
Data-Efficient Off-Policy Policy Evaluation for Reinforcement Learning

Philip S. Thomas PHILIPT@CS.CMU.EDU

Emma Brunskill EBRUN@CS.CMU.EDU

Abstract

In this paper we present a new way of predicting

the performance of a reinforcement learning pol-

icy given historical data that may have been gen-

erated by a different policy. The ability to evalu-

ate a policy from historical data is important for

applications where the deployment of a bad pol-

icy can be dangerous or costly. We show em-

pirically that our algorithm produces estimates

that often have orders of magnitude lower mean

squared error than existing methods—it makes

more efficient use of the available data. Our new

estimator is based on two advances: an exten-

sion of the doubly robust estimator (Jiang & Li,

2015), and a new way to mix between model

based and importance sampling based estimates.

1. Introduction

The ability to predict the performance of a policy with-

out actually having to use it is crucial to the responsible

use of reinforcement learning algorithms. Consider the

setting where the user of a reinforcement learning algo-

rithm has already deployed some policy, e.g., for determin-

ing which advertisement to show a user visiting a website

(Theocharous et al., 2015), for determining which medical

treatment to suggest for a patient (Thapa et al., 2005), or for

suggesting a personalized curriculum for a student (Mandel

et al., 2014). In these examples, using a bad policy can be

costly or dangerous, so it is important that the user of a re-

inforcement learning algorithm be able to predict how well

a new policy will perform without having to deploy it.

In this paper we propose a new algorithm for tackling this

performance prediction problem, which is called the off-

policy policy evaluation (OPE) problem. The primary ob-

jective in OPE problems is to produce estimates that mini-

mize some notion of error. We select mean squared error, a

popular notion of error for estimators, as our loss function.

This is in line with previous works that all use (root) mean
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squared error when empirically validating their methods

(Precup et al., 2000; Dudı́k et al., 2011; Mahmood et al.,

2014; Thomas, 2015b; Jiang & Li, 2015).

Given this goal, an estimator should be strongly

consistent—its mean squared error should converge almost

surely to zero as the amount of available data increases.1 In

this paper we introduce a new strongly consistent estima-

tor, MAGIC, that directly optimizes mean squared error.

Our empirical results show that MAGIC can produce esti-

mates with orders of magnitude lower mean squared error

than the estimates produced by existing algorithms.

Our new algorithm comes from the synthesis of two new

ideas. The first is an extension of the recently proposed

doubly robust (DR) OPE algorithm (Jiang & Li, 2015).

We present a novel derivation of the DR algorithm that re-

moves the assumption that the horizon is finite and known.

We also give conditions under which the DR estimator is

strongly consistent. We then show how we can reduce the

variance of the DR estimator by introducing a small amount

of bias—an effective trade-off when minimizing the mean

squared error of the estimates. We call our extension of the

DR estimator the weighted doubly robust (WDR) estimator.

Our second major contribution is a new estimator, which

we call the blending IS and model (BIM) estimator, that

combines two different OPE estimators not just by select-

ing between them, but by blending them together in a way

that minimizes the mean squared error. The combination

of these two contributions results in a particularly power-

ful new OPE algorithm that we call the model and guided

importance sampling combined (MAGIC) estimator, which

uses BIM to combine a purely model-based estimator with

WDR. In our simulations, MAGIC has the best general per-

formance, often exhibiting orders of magnitude lower mean

squared error than prior state-of-the-art estimators.

The research reported here was supported by a NSF CA-
REER grant 1350984 and by the Institute of Education Sciences,
U.S. Department of Education, through Grant R305A130215 to
Carnegie Mellon University. The opinions expressed are those of
the authors and do not represent views of the Institute or the U.S.
Department of Education.

1In Appendix A we define strong consistency and present
Lemma 3, which elucidates its connection to mean squared error.
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2. Notation

We assume that the reader is familiar with reinforcement

learning (Sutton & Barto, 1998) and adopt notational stan-

dard MDPNv1 for Markov decision processes (Thomas,

2015a, MDPs). Although our results carry over to the set-

ting where the states, actions, and rewards are continuous

random variables with density functions, for simplicity, our

notation assumes that the state, action, and reward sets are

finite. Let H := (S0, A0, R0, S1, . . . ) be a trajectory,and

g(H) :=
∑∞

t=0 γ
tRt denote the return of a trajectory. We

assume that Rt ∈ [rmin, rmax] for (possibly unknown) finite

constants rmin and rmax. Let γ ∈ [0, 1] for the finite-horizon

setting and γ ∈ [0, 1) for the indefinite and infinite horizon

settings so that g(H) is bounded. We use the discounted

objective function, v(π) := E[g(H)|H ∼ π], where H ∼
π denotes that H was generated using the policy π. We use

superscripts to denote which trajectory a term comes from,

e.g., SH
t . Let vπ and qπ be the state value function and

state-action value function for policy π—for all (π, s, a) ∈
Π × S × A, let vπ(s) := E [

∑∞
t=0 γ

tRt|S0 = s, π] and

qπ(s, a) := E [
∑∞

t=0 γ
tRt|S0 = s,A0 = a, π]. Notice

that v without a superscript denotes the objective function,

while vπ denotes a value function, and that the two are re-

lated: v(π) =
∑

s∈S Pr(S0 = s)vπ(s).

Let historical data, D, be a set of n ∈ N>0 trajectories and

the known policies, called behavior policies, that were used

to generate them: D := {(Hi, πi)}
n
i=1, where Hi ∼ πi.

When we write Hi, we always mean that Hi ∼ πi. Let

ρt(H,πe, πb) :=
∏t

i=0 πe

(
AH

i

∣∣SH
i

)
/πb

(
AH

i

∣∣SH
i

)
, be an

importance weight, which is the probability of the first t
steps of H under the evaluation policy, πe, divided by its

probability under the behavior policy, πb (Precup et al.,

2000, Section 2). We write ρit and ρt as shorthand for

ρt(Hi, πe, πi) and ρt(H,πe, πb). Let ρi−1 := 1 for all i.
One of the primary challenges will be to combat the high

variance and large range of the importance weights, ρt.

Let r̂π(s, a, t) ∈ [rmodel
min , rmodel

max ] denote an approximate

model’s prediction of Rt if S0 = s, A0 = a, and

the policy π is used to generate actions, A1, A2, . . . ,

where rmodel
min and rmodel

max are finite constants. Let

r̂π(s, t) :=
∑

a∈A π(a|s)r̂π(s, a, t), be a prediction of

Rt if S0 = s and the policy π is used to generate ac-

tions A0, A1, . . . . Let v̂π(s) :=
∑∞

t=0 γ
tr̂π(s, t) and

q̂π(s, a) :=
∑∞

t=0 γ
tr̂π(s, a, t) be the model’s estimates

of vπ(s) and qπ(s, a). We assume that r̂π(
∞
s , a, t) = 0 for

all (π, a, t) ∈ Π × A × N≥0, where
∞
s is the terminal ab-

sorbing state. Although better models will tend to improve

our estimates, we make no assumptions about the veracity

of the approximate model’s predictions.

3. Off-Policy Policy Evaluation (OPE)

The problem of off-policy policy evaluation (OPE) is de-

fined as follows. We are given an evaluation policy,

πe, historical data, D, and an approximate model. Our

goal is to produce an estimator, v̂(D), of v(πe) that has

low mean squared error (MSE): MSE(v̂(D), v(πe)) :=

E
[
(v̂(D)− v(πe))

2
]
. We use capital letters to denote ran-

dom variables, and so the random terms in expected values

are always the capitalized letters (e.g. D is a random vari-

able). We assume that the process producing states, ac-

tions, and rewards is an MDP with unknown initial state

distribution, transition function, and reward function. We

assume that the evaluation policy, πe, the behavior poli-

cies, πi, i ∈ {1, . . . , n}, and the discount parameter, γ, are

known. For a review of OPE methods, see the works of

Precup et al. (2000) or Thomas (2015b, Chapter 3). More

recent methods can be found in the works of Jiang & Li

(2015) and Mandel et al. (2016).

4. Doubly Robust (DR) Estimator

The doubly robust (DR) estimator (Jiang & Li, 2015) is a

new unbiased estimator of v(πe) that achieves promising

empirical and theoretical results by leveraging an approx-

imate model of an MDP to decrease the variance of the

unbiased estimates produced by ordinary importance sam-

pling (Precup et al., 2000). It is doubly robust in that it

will provide “good” estimates if either 1) the model is ac-

curate or 2) the behavior policies are known. By “good”

it is meant that if the former does not hold then the esti-

mator will remain unbiased (although it might have high

variance and thus high mean squared error), and if the lat-

ter does not hold then if the model has low error the doubly

robust estimator will also tend to have low error. Doubly

robust estimators were introduced and remain popular in

the statistics community (Rotnitzky & Robins, 1995).

The work that introduced the DR estimator for MDPs

(Jiang & Li, 2015) derived it as a generalization of a dou-

bly robust estimator for bandits (Dudı́k et al., 2011). This

may be why the DR estimator was derived only for the fi-

nite horizon setting where the horizon is known (every tra-

jectory must terminate within L < ∞ time steps, and L
must be known). It also resulted in a recursive definition of

the DR estimator that can be difficult to interpret. In Ap-

pendix B we instead derive the DR estimator for MDPs as

an application of control variates. Our new derivation holds

without assumptions on the horizon and gives the intuitive

non-recursive definition, where wi
t = ρit/n:
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DR(D) :=
n∑

i=1

∞∑

t=0

γtwi
tR

Hi

t (1)

−

n∑

i=1

∞∑

t=0

γt
(
wi

tq̂
πe

(
SHi

t , AHi

t

)
− wi

t−1v̂
πe

(
SHi

t

))
.

In Appendix B we show that this definition is equivalent

to that of Jiang & Li (2015) when the horizon is finite and

known, and we provide several new theoretical results per-

taining to the DR estimator. Specifically, we give condi-

tions for DR to be an unbiased estimator without assump-

tions on the horizon, and we give the first proofs that it is a

strongly consistent estimator. Although these are important

properties to establish, we relegate them to an appendix due

to space limitations.

The non-recursive definition of the DR estimator presented

in (1) also reveals the close relationship of the DR esti-

mator to advantage sum estimators. Advantage sum esti-

mators were introduced as a way to lower the variance of

on-policy Monte Carlo performance estimates for a setting

that is a generalization of the (partially observable) MDP

setting (Zinkevich et al., 2006; White & Bowling, 2009).

The DR estimator for the on-policy setting can be found

in the work of Zinkevich et al. (2006, Equation 8). One

may therefore view the DR estimator (Jiang & Li, 2015)

as the extension of the advantage sum estimator (Zinkevich

et al., 2006) to the off-policy setting or as the extension

of the doubly robust estimator for bandits (Dudı́k et al.,

2011) to the sequential setting. We are therefore not the

first to show that the DR estimator can be viewed as an

application of control variates, since White (2009) and Ve-

ness et al. (2011, Section 3.1) point out that the advantage

sum estimator is an application of control variates. Still,

our derivation in Appendix B of the DR estimator is novel.

The DR estimator is not purely model based, since it uses

importance weights. However, it is also not a model-free

importance sampling method, since it uses an approximate

model to decrease the variance of its estimates. We there-

fore refer to it as a guided importance sampling method,

since the approximate model is used to guide, but not com-

pletely replace, the importance sampling estimates.

5. Weighted Doubly Robust (WDR) Estimator

Empirical and theoretical results show that the DR estima-

tor developed by Jiang & Li (2015) can significantly re-

duce the variance of ordinary importance sampling without

introducing bias. The fact that it does not introduce bias

is important when the estimator is used to produce con-

fidence bounds on v(πe) (Thomas, 2015b). However, in

practice these confidence bounds often require an imprac-

tical amount of data before they are tight enough to be use-

ful, and so approximate confidence bounds (e.g., bootstrap

confidence bounds) are used instead (Theocharous et al.,

2015). When using these approximate confidence bounds,

the strict requirement that an OPE estimator be an unbiased

estimator of v(πe) is not necessary. Furthermore, some-

times the goal of OPE is not to produce confidence bounds,

but to produce the best possible estimate of v(πe), in or-

der to determine whether πe should be used instead of the

current behavior policy or as an internal mechanism in a

policy search algorithm (Levine & Koltun, 2013). In these

cases, the “best” estimator is typically defined as the one

that has the lowest mean squared error (MSE), even if it is

not well suited to creating confidence bounds. For exam-

ple, in their experiments, Precup et al. (2000), Dudı́k et al.

(2011), Mahmood et al. (2014), Thomas (2015b), and Jiang

& Li (2015) all use the MSE when evaluating methods.

Although unbiasedness might seem like a desirable prop-

erty of an estimator, when the goal is to minimize MSE,

it often is not. In general, the MSE of an estimator, θ̂,

of a statistic, θ, can be decomposed into its variance and

its squared bias: MSE(θ̂, θ) = E[(θ − θ̂)2] = Var(θ̂) +

Bias(θ̂)2, where Bias(θ̂) := E[θ̂] − θ. The optimal esti-

mator in terms of MSE is typically one that balances this

bias-variance trade-off, not one with zero bias. Therefore,

in the context of minimizing MSE, strong asymptotic con-

sistency, which requires the MSE of an estimator to almost

surely converge to zero as the amount of available data in-

creases, is a more desirable property than unbiasedness.

In this section we propose a new OPE estimator that we call

the weighted doubly robust (WDR) estimator. The WDR

estimator comes from applying a simple well-known exten-

sion to importance sampling estimators to the DR estima-

tor to produce a new guided importance sampling method.

This extension does not directly optimize the bias-variance

trade-off, but it does tend to significantly better balance it

while maintaining asymptotic consistency. More specif-

ically, WDR is based on weighted importance sampling

(Powell & Swann, 1966) as opposed to ordinary impor-

tance sampling (Hammersley & Handscomb, 1964). For

further discussion of the benefits of weighted importance

sampling over ordinary importance sampling, see the work

of Thomas (2015b, Section 3.8). Weighted importance

sampling has been used before for OPE (Precup et al.,

2000), but not with the DR estimator.

We define the WDR estimator as the DR estimator in

(1), except where wi
t := ρit/

∑n

j=1 ρ
j
t .2 Intuitively it is

2Just as DR-v2 extends the DR estimator (Jiang & Li, 2015,
Section 4.4), one can create the WDR-v2 estimator by replacing
q̂πe(St, At) with r̂πe(St, At, 0)+γv̂πe(St+1) in (1). For the do-
mains presented here, these variants did not outperform the origi-
nal DR and WDR estimators.
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clear that this estimator is asymptotically correct because

E[ρjt ] = 1, and so by the law of large numbers the denom-

inator of wi
t will converge to n. Although WDR is not an

unbiased estimator of v(πe), its bias follows a pattern that

is both predictable and also sometimes desirable. When

there is only a single trajectory, i.e., n = 1, WDR(D) is

an unbiased estimator of the performance of the behavior

policy, since w1
t = 1 for all t. If there is a single behavior

policy, πb, as the number of trajectories increases, the ex-

pected value of WDR(D) shifts from v(πb) towards v(πe).

In Appendix C we establish two different sets of assump-

tions that are sufficient to show that WDR is a strongly con-

sistent estimator of v(πe).

6. Empirical Studies (WDR)

In order to both show the empirical benefits of WDR over

existing importance sampling estimators and better moti-

vate our second major contribution, we present an em-

pirical comparison of different OPE methods.3 We com-

pare to a broad sampling of model-free importance sam-

pling estimators, definitions of which can be found in the

work of Thomas (2015b, Chapter 3): importance sampling

(IS), per-decision importance sampling (PDIS), weighted

importance sampling (WIS), and consistent weighted per-

decision importance sampling (CWPDIS). We also com-

pare to the guided importance sampling doubly robust (DR)

estimator (Jiang & Li, 2015).

Lastly, we compare to the approximate model (AM) es-

timator, which uses all of the available data to construct

an approximate model of the MDP.4 The performance of

the evaluation policy on the approximate model is typically

easy to compute and can be used as an estimate of v(πe).
For example, in our experiments the approximate model

maintains an estimate, d̂0, of the initial state distribution,

and so we define AM :=
∑

s∈S d̂0(s)v̂
πe(s). Notice that

unlike the importance sampling based methods, AM does

not include any importance weights (ρt terms).

Here we provide an overview the results detailed in Ap-

pendix D. We used three domains: 1) a 4×4 gridworld pre-

viously constructed specifically for evaluating OPE meth-

ods (Thomas, 2015b, Section 2.5); 2) ModelFail, a par-

tially observable, deterministic, 4-state domain with hori-

zon L = 2 and in which 3 of the states are aliased (ap-

pear identical to the agent), which means that the agent’s

observations are not Markovian and thus that the approxi-

3The raw data for all experiments in this paper is provided in
the supplemental spreadsheet.

4This model-based estimator has been called the direct method
in previous work (Dudı́k et al., 2011), however, in other previous
work direct methods are model-free while indirect methods are
model-based (Sutton & Barto, 1998, Section 9.2).

mate (MDP) model is incorrect, even asymptotically; and

3) ModelWin, a stochastic 4-state MDP with L = 20, where

the model that we use can perfectly represent the true MDP.

In our simulations, WDR dominated the other importance

sampling and guided importance sampling estimators (but

not AM). Not only did WDR always achieve the lowest

mean squared error of these estimators, but no other sin-

gle (guided) importance sampling estimator was able to al-

ways achieve mean squared errors within an order of mag-

nitude of WDR’s (e.g., Figure 1a). Note that, as expected,

WDR significantly outperforms AM on the ModelFail do-

main. However, AM significantly outperforms WDR on

the ModelWin domain, which was designed so that the

model quickly converges to the true MDP.

One might wonder why DR and WDR can do worse than

AM even though they incorporate the approximate model.

Although this question has been discussed before by Jiang

& Li (2015, Section 4.2), we review it here. Notice that we

can write the DR and WDR estimators as:

WDR(D) :=
1

n

n∑

i=1

v̂
πe(SHi

0 )

︸ ︷︷ ︸
(a)

(2)

+

n∑

i=1

∞∑

t=0

γ
t
w

i
t

[

R
Hi
t − q̂

πe

(

S
Hi
t , A

Hi
t

)

+ γv̂
πe

(

S
Hi
t+1

)

︸ ︷︷ ︸
(b)

]

.

If the approximate model is perfect, then (a) is both a low

variance and unbiased estimator of v(πe). If the approx-

imate model is perfect and Rt and St+1 are deterministic

functions of St and At, then (b) is zero, and so the sec-

ond term is always zero and WDR is an excellent estimator.

However, if Rt or St+1 is not a deterministic function of St

and At—if the state transitions or rewards are stochastic—

then (b) is not necessarily zero. If the importance weights,

wi
t, have high variance, then even slightly non-zero values

of (b) can result in high mean squared error.

In summary, while WDR tends to outperform the other im-

portance sampling estimators, sometimes AM can produce

estimates with much lower MSE. This trend is also visible

in the results of Jiang & Li (2015), where AM performs bet-

ter than DR. Ideally we would like an estimator that com-

bines WDR and AM or switches between them to always

achieve the performance of the better estimator. In the fol-

lowing sections we show how this can be done.

7. Blending IS and Model (BIM) Estimator

In this section we show how two OPE estimators can be

merged into a single estimator that exhibits the desirable

properties of both. Before doing so, we establish some ter-
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Figure 1: Empirical results for three different experimental setups. All plots in this paper have the same format: they

show the mean squared error of different estimators as n, the number of episodes in D, increases. Both axes always use a

logarithmic scale and standard error bars are included from 128 trials. All plots use the following legend:

IS PDIS WIS CWPDIS DR AM WDR

minology. We divide OPE estimators into three classes.

The first class we call importance sampling estimators.

We define this class to include all estimators that, when

L is finite, are defined using all of the importance weights

ρ0, ρ1, . . . , ρL−1. Notice that this includes IS, PDIS, WIS,

CWPDIS, DR, and WDR. The second class we call purely

model-based estimators. We define this class to include all

estimators that do not contain any ρt terms for t ≥ 0. The

only purely model-based estimator in this paper is AM. Fi-

nally, we call the third class partial importance sampling

estimators. These estimators are those that do not fall into

either of the other two classes—estimators that use impor-

tance weights, ρt, but only for t < L−1. We will introduce

one such estimator later in this section.

We contend that importance sampling estimators and

purely model-based estimators are two extremes on a spec-

trum of estimators. Importance sampling estimators tend

to be strongly consistent. That is, as more historical data

becomes available, their estimates become increasingly ac-

curate. However, their use of importance weights means

that they all (including DR and WDR) also can have high

variance relative to purely model-based estimators. This is

evident in the results on the ModelWin domain.

On the other end of the spectrum, purely model-based es-

timators like AM are often not strongly consistent. If the

approximate model uses function approximation or if there

is some partial observability, then the approximate model

may not converge to the true MDP. So, as more historical

data becomes available, the estimates of AM may converge

to a value other than v(πe). Thus, purely model-based es-

timators tend to have high bias, even asymptotically, as ev-

idenced by the AM curve in Figure 1b. However, purely

model-based methods also tend to have low variance be-

cause they do not contain any ρt terms.

Between these two extremes lies a range of partial im-

portance sampling estimators. Estimators that are close

to the purely model-based estimators use ρt terms only

for small t, while estimators that are close to importance

sampling estimators use ρt terms with large t approach-

ing L − 1. Before formally defining one such partial

importance sampling estimator, we present a few addi-

tional definitions. First, let IS[0:j](D) denote an estimate

of E[
∑j

t=0 γ
tRt|H ∼ πe], constructed from D using an

importance sampling method like PDIS or WDR, which

uses importance weights up to and including ρj . Similarly,

let AM[j:∞](D) denote a primarily model-based prediction

from D of E[
∑∞

t=j γ
tRt|H ∼ πe] that may not use ρt

terms with t ≥ j.

We can now define a partial importance sampling estima-

tor that we call the off-policy j-step return, g(j)(D), which

uses an importance sampling based method to predict the

outcome of using πe up until Rj is generated, and the ap-

proximate model estimator to predict the outcomes there-

after. That is, let j denote the length of the j-step return

and for all j ∈ N≥−1, let5

g(j)(D) := IS[0:j](D) + AM[j+1:∞](D)

g(∞)(D) := lim
j→∞

g(j)(D). (3)

Notice that g(−1)(D) is a purely model-based estimator,

g(∞)(D) is an importance sampling estimator, and the

other off-policy j-step returns are partial importance sam-

pling estimators that blend between these two extremes.

When j is small, the off-policy j-step return is similar to

AM, using importance sampling to predict only a few early

rewards. When j is large, it uses importance sampling to

predict most of the rewards and the model only for rewards

at the end of a trajectory. So, as j increases we expect the

variance of the return to increase, but the bias to decrease.

We propose a new estimator, which we call the blending

IS and model (BIM) estimator, that leverages this spec-

trum of estimators to blend together the IS and AM esti-

mators in a way that minimizes MSE. It does this by com-

puting a weighted average of the different length returns:

BIM(D) := x⊺g(D), where x := (x−1, x0, x1, . . . )
⊺ is an

infinite-dimensional weight vector and g(D) is an infinite-

5If prior knowledge about d0 is available, then one might con-

sider adding g(−2)(D) to denote the model’s prediction of v(πe),

which might differ from g(−1)(D).
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dimensional vector of different length returns, g(D) :=
(g(−1)(D), g(0)(D), . . . , )⊺. The remaining question is

then: how should we select the weights, x?

A similar question has been studied before in reinforce-

ment learning research when deciding how to weight j-

step returns (not off-policy), as reviewed by Sutton & Barto

(1998, Section 7.2). The most common solution, a com-

plex return called the λ-return, uses x−1 = 0 and xj =
(1− λ)λj for all other j. The λ-return is the foundation of

the entire TD(λ) family of algorithms, which includes the

original linear-time algorithm (Sutton, 1988), least-squares

formulations (Bradtke & Barto, 1996; Mahmood et al.,

2014), methods for adapting λ (Downey & Sanner, 2010),

true-online methods (van Hasselt et al., 2014), and the re-

cent emphatic methods (Mahmood et al., 2015).

Recent work has suggested that the λ-return could be

replaced by more statistically principled complex re-

turns like the γ-return (Konidaris et al., 2011) or Ω-

return (Thomas et al., 2015). For the finite-horizon set-

ting and for j ∈ {0, . . . , L − 1} the γ-return uses

xj := (
∑j

i=0 γ
2i))−1/

∑L−1

ĵ=0
(
∑ĵ

i=0 γ
2i)−1, and the Ω-

return uses xj =
∑L−1

i=0 Ω−1
n (j, i)/

∑L−1

ĵ,i=0
Ω−1

n (ĵ, i),

where Ωn is the L×L covariance matrix where Ωn(i, j) =
Cov(g(i)(D), g(j)(D)), and where both the γ and Ω-

returns use xj = 0 for j 6∈ {0, . . . , L− 1}.

The advantage of the γ-return over the λ-return is that it

uses a more accurate model of how variance increases with

the length of a return, which also eliminates the λ hyper-

parameter used by the λ-return. The advantages of the Ω-

return over the γ-return are that it both uses a yet more-

accurate estimate of how variance grows with the length

of the return, which is computed from historical data, and

that it better accounts for the fact that different length re-

turns are not independent, i.e., g(i)(D) and g(j)(D) are not

independent even if i 6= j.

However, none of these weighting schemes are sufficient

for our needs because they do not cause BIM to necessarily

be a strongly consistent estimator.6 This is likely because

they were all designed for the setting where only one tra-

jectory is available, i.e., n = 1, while strong consistency is

a property that deals with performance as n→∞. Further-

more, they were designed for on-policy policy evaluation.

We therefore propose a new weighting scheme (a

new complex return for multiple trajectories) that di-

rectly optimizes our primary objective: the mean

squared error. This new weighting scheme is x⋆ :=
argminx∈R∞ MSE(x⊺g(D), v(πe)). Unfortunately, we

typically cannot compute x⋆, because we do not know

6The λ-return with λ = 1 is defined to be g(∞)(D) and is
consistent, but it does not mix the two OPE methods at all.

MSE(x⊺g(D), v(πe)) for any x. Instead, we pro-

pose estimating x⋆ by minimizing an approximation of

MSE(x⊺g(D), v(πe)). First, dealing with an infinite num-

ber of different return lengths is challenging. To avoid this,

we propose only using a subset of the returns, {g(j)(D)},
for j ∈ J , where |J | < ∞. For all j 6∈ J , we assign

xj = 0. We suggest including −1 and∞ in J .

To simplify later notation, let gJ (D) ∈ R
|J | be the ele-

ments of g(D) whose indexes are in J—the returns that

will not necessarily be given weights of zero. Also let Jj
denote the jth element in J . We can then estimate x⋆ by:

x̂⋆ ∈ arg min
x∈R|J |

MSE(x⊺gJ (D), v(πe)),

where our estimate of x⋆
j is zero if j 6∈ J and our estimate

of x⋆
Jj

is x̂⋆
j for j ∈ {1, . . . , |J |}.

Next, to avoid searching all of R|J | and also to serve as a

form of regularization on x̂⋆, we limit the set of x that we

consider to the |J |-simplex, i.e., we require xj ≥ 0 for all

j ∈ {1, . . . , |J |} and
∑|J |

j=1 xj = 1. We write ∆|J | to

denote this set of weight vectors—the |J |-simplex.

Using the bias-variance decomposition of MSE, we have:

x̂⋆ ∈ arg min
x∈∆|J |

Bias(x⊺gJ (D))2 +Var(x⊺gJ (D))

= arg min
x∈∆|J |

x⊺[Ωn + bnb
⊺

n]x,

where n remains the number of trajectories in D, Ωn

is the |J | × |J | covariance matrix where Ωn(i, j) =
Cov(g(Ji)(D),g(Jj)(D)) and bn is the |J |-dimensional

vector with bn(j) = E[g(Jj)(D)] − v(πe) for all j ∈
{1, . . . , |J |}.7 This simplifies the problem of estimating

the MSE for all possible x into estimating two terms: the

bias vector, bn, and the covariance matrix, Ωn.

Let b̂n and Ω̂n be the estimates of bn and Ωn when there

are n trajectories in D. The exact scheme used to esti-

mate bn and Ωn depends on the definitions of IS[0:j](D)

and AM[j:∞](D). In general, both terms are easier to es-

timate for unweighted importance sampling estimators like

PDIS and DR than for weighted estimators like CWPDIS

or WDR.

To make the dependence of BIM on the estimates of Ωn

and bn explicit, and to summarize the approximations we

have made, we redefine the BIM estimator as:

BIM(D, Ω̂n, b̂n) := (x̂⋆)⊺gJ (D),

where x̂⋆ ∈ argmin
x∈∆|J | x⊺[Ω̂n + b̂nb̂

⊺

n]x.

7Since bn (similarly, Ωn) already has a subscript, we write
bn(j) to denote the j th element of bn.
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Before continuing, we establish an assumption that will be

useful here and later: that the importance weights, ρit, are

bounded above by a finite constant, β ∈ R (they are always

bounded below by zero). This assumption is trivially satis-

fied in the common setting where the horizon is finite and

the state and action sets are finite. Although Assumption 1
requires β to exist, none of our results depend on how large

β is. So, in the non-finite state, action, and horizon settings

one may ensure that evaluation policies are only considered

if they satisfy Assumption 1 for some arbitrarily large β.

Assumption 1 (Bounded importance weight). There ex-

ists a constant β < ∞ such that for all (t, i) ∈ N≥0 ×
{1, . . . , n}, ρit ≤ β surely.

We now show that if at least one of the returns included

in J is a strongly consistent estimator of v(πe), Assump-

tion 1 holds, β ∈ R, and if the estimates of bn and Ωn

are themselves strongly consistent, then BIM is a strongly

consistent estimator of v(πe).

Theorem 1. If Assumption 1 holds, there exists at least

one j ∈ J such that g(j)(D) is a strongly consistent esti-

mator of v(πe), b̂n − bn
a.s.
−→ 0, and Ω̂n −Ωn

a.s.
−→ 0, then

BIM(D, Ω̂n, b̂n)
a.s.
−→ v(πe). Proof See Appendix E.

8. Model and Guided Importance Sampling

Combined (MAGIC) Estimator

In this section we propose using the BIM estimator with

WDR as the importance sampling estimator, and show how

bn and Ωn can be approximated in this setting. The result-

ing estimator combines purely model based estimates with

the estimates of the guided importance sampling algorithm

WDR, and so we call it the model and guided importance

sampling combining (MAGIC) estimator.

Although the derivation of how to properly define

IS[0:j](D) and AM[j:∞](D) in order to blend WDR with

the approximate model is less obvious than one might ex-

pect and therefore an important technical detail, we relegate

it to Appendix F due to space restrictions. The resulting

definition of an off-policy j-step return is

g(j)(D) :=
n∑

i=1

g
(j)
i (D), (4)

where

g
(j)
i (D) :=

j∑

t=0

γ
t
w

i
tR

Hi
t

︸ ︷︷ ︸
(a)

+ γ
j+1

w
i
j v̂

πe(SHi
j+1)

︸ ︷︷ ︸
(b)

−

j∑

t=0

γ
t
(

w
i
tq̂

πe

(

S
Hi
t , A

Hi
t

)

− w
i
t−1v̂

πe

(

S
Hi
t

))

︸ ︷︷ ︸
(c)

.

where (c) is the combined control variate for both the im-

portance sampling based term, (a), and the model-based

term, (b), and where we use WDR’s definition of wi
t. An-

other viable definition of g(j)(D) is given in Appendix F.1.

Consider the entries in Ωn:

Cov
(

g
(j)(D), g(k)(D)

)

= Cov

(
n∑

i=1

g
(j)
i (D),

n∑

i=1

g
(k)
i (D)

)

.

Notice that g
(j)
i (D) really is a function of all of D, not

just Hi, since wi
t = ρit/

∑n

j=1 ρ
j
t . This means that, al-

though the terms in the sum,
∑n

i=1 g
(j)
i (D), are identically

distributed, they are not independent, due to their shared

reliance on D. However, the g
(j)
i (D) terms become less

dependent as n → ∞ because the only dependence of

g
(j)
i (D) on trajectories other than Hi comes from the de-

nominator of wi
t, which converges almost surely to n.

We therefore propose approximating Ωn using the sam-

ple covariance matrix that results from the assumption that

g
(j)
i (D) and g

(k)
i (D) are independent for j 6= k. That is,

let ḡ
(Jj)
i (D) := 1

n

∑n

i=1 g
(Jj)
i (D) and

Ω̂n(j, k) :=
n

n− 1

n∑

i=1

(
g
(Jj)
i (D)− ḡ

(Jj)
i (D)

)
(5)

×
(
g
(Jk)
i (D)− ḡ

(Jk)
i (D)

)
.

Estimating the bias vector, bn, is challenging because it has

a strong dependence on the value that we wish we knew,

v(πe). We cannot use AM’s estimate as a stand-in for

v(πe) because it would cause us to assume that AM’s great-

est weakness—its high bias—is negligible. We cannot use

WDR’s estimate (or any other importance sampling estima-

tor’s estimate) because our estimate of bn would then con-

flate the high variance of importance sampling estimates

with the bias that we wish to estimate.

When n, the number of trajectories in D, is small, variance

tends to be the root cause of high MSE. We therefore pro-

pose using an estimate of bn that is initially conservative—

initially it underestimates the bias—but which becomes

correct as n increases. Let CI(g(∞)(D), δ) be a 1−δ confi-

dence interval on the expected value of the random variable

g(∞)(D) = WDR(D). Intuitively, as n increases we ex-

pect that this confidence interval will converge to g(∞)(D),
which in turn converges to v(πe). So, we estimate bn(j),
the bias of the off-policy j-step return, by its distance from

the 10% confidence interval. That is, we estimate bn(j) as

b̂n(j) := dist
(
g(Jj)(D),CI(g(∞)(D), 0.1)

)
,

where dist(y,Z) is the distance between y ∈ R and the set

Z ⊆ R, i.e., dist(y,Z) := minz∈Z |y − z|. We use both



Data-Efficient Off-Policy Policy Evaluation for Reinforcement Learning

0.001

0.01

0.1

1

10

100

1000

2 20 200 2,000

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Number of Episodes, n

(a) Gridworld

0.0001

0.001

0.01

0.1

1

10

100

2 20 200 2,000 20,000

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Number of Episodes, n

(b) ModelFail

0.0005

0.005

0.05

0.5

5

50

2 20 200 2,000 20,000

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Number of Episodes, n

(c) ModelWin

0.03

0.3

3

30

2 20 200 2,000 20,000

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Number of Episodes, n

(d) Hybrid

Figure 2: Empirical comparison of MAGIC to other estimators using the legend from Figure 1. All plots use the following

legend (although only Figure 2d includes MAGIC-B):

DR AM WDR MAGIC MAGIC-B

the percentile bootstrap method (Efron & Tibshirani, 1993)

and Chernoff-Hoeffding’s inequality to construct the con-

fidence interval, and use whichever is tighter. Although in

practice the Chernoff-Hoeffding interval is almost always

the looser of the two, and so it need not actually be com-

puted, its inclusion simplifies our proofs.

High-level pseudocode suitable for understanding MAGIC

is provided in Algorithm 1, while detailed pseudocode suit-

able for implementations is provided in Appendix G. Recall

that J should include −1 and∞.

Algorithm 1 MAGIC(D)

1: Input: Historical data,D, evaluation policy, πe, an ap-

proximate model, and a set of return-lengths, J .

2: Compute |J | × |J | matrix Ω̂n according to (5).

3: Compute a 90% confidence interval, [l, u], on

WDR(D) using the percentile bootstrap method.

4: Compute |J | × 1 vector b̂n, where b̂n(j) =
dist(g(Jj)(D), [l, u]).

5: x← argmin
x∈∆|J | x⊺[Ω̂n + b̂nb̂

⊺

n]x
6: return x⊺gJ (D)

In Theorem 2 we establish conditions under which the

MAGIC estimator is a strongly consistent estimator of

v(πe). When these conditions are not satisfied, it does not

mean that the result does not hold or that the MAGIC esti-

mator will perform poorly—it merely means that the theo-

retical results are not guaranteed by our proofs. Theorem 2
uses a new assumption, Assumption 2, which ensures that

all trajectories of interest when evaluating πe will be pro-

duced by all of the behavior policies. This is a standard

assumption in OPE and typically precludes the use of de-

terministic behavior policies.8

Assumption 2 (Absolute continuity). For all (s, a, i) ∈
S ×A× {1, . . . , n}, if πi(a|s) = 0 then πe(a|s) = 0.

Theorem 2 (MAGIC - strongly consistent). If Assumptions

1 and 2 hold and ∞ ∈ J , then MAGIC(D)
a.s.
−→ v(πe).

Proof See Appendix H.

8Assumption 2 could be replaced with a less-restrictive as-
sumption like that used by Thomas (2015b, Section 3.5). We use
Assumption 2 because it allows for simplified proofs.

9. Empirical Studies (MAGIC)

Appendix I provides detailed experiments using MAGIC.

In this section we provide an overview of these results.

The first three plots in Figure 2 correspond to those in Fig-

ure 1, but include MAGIC. In general MAGIC does very

well, tracking or exceeding the best performance of WDR

and AM. However, in Figure 2c MAGIC does not perfectly

track AM. The scale is logarithmic, so the difference be-

tween MAGIC and AM is small in comparison to the ben-

efit of MAGIC over WDR. We hypothesize that the reason

MAGIC does not match AM may be due to error in our

estimates of Ωn and bn.

Figure 2d is for Hybrid, a domain that consists of concate-

nating ModelFail with ModelWin. This means that early

in the trajectories there is partial observability, but later the

state is fully observable. This might occur in education do-

mains (initial uncertainty over a student’s knowledge) or

robotics (positional uncertainty before localizing). In such

a setting, MAGIC outperforms all other estimators, even

AM and WDR, by automatically leveraging WDR for the

parts of trajectories where partial observability causes the

model to be inaccurate, and AM for the parts of trajecto-

ries where the model is accurate. To emphasize this, we

include MAGIC-B (B for binary) where J = {−1,∞}, so

that BIM can only blend AM and WDR by placing weights

on them. The poor performance of MAGIC-B in Figures

2c and 2d supports our use of off-policy j-step returns.

10. Conclusion

We have proposed several new OPE estimators and showed

empirically that they outperform existing estimators. While

previous OPE estimators that use importance sampling of-

ten failed to outperform the approximate model estimator

(which does not use importance sampling), our new estima-

tors often do, frequently by orders of magnitude. In cases

where the approximate model estimator remains the best

estimator, one of our new estimators, MAGIC, performs

similarly. In other cases, MAGIC meets or exceeds the per-

formance of state-of-the-art prior estimators. We present

some potential avenues of future work in Appendix J.
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evaluation of online reinforcement learning algorithms.

In Proceedings of the Thirtieth Conference on Artificial

Intelligence, 2016.

Mittelhammer, R. C. Mathematical statistics for economics

and business, volume 78. Springer, 1996.

Powell, M. J. D. and Swann, J. Weighted uniform sam-

pling: a Monte Carlo technique for reducing variance.

Journal of the Institute of Mathematics and its Applica-

tions, 2(3):228–236, 1966.

Precup, D., Sutton, R. S., and Singh, S. Eligibility traces

for off-policy policy evaluation. In Proceedings of the

17th International Conference on Machine Learning, pp.

759–766, 2000.

Rotnitzky, A. and Robins, J. M. Semiparametric regres-

sion estimation in the presence of dependent censoring.

Biometrika, 82(4):805–820, 1995.

Sen, P. K. and Singer, J. M. Large Sample Methods in

Statistics An Introduction With Applications. Chapman

& Hall, 1993.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An

Introduction. MIT Press, Cambridge, MA, 1998.

Sutton, R.S. Learning to predict by the methods of tempo-

ral differences. Machine Learning, 3(1):9–44, 1988.

Thapa, D., Jung, I., and Wang, G. Agent based deci-

sion support system using reinforcement learning under

emergency circumstances. Advances in Natural Compu-

tation, 3610:888–892, 2005.

Theocharous, G., Thomas, P. S., and Ghavamzadeh, M.

Personalized ad recommendation systems for life-time

value optimization with guarantees. In Proceedings of

the International Joint Conference on Artificial Intelli-

gence, 2015.

Thomas, P. S. A notation for Markov decision processes.

ArXiv, arXiv:1512.09075v1, 2015a.

Thomas, P. S. Safe Reinforcement Learning. PhD thesis,

University of Massachusetts Amherst, 2015b.



Data-Efficient Off-Policy Policy Evaluation for Reinforcement Learning

Thomas, P. S., Niekum, S., Theocharous, G., and

Konidaris, G. D. Policy evaluation using the Ω-return.

In Advances in Neural Information Processing Systems,

2015.

van Hasselt, H., Mahmood, A. R., and Sutton, R. S. Off-

policy TD(λ) with true online equivalence. In Proceed-

ings of the 30th Conference on Uncertainty in Artificial

Intelligence, 2014.

Veness, J., Lanctot, M., and Bowling, M. Variance reduc-

tion in monte-carlo tree search. In Advances in Neural

Information Processing Systems, pp. 1836–1844, 2011.

White, M. A general framework for reducing variance in

agent evaluation. Master’s thesis, University of Alberta,

2009.

White, M. and Bowling, M. Learning a value analysis

tool for agent evaluation. In Proceedings of the Inter-

national Joint Conference on Artificial Intelligence, pp.

1976–1981, 2009.

Zinkevich, M., Bowling, M., Bard, N., Kan, M., and

Billings, D. Optimal unbiased estimators for evaluating

agent performance. In Proceedings of the Twenty-First

National Conference on Artificial Intelligence (AAAI),

pp. 573–578, 2006.


