keywords. Thus, we create queries with up to 

6 query keywords. Three sets of experiments are conduct-

ed, i.e., set A, set B, set C. In experiment set A, the key-

words in a query correspond to all the keywords of a web 

app. By testing 6,146 queries, we inspect whether WAR 

can find the web APIs needed for building each of the 

6,146 web apps on programmableweb.com with all the 

keywords. In experiment set B, each query contains two 

keywords corresponding to the first and the last key-

words of a web app. This way, we inspect the ability of 

WAR to find solutions exactly the same as or similar to 

the 6,146 web apps with only two keywords. In experi-

ment set C, a number of keywords are selected randomly 

from G to generate each query. This allows us to evaluate 

the ability of WAR to find web app solutions more com-

prehensively with more keyword combinations. This way, 

we evaluate WAR’s ability to find a complete solution 
through connecting keyword nodes and necessary bridg-

ing nodes. 

As discussed in Section 3, WAR finds the minimum 

group Steiner tree in response to a query. Thus, WAR 

might be able to find solutions with fewer web APIs than 

the corresponding web apps in the dataset. Such solutions 

are considered new solutions. This ability allows WAR to 

find the simplest app solutions, which is usually prefera-

ble. Accordingly, we compare the number of nodes in the 

solutions with the corresponding web apps in the PW 

dataset. Besides, a feasible solution requires the mutual 

compatibility between the web APIs in the solution, i.e., 

the corresponding nodes are connected. In this regard, we 

compare the connected rate of the solutions returned by 

each of the approaches. It is the ratio of the solutions 

whose nodes are connected. 

To evaluate the efficiency of WAR, we measure the 

computation time taken by WAR to answer queries. Fast 

responses will allow app developers to trial different 

keyword combinations to find suitable solutions for their 

apps. 

WAR offers a new data-driven approach for finding 

multiple web APIs. Thus, we compare WAR with four 

baseline approaches: 

 Random: This approach randomly selects a set of 

nodes from G that collectively cover the query key-

words, and then finds a minimum spanning tree to 

connect the selected nodes with the fewest nodes 

among all spanning trees. 

 Greedy: This approach randomly selects a set of nodes 

from G that collectively cover the query keywords. It 

then takes those nodes as the initial root nodes and 

continuously grows the trees until the selected nodes 

are interconnected. While the trees grow, a greedy 

heuristic is applied so that the neighbor containing the 

most query keywords is selected first. 

 SSR [12]: Given the input text description and the re-

quired number of web APIs N for a web app, this ap-

proach first finds N sets of web APIs of N different cat-

egories that are most similar to the text description. 

Then, it selects all the solutions with the highest score 

calculated based on the web API similarity, popularity 

and correlation degree. 

 SPR_CR [13]: This approach employs a methodology 

similar to SSR. There are three differences. The first is 

that SPR_CR mainly focuses on the popularity of web 

APIs. Second, it determines whether two web APIs 

would be recommended based on their co-occurances, 

which may lead to redundant APIs. Finally, it returns 

only one solution. 

v1 ● 

v2 
● 

v3 ● 
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The experiments were conducted on a machine with 
2.60 GHz CPU and 8.0 GB RAM. The software configura-
tion environment is: Windows 10 and Python 3.6. Each 
experiment was repeated 50 times and their average ex-
periment results were adopted. The source code and da-
taset used in the experiments are available at 
https://github.com/qlyseven/source-code. 

5.2 Experiment Results 

Concretely, six profiles are tested and compared to vali-
date the feasibility of our proposal. 

Profile-1: Number of web APIs returned by three 
approaches. 

In this profile, we compare the average number of 

nodes (i.e., web APIs) in the solutions found by the five 

approaches for each set of query keywords. The number 

of query keywords, i.e., l, is varied from 2 to 6. The results 

are shown in Fig.6.  

Fig.6(a) compares the number of web APIs in the solu-

tions found by the five approaches in experiment set A. It 

shows that the solutions returned by the Random, Greedy 

and SPR_CR approaches consist of more nodes than those 

by the WAR and SSR approaches. This is because (1) 

when the Random and Greedy approaches grow a tree, a 

random or greedy strategy is applied so that they are often 

trapped within local optimua; (2) the SPR_CR approach 

may generate redundant web APIs. Therefore, the num-

ber of returned nodes is often large. WAR can find solu-

tions with the fewest nodes, which is usually preferable. 

This indicates the ability of WAR to find the optimal app 

solutions.  

Fig.6(b) shows the results in experiment set B where 

similar results can be observed as in Fig.6(a). Fig.6(b) 

shows the ability of WAR to recommend light-weight app 

solutions when app developers’ requirements for their 
apps are uncertain. Overall, the results presented in Fig.6 

show that WAR can find light-weight app solutions with-

out having to include unnecessary nodes. This is very 

important because otherwise app developers need to 

spend a lot time on pruning unnecessary nodes in the app 

solutions. This may violate the connectedness of the re-

maining nodes in the app solution. In most cases, app 

developers will find app solutions that contain too many 

unnecessary nodes useless. 

In Fig.6(c), as l increases, the sizes of the solutions 

found by the WAR, Greedy and Random approaches in-

crease compared to Fig.6(a) and Fig.6(b). The reason is 

that the keywords are randomly selected from G. Thus, a 

large number of bridging nodes are needed to construct a 

connected tree. In addition, the SPR_CR and SSR ap-

proaches return smaller solutions than the WAR, Greedy 

and Random approaches. The reason is that when the 

keywords are randomly selected from G, the probability 

of finding a set of co-occurrent APIs that collectively cov-

er the keywords declines. This decreases the number of 

returned nodes as well as the success rate and connected 

rate (see Fig.7 and Fig.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Number of web APIs in the solutions found by five ap-

proaches 

Profile-2: Success rate of three approaches. 

In this profile, we compare the success rates of three 

recommendation approaches. Here, a web API recom-

mendation solution is successful iff 1) the web APIs in the 

returned solution are compatible; 2) the number of APIs 

in the returned solution is not larger than twice the num-

ber of query keywords, i.e., 2l. The value of l is varied 

from 2 to 6 here. The success rate is defined in this man-

ner because an app developer usually does not want an 

app solution that is overly sophisticated with too many 

(a) experiment set A 

 

(b) experiment set B 

 

(c) experiment set C 
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Figure 7. Success rate of finding solutions 

web APIs. This might not be exactly what every app de-

veloper wants. However, it allows us to compare the abil-

ities of WAR with the Greedy and Random approaches to 

find an app solution in a reasonable manner. Please note 

that according to the definition of success rate in this pro-

file, the success rates of the SPR_CR and SSR approaches 

are zero because 1) they do not consider the web APIs 

compatibility; and 2) their solutions often contain more 

than 2l nodes. Thus, their success rates are not included in 

Fig. 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Connected rate of finding solutions. 

Fig.7(a) shows the success rates of the three approach-

es in finding solutions for the 6,146 keyword queries in 

experiment set A. We can see that WAR can answer all 

the queries regardless of the number of query keywords 

with a consistent success rate of 100%. Compared with 

WAR, it is much more difficult for the Random and 

Greedy approaches to find a successful solution, especial-

ly when l is large. This is indicated by their significantly 

lower success rates in the experiments, 26%, 30% and 20% 

for Random and 82%, 76% and 68% for Greedy in the ex-

(a) experiment set A 

 

(b) experiment set B 

 

(a) experiment set A 

(b) experiment set B 

(c) experiment set C 

 
(c) experiment set C 
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periments where l = 4, 5 and 6 respectively. Fig.7(b) shows 

the results in experiment set B. Again, WAR manages to 

obtain a 100% success rate consistently across all different 

cases in the experiments, versus 77% and 96% obtained 

by the Random and Greedy approaches on average. Simi-

lar results are shown in Fig.7(c). This demonstrates the 

ability of our proposed WAR to identify necessary bridg-

ing web APIs to find a complete app solution. The results 

presented in this profile demonstrate the usefulness of 

WAR - it can be used for app developers to find web APIs 

from G for building any of the 6,146 web apps in the PW 

dataset. 

Profile-3: Connected rate of five approaches. 

The connected rate (%) of different approaches are 
presented in Fig.8 with l increasing from 2 to 6. As Fig.8(a) 
shows, the connected rates of the WAR, Greedy and Ran-
dom approaches are always 100% as these three ap-
proaches grow trees which are always connected. 
SPR_CR considers web APIs’ functionalities, popularity 
and co-occurrences simultaneougly. As a result, its con-
nected rate is lower than 100% in most cases. SSR takes 
APIs correlation degree as its major consideration and 
does not consider web APIs’ compatibility directly. Thus, 
its connected rate is very low. Similar results are shown in 
Fig.8(b). In Fig.8(c), the keywords are randomly selected 
from G. Therefore, for the SPR_CR and SSR approaches, 
the probability of finding a set of co-occurrent APIs col-
lectively covering the keywords declines. As a result, the 
connected rates decrease accordingly. The results pre-
sented in this profile demonstrate that the WAR approach 
can always guarantee the compability of the returned 
web APIs. 

Profile-4: Number of web APIs in solutions found 
by WAR and corresponding success rate. 

The usefulness of WAR is not limited to only those 
6,146 web applications. To demonstrate this, we have also 
selected random keywords to generate keyword queries 
to find out whether WAR can handle other queries. The 
results are presented in Fig.9 with l increasing from 2 to 6. 
As demonstrated in Fig.9(a), the app solutions to queries 
with random keywords contain more web APIs than 
those to queries generated based on the web applications 
in the PW dataset. The web applications in the PW da-
tasets are real-world web applications. The web APIs 
used in each of those web applications are closely related 
to each other. They belong to the same domain or similar 
domains. Thus, they are close to each other in G. On the 
contrary, when random keywords are selected to generate 
queries, their relevance are not ensured. Thus, the web 
APIs that contain those keywords can be far away from 
each other in G. As a result, more bridging nodes are 
needed to connect the corresponding keyword nodes in G. 
This leads to more web APIs in the app solutions com-
pared to the solutions to the queries generated based on 
the web applications in the PW dataset, as demonstrated 
in Fig.9(a). Fig.9(b) shows the success rate achieved by 
WAR in response to those two different types of queries. 
Not surprisingly, WAR achieves a consistent success rate  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Number of web APIs in solutions found by WAR in re-

sponse to queries with random keywords and corresponding success 

rate. 

of 100%. This indicates that WAR can always connect all 
the keyword nodes in G to find an app solution despite 
the number of necessary bridging nodes, zero or many. 

Profile-5: Computation time of five approaches. 
In this profile, we compare the efficiency of the three 

approaches, measured by the computation times taken to 
find app solutions in response to app developers’ key-
word queries.  

Fig.10(a) shows the results of experiment set A. As 
demonstrated, the time cost of SPR_CR stays approximate-
ly stable with the growth in l as SPR_CR is not correlated 
with l. The time cost of SSR increases linearly with l as the 
candidate web APIs need to be divided into l categories 
according to their functionalities in the first step of SSR; 
the Random and Greedy approaches are much faster than 
WAR, taking significantly less time to find an app solu-
tion. When l increases, all WAR, Greedy and Random 
approaches take more time to find an app solution. The 
increase in the computation of WAR is more significant 
than the Random and Greedy approaches. This confirms 
with the complexity analysis at the end of Section 4.1. 
When l increases, the number of possible solutions in-
creases exponentially. Finding the optimal solution with 
the fewest web APIs from such tremendous web APIs is 
extremely time consuming. Thus, WAR takes a lot of time 
to respond to app developers’ queries when l is large.  

(a) number of nodes 

 

(b) success rate 
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Figure 10. Computation time of five approaches 

 

In Fig.10(b), only two keywords (i.e., the first keyword 
and last keyword) are entered regardless of l. Therefore, 
the time costs of the Greedy, Random, SSR and SPR_CR 
approaches stay stable as l increases. The computational 
time of WAR increases when l increases as more bridging 
nodes are needed to connect the keyword nodes. 

The results in Fig.10(c) show that WAR takes more 
time to find a solution when the query keywords are ran-
domly selected. The reason is the same as why WAR 
needs to find more web APIs to constitute an app solution, 
which is discussed above with respect to Fig.10(a) and 
Fig.10(b). Compared to the query keywords in experi-
ment sets A and B, randomly-selected keywords are far  

 
 

 

 

 
 

Figure 11. Other performances of five approaches 

away from each other in G. Thus, more bridging nodes 
are needed to connect the keyword nodes. Accordingly, 
the number of candidate solutions increases, which re-
quires WAR to evaluate more candidate solutions to find 
the optimal one. This is not a significant issue because in 
real-world cases, app developers would not need to build 
apps that require completely irrelevant web APIs, e.g., a 
hotel booking web API and an image processing web API. 

Profile-6: Other performance comparisons of five 
approaches. 

In this profile, we evaluate and compare the five ap-

 
(a) experiment set A 

 

 
(b) experiment set B 

 

 
(c) experiment set C 
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(b) Recall 
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proaches by the metrics of Precision, Recall and F-score. 
The experimental results are obtained from experiment 
set A, where l varies from 2 to 6 and 50 real-world web 
apps are randomly selected from the PW dataset for ex-
periment. The results are shown in Fig. 11.  

Fig.11(a) indicates that WAR outperforms the other 
four approaches in precision. This is because WAR can 
guarantee the minimum number of nodes in the solution 
("true positive" nodes and "false positive" nodes) when a 
query is executed, which leads to a higher recommenda-
tion precision. In Fig. 11(b), the recall value of WAR is 
worse than that of SPR_CR because SPR_CR often returns 
more nodes than WAR and hence often a higher recall 
value. However, the recall value of WAR is higher than 
those of SSR, Greedy and Random. Given the precision 
and recall values, the F-score values achieved by the five 
approaches are presented in Fig. 11(c). It shows that WAR 
outperforms other four approaches in F-score. This indi-
cates that WAR achievces the highest overall performance. 

6 RELATED WORK 

Some recent work has advanced the research on web API 
correlation and laid the groundwork for WAR. Zhong et 
al. proposed a method in [14] that constructs profiles for 
web APIs based on historical information about how web 
APIs are used in web apps. Gu et al. proposed in [15] a 
method that discovers the correlation among web APIs. 
Through discourse analysis of web apps’ functional speci-
fications, the semantic correlation between web APIs can 
be learned. A method named Targeted Reconstructing 
Service Descriptions (TRSD) is proposed in [16] that dis-
covers information about possible application scenarios 
for web APIs for enriching the description of web APIs. In 
[17], Cao et al. clustered web APIs into different categories 
to discover the correlations. Based on the clustering results, 
similar web APIs can be recommended with collaborative 
filtering techniques. Liang et al.  [18] also attempted to en-
rich the description of web APIs. They applied a Random 
Walk with Restart model to find keywords from structural 
and semantic information on web APIs for describing them. 

In recent years, many researchers have investigated 
the recommendation of web APIs based on the correlation 
between web APIs. To name a few, Huang et al. proposed 
a network model that describes the interactions among 
web APIs [19]. They employed a link prediction method 
based on rank aggregation to predict the evolution of the 
interactions over time. This way, web APIs are recom-
mended in pairs and their compatibility is ensured. The 
major limitation of this method is that web APIs can only 
be recommended in pairs. The authors later improved 
their method so that web APIs can be recommended in 
groups if they constitute a community [20]. Each web API 
clique is considered a group of web APIs that are poten-
tially useful together. However, this recommendation 
method is static because it is entirely based on the topo-
logical features of the web API network. App developers 
cannot search for multiple web APIs that specifically and 
collectively fulfill their objectives. Zhong et al. proposed 
in [21] a method that exploits latent Dirichlet allocation to 
extract web API evolution patterns over time. Then, fol-
lowing a simple “the more popular, the better” rule, pop-

ular web APIs in popular domains are recommended. To 
find web APIs that are not popular but potentially useful 
for a given partial web app, Rahman et al. proposed a 
recommendation method based on matrix factorization in 
[22]. This method as well as the one proposed in [21] suf-
fers from the same major limitation as the one proposed 
in [20]. App developers can only receive recommenda-
tions passively. They cannot search for web APIs that 
they need for building their own web apps. 

The authors of [23] also proposed a correlation graph 
for describing web APIs and their correlations, where the 
compatibility between two web APIs is evaluated 
through matching the tag-based semantics of their input 
and output. Then, given a set of web APIs preselected by 
an app developer, web APIs that might be of the app de-
veloper’s interest are recommended to the app developer. 
The major limitations of this approach are twofold. First, 
their correlation graph is not entirely reliable because tag-
based semantics can be easily misinterpreted. Suppose 
two web APIs api1 and api2, api1 for booking drive test ap-
pointments and api2 for querying sunset time. When a 
drive test appointment is booked, api1 generates a location 
and a time as output. To query the sunset time, api2 re-
quires a location and a time. Accordingly, it can be con-
cluded that api1 and api2 are compatible and must be 
linked in the correlation graph. However, in real-world 
applications, the edge between api1 and api2 is useless be-
cause it is meaningless to integrate api1 and api2. A corre-
lation graph built based on such semantic information 
will include many such useless edges that significantly 
impact the usefulness of the answers to keyword queries. 
The second major limitation of their method is that app 
developers are navigated through web APIs based on 
their preselected web APIs step by step. It focuses on the 
prediction of web APIs that might be of app developers’ 
interest rather than finding web APIs that app developers 
actually need. 

In [24], the authors assume there are a group of func-
tional-qualified but quality-varied candidate services for 
each task requested by a user. A quality-optimal service 
composition solution is then produced when a user re-
quires multiple tasks to execute his/her business applica-
tion while guaranteeing the privacy-preservation of ser-
vice quality. This work focuses more on composite service 
quality optimization with privacy-preservation instead of 
functional-qualified and compatible web APIs recom-
mendations. In [25], the authors propose a novel ap-
proach called combinatorial auction for service selection 
(CASS) to support effective and efficient service composi-
tion by considering both the complementarities between 
services and the competition among service providers. 
However, this approach does not consider the compatibil-
ity between different web services or APIs. In [26], the 
composability of two services is evaluated by the match-
ing degree between the inputs and outputs of the two 
services. Concretely, if service A’s outputs match the in-
puts of service B, the two services are regarded as com-
posable and compatible. However, similar to [23], this 
I/O matching-based service compatibility measurement 
approach may include many useless edges in the service 
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correlation graph and impact the usefulness of the an-
swers to keyword queries. 

In [12], an approach named SSR is proposed. Given 

the input text description and the required number of 

web APIs N for a web app, this approach first finds N sets 

of web APIs of N different categories that are most similar 

to the text description. Then, it selects all the solutions 

with the highest score calculated based on the web API 

similarity, popularity and correlation degree. In [13], an 

approach named SPR_CR is proposed. This approach 

employs a methodology similar to SSR. There are three 

differences. The first is that SPR_CR mainly focuses on 

the popularity of web APIs. Second, it determines wheth-

er two web APIs would be recommended based on their 

co-occurances. Finally, it returns only one solution. How-

ever, APIs compatibility is not the major focus of these 

two approaches; as a result, the success rates and con-

nected rates are not high, which have already been vali-

dated by the experiment results in Profile 2 and Profile 3. 

Mining valuable and useful information from online 

software repositories has become a popular approach for 

increasing the productivity of software development [27]. 

In recent years, it has been a very active and attractive 

field of research on software engineering since the ap-

pearance of centralized online software repositories, such 

as app stores [28], SourceForge, GitHub and Google Code 

[29]. Online repositories of web APIs, such as program-

mable.com and mashape.com, contain a large amount of 

data on SBSs and the web APIs used by those SBSs. Those 

data can be mined to uncover useful and helpful infor-

mation about the interactivity between web APIs [30]. 

Based on information mined from online software reposi-

tories, we proposed a web API correlation graph where 

web APIs are modeled as nodes and their compatibility as 

edges. Based on this correlation model, WAR employs the 

keyword search technique to allow app developers to 

search for web APIs for their apps by entering only a few 

keywords that represent the required app tasks. WAR 

addresses the abovementioned issues and offers a novel 

data-driven approach for efficiently building apps. 

7 CONCLUSIONS 

In this paper, we propose WAR, a novel approach that 

integrates and automates the app planning, web API dis-

covery and web API selection operations for building 

mobile and web apps based on extensive data mined 

from online software repositories. It assists app develop-

ers without detailed knowledge of web APIs in finding 

app solutions with only a few keywords that describe the 

required app tasks. WAR offers a new data-driven ap-

proach for building apps and can significantly save the 

time and effort during the process for building apps. The 

results of experiments on 18,478 real-world web APIs and 

6,146 real-world web apps demonstrate the usefulness 

and efficiency of WAR. 

In our future work, we will enhance WAR to increase 

the diversity of the multiple solutions to offer app 

developers with higher flexibility in building their apps. 

Keyword search is still an open research topic. We will 

follow up the advances in keyword search techniques and 

enhance WAR accordingly. In real-world applications, 

app developers might have other objectives, e.g., quality-

of-service [31] and privacy [32, 33], other than minimizing 

the number of web APIs in the solution. We will 

investigate the approaches for answer queries with such 

optimization objectives. We will also enhance WAR with 

automatic query expansion techniques [7] to handle 

synonymy, word inflections and polysemy. 
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