
Under review as a conference paper at ICLR 2018

DATA-EFFICIENT DEEP REINFORCEMENT LEARNING
FOR DEXTEROUS MANIPULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Grasping an object and precisely stacking it on another is a difficult task for tra-
ditional robotic control or hand-engineered approaches. Here we examine the
problem in simulation and provide techniques aimed at solving it via deep rein-
forcement learning. We introduce two straightforward extensions to the Deep De-
terministic Policy Gradient algorithm (DDPG), which make it significantly more
data-efficient and scalable. Our results show that by making extensive use of off-
policy data and replay, it is possible to find high-performance control policies that
successfully achieve precise stacking behaviour in > 95% of 1000 randomly ini-
tialized configurations. Further, our results on data efficiency hint that it may soon
be feasible to train successful stacking policies by collecting interactions on real
robots.

1 INTRODUCTION

Dexterous manipulation is a fundamental challenge in robotics. Researchers have long sought a
way to enable robots to robustly and flexibly interact with fixed and free objects of different shapes,
materials, and surface properties in the context of a broad range of tasks and environmental condi-
tions. Such flexibility is very difficult to achieve with manually designed controllers. The recent
resurgence of neural networks and “deep learning” has inspired hope that these methods will be
as effective in the control domain as they are for perception. Indeed, recent work has used neural
networks to learn solutions to a variety of control problems (Lillicrap et al., 2016; Schulman et al.,
2016; Gu et al., 2016c; Schulman et al., 2015; Heess et al., 2015; Levine & Abbeel, 2014).

While the flexibility and generality of learning approaches is promising for robotics, these methods
typically require a large amount of data that grows with the complexity of the task. What is fea-
sible on a simulated system, where hundreds of millions of control steps are possible (Mnih et al.,
2016; Schulman et al., 2016), does not necessarily transfer to real robot applications due to unre-
alistic learning times. One solution to this problem is to restrict the generality of the controller by
incorporating task specific knowledge, e.g. in the form of dynamic movement primitives (Schaal,
2006), or in the form of strong teaching signals, e.g. kinesthetic teaching of trajectories (Muelling
et al., 2013). Recent works have had success learning flexible neural network policies directly on
real robots (e.g. (Levine et al., 2015; Gu et al., 2016a; Yahya et al., 2016)), but tasks as complex as
precise grasping-and-stacking remain daunting.

In this paper we investigate in simulation the possibility of learning precise manipulation skills end-
to-end with a general purpose model-free deep reinforcement learning algorithm. We assess the
feasibility of performing analogous experiments on real robotics hardware and provide guidance
with respect to the choice of learning algorithm, experimental setup, and the performance that we
can hope to achieve.

We consider the task of picking up a Lego brick from the table and stacking it onto a second nearby
brick using a robotic arm and gripper. This task involves contact-rich interactions between the
robotic arm and two freely moving objects. It also requires mastering several sub-skills (reaching,
grasping, lifting, and stacking). Each of these sub-skills is challenging in its own right as they require
both precision (for instance, successful stacking requires accurate alignment of the two bricks) and as
well as robust generalization over a large state space (e.g. different initial positions of the bricks and
the initial configuration of the arm). Finally, there exist non-trivial and long-ranging dependencies
between the solutions for different sub-tasks: for instance, the ability to successfully stack the brick
depends critically on having picked up the brick in a sensible way beforehand.

1

Under review as a conference paper at ICLR 2018

Figure 1: Simulation rendering of the Lego task in different completion stages (also corresponding
to different subtasks): (a) starting state, (b) reaching, (c) grasping, and (d) stacking

This paper makes several contributions: 1. We build on the Deep Deterministic Policy Gradient
(DDPG; (Lillicrap et al., 2016)), a general purpose model-free reinforcement learning algorithm for
continuous actions, and extend it in two ways: firstly, we improve the data efficiency of the algorithm
by scheduling updates of the network parameters independently of interactions with the environ-
ment. Secondly, we overcome the computational and experimental bottlenecks of single-machine
single-robot learning by introducing a distributed version of DDPG which allows data collection and
network training to be spread out over multiple computers and robots. 2. We show how to use these
straightforward algorithmic developments to solve a complex, multi-stage manipulation problem.
We further propose two broadly applicable strategies that allow us to reliably find solutions to com-
plex tasks and further reduce the amount of environmental interaction. The first of these strategies
is a recipe for designing effective shaping rewards for compositional tasks, while the second biases
the distribution of initial states to achieve an effect akin a form of apprenticeship learning.

In combination these contributions allow us to reliably learn robust policies for the full stacking
task from scratch in less than 10 million environment transitions. This corresponds to less than 10
hours of interaction time on 16 robots. In addition, we show that when states from demonstration
trajectories are used as the start states for learning trials the full task can be learned with 1 million
transitions (i.e. less than 1 hour of interaction on 16 robots). To our knowledge our results provide
the first demonstration of end-to-end learning for a complex manipulation problem involving mul-
tiple freely moving objects. They are also suggest that it may be possible to learn such non-trivial
manipulation skills directly on real robots.

2 RELATED WORK

Reinforcement learning (RL) approaches solve tasks through repeated interactions with the envi-
ronment guided by a reward signal of success or failure (Sutton & Barto, 1998). A distinction is
often made between value-based and policy search methods. The latter have been routinely applied
in robotics, in part because they straightforwardly handle continuous and high-dimensional action
spaces (Deisenroth et al., 2013), and applications include manipulation (Peters & Schaal, 2006;
Kalakrishnan et al., 2011; Pastor et al., 2011; van Hoof et al., 2015; Levine et al., 2015; Gu et al.,
2016a; Yahya et al., 2016; Gupta et al., 2016), locomotion e.g. (Kohl & Stone, 2004; Matsubara
et al., 2006), and a range of other challenges such as helicopter flight (Bagnell & Schneider, 2001).
However, policy search methods can scale poorly with the number of parameters that need to be
estimated, requiring the need for restricted policy classes, that in turn might not be powerful enough
for solving complex tasks.

One exception are guided policy search methods (GPS) (Levine et al., 2015; Yahya et al., 2016).
These employ a teacher algorithm to locally optimize trajectories which are then summarized by a
neural network policy. They gain data-efficiency by employing aggressive local policy updates and
extensive training of their neural network policy. The teacher can use model-based (Levine et al.,
2015) or model-free (Yahya et al., 2016) trajectory optimization. The former can struggle with
strong discontinuities in the dynamics, and both rely on access to a well defined and fully observed
state space.

Alternatively, model-free value function approaches enable effective reuse of data and do not require
full access to the state space or to a model of the environment. The use of rich function approxima-
tors such as neural networks in value function methods dates back many years, e.g. (Webros, 1990;
Tesauro, 1995; Hunt et al., 1992; Hafner & Riedmiller, 2007), and recent success with deep learning
has driven the development of new end-to-end training methods for challenging control problems
(Mnih et al., 2015; Gu et al., 2016b;c; Lillicrap et al., 2016). Closely related to the ideas followed

2

Under review as a conference paper at ICLR 2018

in this paper, (Gu et al., 2016a) demonstrates that value-based methods using neural network ap-
proximators can be used for relatively simple robotic manipulation tasks in the real world (Gu et al.,
2016c). This work also followed a recent trend towards the use of experimental rigs that allow
parallelized data collection, e.g. (Pinto & Gupta, 2015), via the use of multiple robots from which
experience is gathered simultaneously (Levine et al., 2016; Gu et al., 2016a; Yahya et al., 2016).

Finally, the use of demonstration data has played an important role in robot learning, both as a
means to obtain suitable cost functions (Boularias et al., 2011; Kalakrishnan et al., 2013; Finn et al.,
2016; Gupta et al., 2016) but also to bootstrap and thus speed up learning. For the latter, kinesthetic
teaching is widely used (Peters & Schaal, 2006; Kalakrishnan et al., 2011; Pastor et al., 2011; Yahya
et al., 2016), though the need for a human operator to be able to guide the robot through the full
movement can be limiting.

3 BACKGROUND

In this section we explain the learning problem and summarize the DDPG algorithm. We explain its
relationship to other Q-function based RL algorithms in the Appendix.

The RL problem consists of an agent interacting with an environment in a sequential manner to max-
imize the expected sum of rewards. At time t the agent observes the state xt of the system and pro-
duces a control ut = π(xt; θ) according to policy π with parameters θ. This leads the environment
to transition to a new state xt+1 according to the dynamics xt+1 ∼ p(·|xt, ut), and the agent receives
a reward rt = r(xt, ut). The goal is to maximize the expected sum of discounted rewards J(θ) =
Eτ∼ρθ

[∑
t γ

t−1r(xt, ut)
]
, where ρθ is the distribution over trajectories τ = (x0, u0, x1, u1, . . .)

induced by the current policy: ρθ(τ) = p(x0)
∏
t>0 p(xt|xt−1, π(xt−1; θ)).

DPG (Silver et al., 2014) is a policy gradient algorithm for continuous action spaces that im-
proves the deterministic policy function π via backpropagation of the action-value gradient from a
learned approximation to the Q-function. Specifically, DPG maintains a parametric approximation
Q(xt, ut;φ) to the action value function Qπ(xt, ut) associated with π and φ is chosen to minimize

E(xt,ut,xt+1)∼ρ̄
[
(Q(xt, ut;φ)− yt)2

]
(1)

where yt = r(xt, ut) + γQ(xt+1, π(xt+1)). ρ̄ is usually close to the marginal transition distribu-
tion induced by π but often not identical. For instance, during learning ut may be chosen to be a
noisy version of π(xt; θ), e.g. ut = π(xt; θ) + ε where ε ∼ N (0, σ2) and ρ̄ is then the transition
distribution induced by this noisy policy. The policy parameters θ are then updated according to

∆θ ∝ E(x,u)∼ρ̄

[
∂

∂u
Q(x, u;φ)

∂

∂θ
π(x; θ)

]
. (2)

DDPG (Lillicrap et al., 2016) incorporates experience replay and target networks to the original DPG
algorithm: Experience is collected into a buffer and updates to θ and φ (eqs. 1, 2) are computed using
mini-batch updates with samples from this buffer. A second set of ”target-networks” is maintained
with parameters θ′ and φ′. These are used to compute yt in eqn. (1) and their parameters are slowly
updated towards the current parameters θ, φ. Both measures significantly improve the stability of
DDPG.

The use of a Q-function facilitates off-policy learning. This decouples the collection of experience
data from the updates of the policy and value networks which allows us to make many parameter
update steps per step in the environment, ensuring that the networks are well fit to the data that is
currently available.

4 TASK AND EXPERIMENTAL SETUP

The full task that we consider in this paper is to use the arm to pick up one Lego brick from the
table and stack it onto the remaining brick. This ”composite” task can be decomposed into several
subtasks, including grasping and stacking. We consider the full task as well as the two sub-tasks in
isolation:

Starting state Reward
Grasp Both bricks on table Brick 1 above table

StackInHand Brick 1 in gripper Bricks stacked
Stack Both bricks on table Bricks stacked

3

Under review as a conference paper at ICLR 2018

In every episode the arm starts in a random configuration with an appropriate positioning of gripper
and brick. We implement the experiments in a physically plausible simulation in MuJoCo (Todorov
et al., 2012) with the simulated arm being closely matched to a real-world Jaco arm setup in our lab.
Episodes are terminated after 150 steps of 50ms of physical simulation time. The agent thus has
7.5 seconds to perform the task. Unless otherwise noted we give a reward of one upon successful
completion of the task and zero otherwise.

The observation contains information about the angles and angular velocities of the 6 joints of the
arm and 3 fingers of the gripper, as well as the position and orientation of the two bricks and relative
distances of the two bricks to the pinch position of the gripper (roughly the position where the
fingertips would meet if the fingers are closed). The 9-dimensional continuous action directly sets
the velocities of the arm and finger joints. In experiments not reported in this paper we have tried
using observations with only the raw state of the brick and the arm configuration (i.e. without the
vector between the end-effector and brick) This increased the number of environment interactions
needed roughly by a factor of two to three.

For each experimental condition we optimize the learning rate and train and measure the perfor-
mance of 10 agents with different random initial network parameters. After every 30 training
episodes the agent is evaluated for 10 episodes. We used the mean performance at each evalua-
tion phase as the performance measure presented in all plots. In the plots the line shows the mean
performance across agents and the shaded regions correspond to the range between the worst and
best performing one In all plots the x-axis represents the number of environment transitions seen so
far at an evaluation point (in millions) and the y-axis represent episode return.

A video of the full setup and examples of policies solving the component and full tasks can be found
here: https://www.youtube.com/watch?v=7vmXOGwLq24.

5 ASYNCHRONOUS DPG WITH VARIABLE REPLAY STEPS

In this section we study two methods for extending the DDPG algorithm and find that they can have
significant effect on data and computation efficiency, in some cases making the difference between
finding a solution to a task or not.

Multiple mini-batch replay steps Deep neural networks can require many steps of gradient de-
scent to converge. In a supervised learning setting this affects purely computation time. In rein-
forcement learning, however, neural network training is interleaved with the acquisition of interac-
tion experience giving rise to a complex interaction. To gain a better understanding of this effect we
modified the original DDPG algorithm as described in (Lillicrap et al., 2016) to perform a fixed but
configurable number of mini-batch updates per step in the environment. In (Lillicrap et al., 2016)
one update was performed after each new interaction step.

We refer to DDPG with a configurable number of update steps as DPG-R and tested the impact
of this modification on the two primitive tasks Grasp and StackInHand. The results are shown in
Fig. 2 (left). The number of update steps has a dramatic effect on the amount of experience data
required. After one million interactions the original version of DDPG with a single update step
(blue traces) appears to have made no progress towards a successful policy for stacking, and only a
small number of controllers have learned to grasp. Increasing the number of updates per interaction
to 5 greatly improves the results (green traces), and with 40 updates (purple) the first successful
policies for stacking and grasping are obtained after 200,000 and 300,000 interactions respectively
(corresponding to 1,300 and 2,000 episodes). Notably, for both tasks we continue to see a reduction
in total environment interaction up to 40 update steps, the maximum used in the experiment.

One possible explanation for this effect is the interaction alluded to above: insufficient training may
lead to a form of underfitting of the policy. Since the policy is then used for exploration this affects
the quality of the data collected in the next iteration which in turn has an effect on training in future
iterations leading to overall slow learning.

We have observed in various experiments (not shown) that other aspects of the network architecture
(layer sizes, non-linearities) can similarly affect learning speed. Finally, it is important to note that
one cannot replicate the effect of multiple replay steps simply by increasing the learning rate. In
practice we find that attempts to do so make training unstable.

4

Under review as a conference paper at ICLR 2018

Figure 2: Left: (a,b) Mean episode return as a function of number of transitions seen (in millions)
of DPG-R (single worker) on the Grasp (left) and StackInHand (right) task with 1 (blue), 5 (green),
10 (red), 20 (yellow) and 40 (purple) mini-batch updates per environment step. Right: (c,d) Mean
episode return as a function of number of transitions seen (in millions) of ADPG-R (16 workers) on
the Grasp (c) and StackInHand (d) task. Same colors as in (a,b).

Asynchronous DPG Increasing the number of update steps relative to the number of environ-
ment interactions greatly improves the data efficiency but also dramatically increases compute time.
When the overall run time is dominated by the network updates it may scale linearly with the num-
ber of replay steps. In this setting experiments can quickly become impractical and parallelizing
computation can provide a solution. Similarly, in a robotics setup the overall run time is typically
dominated by the collection of interactions. In this case it is desirable to be able to collect experience
from multiple robots simultaneously (e.g. as in (Yahya et al., 2016; Gu et al., 2016a)).

We therefore develop an asynchronous version of DPG that allows parallelization of training and
environment interaction by combining multiple instances of an DPG-R actor and critic that each
share their network parameters and can be configured to either share or have independent experience
replay buffers. This is inspired by the A3C algorithm proposed in (Mnih et al., 2016), and also
analogous to (Gu et al., 2016a; Yahya et al., 2016): We employ asynchronous updates whereby each
worker has its own copy of the parameters and uses it for computing gradients which are then applied
to a shared parameter instance without any synchronization. We use the Adam optimizer (Kingma
& Ba, 2014) with local non-shared first-order statistics and a single shared instance of second-order
statistics. The pseudo code of the asynchronous DPG-R is shown in algorithm box 1.

Algorithm 1 (A)DPG-R algorithm
Initialize global shared critic and actor network parameters:
θQ

′′
and θµ

′′

Pseudo code for each learner thread:
Initialize critic network Q(s, a|θQ) and policy network µ(s|θµ) with weights θQ and θµ.
Initialize target network Q′ and µ′ with weights: θQ

′
← θQ, θµ

′
← θµ

Initialize replay buffer R
for episode = 1, M do

Receive initial observation state s1
for t = 1, T do

Select action at = µ(st|θµ) +Nt according to the current policy and exploration noise
Perform action at, observe reward rt and new state st+1

Store transition (st, at, rt, st+1) in R
for update = 1, R do

Sample a random minibatch of N transitions (si, ai, ri, si+1) from R

Set yi = ri + γQ′(si+1, µ
′(si+1|θµ

′
)|θQ

′
)

Perform asynchronous update of the shared critic parameters by minimizing the loss:
L = 1

N

∑
i(yi −Q(si, ai|θQ)2)

Perform asynchronous update of the shared policy parameters using the sampled gradient:

∇θµ′′µ|si ≈
1

N

∑
i

∇aQ(s, a|θQ)|∇θµµ(s|θµ)|si

Copy the shared parameters to the local ones: θQ ← θQ
′′

, θµ ← θµ
′′

Every S update steps, update the target networks: θQ
′
← θQ, θµ

′
← θµ

end for
end for

end for

5

Under review as a conference paper at ICLR 2018

Figure 3: Data-efficiency and computational efficiency of ADPG-R. Left: Performance of 16 work-
ers vs single worker in terms of environment transitions (x-axis is millions of transitions; total for all
workers) for Grasp and StackInHand tasks. Right: Performance as a function of “wallclock” time
(per-worker). Both with best replay step and learning rate selection.

Figure 2 (right) compares the performance of ADPG-R for different number of update steps and
16 workers (all workers performing both data collection and computing updates). Similar to Fig. 2
(left) we find that increasing the ratio of update steps per environment steps improves data efficiency,
although the effect appears to be somewhat less pronounced than for DPG-R.

Figure 3 (left) directly compares the single-worker and asynchronous version of DPG-R. In both
cases we choose the best performing number of replay steps and learning rate. As we can see,
the use of multiple workers does not affect overall data efficiency for StackInHand but it reduced
roughly in half for Grasp, with the note that the single worker still hasn’t quite converged.

Figure 3 (right) plots the same data but as a function of environment steps per worker. This measure
corresponds to the optimal wall clock efficiency that we can achieve, under the assumption that com-
munication time between workers is negligible compared to environment interaction and gradient
computation (this usually holds up to a certain degree of parallelization). The theoretical wall clock
time for 16 workers is about 16x lower for StackInHand and roughly 8x lower for Grasp.

Overall these results show that distributing neural network training and data collection across mul-
tiple computers and robots can be an extremely effective way of reducing the overall run time of
experiments and thus making it feasible to run more challenging experiments. We make extensive
use of asynchronous DPG for remaining the experiments.

6 COMPOSITE SHAPING REWARDS

The reward function in the previous section was ”sparse” or ”pure” reward where a reward of 1 was
given for states that correspond to successful task completion (brick lifted above 3cm for grasp; for
stack) and 0 otherwise. For this reward to be useful it is necessary that the agent enters the goal
region at least some of the time. While possible for each of the two subtasks in isolation, this is
highly unlikely for the full task: without further guidance naı̈ve random exploration is very unlikely
to lead to a successful grasp-and -stack as we experimentally verify in Figure 4.

One solution are informative shaping rewards that provide a learning signal even for simple explo-
ration strategies, e.g. by embedding information about the value function in the reward function.

This is a convenient way of embedding prior knowledge about the solution and is a widely and
successfully used approach for simple problems. For complex sequential or compositional tasks
such as the one we are interested in here, however, a suitable reward function is often non-obvious
and may require considerable effort and experimentation. In this section we propose and analyze
several reward functions for the full Stack task, and provide a general recipe that can be applied to
other tasks with compositional structure.

Shaping rewards are often defined using a distance from or progress towards a goal state. Analo-
gously our composite (shaping) reward functions return an increasing reward as the agent completes
components of the full task. They are either piece-wise constant or smoothly varying across different
regions of the state space that correspond to completed subtasks. In the case of Stack we use the
following reward components (see the Appendix):

6

Under review as a conference paper at ICLR 2018

Sparse reward components
Subtask Description Reward

Reach Brick 1 hypothetical pinch site position of the fingers is in a box around the
first brick position

0.125

Grasp Brick 1 the first brick is located at least 3cm above the table surface, which
is only possible if the arm is holding the brick

0.25

Stack Brick 1 bricks stacked 1.00
Smoothly varying reward components

Reaching to brick 1 distance of the pinch site to the first brick - non-linear bounded [0, 0.125]
Reaching to stack while grasped: distance of the first brick to the stacking site of the

second brick - non-linear bounded
[0.25, 0.5]

These reward components can be combined in different ways. We consider three different composite
rewards in additional to the original sparse task reward:
Grasp shaping: Grasp brick 1 and Stack brick 1, i.e. the agent receives a reward of 0.25 when brick
1 has been grasped and a reward of 1.0 after completion of the full task.
Reach and grasp shaping: Reach brick 1, Grasp brick 1 and Stack brick 1, i.e. the agent receives a
reward of 0.125 when close to brick 1, a reward of 0.25 when brick 1 has been grasped, and a reward
of 1.0 after completion of the full task.
Full composite shaping: the sparse reward components as before in combination with the distance-
based smoothly varying components
A full description of the reward functions is provided in the Appendix.

Figure 4 shows the results of learning with the above reward functions (blue traces). No progress
on the full task is made when learning with the sparse reward only. Grasp shaping allows the agent
to learn to grasp but learning is very slow. Reach and grasp shaping substantially reduces the time
to successful grasping but learning does not progress beyond. Only with Full composite shaping,
i.e. with an additional intermediate reward component as in continuous reach, grasp, stack is the full
stacking task solved.

The actual reward functions given above are specific to the stacking task. But the general principle,
a piecewise-constant sequence of rewards that increases as components of the tasks are completed,
augmented with simple smoothly varying rewards that guide towards completion of individual sub-
tasks should be widely applicable. It is important to note that the above reward functions do not
describe all aspects of the task solution: we do not tell the agent how to grasp or stack but merely
to bring the arm into a position where grasping (stacking) can be discovered from exploration and
the sparse reward component. This eases the burden on the designer and is less likely to change the
optimal solution in unwanted ways.

7 LEARNING FROM INSTRUCTIVE STATES

In the previous section we described a strategy for designing effective compositional reward func-
tions that alleviate the burden of exploration. However, designing such rewards can still be error
prone and we did indeed encounter several unexpected failure cases as shown in the supplemental
video (https://www.youtube.com/watch?v=7vmXOGwLq24) and detailed in the Appendix. Fur-
thermore, suitable rewards may rely on privileged information not easily available in a real robotics
setup. In this section we describe a second, complementary strategy for embedding prior knowledge
into the training process and improving exploration.

Specifically we propose to let the distribution of states at which the learning agent is initialized at
the beginning of an episode reflect the compositional nature of the task: e.g., instead of initializing
the agent at the beginning of the full task with both bricks on the table, we can initialize the agent
occasionally with the brick already in its hand and thus prepared for stacking in the same way as
when learning the subtask StackInHand in section 5.

More generally, we can initialize episodes with states taken from anywhere along or close to suc-
cessful trajectories. Suitable states can be either manually defined (as in section 5), or they can be
obtained from a human demonstrator or a previously trained agent that can partially solve the task.
This can be seen as a form of apprenticeship learning in which we provide teacher information by
influencing the state visitation distribution. Unlike many other forms of imitation or apprenticeship
learning, however, this approach requires neither complete trajectories nor demonstrator actions.

7

Under review as a conference paper at ICLR 2018

Figure 4: Effect of different reward shaping strategies and starting state distributions for the com-
posite Stack task. Left to right: (a) No reward shaping; (b,c,d) reward shaping as explained in main
text. Colors indicate starting states: Both bricks on the table (blue); manually defined initial states
(green); and initial states continuously on solution trajectories (red). On all plots, x-axis is millions
of transitions of total experience and y-axis is mean episode return. Policies with mean return over
100 robustly perform the full Stack from different starting states. Without reward shaping and basic
start states only (a, blue) there is no learning progress. Instructive start states allow learning even
with very uninformative sparse rewards indicating only overall task success (a,red).

We perform experiments with two methods for generating the starting states. The first one uses the
manually defined initial states from section 5 (both bricks located on the table or in states where the
first brick is already in the gripper as if the agent just performed a successful grasp). The second
method initializes the learning agent at start states sampled randomly from successful demonstration
trajectories (derived from agents previously trained end-to-end on the compositional reward).

The results of these experiments are shown in Figure 4. Green traces show results for the four
reward functions from section 6 in combination with the manually defined start states (from section
5). While there is still no learning for the sparse reward case, results obtained with all other reward
functions are improved. In particular, even for the second simplest reward function (Grasp shaping)
we obtain some controllers that can solve the full task. Learning with the full composite shaping
reward is faster and more robust than without the use of instructive states.

The leftmost plot of Figure 4 (red trace) shows results for the case where the episode is initialized
anywhere along trajectories from a pre-trained controller (which was obtained using full composite
shaping; rightmost blue curve). We use this start state distribution in combination with the basic
sparse reward for the overall case (Stack without shaping). Episodes were configured to be 50 steps,
which we found to be better suited to this setup with assisted exploration. During testing we still
used episodes with 150 steps as before (so that the traces are comparable). We can see a large
improvement in performance in comparison to the two-state method variant even in the absence
of any shaping rewards. We can learn a robust policy for all seeds within a total of 1 million
environment transitions — less than 1 hour of interaction time on 16 simulated robots.

These results suggest that an appropriate start state distribution not only speeds up learning, it also
allows simpler reward functions to be used. In our final experiment we found that the simplest
reward function (i.e. only indicating overall experimental success) was sufficient to solve the task.
In this case the robustness of trained policies to starting state variation is also encouraging. Over
1000 test trials we obtain 99.2% success for Grasp, 98.2% for StackInHand, and 95.5% for the full
Stack task.

8 CONCLUSION

We have introduced two extensions to the DDPG algorithm which make it a practical method for
learning robust policies for complex continuous control tasks. We have shown that by decoupling
the frequency of network updates from the environment interaction we can dramatically improve
data-efficiency. Parallelizing data acquisition and learning substantially reduces wall clock time.
In addition, we presented two methods that help to guide the learning process towards good solu-
tions and thus reduce the pressure on exploration strategies and speed up learning. In combination
these contributions allow us to solve a challenging manipulation problem end-to-end, suggesting
that many hard control problems lie within the reach of modern learning methods.

It is of course challenging to judge the transfer of results in simulation to the real world. We have
taken care to design a physically realistic simulation, and in initial experiments, which we have
performed both in simulation and on the physical robot, we generally find a good correspondence

8

Under review as a conference paper at ICLR 2018

of performance and learning speed between simulation and real world. This makes us optimistic
that performance numbers may also hold when going to the real world. A second limitation of
our simulated setup is that it currently uses information about the state of the environment would
require additional instrumentation of the experimental setup, e.g. to determine the position of the
two bricks in the work space. These are issues that need to be addressed with care as experiments
move to robotics hardware in the lab. Nevertheless, the algorithms and techniques presented here
offer important guidance for the application of deep reinforcement learning methods to dexterous
manipulation on a real robot.

REFERENCES

J Andrew Bagnell and Jeff G Schneider. Autonomous helicopter control using reinforcement learn-
ing policy search methods. In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE
International Conference on, volume 2, pp. 1615–1620. IEEE, 2001.

A. Boularias, J. Kober, and J. Peters. Relative entropy inverse reinforcement learning. In JMLR
Workshop and Conference Proceedings Volume 15: AISTATS 2011, pp. 182–189, Cambridge,
MA, USA, April 2011. MIT Press.

Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al. A survey on policy search for robotics.
Foundations and Trends in Robotics, 2(1-2):1–142, 2013.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal con-
trol via policy optimization. In Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, pp. 49–58, 2016. URL
http://jmlr.org/proceedings/papers/v48/finn16.html.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning for
robotic manipulation. arXiv preprint arXiv:1610.00633, 2016a.

Shixiang Gu, Sergey Levine, Ilya Sutskever, and Andriy Mnih. Muprop: Unbiased backpropagation
for stochastic neural networks. International Conference on Learning Representations (ICLR),
2016b.

Shixiang Gu, Tim Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep q-learning with
model-based acceleration. In International Conference on Machine Learning (ICML), 2016c.

Abhishek Gupta, Clemens Eppner, Sergey Levine, and Pieter Abbeel. Learning dexterous manip-
ulation for a soft robotic hand from human demonstrations. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS 2016, Daejeon, South Korea, October 9-14,
2016, pp. 3786–3793, 2016.

Roland Hafner and Martin Riedmiller. Reinforcement learning in feedback control. Machine learn-
ing, 84(1-2):137–169, 2011.

Roland Hafner and Martin A. Riedmiller. Neural reinforcement learning controllers for a real robot
application. In 2007 IEEE International Conference on Robotics and Automation, ICRA 2007,
10-14 April 2007, Roma, Italy, pp. 2098–2103, 2007.

Nicolas Heess, Gregory Wayne, David Silver, Tim Lillicrap, Tom Erez, and Yuval Tassa. Learning
continuous control policies by stochastic value gradients. In Advances in Neural Information
Processing Systems (NIPS), pp. 2926–2934, 2015.

K. J. Hunt, D. Sbarbaro, R. Żbikowski, and P. J. Gawthrop. Neural networks for control systems: A
survey. Automatica, 28(6):1083–1112, November 1992. ISSN 0005-1098.

M. Kalakrishnan, L. Righetti, P. Pastor, and S. Schaal. Learning force control policies for com-
pliant manipulation. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2011), Sept. 25-30, San Francisco, CA, 2011. URL http://www-clmc.usc.edu/
publications/K/kalakrishnan-IROS2011.

M. Kalakrishnan, P. Pastor, L. Righetti, and S. Schaal. Learning objective functions for manipula-
tion. In IEEE International Conference on Robotics and Automation, 2013.

9

http://jmlr.org/proceedings/papers/v48/finn16.html
http://www-clmc.usc.edu/publications/K/kalakrishnan-IROS2011
http://www-clmc.usc.edu/publications/K/kalakrishnan-IROS2011

Under review as a conference paper at ICLR 2018

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Nate Kohl and Peter Stone. Policy gradient reinforcement learning for fast quadrupedal locomotion.
In Proceedings of the IEEE International Conference on Robotics and Automation, May 2004.

Sergey Levine and Pieter Abbeel. Learning neural network policies with guided policy search under
unknown dynamics. In Advances in Neural Information Processing Systems (NIPS), pp. 1071–
1079, 2014.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-
motor policies. arXiv preprint arXiv:1504.00702, 2015.

Sergey Levine, Peter Pastor, Alex Krizhevsky, and Deirdre Quillen. Learning hand-eye coordination
for robotic grasping with deep learning and large-scale data collection. CoRR, abs/1603.02199,
2016.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. Interna-
tional Conference on Learning Representations (ICLR), 2016.

Takamitsu Matsubara, Jun Morimoto, Jun Nakanishi, Masa-aki Sato, and Kenji Doya. Learning
cpg-based biped locomotion with a policy gradient method. Robotics and Autonomous Systems,
54(11):911–920, 2006.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning (ICML), 2016.

K. Muelling, J. Kober, O. Kroemer, and J. Peters. Learning to select and generalize striking move-
ments in robot table tennis. (3):263–279, 2013. URL http://www.ias.informatik.
tu-darmstadt.de/uploads/Publications/Muelling_IJRR_2013.pdf.

P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal. Skill learning and task out-
come prediction for manipulation. In IEEE International Conference on Robotics and Automation
(ICRA), Shanghai, China, May 9-13, 2011.

Jan Peters and Stefan Schaal. Policy gradient methods for robotics. In International Conference on
Intelligent Robots and Systems (IROS), pp. 2219–2225. IEEE, 2006.

Lerrel Pinto and Abhinav Gupta. Supersizing self-supervision: Learning to grasp from 50k tries
and 700 robot hours. CoRR, abs/1509.06825, 2015. URL http://arxiv.org/abs/1509.
06825.

M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation learning: The
RPROP algorithm. In H. Ruspini (ed.), Proceedings of the IEEE International Conference on
Neural Networks (ICNN), pp. 586 – 591, San Francisco, 1993.

Martin A. Riedmiller. Neural fitted Q iteration - first experiences with a data efficient neural rein-
forcement learning method. In Machine Learning: ECML 2005, 16th European Conference on
Machine Learning, Porto, Portugal, October 3-7, 2005, Proceedings, pp. 317–328, 2005.

Stefan Schaal. Dynamic Movement Primitives -A Framework for Motor Control in Humans and Hu-
manoid Robotics, pp. 261–280. Springer Tokyo, Tokyo, 2006. ISBN 978-4-431-31381-6. doi: 10.
1007/4-431-31381-8 23. URL http://dx.doi.org/10.1007/4-431-31381-8_23.

John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning (ICML), pp. 1889–1897,
2015.

10

http://www.ias.informatik.tu-darmstadt.de/uploads/Publications/Muelling_IJRR_2013.pdf
http://www.ias.informatik.tu-darmstadt.de/uploads/Publications/Muelling_IJRR_2013.pdf
http://arxiv.org/abs/1509.06825
http://arxiv.org/abs/1509.06825
http://dx.doi.org/10.1007/4-431-31381-8_23

Under review as a conference paper at ICLR 2018

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. International Confer-
ence on Learning Representations (ICLR), 2016.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. De-
terministic policy gradient algorithms. In International Conference on Machine Learning (ICML),
2014.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Gerald Tesauro. Temporal difference learning and td-gammon. Commun. ACM, 38(3):58–68, 1995.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Herke van Hoof, Tucker Hermans, Gerhard Neumann, and Jan Peters. Learning robot in-hand
manipulation with tactile features. In 15th IEEE-RAS International Conference on Humanoid
Robots, Humanoids 2015, Seoul, South Korea, November 3-5, 2015, pp. 121–127, 2015.

Paul J. Webros. Neural networks for control. chapter A Menu of Designs for Reinforcement Learn-
ing over Time, pp. 67–95. 1990. ISBN 0-262-13261-3.

Ali Yahya, Adrian Li, Mrinal Kalakrishnan, Yevgen Chebotar, and Sergey Levine. Collec-
tive robot reinforcement learning with distributed asynchronous guided policy search. CoRR,
abs/1610.00673, 2016. URL http://arxiv.org/abs/1610.00673.

11

http://arxiv.org/abs/1610.00673

Under review as a conference paper at ICLR 2018

Appendix:

9 DDPG AND OTHER ALGORITHMS

DDPG bears a relation to several other recent model free RL algorithms: The NAF algorithm (Gu
et al., 2016c) which has recently been applied to a real-world robotics problem (Gu et al., 2016a)
can be viewed as a DDPG variant where the Q-function is quadratic in the action so that the optimal
action can be easily recovered directly from the Q-function, making a separate representation of
the policy unnecessary. DDPG and especially NAF are the continuous action counterparts of DQN
(Mnih et al., 2015), a Q-learning algorithm that recently re-popularized the use of experience replay
and target networks to stabilize learning with powerful function approximators such as neural
networks. DDPG, NAF, and DQN all interleave mini-batch updates of the Q-function (and the
policy for DDPG) with data collection via interaction with the environment. These mini-batch
based updates set DDPG and DQN apart from the otherwise closely related NFQ and NFQCA
algorithms for discrete and continuous actions respectively. NFQ (Riedmiller, 2005) and NFQCA
(Hafner & Riedmiller, 2011) employ the same basic update as DDPG and DQN, however, they
are batch algorithms that perform updates less frequently and fully re-fit the Q-function and the
policy network after every episode with several hundred iterations of gradient descent with Rprop
(Riedmiller & Braun, 1993) and using full-batch updates with the entire replay buffer. The aggres-
sive training makes NFQCA data efficient, but the full batch updates can become impractical with
large networks, large observation spaces, or when the number of training episodes is large. Finally,
DPG can be seen as the deterministic limit of a particular instance of the stochastic value gradients
(SVG) family (Heess et al., 2015), which also computes policy gradient via back-propagation of
value gradients, but optimizes stochastic policies.

Discrete Continuous
Mini-batch learning

Target networks DQN DDPG, NAF
Full-batch learning with Rprop

Parameter resetting NFQ NFQCA

10 REWARD FUNCTION

In this section we provide further details regarding the composite reward functions described in the
main text. For our experiments we derived these from the state vector of the simulation, but they
could also be obtained through instrumentation in hardware. The reward functions are defined in
terms of the following quantities:

• b(1)
z : height of brick 1 above table

• sB1
{x,y,z}: x,y,z positions of site located roughly in the center of brick 1

• sB2
{x,y,z}: x,y,z positions of site located just above brick 2, at the position where sB1 will be

located when brick 1 is stacked on top of brick 2.

• sP{x,y,z}: x,y,z positions of the pinch site of the hand – roughly the position where the
fingertips would meet if the fingers are closed..

10.1 SPARSE REWARD COMPONENTS

Using the above we can define the following conditions for the successful completion of subtasks:

Reach Brick 1 The pinch site of the fingers is within a virtual box around the first brick position.

reach =(|sB1
x − sPx | < ∆reach

x) ∧ (|sB1
y − sPy | < ∆reach

y) ∧ (|sB1
z − sPz | < ∆reach

z),

where ∆reach
{x,y,z} denote the half-lengths of the sides of the virtual box for reaching.

12

Under review as a conference paper at ICLR 2018

Grasp Brick 1 Brick 1 is located above the table surface by a threshold, θ, that is possible only if
the arm is the brick has been lifted.

grasp =b(1)
z > θ

Stack Brick 1 is stacked on brick 2. This is expressed as a box constraint on the displacement
between brick 1 and brick 2 measured in the coordinate system of brick 2.

stack =(|C(2)
x (sB1 − sB2)| < ∆stack

x) ∧ (|C(2)
y (sB1 − sB2)| < ∆stack

y) ∧ (|C(2)
z (sB1 − sB2)| < ∆stack

z),

where ∆stack
{x,y,z} denote the half-lengths of the sides of the virtual box for stacking, and C(2) is the

rotation matrix that projects a vector into the coordinate system of brick 2. This projection into the
coordinate system of brick 2 is necessary since brick 2 is allowed to move freely. It ensures that the
box constraint is considered relative to the pose of brick 2. While this criterion for a successful stack
is quite complicated to express in terms of sites, it could be easily implemented in hardware e.g. via
a contact sensor attached to brick 2.

10.2 SHAPING COMPONENTS

The full composite reward also includes two distance based shaping components that guide the hand
to the brick 1 and then brick 1 to brick 2. These could be approximate and would be relatively simple
to implement with a hardware visual system that can only roughly identify the centroid of an object.
The shaping components of the reward are given as follows:

Reaching to brick 1 :

rS1(sB1, sP) = 1− tanh2(w1‖sB1 − sP ‖2)

Reaching to brick 2 for stacking

rS2(sB1, sB2) = 1− tanh2(w2‖sB1 − sB2‖2).

10.3 FULL REWARD

Using the above components the reward functions we implement the composite reward functions
described in the main text: Stack, Grasp shaping, Reach and grasp shaping, and Full composite
shaping can be expressed as in equations (3, 4, 5, 6) below. These make use of the predicates above
to determine whether which subtasks have been completed and return a reward accordingly.

r(b(1)
z , sP , sB1, sB2) =

{
1 if stack(b

(1)
z , sP , sB1, sB2)

0 otherwise
(3)

r(b(1)
z , sP , sB1, sB2) =

1 if stack(b

(1)
z , sP , sB1, sB2)

0.25 if ¬stack(b
(1)
z , sP , sB1, sB2) ∧ grasp(b

(1)
z , sP , sB1, sB2)

0 otherwise
(4)

r(b(1)
z , sP , sB1, sB2) =

1 if stack(b

(1)
z , sP , sB1, sB2)

0.25 if ¬stack(b
(1)
z , sP , sB1, sB2) ∧ grasp(b

(1)
z , sP , sB1, sB2)

0.125 if ¬(stack(b
(1)
z , sP , sB1, sB2) ∨ grasp(b

(1)
z , sP , sB1, sB2)) ∧ reach(b

(1)
z , sP , sB1, sB2)

0 otherwise
(5)

r(b(1)
z , sP , sB1, sB2) =

1 if stack(b
(1)
z , sP , sB1, sB2)

0.25 + 0.25rS2(sB1, sP) if ¬stack(b
(1)
z , sP , sB1, sB2) ∧ grasp(b

(1)
z , sP , sB1, sB2)

0.125 if ¬(stack(b
(1)
z , sP , sB1, sB2) ∨ grasp(b

(1)
z , sP , sB1, sB2))

∧reach(b
(1)
z , sP , sB1, sB2)

0 + 0.125rS1(sB1, sP) otherwise
(6)

13

Under review as a conference paper at ICLR 2018

10.4 COMPOSITE SHAPING REWARDS: FAILURE CASES

We encountered several unexpected failure cases while designing the reward func-
tion components. Examples of these are shown in the supplemental video
(https://www.youtube.com/watch?v=7vmXOGwLq24). (1) The choice of reach and grasp re-
ward components led to a grasp from which successful stacking was then no longer possible. (2)
The agent learned to grasp the first brick and reach to the second but would then not stack because,
due to an inappropriate height threshold the grasp reward would cease to be provided before the
stack reward would be received. (3) The agent learns to flip the brick rather than lift it off the table
because it receives a grasping reward calculated with an inappropriate reference point on the brick
(which could be brought above the height threshold by merely bringing the brick on its side).

14

	Introduction
	Related work
	Background
	Task and experimental setup
	Asynchronous DPG with variable replay steps
	Composite shaping rewards
	Learning from instructive states
	Conclusion
	DDPG and other algorithms
	Reward function
	Sparse reward components
	Shaping components
	Full reward
	Composite shaping rewards: Failure cases

