
IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.7, July 2013

9

Manuscript received July 5, 2013
Manuscript revised July 20, 2013

Data Encryption and Decryption Using RSA Algorithm in a
Network Environment

Nentawe Y. Goshwe.
Department of Electrical/Electronics Engineering

University of Agriculture, Makurdi

Abstract
One of the principal challenges of resource sharing on data
communication network is its security. This is premised on the
fact that once there is connectivity between computers sharing
some resources, the issue of data security becomes critical. This
paper presents a design of data encryption and decryption in a
network environment using RSA algorithm with a specific
message block size. The algorithm allows a message sender to
generate a public keys to encrypt the message and the receiver is
sent a generated private key using a secured database. An
incorrect private key will still decrypt the encrypted message but
to a form different from the original message.
Key words:
encryption, decryption, key, Java

1. Introduction

Cryptography is playing a major role in data protection in
applications running in a network environment. It allows
people to do business electronically without worries of
deceit and deception in addition to ensuring the integrity
of the message and authenticity of the sender. It has
become more critical to our day-to-day life because
thousands of people interact electronically every day;
through e-mail, e-commerce, ATM machines, cellular
phones, etc. This geometric increase of information
transmitted electronically has made increased reliance on
cryptography and authentication by users [1-4].
Despite the fact that secured communication has existed
for centuries, the key management problem has prevented
it from commonplace application. The development of
public-key cryptography has enabled large-scale network
of users that can communicate securely with one another
even if they had never communicated before [6-8].
This paper considers a Public Key encryption method
using RSA algorithm that will convert the information to
a form not understandable by the intruder therefore
protecting unauthorized users from having access to the
information even if they are able to break into the system.

2. Methodology

There are many ways of classifying data cryptographic
algorithms but for the purpose of this paper, they will be

classified based on the number of keys that are employed
for encryption and decryption. The three common types of
algorithms are:
a. Secret Key Cryptography (SKC):

The SKC method uses only a single key for both
encryption and decryption. The schemes are
generally categorized as being either stream ciphers
or block ciphers. Stream ciphers operate on a single
bit (byte or computer word) at a time and implement
some form of feedback mechanism so that the key is
constantly changing while block cipher scheme
encrypts one block of data at a time using the same
key on each block.
The main drawback of this method is propagation
error because a distorted bit in transmission will
result in n distorted bits at the receiving side. Though
stream ciphers do not propagate transmission errors,
they are periodic therefore the key-stream will
eventually repeat. This normally results in the use of
digital signature mechanisms with either large keys
for the public verification function or the use of a
TTP.

b. Public Key Cryptography (PKC):
PKC scheme uses one key for encryption and a
different key for decryption. Modern PKC was first
described using a two-key crypto system in which
two parties could engage in a secure communication
over a non-secure communications channel without
having to share a secret key [5]. In PKC, one of the
keys is designated the public key and may be
advertised as widely as the owner wants. The other
key is designated the private key and is never
revealed to another party. RSA is one of the first and
still most common PKC implementation that is in
use today for key exchange or digital signatures.
The cardinal advantage of this method is that
administration of keys on a network requires the
presence of only a functionally trusted TTP, as
opposed to an unconditionally trusted TTP.
Depending on the mode of usage, the TTP might
only be required in an “off-line” manner, as opposed
to in real time. Many public-key schemes yield
relatively efficient signature mechanisms. The key
used to describe the public verification function is

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.7, July 2013

10

typically much smaller than for the symmetric-key
counterpart [6-9]

c. Hash Functions (HF):
The HF uses a mathematical transformation to
irreversibly "encrypt" information. This algorithm
does not use keys for encryption and decryption of
data. It rather uses a fixed-length hash value which
computed based on a plaintext that makes it
impossible for either the contents or length of the
plaintext to be recovered. These algorithms are
typically used to provide a digital fingerprint of a
file's content, often used to ensure that the file has not
been altered by an intruder or virus. Hash functions
are also commonly employed by many operating
systems to encrypt passwords to provide some
measure of the integrity of a file.

2.1 The RSA Algorithm for Creating RSA Public
and Private Key Pair

The RSA algorithm can be used for both key exchange
and digital signatures. Although employed with numbers
using hundreds of digits, the mathematics behind RSA is
relatively straight-forward. To create an RSA public and
private key pair, the following steps can be used:

i. Choose two prime numbers, p and q. From
these numbers you can calculate the
modulus, pqn =

ii. Select a third number, e, that is relatively
prime to (i.e. it does not divide evenly into)
the product ()()11 −− qp , the number e is the
public exponent.

iii. Calculate an integer d from the
quotient ()

()()11
1
−−

−
qp

ed . The number d is the

private exponent.
iv. The public key is the number pair ()en, .

Although these values are publicly known, it
is computationally infeasible to determine d
from n and e if p and q are large enough.

v. To encrypt a message, M, with the public
key, creates the cipher-text, C, using the
equation: nModMC e=

vi. The receiver then decrypts the cipher-text
with the private key using the equation:

nModCM d=

Figure 1.0: A flow chart illustrating the RSA decryption Algorithm

START

Read ‘plainText’, ‘p’, ‘q’
‘e’ and ‘d’.

Are ‘p’ and ‘q’
prime numbers?

n = p*q
phi = (p-1)*(q-1)

Are ‘e’ and ‘phi’ relatively
prime?

Is ()
()()11

1
−−

−
qp

ed an integer?

Encode plainText = encodedText

YES

YES

NO

C = cipherText

M = encodedText
nModMC e=

Print ‘cipherText’, ‘n’,
‘e’ and ‘d’.

STOP

NO

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.7, July 2013

11

2.1 How to Use the Keys for Encryption

Assuming a sender “A” that wants to send a message
to a receiver “B”, the sender will take the following
steps:-

i. Obtains the recipient B's public key ()ne,
ii. Represents the plaintext message as a positive

integer M .
iii. Computes the cipher-text nModMC e= .
iv. Send the cipher-text C to B.

The flow chart of the encryption algorithm is as given in
Figure 1.0.

Figure 2.0: A Flow Chart to Illustrate the Decryption Algorithm

2.2 How to Use the Keys for Decryption

For the recipient “B” to receive the message sent by the
sender “A”, the recipient will take the following steps:-

i. Uses the private key (n, d) to
compute nModCM e= .

ii. Extracts the plaintext from the integer
representative M .

This is actually the smallest possible value for the
modulus n for which the RSA algorithm works. Figure
2.0 illustrates the decryption procedures.

2.3 The Design of the Unified Modeling Language
(UML)

An object programming paradigm (of which java is one of
them) uses a unified form of describing each
programming steps called Unified Modeling Language
(UML). It is a standard notation that originated in the
mid-1990s from the work of James Rumbaugh, Ivar
Jacobson and Grady Boch. UML is a graphical way of
representing and designing an object oriented language
for proper description of each step involved and the flow
layout of the program itself.
This work chooses to use UML because it has the
advantage of clearly showing the relationship that exists
between the classes that form this work. There are three
packages that exist in this work, they are:

i. The applicationGUI Package
ii. The dbinterface Package
iii. The encodinganddecoding package.

The applicationGUI package contains four classes;
MainApp.java, ReceiverInterface.java,
SenderInterface.java and TableDisplay.java. The
dbInterface package only contains the
RetrieveMessage.java and the SendMessage.java class.
The encodinganddecoding package contains the
EncodingAndDecoding.java class. All these packages are
embedded in the project named
DataEncryptionAndDecryption.
In this paper the Top-down approach is used for the
design of the program therefore all the small objects are
put together to form the main object. The individual
classes of these smaller objects are specified with names
and are then linked together to form the major object.
The class names for the individual objects are;

i. TableDisplay.java
ii. SendMessage.java

iii. RetrieveMessage.java
iv. EncodingAndDecoding

The necessary java packages were imported while the
database was created in mySQL with three fields namely:
“Cipher ID”, “Cipher Text” and “n” with security
administered on it. Frames were created with menus and
call the ActionListener, SendMessage Interface is created
with labels, Buttons and TextAreas. This is followed by
creation of another RetrieveMessage interface with Label,
Buttons and TextAreas. And in addition, the Encoding and
Decoding class (which is a public class that encodes,
decodes, encrypt and decrypt by making use of the
BigInteger) were also created.

START

Read ‘cipherText’,
‘n’ and ‘d’.

cipherText = C

nModCM d=

Decode M = plainText

Print ‘plainText’.

STOP

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.7, July 2013

12

Figure 3.0: A UML to Illustrate the Program Design for the Private and
Public Keys

3. Results and Discussion

The program was run and compiled on Windows XP and
tested on University of Agriculture, Makurdi local area
network which is structured on V-LAN topology. The
Graphic User Interface (GUI) is designed to be user
friendly and can be used without knowledge of
programming in Java.

3.1 The “Sent Message” GUI Output.

Running the program gives a frame with menus that can
send or retrieve a message from the database. The sender
sent a test message “my credit card number is
234M99934”. The Plaintext (“my credit card number is
234M99934”) is entered in the plain text area before
clicking on encode to convert the text to ASCII code and
the result is placed in the Encoded Text as shown in
Figure 4.0.

Figure 4.0: The GUI of the Plain Text, Encoded Text and Cipher Text
Result.

The Encrypt Button is clicked, a Dialog box appear asking
for the value of “q”, which must be a prime number and
another dialog box prompting for the value of “p” which
must also be prime number (the product of “q” and “p”
must not have more than 4 digits; which is the specified
block-size for this program).
To send the Cipher text to the database, the “Send Button”
is clicked and the dialog box returns the value of n, e and
d as 9557, 17 and 7973 respectively.

Figure 5.0: A Dialog Box Returning the Values of n, e and d.

At the receiver end, the receiver uses the “Retrieve
Message” GUI to request for the value of “cipher ID”
from the database. A correct entry of the Cipher ID will
return the Cipher text dialog box and requesting for value
of “d” for decryption to take place as shown in Figure 5.0.
The database identifies the message and the
corresponding Cipher ID. This converts the Cipher text to
ASCII codes and returns it in the “Encoded Text” box.

Figure 6.0: A Correct Entry of the Cipher ID with the Requested Value
of “d”.

For a correct Cipher ID, the dialog box will return the
correct Cipher text as shown in Figure 6.0. Correct entry
of the value of “d” at the Receiver Interface will return the
Correct Retrieved “Plain Text” Message as shown in
Figure 7.0.

- JLabel

- JTextARea

- JButton

+ Init components

+ ActionPerformed

+ BigInteger

JFrame ActionListener

(-) implies private.
(+) implies public.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.7, July 2013

13

Figure 7.0: Receiver Interface with the Correct Retrieved “Plain Text”
Message.

To ensure that the data is secured, for any entry of wrong
value of “d”, the Receiver Interface will return a
meaningless “Plain Text” Message as shown in Figure 8.0.
This ensures the data is secured against hackers within the
network environment.

Figure 8.0 Interface Shows a Meaningless Message with Wrong Value
of “d”.

4. Conclusion

The paper has presented data encryption and decryption in
a network environment that was successfully implemented.
With this software, data can be transferred from one
computer terminal to another via an unsecured network
environment. An eavesdropper that breaks into the
message will return a meaningless message. Obviously
encryption and decryption is one of the best ways of
hiding the meanings of a message from intruders in a
network environment.

References
[1] Afolabi, A.O and E.R. Adagunodo, 2012. Implementation

of an Improved data encryption algorithm in a web based
learning system. International Journal of research and
reviews in Computer Science. Vol. 3, No. 1.

[2] Bhoopendra, S.R., Prashanna, G. and S. Yadav, 2010. An
Integrated encryption scheme used in Bluetooth
communication mechanism. International Journal of
Computer Tech. and Electronics Engineering (IJCTEE), vol.
1, issue 2.

[3] DI management (2005) “RSA algorithm”, available at:
http://www.di-mgt.com.au/rsa_alg.html.

[4] Gaurav, S., 2012. Secure file transmission scheme based
On hybrid encryption technique. International Journal of
management, IT and Engineering. Vol. 2, issue 1.

[5] Hellman, M. and J. Diffie, 1976. New Directions in
Cryptography. IEEE transactions on Information theory,
vol. IT-22, pp:644-654.

[6] Shinde, G.N. and H.S. Fade War, 2008. Faster RSA
algorithm for decryption using Chinese remainder theorem.
ICCES, Vol. 5, No. 4, pp. 255-261.

[7] Yang L. and S.H. Yang. 2007. A frame work of security
and safety checking for internet-based control systems.
International Journal of Information and Computer security.
Vol.1, No. 2.

[8] Washington, L.C. 2006. Introduction to Cryptography: with
coding theory by Wade Trappe. Upper Saddle River, New
Jersey, Pearson Prentice Hall.

[9] Wuling Ren College of Computer and Information
Engineering Zhejiang Gongshang University. 2010. A
hybrid encryption algorithm based on DES and RSA in
Bluetooth communication. Second International Conference
on Modeling, Simulation and Visualization methods.

Nentawe Y. Goshwe received B.
Engineering in Electrical/ Electronic
from University of Agriculture, Makurdi
and M. Engineering degrees in
Electronics from ATBU Bauchi in 1992
and 2000, respectively and a PhD from
University of Nigeria, Nsukka. He
Joined the University in 1996 and
doubles as both a Lecturer in the

Department of Electrical/Electronic Engineering, and Director of
Information and Communication Technology, University of
Agriculture, Makurdi, Nigeria.

http://www.di-mgt.com.au/rsa_alg.html

