
Data Flow Analysis for Checking Properties of Concurrent Java

Programs*

Gleb Naumovich
University of Massachusetts

Department of Computer Science
Amherst, MA 01003

+14135452013
naumovic@cs.umass.edu

George S. Avrunin
University of Massachusetts
Department of Mathematics

and Statistics
Amherst, MA 01003-45 15

+14135454251
avrunin@math.umass.edu

Lori A. Clarke
University of Massachusetts

Department of Computer Science
Amherst, MA 01003

+14135452013
cIarke@cs.umass.edu

ABSTRACT
In this paper we show how the FLAVERS data flow anal-
ysis technique, originally formulated for systems using a
rendezvous concurrency model, can be applied to the vari-
ous concurrency models used in Java programs. The gen-
eral approach of FLAVERS is based on modeling a concur-
rent system as a flow graph and, using a data flow analysis
algorithm over this graph, statically checking if a property
holds on all (or no) executions of the program. The accu-
racy of this analysis can be iteratively improved, as needed,
by supplying additional constraints, represented as finite
state automata, to the data flow analysis algorithm.

In this paper we present an approach for analyzing Java
programs that uses the constraint mechanism to model the
possible communications among threads in Java programs,
instead of representing them directly in the flow graph
model. We also discuss a number of error-prone thread
communication patterns that can arise in Java and describe
how FLAVERS can be used to check for the presence of
these. A preliminary evaluation of this approach is car-
ried out by analyzing some small concurrent Java programs
for these error-prone communication patterns and other,
program-specific, faults.

KEYWORDS
Static analysis, data flow, concurrency, Java.

1 INTRODUCTION
With the advent of Web technology, distributed program-

*This research was partially supported by the Air Force Research Lab-
oratory/IFTD and the Defense Advanced Research Projects Agency under
Contract F30602-97-2-0032 and by the National Science Foundation un-
der Grant CCR-9708184. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either expressed or im-
plied, of the National Science Foundation, the Defense Advanced Re-
search Projects Agency, the Air Force Research Laboratory/IFTD, or the
U.S. Government.

permission to make digital or hard copies of all or part o~UCS work IhI
personal or classroom use is granted without fee provided that topics
RW not made or distributed for profit or commercial advantage and that -._.
topics hear this notice and the i’ull citation on the first page. To copy
otherlvise, to republish, to post on servers or to rcdistrihute to lists.
rcquircs prior specific permission andior a fee.

ICSE ‘9’) Los Angeles CA
Copyright ACM 1999 I-581 13-074-0/99/05...$5.00

ming, especially in the Java programming language, is
growing rapidly in popularity. The additional complex-
ity and inherent non-determinism of distributed systems
makes understanding and reasoning about them extremely
difficult. Moreover, testing such systems is problematic
since, not only are there many more alternatives to ex-
plore when task interleaving is considered, but two execu-
tions of the same program with the same test data may not
even produce the same results. Static analysis techniques
are being developed for distributed systems to complement
traditional testing approaches. These techniques statically
determine if specific kinds of faults can occur on any ex-
ecutions of the system. In this paper, we describe how
the FLAVERS static analysis approach can be modified to
handle the Java concurrency constructs. In addition, we
present a number of patterns of use of Java’s concurrency
constructs that could lead to erroneous behavior and then
describe how the modified version of FLAVERS could be
applied to detect these problematic or suspicious patterns.

FLAVERS (FLOW Analysis for VERification of Systems)
uses data flow analysis techniques to verify user-specified
properties of software systems [5]. The attractiveness of
this approach is in its low-order polynomial complexity
bounds and its ability to improve the precision of the anal-
ysis by incrementally improving the accuracy of the pro-
gram model. A prototype for FLAVERS has been im-

plemented, called FLAVERS/Ada, that analyzes Ada pro-
grams or program models that use rendezvous communi-
cations.

In FLAVERS/Ada, programs are modeled as truce flow
graphs that represent the potential flow of control through
the program, including intertask communications and in-
terleavings. Additional information, represented as finite
state automata and called feasibility constraints, is used to
elaborate the semantics of selected aspects of the program
when needed to increase the precision of the analysis.

The emphasis of this paper is on modeling Java programs
in a way that can be used by FLAVERS. The modifica-
tion of the sysiem model is not trivial, since Ada and
Java use significantly different concurrency models. We
describe one promising approach in which the semantics

of thread communications are represented with feasibil-
ity constraints, instead of being a part of the trace flow
graph. In addition, we discuss a number of application-
independent patterns of thread communications that indi-

cate erroneous or error-prone code and discuss the use of
FLAVERS for checking for the presence of such patterns.
We present an initial empirical exploration that seems to
support our hypothesis that the proposed approach is ca-
pable of efficiently checking both general and application-
specific properties of concurrent Java programs.

The next section gives a brief description of related work.
Section 3 gives a short overview of the FLAVERS ap-
proach for Ada. Section 4 first provides an introduction to
the Java concurrency constructs and then presents the pro-
posed program model for Java. Section 5 describes some
suspicious patterns of thread communications. We present
initial experimental results with a prototype implementa-
tion of the proposed approach in Section 6. Finally, we
present a summary and describe our future directions.

2 RELATED WORK
Most work in the area of static analysis of concurrent and
distributed systems has used either synchronous commu-
nication models with the rendezvous style of concurrency
or asynchronous message-passing communication models.
These models are different from the Java model, which
supports monitors and a mixture of low-level thread syn-
chronization primitives,

There has been some recent work concerned with model-
ing Java programs. Corbett [2] describes a technique for
constructing compact finite state models for Java. This
approach relies on a data flow algorithm for constructing
an approximation of the run-time structure of the program
heap that is then used to reduce the size of the concurrency
model. This alias resolution approach could also be used to
reduce the size of our trace flow graph program model. In
this paper, however, we have not focused on the optimiza-
tion of the program model.

Demartini and Sisto [4] describe two models of Java pro-
grams. The first represents Java programs with Petri nets
and the second represents Java programs with Promela
code. Both these models are intended to be used for reach-
ability analysis. While several approaches have been pro-
posed to improve the performance of reachability analysis,
in general the use of reachability analysis for real software
systems remains prohibitively expensive.

As an alternative to techniques with exponential worst-case
bounds, such as reachability analysis (e.g. [6,8]), symbolic
model checking (e.g. [12]), and integer necessary condi-
tions [3], data flow analyses for concurrent software have
been formulated with low-order polynomial execution time
and storage bounds. Most of these data flow approaches
check application-independent properties (e.g. [I,1 1,l S]),

task body Tl is
begin

pl;
T2.E;

end Tl;

task body 1'2 is
begin

P2;
accept E;

p3;
end T2;

Figure 1: Ada code example

such as deadlock. FLAVERS is one of the few data
flow techniques capable of directly checking aipplication-
specific properties of concurrent software. This approach
attempts to verify the property of interest for a software
system using an efficient low-order polynomial algorithm
while giving the user the ability to change the amount of
detail modeled, and thus to improve the precision of the re-
sults, without having to rebuild the complete model of the
system.

3 FLAVERS FOR ADA
With FLAVERSlAda, programs are modeled by trace flow
graphs (TFGs). The TFG for a concurrent program is based
on the control flow graphs (CFGs) for the components of
a system. For each CFG we identify the nodes that corre-
spond to observable activities in the program that an ana-
lyst wants to reason about. Each node is labeled with an
event, a user-selected name associated with such an ob-
servable activity. To reduce the size of the representation
and consequently improve the efficiency of the analysis,
the CFGs are refined to remove all nodes that are not la-
beled with an event. In addition, any node that invokes a
procedure or function is replaced by the reduced CFG rep-
resentation of that routine. In our experience, this inlining
of routines does not cause a severe blow-up in the size of
the CFGs, since the nodes annotated with events tend to be
relatively sparse.

The TFG for an Ada program is obtained by connecting the
reduced, inlined CFGs for all tasks. Unique initial andfinal
nodes that represent the start and the end states of the pro-
gram respectively are connected to the CFG of each task
in the program. Each possible task synchronization is rep-
resented by a communication node, which is connected by
edges to the appropriate nodes in the CFGs of both com-
municating tasks. In addition, may immediately precede
(MIP) edges are added between nodes in separate CFGs to
represent possible interleavings of the actions associated
with these nodes. The set of such edges can be computed
efficiently [131.

Figure 1 contains a trivial example of Ada code that is used
for illustration purposes. In this example, task Tl first calls
procedure pl, then calls entry E of task Tl, and finally
terminates. Task T2 first calls procedure p2, accepts an
entry call for entry E, calls procedure p3, and finally ter-
minates. We assume that procedures pl, p2, and p3 con-

400

initial

i

6 ---____-
pl --______ p2

E

FL
P3

w final

Figure 2: TFG for the example in Figure 1

1 p1 2 p3 @

-3i?
P3 p

PltP3

3 PlrP3

Figure 3: Property for the example in Figure 1

tain no communication statements (i.e. entry calls and ac-
cepts). The corresponding TFG is shown in Figure 2. The
rectangular-shaped nodes represent local computations in
the tasks (procedure calls in this example). The diamond-
shaped nodes labeled initial andfinal represent the start and
the end of the program computation. Finally, the diamond-
shaped node labeled E represents the rendezvous between
the two tasks on entry E. Solid edges represent control flow
local to the tasks, while dashed edges are MIP edges.

The set of all events associated with a model of the pro-
gram is the alphabet of the TFG. For the TFG in Figure 2,
the events of interest are the procedure calls and the ren-
dezvous. The language of the TFG is the set of event se-
quences that occur on paths from the initial node to the
final node. The resulting TFG overapproximates the set of
possible sequences of these events in the sense that each
real program execution must correspond to a path through
the graph but some paths in the TFG may not correspond
to any possible execution.

Properties can be described in a number of specification
languages but are represented internally as deterministic fi-
nite state automata (FSA) over the TFG alphabet. Figure 3
gives a sample property for the example in Figure 1. This
property states that on all executions of this program the
call to procedure p3 must always follow the call to proce-
dure pl (and pl must always be called). (Note that if the
call to p3 happens first, the transition from the initial state
of the property to the non-accepting sink state 3 is taken.)

;p3

Figure 4: A feasibility constraint for the example in Fig-
ure 1

The set of all events used in the property FSA represents
the alphabet of the property. The language of a property
is the set of all event sequences accepted by its FSA. Con-
ceptually, a property holds for a program if the projection
of the language of the TFG on the alphabet of the property
is contained in the language of this property. Data flow
analysis is used to solve this containment problem by in-
crementally computing the set of property automata states
that could be associated with the execution of each node in
the TFG. This is a well-formed data flow analysis problem

that can be shown to terminate, produce conservative re-
sults, and have a worst-case complexity of O(SN2), where
S is the number states in the property FSA and N is the
number of nodes in the WG.

If the analysis finds that a property holds, then it is guaran-
teed to be valid on all possible program executions. When
the analysis indicates that the property does not hold on
some paths through the TFG, this may be because the pro-
gram is in error or it may be because all the paths in the pro-
gram model that violate this property do not correspond to
feasible program executions. For example, one of the pos-
sible paths in the TFG in Figure 2 is initial, pl, E,final. But
this path does not represent a legal execution of the pro-
gram because, before this program can terminate, task T2
must execute procedures p2 and p3. FLAVERS provides a
means for selectively removing infeasible paths from con-
sideration by allowing the analyst to add feasibility con-
straints, finite state automata that model semantic restric-
tions on the program execution that are not reflected in the
TFG. For example, CFGs, and the TFGs constructed from
them, do not model the values assigned to variables during
execution. Thus, paths through the TFG may not represent
feasible executions because these paths do not respect the
values of some variables. A feasibility constraint could be
constructed to track the possible finite values or ranges of
values of such a variable, thereby eliminating these infea-
sible paths.

An example of a feasibility constraint is shown in Figure 4.
This constraint assures that the control flow within task T2
is followed. For instance, if the control path initial, pl, E,
jinal is followed in the TFG in Figure 2, the start state of
the constraint automaton is associated with node initial and
then propagates to node pl, since pl is not in the alphabet
of this constraint (it is not an event in task T2). When this

401

state 1 is propagated to node E, the constraint enters the
violation state v, indicating that this path represents an in-

feasible execution.

Each feasibility constraint has a distinct vio&ion state,
which signifies that the sequence of events applied to the

constraint does not correspond to any legal behavior of the
program. The properties to be checked for a program and
the feasibility constraints are combined into a single prod-
uct automaton with the following characteristics: (1) The
product automaton accepts a sequence of events if and only
if this sequence is accepted by the property automaton; (2)
The product automaton goes to the violation state if and
only if at least one of the constraints goes to its violation
state. In practice, we use an efficient approach where the
full product automaton is not actually created [161.

The containment problem on the property automaton is re-
placed with the containment problem on the product au-
tomaton. We say that a property holds subject to the feasi-
bility constraints if all event sequences from the TFG lan-
guage that do not send the product automaton to the vio-
lation state are accepted by this product automaton. The
problem of determining if this is the case is solved by data
flow analysis, which propagates the states of the product
automaton through the TFG. This state propagation phase
of the analysis involves computing, for each node in the
TFG, the set of product automata states that characterize
the state of the program immediately after execution of the
code represented by this node. Because the data flow prob-
lem solved by state propagation is distributive, the solution
of this data flow problem converges to a join over all paths
solution [IO], and so we need to look only at the final node
of the TFG to determine whether the property holds. We
say that a property holds on all terminating executions of
the program if after all violation states are discarded from
the final node of the TFG, only accepting states of the prod-
uct automaton are present there’.

Note that the effectiveness of FLAVERS in part depends on
the user’s ability to identify the aspects of the system that
have to be modeled with feasibility constraints. To facil-
itate this task, when SLAVERS determines that the prop-

erty does not hold, it produces one or more sample paths
through the TFG and/or source code. The user can then
decide whether these paths correspond to feasible or in-
feasible executions of the system. Furthermore, if a path
corresponds to an infeasible execution, the reason for this
infeasibility often suggests a specific constraint that mod-
els the aspect of the system that is misinterpreted in the
path. SLAVERS provides automated support for many of
the kinds of constraints that are usually needed.

4 ANALYSIS OF CONCURRENT JAVA PRO-
GRAMS

‘As described here, only terminating executions are considered.

class Thread1 extends Thread
(

public Threadltl (...I
public void run0

class Thread2 extends Thread

class Example extends Thread

public static void
main(String [I args)

Object lock = new ObjectO;
Thread1 tl = new ThreadlO;
Thread2 t2 =

new ThreadZCtl, lock);
synchronized Ilock)

public Thread2CThread other,
Object lock) 1

public void run0

synchronized (lock)

tl.joinO;
.

1
1

t2.starto;
.f t1.starto;

Figure 5: Java code example

In this section we discuss the concurrency model employed
by Java, highlight the troublesome aspects of dealing with
this model in a static manner, and describe our approach
to building models of Java programs in a way amenable
to FLAVERS analysis. The approach that we take in
this modeling is to use the feasibility constraint mecha-
nism to represent thread interactions in Java, as opposed
to incorporating these interactions in the TFG as done in
FLAVERSlAda.

Java Model of Concurrency
In Java, concurrency is modeled with threads. Although
the term thread is used in the Java literature to refer to
both thread objects and thread types, in this paper we call
thread types thread classes and thread instances simply
threads. Figure 5 contains an example in which thread
classes Thread1 and Thread2 are defined by extending the
standard Java Thread class. Threads tl and t2 of these
two respective classes are created and used in the main
method of class Example.

Any Java application must contain a main() method,
which serves as the “main” thread of execution. This is
the only thread that is running when the program is started.
Although the object containing this method dpes not have
to extend the Thread class, it is a separate thread of con-
trol.

In Java, execution of all threads, except the main thread,
is started by calling their start () methods. The run ()
method of a thread is never called explicitly but is invoked
implicitly as a result of calling the start () method of this
thread. Since only the main thread is running initially, in
multi-threaded programs the main thread must instantiate
and start some of the other threads. These threads may
then instantiate and start other threads. For example, in
Figure 5 the main thread creates (by calling the appropri-
ate constructors) thread tl of class Thread1 and thread
t2 of class Thread2 and then starts each by invoking their

402

start () methods.

Java uses shared memory as the basic model for commu-
nications among threads. In addition, threads can affect
the execution of other threads in a number of other ways,
such as dynamically starting a thread or joining with an-
other thread, which blocks the caller thread until the other
thread finishes.

The most significant of the Java thread interaction mech-
anisms is based on monitors. A monitor is a portion of
code (usually, but not necessarily, within a single object) in
which only one thread is allowed to run at a time. Java im-
plements this notion with synchronized statements and
locks. Each Java object has an implicit lock, which may
be used by synchronized statements’. To execute a

synchronized statement, a thread must acquire the lock
of the object indicated by this statement, and it releases
this lock when it exits this synchronized statement. Since
only one thread may be in possession of any given lock at
any given time, this means that at most one thread at a time
may be executing in one of the synchronized statements
protected by that lock. In Figure 5, an object lock of Java
predefined class Object is used to create the monitor in
which both threads main and t2 participate. Note that the
identity of object lock has to be conveyed to thread t2. In
this case this is done via the constructor new Thread2 (tl ,
lock).

Threads may interrupt their execution in monitors by call-
ing the wait () method of the lock object of this moni-
tor. During execution of the wait () method, the thread re-
leases the lock and becomes inactive, thereby giving other
threads an opportunity to acquire this lock. Such inactive
threads may be awakened only by some other thread exe-
cuting one of the notify() and notifyAl () methods of
the lock object. The difference between these two methods
is that notify () wakes up one arbitrary thread from all the
potentially many waiting threads and notifyAl () wakes
up all such threads. Similar to calls to wait (), calls to
the notify() and notifyAl (1 methods must take place
inside monitors for the corresponding locks. Both notifica-
tion methods are non-blocking, which means that whether
there are waiting threads or not, the notification call will
return and the execution will continue.

In the rest of the paper we refer to start (1, join (1,
wait () , notify () , and notifyAl () methods as thread
communication methods3.

Flow Graph Model for Java

2A related construct is a synchronized method, but the inlining per-
formed in this approach results in code with synchronized statements.

3Additionai thread methods stop () , suspend (), and resume () are
defined in JDK 1.1 but have been deprecated in JDK 1.2 since they en-
courage unsafe software engineering practices. Because of this and space
limitations we do not cover these methods in this paper. We discuss han-
dling these methods in [141.

Dynamic creation of threads is a well-known problem for
static anaIysis. The number of instances of each thread
class may be unbounded. For our analysis we make the
usual assumption that there exists a known upper bound on
the number of instances of each thread class. Alias reso-
lution, including dealing with method (and thread object)
polymorphism, is also an important issue. For the purposes
of this paper we assume that alias resolution has been con-
servatively performed, using techniques such as [2,9,17].

The monitor-based model of communications between
threads is significantly different from the communication
mechanisms used by other popular concurrent languages,
such as the rendezvous model of Ada 83 and CSP or the
message sending model of Promela. The number of dif-
ferent thread communication methods in Java makes the
problem of constructing the program model more difficult
than the one for Ada. We solve this problem by represent-
ing only the control flow within individual threads and the
interleavings of events in the TFG model of the program
and use the feasibility constraint mechanism for modeling
the semantics of thread interactions. Since some of the
thread communication mechanisms, such as notification,
require maintaining the state of many threads simultane-
ously, representing these mechanisms in the flow graph is
cumbersome. Feasibility constraints are more readily suit-
able for capturing this functionality. In addition, since dif-
ferent ways in which threads affect each other’s behavior
use different thread methods, representing their function-
ality by separate FSAs is conceptually simpler than com-
bining them all in one TFG4. One shortcoming of this ap-
proach is that, in practice, increasing the number and size
of feasibility constraints frequently leads to increased time
and space requirements of the FLAVERS analyses. We
view the approach described here as a reasonable first step
toward using FLAVERS for analysis of Java. In the fu-
ture, we plan to evaluate the time and space requirements
of modeling thread communications with feasibility con-
straints and to experiment with alternative approaches.

As with Ada, we first create a reduced, inlined control
flow graph for each method in the program. Each call to a
communication method is labeled with a tuple of the form
(0, m, c), where o is the object owning method m, m is the
method itself, and c is the calling thread. For example, for
the code in Figure 5, the call tl . start in the main method
will be represented with the label (tl, start, main). To
make it easy to reason about groups of communications,
we allow the wild-card symbol ‘*‘, which is used to indi-
cate that one of the parts of the communication label can
take any value. For example, (t, start, *) represents an
event in which some thread in the program calls the start

4Although not shown here, another advantage of this approach is that
some of these communication constraints can be incorporated into certain
automatically generated feasibility constraints.

403

main

1 I(*, begi;, main)]

pi$q - [(lack,w;iting,t)i

Figure 6: CFG transformation for wait () method calls

method of thread t. The first node of a thread t is la-
beled (*, begin, t) and the last node of this thread is la-
beled (*, end, t). For consistency, we use this label format
for arbitrary user-specified events as well. For example,
the use of a variable var that occurs in thread t could be
labeled (*, use-var, t).

For the p&poses of our analysis, additional modeling is re-
quired forwait () method calls and synchronized blocks.
Because an entrance to or exit from a synchronized block
by one thread may influence executions of other threads,
we represent the entrance and exit points of synchronized
blocks with additional nodes labeled (lock, entry, t) and
(lock, exit, t), where t is the thread modeled by the CFG
and lock is the lock object of the synchronized block.
We assume that the thread enters the synchronized block
immediately after the entry node is executed and exits this
block immediately after the exit node is executed. Thus,
the entry node is outside the synchronized block and the
exit node is inside this block.

The execution of a wait () method by a thread involves
several activities. The thread releases the lock of the moni-
tor containing this wait () call and then becomes inactive.
After the thread receives a notification, it first has to re-
acquire the lock of the monitor, before it can continue its
execution. To be able to reason about all these activities
of a thread, we perform a transformation that replaces each
node representing a wait () method call with three differ-
ent nodes, as illustrated in Figure 6. The node labeled
(lock,wait, t) represents the execution of the wait 0
method, the node labeled (lock, waiting, t) represents
the thread being idle while waiting for a notification, and
the node labeled (lock, notified-entry, t) represents
the thread after it received a notification and is in the pro-
cess of obtaining the lock to re-enter the synchronized
block. The shaded regions in the figure represent the
synchronized block.

The CFGs for individual threads are combined into a TFG
by using only the May Immediately Precede (MIP) edges,
which, as in the approach of FLAVERS/Ada, represent all
possible interleavings among pairs of nodes from different

Figure 7: TFG example

tasks. We have developed a conservative, precise, and cost-
effective algorithm for generating these edges [151 that is
similar to our algorithm for Ada [131. Note that unlike the
case for TFGs in FLAVERS/Ada, no additional nodes are
created to represent communications among the program
threads. Note also that even without represent.ing thread
communications explicitly in our Java graph model, this
model conservatively overapproximates all possible execu-
tions of a program.

Figure 7 shows the TFG for the program in Figure 5. The
shaded regions include nodes in the monitor of the pro-
gram, solid edges represent control flow within individual
threads and dashed edges are MIP edges. To simplify the
figure, MIP edges between nodes from threads 111 and t2
are not shown.

Modeling Thread Communications with Feasibility
Constraints
Although the TFG for a concurrent Java program repre-
sents a conservative overapproximation of all program be-
haviors, it does not model thread interactions. We model
thread communications using feasibility constraints. Note
that feasibility constraints modeIing some types of thread
interactions in the program may not be necessary for con-
clusive analysis of the property of interest. At present, we
allow the user to choose the types of thread interactions
in the program that are to be modeled by feasibility con-
straints. In future, we plan to provide guidance in the form
of heuristics, suggesting construction of feasibility con-
straints for certain kinds of thread interactions depending
on the program structure and the property being verified.

For each thread interaction mechanism present in JDK 1.2
we describe the corresponding feasibility constraint(s) and
show the FSA(s). Transitions of these FSAs are defined in
terms of TFG nodes. We use the label (0, m, c) to represent
the set of all nodes marked with that label. We use set
operations on labels to identify the set of nodes on which a
transition is taken. (*, *, *) stands for the set of all nodes
in the graph. For example, the self-transition on state 0
in Figure 8, marked (*, *, *) \ ((*, *, t) U (t, start, *))

404

Viol P (*, *, *)

(*, *> t)

-g-t*)

(*, *> *) \ ((*, *> t) u (t, start, *If

(*, *7 *) \ ((as *7 w
0, notify, *)U

o,notifyAll, e))

(*, *, *) \ (o,wait, t)

Figure 8: Constraint for start

Figure 10: Constraint for wait-notify constructs

Viol

R

(*, *I *)

(t, join, *) c*> *, t)

Figure 9: Constraint for join

is taken upon traversal of any node that does not represent
any activity performed by thread t or a call to the start
method of thread t.

Start constraint
The start constraint enforces the requirement that a thread
cannot execute until it is started by some other thread. This
constraint can be constructed for each thread in the pro-
gram, other than the main thread. The start constraint for
a thread t is shown in Figure 8. State 0 models the situ-
ation before t is started. From this state, the transition to
the violation state is taken if any node in thread t is tra-
versed by the analysis. After a node representing a call
to the method start (1 of t is traversed (this node has la-
bel (t, start, s), where thread s makes the call), the con-
straint makes the transition to state 1, after which no se-
quence of events can violate this constraint.

Using the start constraint makes it possible to model and
analyze programs in which some threads may not be started
at all. The CFG for each thread that may be created is
constructed and included in the TFG, but the nodes of
this thread’s CFG will be traversed without violating this
thread’s start constraint only on those executions where this
thread is actually started.

Join constraint
The join constraint enforces the requirement that after a
thread terminates, no nodes from this thread can execute.
In addition, it models the fact that a thread calling the
join () method of another thread may proceed only after
this latter thread terminates. Figure 9 shows this constraint.
State 0 represents the situation where thread t has not ter-

minated. The transition to the violation state is taken from
state 0 if a node representing a call to the join () method of
thread t is traversed. Such a traversal represents an infea-
sible path because a call to join () cannot terminate until
t is terminated. State 1 represents the situation after t is
terminated. The transition from state 0 to state 1 is taken
upon the traversal of the final node in thread t. If any node
from thread t is traversed while this constraint is in state 1,
the transition to the violation state is taken.

Wait-notify constraint
A wait-notify constraint models the fact that a thread can
exit a state in which it is waiting for a notification only af-
ter such a notification comes from some other thread. This
constraint has to be constructed for a specific thread and a
specific monitor. Figure 10 shows this constraint for thread
t and a monitor for object o. State 0 contains no transi-
tions to the violation state and represents the state of the
thread in which it is not waiting for a notification on object
o. Once the node that represents thread t making a call
to the wait () method of o is traversed, the constraint en-
ters state 1. While the constraint is in this state, traversal
of any node in thread t leads to the violation state, which
represents the fact that, after a thread executes a wait ()
method and until it receives the corresponding notification,
it stays idle. After a node corresponding to a call to either
a notify() or a notifyAl () method of object o is tra-
versed, the constraint goes back to state 0, signifying that
the thread may be active now.

Because of the difference in semantics of notify() and
notifyAl () methods, the state propagation has to be
modified slightly to handle traversal of notify nodes. If
there are multiple threads waiting for a notification on the
same object, a notify () method call notifies only a sin-
gle arbitrary thread. This thread may proceed, while other
waiting threads must wait for another notification. Thus,
if we have wait-notify constraints for multiple threads but
the same lock, and a notify node for this lock is traversed

with a state of the product automaton that represents Ic of
these constraints being in state 1, lc successor states are
produced. Each successor state is characterized by exactly
one wait-notify constraint changing to state 0. This change

405

(*,*,*)\(ME,U(o,entry,*)U
(o, notified-entryI, t))

o,notified-entryl, t)

MEo(tk)\

ii

0, exitk, t) U (0, waitr, t)))U
*, *, *) \ ((*, *!s> t) u ME,))

Figure 11: Monitor constraint

of the state propagation algorithm is quite straightforward
and it does not introduce additional worst-case complexity.
Because all threads waiting for a notification on a lock are
notified by a call to the notifyAl method for this lock,
traversal of a node corresponding to such a call results in
a single product automaton state for each input product
automaton state. In this output state, all wait-notify con-
straints for the corresponding lock are in state 0.

Monitor constraint
A single feasibility constraint can be created for each mon-
itor in the program. If a program contains Ic threads, this
constraint has k + 2 states: one violation state, one state
that represents that no threads are executing in the moni-
tor, and one state per thread to represent that this thread is
executing in the monitor. We extend our label notation by
introducing sets ME, to represent all nodes inside the mon-
itor for lock o and ME,(t) to represent all nodes of thread t
inside the monitor for the lock o. If the threads are denoted

t1, t2r ..., tk,then ME, = Uf=, ME,.

Figure 11 shows the general form of the monitor constraint,
with only two states representing threads ti and tk execut-
ing inside the monitor shown. State 0 represents the situ-
ation where no threads execute in this monitor. Thus, the
transitions on any nodes located in this monitor will lead to
the violation state. One of t.he threads, say tk, may enter the
monitor only after it acquired the lock, which is modeled
by entry and notified-entry nodes. After one such
node is executed, state Ic is entered. It corresponds to the
situation where none of the other threads may execute in-

side of this monitor and thread tk may not execute outside
of this monitor. Traversals of these offending nodes will
result in the constraint entering its violation state. State k
may be exited only after traversing a node that represents
thread tk leaving this monitor. This happens when thread
tl, either leaves the synchronized block in which it is cur-
rently executing or it executes the wait () method of object
o, labeled (0, aXi.&, t) and (o,waitk, t) respectively.

MEo(tl)\

ii
o,exitl, t) U (o,wait~, t)))U
*, *, *) \ cc*, *1. t) u ME,))

Note that this constraint may be simplified in the context of
a specific program. If a thread does not participate in the
monitor modeled by the constraint, the state for it does not
have to be created in the constraint. Similarly, if a thread,
say ti, enters the monitor but never executes the wait ()
method for the lock of this region, the transitions labeled
(o,waiti, t) and (o,notified-entryi, t) do not have to
be included.

5 GENERAL CONCURRENCY FAULTS 1N JAVA
General concurrency faults refer to situations that are con-
sidered harmful in concurrent programs, without regard to
the specific application. Well-known examples are dead-
locks and livelocks, when all or some of the threads in
the program are stalled, and concurrent def-use faults [19].
Most of the other concurrency faults identified in the static
analysis literature are application-specific. This low num-
ber of general concurrency faults is explained by the fact
that most static analysis approaches deal with high-level
rendezvous or message-sending concurrency models. Java
provides a number of specialized, often low-level, thread
communication mechanisms. One implication of this is
that some combinations of these communications mech-
anisms may represent either erroneous or suspicious se-
quences of activities. Many of these sequences can be de-
scribed as FSAs and detected using the approach described
in this paper. Some erroneous or suspicious activities in-
volve counts and thus cannot be represented with an FSA,
but it is often possible to relax the specification to enable a

representation in the FSA form.

In this section, we identify a number of general concur-
rency faults in Java programs. Due to space limitations,
our discussion here is brief.

Premature join () Calls
A call to the join () method of a thread is premature if this
thread has not been started at the time of the cal.1. In Java
such calls are simply ignored. The presence of program
executions exhibiting such behavior is alarming because
this may indicate a fault in the program logic. To detect

406

0 0 (t, join, *) 1

(t, start, 7 *)
t, start, 0 2 I *)
t, join, *)

U

1

t, start, *)

t, join, *)

Figure 12: Premature join (I calls property

t, start, *)

(L stop, *)

L-.J

I
t, start, *)
t, stop, *)

Figure 13: Property that a thread cannot be started more
than once without being stopped in between

such questionable sequences, we specify the property that
the join () method of a thread may not be called before
this thread is started. Figure 12 illustrates this property.

No Thread Restarted
A call to the start () method of a thread initiates exe-
cution of this thread. What happens if a thread is started
twice? The answer depends on whether or not the thread
is active when the start () method is called. If the thread
is active, exception IllegalThreadState is thrown. If
the thread has already completed its execution, the sec-
ond start () call is simply ignored. Figure 13 shows a
property that forbids restarting a thread while it is still ac-
tive. While we believe that in most cases the possibility
of two or more calls to the start () method of a thread
represents a seriously erroneous situation, the exception
handling mechanism of Java lets programmers catch the
IllegalThreadState exception, recovering from the er-
ror. While no exceptions are thrown and the program is not
interrupted in the second case, it may indicate suspicious
logic, where a thread is assumed to be alive while in fact it
is stopped.

Waiting Forever
One specific case of livelock that is a suspicious use of Java
concurrency mechanisms is when a thread becomes inac-
tive and never becomes active again. This happens when
the thread executes the wait () method for the lock object
of a monitor, but is never notified and thus never resumes
its execution. The property stating that this must not hap-
pen cannot be specified as an FSA because counting is re-

U
(o,notifyAll, *)

Figure 14: The property that no thread can wait forever

quired. Since the notify () method only notifies one arbi-
trary waiting thread, to represent this kind of livelock the
number of threads having executed the wait () method of
a lock object must be matched with the number of calls to
the notify() method of the same lock object. Note that a
specialized data flow analysis algorithm can be defined for
this case, since the number of threads that can wait for a no-
tification at the same time is bounded by the total number
of threads in the program. Because of space limitations,
we do not describe this approach here.

The case where only notifyAl () methods are used can
be represented in the FSA form. The property that can be
checked for such programs is shown in Figure 14. Note
that our current approach is not capable of handling this
property. Since terminating executions are defined as those
where all threads terminate, the executions that violate this
property will be ignored since they involve at least one
thread waiting forever. At present we are working on ex-
tending the approach to handle executions that may not ter-
minate.

No Unnecessary Notifications
Notifications issued when no threads are waiting are
wasteful. In addition, they also may indicate suspicious
logic (e.g. where the programmer assumes erroneously
that some threads may be waiting). FLAVERS can be
used to determine if certain calls to the notify() and
notifyAl () methods are not necessary on some exe-
cutions. Similar to the property of threads waiting for-
ever, this property cannot be specified in general be-
cause handling calls to the notify0 method involves
counting. A weaker property can be checked that relies
on notifyAl () methods to determine if there are any
threads waiting. This property is shown in Figure 15.

Dead Interactions
We call a thread interaction, such as a call to a communi-
cation method of another thread, dead if by the time this
interaction takes place, the target thread has already ter-
minated. According to the Java semantics, such calls are
simply ignored. While in many cases dead interactions are
not harmful, in other cases they could indicate a fault in the
program logic or unoptimal code. Although the general de-
scription of this fault is program-independent, it has to be
checked for specific thread interaction methods. Figure 16
shows a property of dead joins, where label S represents
a specific t . join () method call.

407

L-J
0, wait, *)
o,notifyAll,+)

Figure 1.5: Property that no two successive notifyAl
calls on the same object can be made successively

(*, end, t)

Figure 16: Dead join property

6 PRELIMINARY EXPERIMENTAL RESULTS
Before committing to a careful implementation of
FLAVERSlJava, we produced a prototype to test the fea-
sibility of this approach. Here we present the initial data
from this study, using three small concurrent Java pro-
grams. The FLAVERS/Java prototype is implemented in
Java. The current version supports all control constructs
other than exceptions but does not support full semantic
analysis and inlining. While these shortcomings would im-
pede analysis of large real programs, it was easy to modify
our small test examples to enable the tool to parse them.
The results of this study are encouraging, indicating the
ability of the approach to check properties of these pro-
grams conclusively in a reasonably small amount of time
comparable to that taken by FLAVERS/Ada to analyze
similar examples.

Empirical Results
In this study, we consider three examples: dining philoso-
phers, readers-writers, and gas station. The dining philoso-
phers example is taken from [4] and has three philosophers.
The readers-writers example is based on the producer-
consumer example from [2] and has two readers and two
writers. This example was implemented by a person not fa-
miliar with FLAVERS. The gas station example is the race-
free version of [7]. It was implemented by one of the au-
thors. This example contains two customers, one cashier,
and one pump.

In each of these three examples the threads of control are
synchronized primarily by monitors. In fact, no calls to

the join (1 methods of threads were used in any of the ex-
amples. Thus, we checked only the general concurrency
properties No thread restarted and No unnecessar;), noti-

jications for each example. Property No thread restarted
was successfully verified for all examples. All examples
were found to be in violation of the No unnecessary noti-
fications property and there really exist feasible executions
of the programs that exhibit violation of this property. No

feasibility constraints were required for checking for these
two general concurrency faults.

In addition, for each of the examples we checked two
application-specific properties. FLAVERS/Java proved all
these properties conclusively. Due to the lack of space, we
do not describe each of these properties and the details of
checking them with FLAVERSlJava, presenting only the
summary of the results in Figure 17. For each example,
we indicate the number of lines of code and the number
of nodes in the corresponding TFG. The second and third
columns give the number of concurrency constraints5, as
described in Section 4, and other feasibility constraints re-
quired for the analysis, respectively. In all cases these ad-
ditional feasibility constraints are of two types, constraints
that model control flow in a single thread, similar to the
constraint in Figure 4 for the Ada example in Figure 1, and
constraints that model behaviors of select program vari-
ables. The execution time in seconds is shown in the last
column and includes the combined time it took to parse
Java code, construct all necessary artifacts, and run the
analysis. For our experiments, we used a Symantec JIT
compiler for JDK 1.1 on a workstation equipped with a 266
MHz Pentium II processor and 64Mb of memory, running
Windows NT.

Discussion
One interesting observation is that the only concurrency
constraint required for checking properties of these three
examples was the monitor constraint. On one hand, this is
reasonable since all threads in all examples are started in a
straightforward manner by the main thread, with no events
of interest happening in the main thread and no calls to the
join () method. On the other hand, the wait-notify mech-
anism is used extensively in all examples and yet no wait-
notify constraints were required. The fact that only moni-
tor constraints were required gives us hope that in general,

for well-structured Java programs, the proposed approach
of modeling Java concurrency with feasibility constraints

will not add too much overhead to the analyses. Further
experimentation will be needed to test this hypothesis.

Another observation is that whenever checking a prop-

51n all cases at first we attempted to analyze each property without
using any concurrency constraints and then were adding these constraints
one by one, until either a conclusive result was obtained or we were able
to find a path that violated the property and corresponded to a feasible
execution of the program.

408

cont. feas. time,

cod. const. set

Gas station, 63 lot, 68 nodes
no thread restarted 1 0 1 0 1 2.24
no unnecessary notifications 0 0 2.16
no race 2 8 20.06
no pumping without payment 0 1 2.47

Figure 17: Analysis results for the examples

erty required at least one monitor constraint, monitor con-
straints had to be constructed for all lock objects in the
example. This probably reflects the fact that the concept of
monitors is central in Java concurrency and so each moni-
tor used in a program imposes important restrictions on the
control flow.

In the process of finding out experimentally which concur-
rency and feasibility constraints are necessary for conclu-
sively proving the properties of our examples, we discov-
ered that in most cases adding monitor constraints actually
improved the analysis time of the tool. The reason for this
is that using a monitor constraint significantly reduces the
number of control paths explored by FLAVERS/Java.

Checking for general concurrency faults from Section 5
proved to be very straightforward, not requiring any fea-
sibility constraints. We believe that in the case of the
No thread restarted property this is just the result of the
straightforward way of starting threads in our examples. In
the case of the No unnecessary notifications property, we
observed that all examples contain executions on which a
call to the notifyAl () method of a lock object is exe-
cuted before any calls to the wait () method of this object.

The timing data for this analysis are quite encouraging,
given the immaturity of the analysis tool. Even with the
large number of feasibility constraints needed for check-
ing some of the properties of the dining philosophers and
gas station examples, the analysis time never exceeded 30
seconds. These times are comparable to those taken by
FLAVERS/Ada, a more mature tool, to check Ada versions
of these programs.

7 CONCLUSION
We have presented an adaptation of the FLAVERS ap-

proach for analyzing application-specific properties of con-

current Java programs. With this approach, the semantics
of each of the Java communication constructs are modeled
with feasibility constraints. We view this approach as an
initial proposal. In fact there is a spectrum of alternative
approaches, from modeling all intertask communications
as feasibility constraints, as we advocate here, to modeling
a11 communications directly in the flow graph representa-
tion of the program. The approach described here seems
to us to be a good starting point, but extensive empirical
evaluation will be needed to determine the most efficient
representation. We intend to undertake such studies in the
future.

The proposed technique has the worst-case complexity of
O(SN2), where N is the number of events of interest in the
program and S is the size of the product of all finite state
automata used in the analysis. Our experience with Ada
programs indicates that in practice the number and size of
these finite state automata are not very large. In addition,
usually the combined state space of these automata is only
a fraction of their full cross product. It remains to be seen
if this is true for Java programs in general.

We have produced an initial implementation of the
F’LAVERS/Java tool and undertaken an initial case study in
which we analyzed a number of properties of three small
concurrent Java programs. Our prototype was able of an-
alyzing these programs in a reasonable amount of time.
These preliminary results give us hope that in general only
a small fraction of all possible concurrency constraints for
a program is actually needed for checking properties of
this program conclusively. More extensive experimenta-
tion will be required to support this hypothesis. However,
before committing to such an in-depth case study of the
applicability of this approach to medium- and large-size
Java programs, we will experiment with alternative mod-
eling approaches. Subsequently, we plan on using a large
set of real-world Java programs for comparing the feasibil-
ity of these modeling approaches and identifying the most
promising one.

REFERENCES

ill

VI

r31

S. C. Cheung and J. Kramer. Tractable dataflow anal-
ysis for distributed systems, IEEE Transactions on

Software Engineering, 20(8):579-593, Aug. 1994.

J. C. Corbett. Constructing compact models of con-
current Java programs. In ACM SIGSOFT Proceed-
ings of the 1998 International Symposium on Soji-
ware Testing andAnalysis, pages I-10, 1998.

J. C. Corbett and G. S. Avrunin. Using integer pro-
gramming to verify general safety and liveness prop-
erties. Formal Methods in System Design, 6:97-123,
January 1995.

409

[41

151

L61

r71

PI

191

t101

El11

[Ql

1131

1141

i-151

C. Demartini and R. Sisto. Static analysis of Java
multithreaded and distributed applications. In Pro-

ceedings of the International Symposium on Software
Engineering for Parallel and Distributed Systems,

pages 2 15-222, Apr. 1998.

M. Dwyer and L. Clarke. Data flow analysis for ver-
ifying properties of concurrent programs. In ACM
SIGSOFT’94, Proceedings of the Second ACM SIG-
SOFT Symposium on Foundations of Software Engi-

neering, pages 62-75, December 1994.

P Godefroid. Model checking for programming lan-
guages using VeriSoft. In Proceedings of the 24th
ACM Symposium on Principles of Programming Lan-
guages, pages 174-I 86, Jan. 1997.

D. Helmbold and D. Luckham. Debugging Ada task-
ing programs. IEEE Software, 2(2):47-57, March
1985.

G. J. Holzmann. Design and Validation of Computer
Protocols. Prentice Hall Software Series, 1991.

W. Landi and B. Ryder. Pointer-induced aliasing:
A problem taxonomy. In Conference Record of the
18th Annual ACM Symposium on Principles of Pro-
gramming Languages (POPL ‘91), pages 93-103,
Orlando, FL, USA, Jan. 1991. ACM Press. I

T. J. Marlowe and B. G. Ryder, Properties of data
flow frameworks. Acta informatica, 28(2):121-163,
1990.

S. P Masticola and B. G. Ryder. Static infinite wait
anomaly detection in polynomial time. In D. A.
Padua, editor, Proceedings of the 1990 International
Conference on Parallel Processing. Volume 2: Soft-
ware, pages 78-87, Urbana-Champaign, IL, Aug.
1990. Pennsylvania State University Press.

K. L. McMillan. Symbolic Model Checking. Kluwer
Academic Publishers, Boston, 1993.

G. Naumovich and G. S. Avrunin. A conservative
data flow algorithm for detecting all pairs of state-
ments that may happen in parallel. In Proceedings
of the Sixth ACM SIGSOFT Symposium on the Foun-
dations of Soeare Engineering, pages 24-34, Nov.

1998.

G. Naumovich, G. S. Avrunin, and L. A. Clarke. Data
flow analysis for checking properties of concurrent
Java programs. Technical Report 98-22, University
of Massachusetts, Amherst, Apr. 1998.

G. Naumovich, G. S. Avrunin, and L. A. Clarke.
An efficient algorithm for computing MHP informa-

tion for concurrent Java programs. Technical Report

1161

1171

[I81

1191

98-44, University of Massachusetts, Amherst, Oct.

1998. http://laser.cs.umass.edu/ahstracts/
98-044 .html.

G. Naumovich, L. A. Clarke, and L. J. Osterweil.
Comparing implementation strategies for compos-
ite data flow analysis problems. In Proceedings of
SIGPLAN-SIGSOFT Workshop on Program Analy-
sis for Software Tools and Engineering, pa.ges 51-58,
June 1998.

J. Plevyak and A. A. Chien. Precise concrete
type inference for object-oriented languages. In
ACM SIGPLAN Proceedings of the 1994 Conference
on Object-Oriented Programming, pages 324-340,

1994.

J. H. Reif and S. A. Smolka. Data flow analysis of
distributed communicating processes. International
Journal of Parallel Programming, 19(1): l-30, Feb.
1990.’

R. N. Taylor and L. J. Osterweil. Anomaly detec-
tion in concurrent software by static data Aow anal-
ysis. IEEE Transactions on Software Engineering,
6(3):265-278, May 1980.

410

