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ABSTRACT 
In this paper we show how the FLAVERS data flow anal- 
ysis technique, originally formulated for systems using a 
rendezvous concurrency model, can be applied to the vari- 
ous concurrency models used in Java programs. The gen- 
eral approach of FLAVERS is based on modeling a concur- 
rent system as a flow graph and, using a data flow analysis 
algorithm over this graph, statically checking if a property 
holds on all (or no) executions of the program. The accu- 
racy of this analysis can be iteratively improved, as needed, 
by supplying additional constraints, represented as finite 
state automata, to the data flow analysis algorithm. 

In this paper we present an approach for analyzing Java 
programs that uses the constraint mechanism to model the 
possible communications among threads in Java programs, 
instead of representing them directly in the flow graph 
model. We also discuss a number of error-prone thread 
communication patterns that can arise in Java and describe 
how FLAVERS can be used to check for the presence of 
these. A preliminary evaluation of this approach is car- 
ried out by analyzing some small concurrent Java programs 
for these error-prone communication patterns and other, 
program-specific, faults. 
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1 INTRODUCTION 
With the advent of Web technology, distributed program- 
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ming, especially in the Java programming language, is 
growing rapidly in popularity. The additional complex- 
ity and inherent non-determinism of distributed systems 
makes understanding and reasoning about them extremely 
difficult. Moreover, testing such systems is problematic 
since, not only are there many more alternatives to ex- 
plore when task interleaving is considered, but two execu- 
tions of the same program with the same test data may not 
even produce the same results. Static analysis techniques 
are being developed for distributed systems to complement 
traditional testing approaches. These techniques statically 
determine if specific kinds of faults can occur on any ex- 
ecutions of the system. In this paper, we describe how 
the FLAVERS static analysis approach can be modified to 
handle the Java concurrency constructs. In addition, we 
present a number of patterns of use of Java’s concurrency 
constructs that could lead to erroneous behavior and then 
describe how the modified version of FLAVERS could be 
applied to detect these problematic or suspicious patterns. 

FLAVERS (FLOW Analysis for VERification of Systems) 
uses data flow analysis techniques to verify user-specified 
properties of software systems [5]. The attractiveness of 
this approach is in its low-order polynomial complexity 
bounds and its ability to improve the precision of the anal- 
ysis by incrementally improving the accuracy of the pro- 
gram model. A prototype for FLAVERS has been im- 

plemented, called FLAVERS/Ada, that analyzes Ada pro- 
grams or program models that use rendezvous communi- 
cations. 

In FLAVERS/Ada, programs are modeled as truce flow 
graphs that represent the potential flow of control through 
the program, including intertask communications and in- 
terleavings. Additional information, represented as finite 
state automata and called feasibility constraints, is used to 
elaborate the semantics of selected aspects of the program 
when needed to increase the precision of the analysis. 

The emphasis of this paper is on modeling Java programs 
in a way that can be used by FLAVERS. The modifica- 
tion of the sysiem model is not trivial, since Ada and 
Java use significantly different concurrency models. We 
describe one promising approach in which the semantics 



of thread communications are represented with feasibil- 
ity constraints, instead of being a part of the trace flow 
graph. In addition, we discuss a number of application- 
independent patterns of thread communications that indi- 

cate erroneous or error-prone code and discuss the use of 
FLAVERS for checking for the presence of such patterns. 
We present an initial empirical exploration that seems to 
support our hypothesis that the proposed approach is ca- 
pable of efficiently checking both general and application- 
specific properties of concurrent Java programs. 

The next section gives a brief description of related work. 
Section 3 gives a short overview of the FLAVERS ap- 
proach for Ada. Section 4 first provides an introduction to 
the Java concurrency constructs and then presents the pro- 
posed program model for Java. Section 5 describes some 
suspicious patterns of thread communications. We present 
initial experimental results with a prototype implementa- 
tion of the proposed approach in Section 6. Finally, we 
present a summary and describe our future directions. 

2 RELATED WORK 
Most work in the area of static analysis of concurrent and 
distributed systems has used either synchronous commu- 
nication models with the rendezvous style of concurrency 
or asynchronous message-passing communication models. 
These models are different from the Java model, which 
supports monitors and a mixture of low-level thread syn- 
chronization primitives, 

There has been some recent work concerned with model- 
ing Java programs. Corbett [2] describes a technique for 
constructing compact finite state models for Java. This 
approach relies on a data flow algorithm for constructing 
an approximation of the run-time structure of the program 
heap that is then used to reduce the size of the concurrency 
model. This alias resolution approach could also be used to 
reduce the size of our trace flow graph program model. In 
this paper, however, we have not focused on the optimiza- 
tion of the program model. 

Demartini and Sisto [4] describe two models of Java pro- 
grams. The first represents Java programs with Petri nets 
and the second represents Java programs with Promela 
code. Both these models are intended to be used for reach- 
ability analysis. While several approaches have been pro- 
posed to improve the performance of reachability analysis, 
in general the use of reachability analysis for real software 
systems remains prohibitively expensive. 

As an alternative to techniques with exponential worst-case 
bounds, such as reachability analysis (e.g. [6,8]), symbolic 
model checking (e.g. [12]), and integer necessary condi- 
tions [3], data flow analyses for concurrent software have 
been formulated with low-order polynomial execution time 
and storage bounds. Most of these data flow approaches 
check application-independent properties (e.g. [ I,1 1,l S]), 

task body Tl is 
begin 

pl; 
T2.E; 

end Tl; 

task body 1'2 is 
begin 

P2; 
accept E; 

p3; 
end T2; 

Figure 1: Ada code example 

such as deadlock. FLAVERS is one of the few data 
flow techniques capable of directly checking aipplication- 
specific properties of concurrent software. This approach 
attempts to verify the property of interest for a software 
system using an efficient low-order polynomial algorithm 
while giving the user the ability to change the amount of 
detail modeled, and thus to improve the precision of the re- 
sults, without having to rebuild the complete model of the 
system. 

3 FLAVERS FOR ADA 
With FLAVERSlAda, programs are modeled by trace flow 
graphs (TFGs). The TFG for a concurrent program is based 
on the control flow graphs (CFGs) for the components of 
a system. For each CFG we identify the nodes that corre- 
spond to observable activities in the program that an ana- 
lyst wants to reason about. Each node is labeled with an 
event, a user-selected name associated with such an ob- 
servable activity. To reduce the size of the representation 
and consequently improve the efficiency of the analysis, 
the CFGs are refined to remove all nodes that are not la- 
beled with an event. In addition, any node that invokes a 
procedure or function is replaced by the reduced CFG rep- 
resentation of that routine. In our experience, this inlining 
of routines does not cause a severe blow-up in the size of 
the CFGs, since the nodes annotated with events tend to be 
relatively sparse. 

The TFG for an Ada program is obtained by connecting the 
reduced, inlined CFGs for all tasks. Unique initial andfinal 
nodes that represent the start and the end states of the pro- 
gram respectively are connected to the CFG of each task 
in the program. Each possible task synchronization is rep- 
resented by a communication node, which is connected by 
edges to the appropriate nodes in the CFGs of both com- 
municating tasks. In addition, may immediately precede 
(MIP) edges are added between nodes in separate CFGs to 
represent possible interleavings of the actions associated 
with these nodes. The set of such edges can be computed 
efficiently [ 131. 

Figure 1 contains a trivial example of Ada code that is used 
for illustration purposes. In this example, task Tl first calls 
procedure pl, then calls entry E of task Tl, and finally 
terminates. Task T2 first calls procedure p2, accepts an 
entry call for entry E, calls procedure p3, and finally ter- 
minates. We assume that procedures pl, p2, and p3 con- 
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Figure 2: TFG for the example in Figure 1 
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Figure 3: Property for the example in Figure 1 

tain no communication statements (i.e. entry calls and ac- 
cepts). The corresponding TFG is shown in Figure 2. The 
rectangular-shaped nodes represent local computations in 
the tasks (procedure calls in this example). The diamond- 
shaped nodes labeled initial andfinal represent the start and 
the end of the program computation. Finally, the diamond- 
shaped node labeled E represents the rendezvous between 
the two tasks on entry E. Solid edges represent control flow 
local to the tasks, while dashed edges are MIP edges. 

The set of all events associated with a model of the pro- 
gram is the alphabet of the TFG. For the TFG in Figure 2, 
the events of interest are the procedure calls and the ren- 
dezvous. The language of the TFG is the set of event se- 
quences that occur on paths from the initial node to the 
final node. The resulting TFG overapproximates the set of 
possible sequences of these events in the sense that each 
real program execution must correspond to a path through 
the graph but some paths in the TFG may not correspond 
to any possible execution. 

Properties can be described in a number of specification 
languages but are represented internally as deterministic fi- 
nite state automata (FSA) over the TFG alphabet. Figure 3 
gives a sample property for the example in Figure 1. This 
property states that on all executions of this program the 
call to procedure p3 must always follow the call to proce- 
dure pl (and pl must always be called). (Note that if the 
call to p3 happens first, the transition from the initial state 
of the property to the non-accepting sink state 3 is taken.) 

;p3 

Figure 4: A feasibility constraint for the example in Fig- 
ure 1 

The set of all events used in the property FSA represents 
the alphabet of the property. The language of a property 
is the set of all event sequences accepted by its FSA. Con- 
ceptually, a property holds for a program if the projection 
of the language of the TFG on the alphabet of the property 
is contained in the language of this property. Data flow 
analysis is used to solve this containment problem by in- 
crementally computing the set of property automata states 
that could be associated with the execution of each node in 
the TFG. This is a well-formed data flow analysis problem 

that can be shown to terminate, produce conservative re- 
sults, and have a worst-case complexity of O(SN2), where 
S is the number states in the property FSA and N is the 
number of nodes in the WG. 

If the analysis finds that a property holds, then it is guaran- 
teed to be valid on all possible program executions. When 
the analysis indicates that the property does not hold on 
some paths through the TFG, this may be because the pro- 
gram is in error or it may be because all the paths in the pro- 
gram model that violate this property do not correspond to 
feasible program executions. For example, one of the pos- 
sible paths in the TFG in Figure 2 is initial, pl, E,final. But 
this path does not represent a legal execution of the pro- 
gram because, before this program can terminate, task T2 
must execute procedures p2 and p3. FLAVERS provides a 
means for selectively removing infeasible paths from con- 
sideration by allowing the analyst to add feasibility con- 
straints, finite state automata that model semantic restric- 
tions on the program execution that are not reflected in the 
TFG. For example, CFGs, and the TFGs constructed from 
them, do not model the values assigned to variables during 
execution. Thus, paths through the TFG may not represent 
feasible executions because these paths do not respect the 
values of some variables. A feasibility constraint could be 
constructed to track the possible finite values or ranges of 
values of such a variable, thereby eliminating these infea- 
sible paths. 

An example of a feasibility constraint is shown in Figure 4. 
This constraint assures that the control flow within task T2 
is followed. For instance, if the control path initial, pl, E, 
jinal is followed in the TFG in Figure 2, the start state of 
the constraint automaton is associated with node initial and 
then propagates to node pl, since pl is not in the alphabet 
of this constraint (it is not an event in task T2). When this 
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state 1 is propagated to node E, the constraint enters the 
violation state v, indicating that this path represents an in- 

feasible execution. 

Each feasibility constraint has a distinct vio&ion state, 
which signifies that the sequence of events applied to the 

constraint does not correspond to any legal behavior of the 
program. The properties to be checked for a program and 
the feasibility constraints are combined into a single prod- 
uct automaton with the following characteristics: (1) The 
product automaton accepts a sequence of events if and only 
if this sequence is accepted by the property automaton; (2) 
The product automaton goes to the violation state if and 
only if at least one of the constraints goes to its violation 
state. In practice, we use an efficient approach where the 
full product automaton is not actually created [ 161. 

The containment problem on the property automaton is re- 
placed with the containment problem on the product au- 
tomaton. We say that a property holds subject to the feasi- 
bility constraints if all event sequences from the TFG lan- 
guage that do not send the product automaton to the vio- 
lation state are accepted by this product automaton. The 
problem of determining if this is the case is solved by data 
flow analysis, which propagates the states of the product 
automaton through the TFG. This state propagation phase 
of the analysis involves computing, for each node in the 
TFG, the set of product automata states that characterize 
the state of the program immediately after execution of the 
code represented by this node. Because the data flow prob- 
lem solved by state propagation is distributive, the solution 
of this data flow problem converges to a join over all paths 
solution [IO], and so we need to look only at the final node 
of the TFG to determine whether the property holds. We 
say that a property holds on all terminating executions of 
the program if after all violation states are discarded from 
the final node of the TFG, only accepting states of the prod- 
uct automaton are present there’. 

Note that the effectiveness of FLAVERS in part depends on 
the user’s ability to identify the aspects of the system that 
have to be modeled with feasibility constraints. To facil- 
itate this task, when SLAVERS determines that the prop- 

erty does not hold, it produces one or more sample paths 
through the TFG and/or source code. The user can then 
decide whether these paths correspond to feasible or in- 
feasible executions of the system. Furthermore, if a path 
corresponds to an infeasible execution, the reason for this 
infeasibility often suggests a specific constraint that mod- 
els the aspect of the system that is misinterpreted in the 
path. SLAVERS provides automated support for many of 
the kinds of constraints that are usually needed. 

4 ANALYSIS OF CONCURRENT JAVA PRO- 
GRAMS 

‘As described here, only terminating executions are considered. 

class Thread1 extends Thread 
( 

public Threadltl (...I 
public void run0 

class Thread2 extends Thread 

class Example extends Thread 

public static void 
main(String [I args) 

Object lock = new ObjectO; 
Thread1 tl = new ThreadlO; 
Thread2 t2 = 

new ThreadZCtl, lock); 
synchronized Ilock) 

public Thread2CThread other, 
Object lock) 1 

public void run0 

synchronized (lock) 

tl.joinO; 
. 

1 
1 

t2.starto; 
.f t1.starto; 

Figure 5: Java code example 

In this section we discuss the concurrency model employed 
by Java, highlight the troublesome aspects of dealing with 
this model in a static manner, and describe our approach 
to building models of Java programs in a way amenable 
to FLAVERS analysis. The approach that we take in 
this modeling is to use the feasibility constraint mecha- 
nism to represent thread interactions in Java, as opposed 
to incorporating these interactions in the TFG as done in 
FLAVERSlAda. 

Java Model of Concurrency 
In Java, concurrency is modeled with threads. Although 
the term thread is used in the Java literature to refer to 
both thread objects and thread types, in this paper we call 
thread types thread classes and thread instances simply 
threads. Figure 5 contains an example in which thread 
classes Thread1 and Thread2 are defined by extending the 
standard Java Thread class. Threads tl and t2 of these 
two respective classes are created and used in the main 
method of class Example. 

Any Java application must contain a main() method, 
which serves as the “main” thread of execution. This is 
the only thread that is running when the program is started. 
Although the object containing this method dpes not have 
to extend the Thread class, it is a separate thread of con- 
trol. 

In Java, execution of all threads, except the main thread, 
is started by calling their start ( ) methods. The run ( ) 
method of a thread is never called explicitly but is invoked 
implicitly as a result of calling the start ( ) method of this 
thread. Since only the main thread is running initially, in 
multi-threaded programs the main thread must instantiate 
and start some of the other threads. These threads may 
then instantiate and start other threads. For example, in 
Figure 5 the main thread creates (by calling the appropri- 
ate constructors) thread tl of class Thread1 and thread 
t2 of class Thread2 and then starts each by invoking their 
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start () methods. 

Java uses shared memory as the basic model for commu- 
nications among threads. In addition, threads can affect 
the execution of other threads in a number of other ways, 
such as dynamically starting a thread or joining with an- 
other thread, which blocks the caller thread until the other 
thread finishes. 

The most significant of the Java thread interaction mech- 
anisms is based on monitors. A monitor is a portion of 
code (usually, but not necessarily, within a single object) in 
which only one thread is allowed to run at a time. Java im- 
plements this notion with synchronized statements and 
locks. Each Java object has an implicit lock, which may 
be used by synchronized statements’. To execute a 

synchronized statement, a thread must acquire the lock 
of the object indicated by this statement, and it releases 
this lock when it exits this synchronized statement. Since 
only one thread may be in possession of any given lock at 
any given time, this means that at most one thread at a time 
may be executing in one of the synchronized statements 
protected by that lock. In Figure 5, an object lock of Java 
predefined class Object is used to create the monitor in 
which both threads main and t2 participate. Note that the 
identity of object lock has to be conveyed to thread t2. In 
this case this is done via the constructor new Thread2 (tl , 
lock). 

Threads may interrupt their execution in monitors by call- 
ing the wait () method of the lock object of this moni- 
tor. During execution of the wait ( ) method, the thread re- 
leases the lock and becomes inactive, thereby giving other 
threads an opportunity to acquire this lock. Such inactive 
threads may be awakened only by some other thread exe- 
cuting one of the notify( ) and notifyAl () methods of 
the lock object. The difference between these two methods 
is that notify ( ) wakes up one arbitrary thread from all the 
potentially many waiting threads and notifyAl ( ) wakes 
up all such threads. Similar to calls to wait (), calls to 
the notify() and notifyAl (1 methods must take place 
inside monitors for the corresponding locks. Both notifica- 
tion methods are non-blocking, which means that whether 
there are waiting threads or not, the notification call will 
return and the execution will continue. 

In the rest of the paper we refer to start ( 1, join ( 1, 
wait ( ) , notify ( ) , and notifyAl ( ) methods as thread 
communication methods3. 

Flow Graph Model for Java 

2A related construct is a synchronized method, but the inlining per- 
formed in this approach results in code with synchronized statements. 

3Additionai thread methods stop ( ) , suspend ( ), and resume ( ) are 
defined in JDK 1.1 but have been deprecated in JDK 1.2 since they en- 
courage unsafe software engineering practices. Because of this and space 
limitations we do not cover these methods in this paper. We discuss han- 
dling these methods in [ 141. 

Dynamic creation of threads is a well-known problem for 
static anaIysis. The number of instances of each thread 
class may be unbounded. For our analysis we make the 
usual assumption that there exists a known upper bound on 
the number of instances of each thread class. Alias reso- 
lution, including dealing with method (and thread object) 
polymorphism, is also an important issue. For the purposes 
of this paper we assume that alias resolution has been con- 
servatively performed, using techniques such as [2,9,17]. 

The monitor-based model of communications between 
threads is significantly different from the communication 
mechanisms used by other popular concurrent languages, 
such as the rendezvous model of Ada 83 and CSP or the 
message sending model of Promela. The number of dif- 
ferent thread communication methods in Java makes the 
problem of constructing the program model more difficult 
than the one for Ada. We solve this problem by represent- 
ing only the control flow within individual threads and the 
interleavings of events in the TFG model of the program 
and use the feasibility constraint mechanism for modeling 
the semantics of thread interactions. Since some of the 
thread communication mechanisms, such as notification, 
require maintaining the state of many threads simultane- 
ously, representing these mechanisms in the flow graph is 
cumbersome. Feasibility constraints are more readily suit- 
able for capturing this functionality. In addition, since dif- 
ferent ways in which threads affect each other’s behavior 
use different thread methods, representing their function- 
ality by separate FSAs is conceptually simpler than com- 
bining them all in one TFG4. One shortcoming of this ap- 
proach is that, in practice, increasing the number and size 
of feasibility constraints frequently leads to increased time 
and space requirements of the FLAVERS analyses. We 
view the approach described here as a reasonable first step 
toward using FLAVERS for analysis of Java. In the fu- 
ture, we plan to evaluate the time and space requirements 
of modeling thread communications with feasibility con- 
straints and to experiment with alternative approaches. 

As with Ada, we first create a reduced, inlined control 
flow graph for each method in the program. Each call to a 
communication method is labeled with a tuple of the form 
(0, m, c), where o is the object owning method m, m is the 
method itself, and c is the calling thread. For example, for 
the code in Figure 5, the call tl . start in the main method 
will be represented with the label (tl, start, main). To 
make it easy to reason about groups of communications, 
we allow the wild-card symbol ‘*‘, which is used to indi- 
cate that one of the parts of the communication label can 
take any value. For example, (t, start, *) represents an 
event in which some thread in the program calls the start 

4Although not shown here, another advantage of this approach is that 
some of these communication constraints can be incorporated into certain 
automatically generated feasibility constraints. 
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main 

1 I(*, begi;, main)] 

pi$q - [(lack,w;iting,t)i 

Figure 6: CFG transformation for wait ( ) method calls 

method of thread t. The first node of a thread t is la- 
beled (*, begin, t) and the last node of this thread is la- 
beled (*, end, t). For consistency, we use this label format 
for arbitrary user-specified events as well. For example, 
the use of a variable var that occurs in thread t could be 
labeled (*, use-var, t). 

For the p&poses of our analysis, additional modeling is re- 
quired forwait ( ) method calls and synchronized blocks. 
Because an entrance to or exit from a synchronized block 
by one thread may influence executions of other threads, 
we represent the entrance and exit points of synchronized 
blocks with additional nodes labeled (lock, entry, t) and 
(lock, exit, t), where t is the thread modeled by the CFG 
and lock is the lock object of the synchronized block. 
We assume that the thread enters the synchronized block 
immediately after the entry node is executed and exits this 
block immediately after the exit node is executed. Thus, 
the entry node is outside the synchronized block and the 
exit node is inside this block. 

The execution of a wait ( ) method by a thread involves 
several activities. The thread releases the lock of the moni- 
tor containing this wait ( ) call and then becomes inactive. 
After the thread receives a notification, it first has to re- 
acquire the lock of the monitor, before it can continue its 
execution. To be able to reason about all these activities 
of a thread, we perform a transformation that replaces each 
node representing a wait ( ) method call with three differ- 
ent nodes, as illustrated in Figure 6. The node labeled 
(lock,wait, t) represents the execution of the wait 0 
method, the node labeled (lock, waiting, t) represents 
the thread being idle while waiting for a notification, and 
the node labeled (lock, notified-entry, t) represents 
the thread after it received a notification and is in the pro- 
cess of obtaining the lock to re-enter the synchronized 
block. The shaded regions in the figure represent the 
synchronized block. 

The CFGs for individual threads are combined into a TFG 
by using only the May Immediately Precede (MIP) edges, 
which, as in the approach of FLAVERS/Ada, represent all 
possible interleavings among pairs of nodes from different 

Figure 7: TFG example 

tasks. We have developed a conservative, precise, and cost- 
effective algorithm for generating these edges [ 151 that is 
similar to our algorithm for Ada [ 131. Note that unlike the 
case for TFGs in FLAVERS/Ada, no additional nodes are 
created to represent communications among the program 
threads. Note also that even without represent.ing thread 
communications explicitly in our Java graph model, this 
model conservatively overapproximates all possible execu- 
tions of a program. 

Figure 7 shows the TFG for the program in Figure 5. The 
shaded regions include nodes in the monitor of the pro- 
gram, solid edges represent control flow within individual 
threads and dashed edges are MIP edges. To simplify the 
figure, MIP edges between nodes from threads 111 and t2 
are not shown. 

Modeling Thread Communications with Feasibility 
Constraints 
Although the TFG for a concurrent Java program repre- 
sents a conservative overapproximation of all program be- 
haviors, it does not model thread interactions. We model 
thread communications using feasibility constraints. Note 
that feasibility constraints modeIing some types of thread 
interactions in the program may not be necessary for con- 
clusive analysis of the property of interest. At present, we 
allow the user to choose the types of thread interactions 
in the program that are to be modeled by feasibility con- 
straints. In future, we plan to provide guidance in the form 
of heuristics, suggesting construction of feasibility con- 
straints for certain kinds of thread interactions depending 
on the program structure and the property being verified. 

For each thread interaction mechanism present in JDK 1.2 
we describe the corresponding feasibility constraint(s) and 
show the FSA(s). Transitions of these FSAs are defined in 
terms of TFG nodes. We use the label (0, m, c) to represent 
the set of all nodes marked with that label. We use set 
operations on labels to identify the set of nodes on which a 
transition is taken. (*, *, *) stands for the set of all nodes 
in the graph. For example, the self-transition on state 0 
in Figure 8, marked (*, *, *) \ ((*, *, t) U (t, start, *)) 
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Viol P (*, *, *) 

(*, *> t) 

-g-t*) 

(*, *> *) \ ((*, *> t) u (t, start, *If 

(*, *7 *) \ ((as *7 w 
0, notify, *)U 

o,notifyAll, e)) 

(*, *, *) \ (o,wait, t) 

Figure 8: Constraint for start 

Figure 10: Constraint for wait-notify constructs 

Viol 

R 

(*, *I *) 

(t, join, *) c*> *, t) 

Figure 9: Constraint for join 

is taken upon traversal of any node that does not represent 
any activity performed by thread t or a call to the start 
method of thread t. 

Start constraint 
The start constraint enforces the requirement that a thread 
cannot execute until it is started by some other thread. This 
constraint can be constructed for each thread in the pro- 
gram, other than the main thread. The start constraint for 
a thread t is shown in Figure 8. State 0 models the situ- 
ation before t is started. From this state, the transition to 
the violation state is taken if any node in thread t is tra- 
versed by the analysis. After a node representing a call 
to the method start ( 1 of t is traversed (this node has la- 
bel (t, start, s), where thread s makes the call), the con- 
straint makes the transition to state 1, after which no se- 
quence of events can violate this constraint. 

Using the start constraint makes it possible to model and 
analyze programs in which some threads may not be started 
at all. The CFG for each thread that may be created is 
constructed and included in the TFG, but the nodes of 
this thread’s CFG will be traversed without violating this 
thread’s start constraint only on those executions where this 
thread is actually started. 

Join constraint 
The join constraint enforces the requirement that after a 
thread terminates, no nodes from this thread can execute. 
In addition, it models the fact that a thread calling the 
join ( ) method of another thread may proceed only after 
this latter thread terminates. Figure 9 shows this constraint. 
State 0 represents the situation where thread t has not ter- 

minated. The transition to the violation state is taken from 
state 0 if a node representing a call to the join ( ) method of 
thread t is traversed. Such a traversal represents an infea- 
sible path because a call to join ( ) cannot terminate until 
t is terminated. State 1 represents the situation after t is 
terminated. The transition from state 0 to state 1 is taken 
upon the traversal of the final node in thread t. If any node 
from thread t is traversed while this constraint is in state 1, 
the transition to the violation state is taken. 

Wait-notify constraint 
A wait-notify constraint models the fact that a thread can 
exit a state in which it is waiting for a notification only af- 
ter such a notification comes from some other thread. This 
constraint has to be constructed for a specific thread and a 
specific monitor. Figure 10 shows this constraint for thread 
t and a monitor for object o. State 0 contains no transi- 
tions to the violation state and represents the state of the 
thread in which it is not waiting for a notification on object 
o. Once the node that represents thread t making a call 
to the wait ( ) method of o is traversed, the constraint en- 
ters state 1. While the constraint is in this state, traversal 
of any node in thread t leads to the violation state, which 
represents the fact that, after a thread executes a wait ( ) 
method and until it receives the corresponding notification, 
it stays idle. After a node corresponding to a call to either 
a notify() or a notifyAl () method of object o is tra- 
versed, the constraint goes back to state 0, signifying that 
the thread may be active now. 

Because of the difference in semantics of notify( ) and 
notifyAl () methods, the state propagation has to be 
modified slightly to handle traversal of notify nodes. If 
there are multiple threads waiting for a notification on the 
same object, a notify ( ) method call notifies only a sin- 
gle arbitrary thread. This thread may proceed, while other 
waiting threads must wait for another notification. Thus, 
if we have wait-notify constraints for multiple threads but 
the same lock, and a notify node for this lock is traversed 

with a state of the product automaton that represents Ic of 
these constraints being in state 1, lc successor states are 
produced. Each successor state is characterized by exactly 
one wait-notify constraint changing to state 0. This change 
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Figure 11: Monitor constraint 

of the state propagation algorithm is quite straightforward 
and it does not introduce additional worst-case complexity. 
Because all threads waiting for a notification on a lock are 
notified by a call to the notifyAl method for this lock, 
traversal of a node corresponding to such a call results in 
a single product automaton state for each input product 
automaton state. In this output state, all wait-notify con- 
straints for the corresponding lock are in state 0. 

Monitor constraint 
A single feasibility constraint can be created for each mon- 
itor in the program. If a program contains Ic threads, this 
constraint has k + 2 states: one violation state, one state 
that represents that no threads are executing in the moni- 
tor, and one state per thread to represent that this thread is 
executing in the monitor. We extend our label notation by 
introducing sets ME, to represent all nodes inside the mon- 
itor for lock o and ME,(t) to represent all nodes of thread t 
inside the monitor for the lock o. If the threads are denoted 

t1, t2r ..., tk,then ME, = Uf=, ME,. 

Figure 11 shows the general form of the monitor constraint, 
with only two states representing threads ti and tk execut- 
ing inside the monitor shown. State 0 represents the situ- 
ation where no threads execute in this monitor. Thus, the 
transitions on any nodes located in this monitor will lead to 
the violation state. One of t.he threads, say tk, may enter the 
monitor only after it acquired the lock, which is modeled 
by entry and notified-entry nodes. After one such 
node is executed, state Ic is entered. It corresponds to the 
situation where none of the other threads may execute in- 

side of this monitor and thread tk may not execute outside 
of this monitor. Traversals of these offending nodes will 
result in the constraint entering its violation state. State k 
may be exited only after traversing a node that represents 
thread tk leaving this monitor. This happens when thread 
tl, either leaves the synchronized block in which it is cur- 
rently executing or it executes the wait ( ) method of object 
o, labeled (0, aXi.&, t) and (o,waitk, t) respectively. 

MEo(tl)\ 

ii 
o,exitl, t) U (o,wait~, t)))U 
*, *, *) \ cc*, *1. t) u ME,)) 

Note that this constraint may be simplified in the context of 
a specific program. If a thread does not participate in the 
monitor modeled by the constraint, the state for it does not 
have to be created in the constraint. Similarly, if a thread, 
say ti, enters the monitor but never executes the wait ( ) 
method for the lock of this region, the transitions labeled 
(o,waiti, t) and (o,notified-entryi, t) do not have to 
be included. 

5 GENERAL CONCURRENCY FAULTS 1N JAVA 
General concurrency faults refer to situations that are con- 
sidered harmful in concurrent programs, without regard to 
the specific application. Well-known examples are dead- 
locks and livelocks, when all or some of the threads in 
the program are stalled, and concurrent def-use faults [19]. 
Most of the other concurrency faults identified in the static 
analysis literature are application-specific. This low num- 
ber of general concurrency faults is explained by the fact 
that most static analysis approaches deal with high-level 
rendezvous or message-sending concurrency models. Java 
provides a number of specialized, often low-level, thread 
communication mechanisms. One implication of this is 
that some combinations of these communications mech- 
anisms may represent either erroneous or suspicious se- 
quences of activities. Many of these sequences can be de- 
scribed as FSAs and detected using the approach described 
in this paper. Some erroneous or suspicious activities in- 
volve counts and thus cannot be represented with an FSA, 
but it is often possible to relax the specification to enable a 

representation in the FSA form. 

In this section, we identify a number of general concur- 
rency faults in Java programs. Due to space limitations, 
our discussion here is brief. 

Premature join ( ) Calls 
A call to the join ( ) method of a thread is premature if this 
thread has not been started at the time of the cal.1. In Java 
such calls are simply ignored. The presence of program 
executions exhibiting such behavior is alarming because 
this may indicate a fault in the program logic. To detect 
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Figure 13: Property that a thread cannot be started more 
than once without being stopped in between 

such questionable sequences, we specify the property that 
the join ( ) method of a thread may not be called before 
this thread is started. Figure 12 illustrates this property. 

No Thread Restarted 
A call to the start () method of a thread initiates exe- 
cution of this thread. What happens if a thread is started 
twice? The answer depends on whether or not the thread 
is active when the start ( ) method is called. If the thread 
is active, exception IllegalThreadState is thrown. If 
the thread has already completed its execution, the sec- 
ond start ( ) call is simply ignored. Figure 13 shows a 
property that forbids restarting a thread while it is still ac- 
tive. While we believe that in most cases the possibility 
of two or more calls to the start () method of a thread 
represents a seriously erroneous situation, the exception 
handling mechanism of Java lets programmers catch the 
IllegalThreadState exception, recovering from the er- 
ror. While no exceptions are thrown and the program is not 
interrupted in the second case, it may indicate suspicious 
logic, where a thread is assumed to be alive while in fact it 
is stopped. 

Waiting Forever 
One specific case of livelock that is a suspicious use of Java 
concurrency mechanisms is when a thread becomes inac- 
tive and never becomes active again. This happens when 
the thread executes the wait ( ) method for the lock object 
of a monitor, but is never notified and thus never resumes 
its execution. The property stating that this must not hap- 
pen cannot be specified as an FSA because counting is re- 

U 
(o,notifyAll, *) 

Figure 14: The property that no thread can wait forever 

quired. Since the notify ( ) method only notifies one arbi- 
trary waiting thread, to represent this kind of livelock the 
number of threads having executed the wait ( ) method of 
a lock object must be matched with the number of calls to 
the notify( ) method of the same lock object. Note that a 
specialized data flow analysis algorithm can be defined for 
this case, since the number of threads that can wait for a no- 
tification at the same time is bounded by the total number 
of threads in the program. Because of space limitations, 
we do not describe this approach here. 

The case where only notifyAl ( ) methods are used can 
be represented in the FSA form. The property that can be 
checked for such programs is shown in Figure 14. Note 
that our current approach is not capable of handling this 
property. Since terminating executions are defined as those 
where all threads terminate, the executions that violate this 
property will be ignored since they involve at least one 
thread waiting forever. At present we are working on ex- 
tending the approach to handle executions that may not ter- 
minate. 

No Unnecessary Notifications 
Notifications issued when no threads are waiting are 
wasteful. In addition, they also may indicate suspicious 
logic (e.g. where the programmer assumes erroneously 
that some threads may be waiting). FLAVERS can be 
used to determine if certain calls to the notify() and 
notifyAl () methods are not necessary on some exe- 
cutions. Similar to the property of threads waiting for- 
ever, this property cannot be specified in general be- 
cause handling calls to the notify0 method involves 
counting. A weaker property can be checked that relies 
on notifyAl () methods to determine if there are any 
threads waiting. This property is shown in Figure 15. 

Dead Interactions 
We call a thread interaction, such as a call to a communi- 
cation method of another thread, dead if by the time this 
interaction takes place, the target thread has already ter- 
minated. According to the Java semantics, such calls are 
simply ignored. While in many cases dead interactions are 
not harmful, in other cases they could indicate a fault in the 
program logic or unoptimal code. Although the general de- 
scription of this fault is program-independent, it has to be 
checked for specific thread interaction methods. Figure 16 
shows a property of dead joins, where label S represents 
a specific t . join ( ) method call. 
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Figure 16: Dead join property 

6 PRELIMINARY EXPERIMENTAL RESULTS 
Before committing to a careful implementation of 
FLAVERSlJava, we produced a prototype to test the fea- 
sibility of this approach. Here we present the initial data 
from this study, using three small concurrent Java pro- 
grams. The FLAVERS/Java prototype is implemented in 
Java. The current version supports all control constructs 
other than exceptions but does not support full semantic 
analysis and inlining. While these shortcomings would im- 
pede analysis of large real programs, it was easy to modify 
our small test examples to enable the tool to parse them. 
The results of this study are encouraging, indicating the 
ability of the approach to check properties of these pro- 
grams conclusively in a reasonably small amount of time 
comparable to that taken by FLAVERS/Ada to analyze 
similar examples. 

Empirical Results 
In this study, we consider three examples: dining philoso- 
phers, readers-writers, and gas station. The dining philoso- 
phers example is taken from [4] and has three philosophers. 
The readers-writers example is based on the producer- 
consumer example from [2] and has two readers and two 
writers. This example was implemented by a person not fa- 
miliar with FLAVERS. The gas station example is the race- 
free version of [7]. It was implemented by one of the au- 
thors. This example contains two customers, one cashier, 
and one pump. 

In each of these three examples the threads of control are 
synchronized primarily by monitors. In fact, no calls to 

the join ( 1 methods of threads were used in any of the ex- 
amples. Thus, we checked only the general concurrency 
properties No thread restarted and No unnecessar;), noti- 

jications for each example. Property No thread restarted 
was successfully verified for all examples. All examples 
were found to be in violation of the No unnecessary noti- 
fications property and there really exist feasible executions 
of the programs that exhibit violation of this property. No 

feasibility constraints were required for checking for these 
two general concurrency faults. 

In addition, for each of the examples we checked two 
application-specific properties. FLAVERS/Java proved all 
these properties conclusively. Due to the lack of space, we 
do not describe each of these properties and the details of 
checking them with FLAVERSlJava, presenting only the 
summary of the results in Figure 17. For each example, 
we indicate the number of lines of code and the number 
of nodes in the corresponding TFG. The second and third 
columns give the number of concurrency constraints5, as 
described in Section 4, and other feasibility constraints re- 
quired for the analysis, respectively. In all cases these ad- 
ditional feasibility constraints are of two types, constraints 
that model control flow in a single thread, similar to the 
constraint in Figure 4 for the Ada example in Figure 1, and 
constraints that model behaviors of select program vari- 
ables. The execution time in seconds is shown in the last 
column and includes the combined time it took to parse 
Java code, construct all necessary artifacts, and run the 
analysis. For our experiments, we used a Symantec JIT 
compiler for JDK 1.1 on a workstation equipped with a 266 
MHz Pentium II processor and 64Mb of memory, running 
Windows NT. 

Discussion 
One interesting observation is that the only concurrency 
constraint required for checking properties of these three 
examples was the monitor constraint. On one hand, this is 
reasonable since all threads in all examples are started in a 
straightforward manner by the main thread, with no events 
of interest happening in the main thread and no calls to the 
join ( ) method. On the other hand, the wait-notify mech- 
anism is used extensively in all examples and yet no wait- 
notify constraints were required. The fact that only moni- 
tor constraints were required gives us hope that in general, 

for well-structured Java programs, the proposed approach 
of modeling Java concurrency with feasibility constraints 

will not add too much overhead to the analyses. Further 
experimentation will be needed to test this hypothesis. 

Another observation is that whenever checking a prop- 

51n all cases at first we attempted to analyze each property without 
using any concurrency constraints and then were adding these constraints 
one by one, until either a conclusive result was obtained or we were able 
to find a path that violated the property and corresponded to a feasible 
execution of the program. 
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cont. feas. time, 

cod. const. set 

Gas station, 63 lot, 68 nodes 
no thread restarted 1 0 1 0 1 2.24 
no unnecessary notifications 0 0 2.16 
no race 2 8 20.06 
no pumping without payment 0 1 2.47 

Figure 17: Analysis results for the examples 

erty required at least one monitor constraint, monitor con- 
straints had to be constructed for all lock objects in the 
example. This probably reflects the fact that the concept of 
monitors is central in Java concurrency and so each moni- 
tor used in a program imposes important restrictions on the 
control flow. 

In the process of finding out experimentally which concur- 
rency and feasibility constraints are necessary for conclu- 
sively proving the properties of our examples, we discov- 
ered that in most cases adding monitor constraints actually 
improved the analysis time of the tool. The reason for this 
is that using a monitor constraint significantly reduces the 
number of control paths explored by FLAVERS/Java. 

Checking for general concurrency faults from Section 5 
proved to be very straightforward, not requiring any fea- 
sibility constraints. We believe that in the case of the 
No thread restarted property this is just the result of the 
straightforward way of starting threads in our examples. In 
the case of the No unnecessary notifications property, we 
observed that all examples contain executions on which a 
call to the notifyAl ( ) method of a lock object is exe- 
cuted before any calls to the wait ( ) method of this object. 

The timing data for this analysis are quite encouraging, 
given the immaturity of the analysis tool. Even with the 
large number of feasibility constraints needed for check- 
ing some of the properties of the dining philosophers and 
gas station examples, the analysis time never exceeded 30 
seconds. These times are comparable to those taken by 
FLAVERS/Ada, a more mature tool, to check Ada versions 
of these programs. 

7 CONCLUSION 
We have presented an adaptation of the FLAVERS ap- 

proach for analyzing application-specific properties of con- 

current Java programs. With this approach, the semantics 
of each of the Java communication constructs are modeled 
with feasibility constraints. We view this approach as an 
initial proposal. In fact there is a spectrum of alternative 
approaches, from modeling all intertask communications 
as feasibility constraints, as we advocate here, to modeling 
a11 communications directly in the flow graph representa- 
tion of the program. The approach described here seems 
to us to be a good starting point, but extensive empirical 
evaluation will be needed to determine the most efficient 
representation. We intend to undertake such studies in the 
future. 

The proposed technique has the worst-case complexity of 
O(SN2), where N is the number of events of interest in the 
program and S is the size of the product of all finite state 
automata used in the analysis. Our experience with Ada 
programs indicates that in practice the number and size of 
these finite state automata are not very large. In addition, 
usually the combined state space of these automata is only 
a fraction of their full cross product. It remains to be seen 
if this is true for Java programs in general. 

We have produced an initial implementation of the 
F’LAVERS/Java tool and undertaken an initial case study in 
which we analyzed a number of properties of three small 
concurrent Java programs. Our prototype was able of an- 
alyzing these programs in a reasonable amount of time. 
These preliminary results give us hope that in general only 
a small fraction of all possible concurrency constraints for 
a program is actually needed for checking properties of 
this program conclusively. More extensive experimenta- 
tion will be required to support this hypothesis. However, 
before committing to such an in-depth case study of the 
applicability of this approach to medium- and large-size 
Java programs, we will experiment with alternative mod- 
eling approaches. Subsequently, we plan on using a large 
set of real-world Java programs for comparing the feasibil- 
ity of these modeling approaches and identifying the most 
promising one. 
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