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Abstract 

Studies on the microbiome of oral squamous cell carcinoma (OSCC) have been limited to 16S rRNA gene 

sequencing. Here, laser microdissection coupled with brute-force, deep metatranscriptome sequencing was 

employed to simultaneously characterize the microbiome and host transcriptomes and predict their 

interaction in OSCC. The analysis involved 20 HPV16/18-negative OSCC tumor/adjacent normal tissue 

pairs (TT and ANT) along with deep tongue scrapings from 20 matched healthy controls (HC). Standard 

bioinformatic tools coupled with in-house algorithms were used to map, analyze, and integrate microbial 

and host data. Host transcriptome analysis identified enrichment of known cancer-related gene sets, not only 

in TT vs. the ANT and HC, but also in the ANT vs. HC contrast, consistent with field cancerization. 

Microbial analysis identified a low abundance yet transcriptionally active, unique multi-kingdom 

microbiome in OSCC tissues predominated by bacteria and bacteriophages. HC showed a different 

taxonomic profile yet shared major microbial enzyme classes and pathways with TT/ANT, consistent with 

functional redundancy. Key taxa enriched in TT/ANT compared to HC were Cutibacterium acnes, 

Malassezia restricta, Human Herpes Virus 6B, and bacteriophage Yuavirus. Functionally, hyaluronate lyase 

was overexpressed by C. acnes in TT/ANT. Microbiome-host data integration revealed that OSCC-enriched 

taxa were associated with upregulation of proliferation-related pathways. In a preliminary in vitro validation 

experiment, infection of SCC25 oral cancer cells with C. acnes resulted in upregulation of MYC expression. 

The study provides a new insight into potential mechanisms by which the microbiome can contribute to oral 

carcinogenesis, which can be validated in future experimental studies. 

 

Significance 
Studies have shown that a distinct microbiome is associated with oral squamous cell carcinoma (OSCC), 

but how the microbiome functions within the tumor and interacts with the host cells remains unclear. By 

simultaneously characterizing the microbial and host transcriptomes in OSCC and control tissues, the study 

provides novel insights into microbiome-host interactions in OSCC which can be validated in future 

mechanistic studies. 
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Introduction 

Oral squamous cell carcinoma (OSCC) is the predominant malignancy of the oral cavity with poor prognosis 

and a 5-year survival rate of less than 50% (1,2), resulting in more than 175,000 deaths annually (3). The 

tongue is the most affected subsite of the oral cavity (4). Use of various forms of tobacco and alcohol 

consumption are the major risk factors of OSCC, accounting for nearly 74% of cases in Western countries 

(5).  A small fraction of OSCC cases (2-6%) will also possess high risk HPV strains though the potential 

causal role of HPV in OSCC has not been clearly demonstrated to the same extent as in the oropharynx  

(6,7). Recently, there has been increasing interest in the role of the microbiome in cancer in general 

including OSCC (8-11). 

 

A plethora of studies have been carried out to characterize the microbiome associated with OSCC in a 

variety of samples including surface swabs, oral rinse, unstimulated saliva and tumor biopsies-- which we 

comprehensively reviewed elsewhere (8,9). While these studies demonstrate that OSCC-associated 

microbiome is significantly different from health-associated microbiome, the results do not reveal that a 

particular species or consortium is consistently enriched in OSCC samples across all patient cohorts. While 

these inconsistencies may have been a result of methodological variations among the studies, they can 

probably be explained by functional redundancy: the fact that different species can serve the same function 

within microbial communities (12). In fact, Tian et. al. (13) have recently shown that the gene composition 

and functional capacity of a microbiome is more conserved as compared to its taxonomic composition.  

 

Consistently, we have recently identified different species in association with OSCC in two cohorts using 

16S sequence-based compositional analysis; however, applying functional prediction analysis, we found 

pro-inflammatory microbial attributes to be enriched in both cohorts (14,15). Similarly, a pilot study by 

Yost et. al. (16) using metatranscriptomic approach (sequencing of mRNA transcripts from all organisms in 

a sample) revealed that OSCC-associated microbiomes have similar functional signatures despite 
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differences in their taxonomic composition. Together, these findings provide evidence for microbial 

functional redundancy and highlight the importance of functional analysis in assessing the role of the 

microbiome in OSCC. 

 

Metatranscriptome analysis is one approach to study the functional activity of a microbiome (17).  

Compared to 16S rRNA gene sequencing, which has been the predominant microbiome analysis method so 

far, metatranscriptomics captures only viable, transcriptionally active species, allows identification of all 

types of microorganisms in the sample (bacteria, archaea, fungi and viruses) and provides higher taxonomic 

resolution. In addition, since samples will usually include host cells, metatranscriptomics provides an 

opportunity to simultaneously study the microbiome and host transcriptome and their potential interaction. 

To the best of our knowledge, the study by Yost. et. al. (16) is the only study so far that applied 

metatranscriptomics to OSCC. The study involved analysis of oral swabs collected from 4 OSCC patients 

and 4 healthy controls and was limited to assessment of the bacterial transcriptome; other microbial 

kingdoms and the host transcriptome were not evaluated.  

 

In this first-of-kind study, we have employed laser microdissection coupled with metatranscriptome 

sequencing at unprecedented depth (brute-force deep sequencing) to characterize the composition and 

function of the multi-kingdom microbiome within OSCC tissues and its association with the transcriptional 

activity of the host to provide novel insights into microbiome-host interactions in OSCC.  

 

Materials and methods 

An overview of study design and workflow is given in Figure 1; the details are provided in the sections 

below. The study was approved by the Institutional Review Boards at Temple University (# 25808) and 

Thomas Jefferson University (#19D.270). The study was conducted in accordance with Declaration of 

Helsinki; a written informed consent was obtained from all prospectively recruited subjects. 

D
ow

nloaded from
 http://aacrjournals.org/cancerrescom

m
un/article-pdf/doi/10.1158/2767-9764.C

R
C

-22-0349/3324110/crc-22-0349.pdf by guest on 01 O
ctober 2023



5 
 

 

Subject population and samples  

Frozen OSCC tumor and adjacent normal tissue pairs (abbreviated thereafter as TT and ANT, respectively) 

were obtained from the Biosample Repository Facility at Fox Chase Cancer Centre and the Pathology 

Biorepository Shared Service at the University of Maryland, Baltimore. To minimize heterogeneity, the 

samples were restricted to cancer of the mobile tongue (ICD-10 code C02). Out of 50 tissue pairs initially 

obtained, only 20 pairs were found by histopathological evaluation to be suitable for microdissection (next 

section). All cases were HPV16/18-negative as confirmed by PCR, and all except one were treatment naïve 

(1 subject had received radiotherapy before resection). As an additional control group, deep epithelial tongue 

scrapings were obtained prospectively from 20 age-, race- and sex-matched healthy subjects (HC) given the 

following inclusion criteria: no evidence of malignancy and premalignant lesions, no signs of acute/chronic 

oral infections including severe gingivitis/periodontitis, no history of antibiotic/antifungal intake in the last 

3 months and no history of endocarditis/valve issue, and no history of smoking. The tongue scrapings were 

collected from the dorsal surface, after drying with a cotton roll, using 10 heavy strokes with a 7 mm loop-

type dermatological curette (Acuderm Inc, USA), which has been shown to capture sufficient samples for 

RNA analysis (18,19). The scrapings were immediately placed in RNAlater (ThermoFisher Scientific, USA) 

and stored at -80℃. Demographic details and clinical characteristics of the study subjects are shown in 

Supplementary Table 1. 

 

Histopathological examination and laser microdissection  

Frozen TT and ANT samples were embedded in optimal cutting temperature (OCT) medium and 8 µm-

thick cryosections were cut using cryostat microtome. RNase free environment was maintained during all 

the steps. The sections were stained with hematoxylin and eosin for histopathologic evaluation and grading. 

Based on histopathologic review, 21-30 additional sections were cut for each tissue and placed on PEN 

membrane glass slides (ThermoFisher Scientific, USA) for laser microdissection (LMD). The sections were 
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processed and stained using Histogene Staining solution (ThermoFisher Scientific, USA) as per the 

manufacturer’s instructions and sequentially dehydrated in 70%, 95% and 100% alcohol, before air drying 

for 5 minutes at room temperature. All the solutions were treated with 1x ProtectRNATM RNase inhibitor 

solution (Sigma Aldrich, USA) to prevent RNase contamination. LMD was performed using Leica 

LMD6500 gravity, contact-free collection system (Leica Microsystems, USA). The desired areas (tumor 

cells and adjacent normal epithelium) were carefully marked under 5x magnification and captured in 

RNAlater placed on the cap of 0.5 ml PCR tube. Between 3-6 sections were captured per cap and multiple 

tubes were used to collect tissue from each sample to minimize capture time and thus RNA degradation. 

The micro-dissected sections in RNAlater were stored at -80 ⁰ C until further processing. Representative 

images of micro-dissected tissues are shown in Supplementary Figure 1.    

 

DNA and RNA extraction 

DNA and RNA were extracted using AllPrep DNA/RNA Micro kit (Qiagen, USA), including a bead beating 

step to ensure lysis of microbial cells. Briefly, the tissue samples stored in RNAlater were thawed at 37℃, 

pelleted by adding equal volume of phosphate-buffered saline and spinning at 5000 rpm for 5 minutes, and 

resuspended in 600 µl of RLT plus lysis solution. The lysate was transferred into DNase/RNase free tubes 

containing 200 mg 100-micron zirconium beads (Molecular biology grade, PFMB 100-100-12, OPS 

diagnostics, USA), and bead beaten at 6m/s for 1 minute at room temperature using FastPrep FP100A 

instrument (MP Biomedicals, USA). The lysate was used to sequentially isolate DNA and RNA as per 

manufacturer’s instructions. For RNA, in-column DNase treatment was done using RNase-Free DNase Set 

(Qiagen, USA). Aliquots of RNAlater were used as extraction negative control. The purity of RNA and 

DNA was assessed by measuring 260/280 ratio using Nanodrop (ThermoFisher Scientific, USA) and 

quantity was measured using Qubit RNA HS Assay Kit and Qubit dsDNA HS Assay Kit (ThermoFisher 

Scientific, USA), respectively. The RNA integrity (RIN) and size distribution was assessed using Agilent 
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RNA 6000 Pico Kit on Bioanalyzer 2100 (Agilent Technologies, CA). DNA and RNA concentrations and 

RIN numbers for the samples are presented in Supplementary File 1.  

 

Determination of microbial kingdom loads 

DNA isolated from the samples was used for determination of bacterial, archaeal and fungal loads by real-

time quantitative PCR (qPCR). Universal primer pairs targeting bacteria (341F & R806), archaea 

(ARC344F & Arch806R) and fungi (ITS1-30F, ITS1-217R) (20,21) were used; the sequences are listed in 

Supplementary Table 2.  Genomic DNA from Haemophilus parainfluenzae (NCTC 10665, Public Health 

England), Methanobrevibacter oralis (DSM 7256, DSMZ, Germany) and Candida albicans (CAI4 

laboratory strain) was used as control for the bacterial, archaeal and fungal assays, respectively.  The PCR 

efficiency for each primer pair was derived from the standard curve prepared with at least 5 serial dilutions 

of control DNA (Supplementary Figure 2). The PCR reaction mix (20 ul) contained 5 ng sample DNA, 

1X PowerUp™ SYBR™ Green Master Mix (ThermoFisher Scientific, USA), 1 µM of each primer (for 

bacteria), 0.5 µM of each primer (for archaea) and 0.125 µM of each primer (for fungi). The cycling 

conditions were as follows: 50℃ for 2 min for UDG activation, 95℃ for 2 min for polymerase activation 

followed by 45 cycles of denaturation at 95℃ for 15 sec and annealing/extension at 60℃ (bacterial and 

archaeal primers) and 62℃ (fungal primers). All qPCR reactions were carried out in triplicates on a 

Quantstudio 3.0 thermal system (ThermoFisher Scientific, USA). No template, extraction and positive 

controls were added in each run. Abundance of each kingdom was normalized to human β-actin gene as 

described previously (22) .   

     

rRNA depletion, library preparation and sequencing 

Bacterial and human rRNA were depleted from total RNA using NEBNext® rRNA Depletion Kits E7850 

and E7400 (New England Biolabs, USA), respectively. A cocktail of human and bacterial depletion 

solutions was used in the ratio of 2:1. Depleted RNA was purified using Agencourt RNA clean XP beads 
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(Beckman Coulter, USA) and used for preparation of RNA sequencing libraries using NEBNext® Ultra™ 

II Directional RNA Library Prep (New England Biolabs, USA) as per the manufacturer’s protocol. The 

RNA fragmentation time was optimized and adjusted according to RIN no. Libraries were labelled with 

unique indexes for multiplexing using NEBNext® Multiplex Oligos for Illumina® (New England Biolabs, 

USA). The final libraries were quantified using Qubit dsDNA HS Assay Kit on Qubit 3.0 fluorimeter. The 

library quality and size distribution were assessed using Agilent High sensitivity DNA kit on Bioanalyzer 

2100. Library concentrations are presented in Supplementary File 1. The 60 libraries were pooled in groups 

of 10 and sequenced using 2x100 CoolMPS chemistry on DNBSEQ-T7 platform (BGI, HongKong) with a 

target depth of 400 million paired reads per sample (brute-force deep sequencing).      

 

Mapping of human and ribosomal sequences 

Paired-end FASTQ files were quality checked using FastQC (RRID:SCR_014583 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and MultiQC  (23), and NEBNext adapter 

content was trimmed with Cutadapt (24). Trimmed FASTQ files were aligned separately to human reference 

GRCh38, the SILVA large subunit rRNA database (v138), and the human ribosomal DNA complete 

repeating unit U13369.1 using the STAR aligner (RRID:SCR_004463) (25). A custom script was used to 

identify reads aligning to various combinations of the 3 references and reads which were unmapped to any 

of the 3 references were saved as FASTQ files for mapping to microbial sequences (see below).  

 

Host differential gene expression and pathway analysis 

Reads aligning to GRCh38 were quantified at the gene-level using htseq-count [HTSeq] (mode = “union”) 

(26). Differential expression analysis was carried out with DESeq2 (RRID:SCR_000154) (27) for the 

following comparisons (each involving 40 samples): (1) TT vs. ANT (paired comparison), (2) TT vs. HC, 

and (3) ANT vs. HC. For each pairwise comparison, any gene with fewer than 50 total counts across the 40 

samples was excluded prior to DESeq2 analysis. Subsequently, a ranked list of differentially expressed 
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genes (DEGS) for each comparison (ranked by Wald statistic generated by DESeq2) was used as input to 

Gene Set Enrichment Analysis (GSEA, Preranked method) (28) to explore whether phenotypic differences 

were significantly related to known functional gene sets. The hallmark gene set collections from Molecular 

Signatures Database (MSigDB) 7.1 was used for this purpose (29).  

 

Microbiome data analysis 

Reads not mapping to any of the three reference databases above were further processed with KneadData 

(30) to further remove any remaining human and rRNA sequences. KneadData-cleaned, unmapped reads 

were then analysed with HUMAnN 3.0 for microbial profiling (31). HUMAnN 3.0 uses MetaPhlAn 3.0 (32) 

for taxonomic profiling, including viruses. For functional profiling it uses Bowtie2 (33) for nucleotide-level 

searches against ChocoPhlAn 3 database (34) followed by translated search of yet unmapped reads against 

UniRef90 protein reference database (35) using DIAMOND (36). The individual sample gene lists 

generated are then combined and regrouped using different functional annotations. In this study we used 

enzyme classes (EC) and metabolic pathways based on MetaCyc database (RRID:SCR_007778) (37). 

Ultimately unmapped reads, and taxa/functional features present in ≤10% of the samples were excluded 

before the profiles were centered log-ratio (CLR) transformed (38) to account for compositionality of the 

data (39). MaAsLin2 (Microbiome Multivariable Associations with Linear Models) package in R (40) was 

employed to identify differentially abundant features between the groups (TT, ANT and HC), accounting 

for the paired nature of the comparison in the TT vs. ANT contrast; false discovery rate (FDR) according to 

Benjamini et al. (41)  was set to 0.05. Principle Component Analysis (PCA) was performed using Phyloseq 

(42) and “microbiome” (43) R packages. Permutational Multivariate Analysis of Variance (PERMANOVA) 

test was performed using vegan package in R (44).   

  

Microbiome-host data integration 
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Unsupervised Spearman rank correlation was performed between the host genes’ expression levels (DESeq2 

transformed) and CLR-transformed microbial features (genera and EC). Significant correlations were 

defined as those with absolute correlation coefficient (rs) ≥ 0.6 and FDR ≤ 0.05. For each microbial feature, 

the correlating genes, ranked by rs, were subjected to GSEA (28) to identify pathways potentially modulated 

by that feature. The results were visualized with Cytoscape Automation (45) with microbes and host 

pathways as nodes and enrichment scores as edges. We also employed MOFA (Multi Omics Factor 

Analysis) (46) as another method to integrate the host and microbiome data. MOFA reduces multiple high-

dimensional data into a small number of factors that captures biological variation in the data, and then 

measure the contribution of omic sets to each factor, and ability of each factor to discriminate between the 

study subgroups. 

 

Validation assays 

For the host transcriptome, expression of 7 highly DEGs (MMP13, CA9, ROS1, KRT4, CRNN and SPRR3) 

was validated with quantitative, reverse-transcription PCR (qRT-PCR).  The assays were performed using 

predesigned gene-specific primers/probe sets in customized TaqMan® Array Standard Plates (Thermofisher 

Scientific, USA). Specifically, EXPRESS One-Step Superscript™ qRT-PCR Kit (ThermoFisher Scientific, 

USA) was used in 20 μl reactions as recommended by the manufacturer, using 10 ng total RNA as template 

on Quantstudio 3.0 thermal cycler (Applied Biosystems, USA). The following cycling conditions were used: 

cDNA synthesis for 15min at 50℃, initial denaturation at 95℃ for 2min and 40 cycles of denaturation at 

90℃ for 15 s and extension at 60℃ for 1min with data collection at the end of each extension step. All the 

genes were studied in triplicates and normalized with RPL30 as endogenous control.  

 

16S rRNA gene-based microbial profiling 

To supplement the information obtained from RNA sequencing, microbial composition was also assessed 

by 16S rRNA gene sequencing of the DNA extracts. Library preparation, sequencing and bioinformatics 

analysis were done as previously described (14). 
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Contamination control 

Extraction negative controls were included for both RNA and 16S rRNA gene sequencing. In the former, 

no detectable levels of RNA were found using Qubit™ RNA High Sensitivity kit, so no further processing 

(i.e., library preparation) could be performed. For 16S rRNA gene sequencing, no amplifiable DNA was 

detected in the extraction negative controls by PCR, but they were still submitted for sequencing. We then 

performed manual filtration of probable contaminants based on 1) established knowledge of the microbial 

taxa typically found in the oral cavity (HOMD.org) 2) contaminants found in the sequenced negative control 

as well as those reported in the literature (as in Salter et al. 2014 (47)), and 3) comparing 16S and RNA 

sequencing profiles. All three points together were considered when deciding about taxa to filter out, i.e., 

they were not sequential filtering steps. For example, Microbacterium and Sphingomonas represented 27% 

and 18% of the reads in the 16S data from TT and ANT samples, respectively. These genera have been 

reported as negative control contaminants, are not typical members of the oral microbiome, and were not 

detected in the RNA sequencing data (i.e., do not represent live/transcriptionally active bacteria. Therefore, 

they were filtered out from the 16S profiles. In contrast, while genus Streptococcus has been reported as a 

negative control contaminant, it is also a major member of the oral microbiome, so it was not removed. 

Other known contaminants found in high abundance in the extraction negative controls by 16S sequencing 

included Bradyrhizobium, Stenotrophomonas, Hyphomicrobium, and Escherichia, and again were not 

observed in the RNA-based profiles. Together, the results provided a proof that the RNA sequencing data 

was free from DNA contamination. 

 

Availability of data and materials 

The data is made available for secondary use through the database of Genotypes and Phenotypes (dbGaP), 

accession number phs002678.v1.p1. However, due to consent constraints, the human sequences from the 

healthy controls’ data were filtered out and cannot be shared for future research. 
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Results 

Sequencing statistics 

Ultra-deep sequencing of the 60 samples generated a total of ~ 23 billion 2x100 bp reads (~ 10TB of data), 

with an average of 398,569,093 ± 62,427,540 reads per sample. Per group, the average sequencing depth 

was 422,326,741 ± 70,776,305 for TT, 384,960,281 ± 55,224,182 for ANT, and 388,420,257 ± 56,083,238 

for HC. At the Star aligner step, TT and ANT samples showed a similar pattern with ~97% of the reads 

mapping to GRCh38, ~0.7 % mapping to SILVA & U13369.1 combined, and ~2.0% remaining unmapped 

(Supplementary Figure 3). In the HC group, on the other hand, only 23.4 % of the reads mapped to 

GRCh38, while 10% mapped to the rRNA databases and 67% remained unmapped. Processing the 

unmapped reads with kneadData removed an average of 84% and 9% of the reads from the TT/ANT and 

HC groups, respectively, as contaminating sequences (i.e., human and ribosomal sequences that did not 

meet STAR’s mapping parameters). Eventually, an average of 1.3M and 250M reads from the TT/ANT and 

HC groups, respectively, were available as input for HUMAnN analysis. Detailed sequencing and mapping 

statistics are presented in Supplementary file 2. 

 

Host transcriptome analysis confirms known cancer-associated genes and pathways and reveals field 

cancerization in tumor-adjacent normal tissue  

A total of 410,397,495 (TT), 375,786,295 (ANT) and 91,631,306 (HC) reads mapped to the human reference 

GRCh38, which identified 54,221, 52,454 and 51,716 coding, non-coding and pseudogenes, respectively- 

56,962 in total. Filtration, normalization and differential gene expression analysis was carried using DESeq2 

in three contrasts: TT vs. ANT, TT vs. HC, and ANT vs. HC. The output of these pairwise analyses, 

including fold-change, FDR, and Wald statistic are presented in Supplementary File 3. Applying cutoffs 

of ≥ 2.0-fold change and FDR ≤ 0.05 identified 8,640 DEGs in TT vs. ANT (5,186 upregulated and 3,454 

downregulated; Figure 2A), 17,991 DEGs in TT vs. HC (10,400 upregulated and 7,591 downregulated; 
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Figure 2B) and 15,375 DEGs in ANT vs. HC (8,436 upregulated & 6,939 downregulated; Figure 2C). 

Principal component analysis (PCA) based on the top 1,500 most variable DEGs showed clear separation 

between the three groups (Figure 2D). Results of the validation qRT-PCR assays for six DEGs were 

consistent with those obtained with RNA-seq, although the latter tended to under-estimate the magnitude of 

fold change (Supplementary Table 3). 

 

The details of GSEA results for all three contrasts are provided in Supplementary File 4. In the TT vs. 

ANT contrast, INHBA (Inhibin Subunit Beta A) stood out as the most significantly upregulated gene and 

contributed to enrichment of the epithelial-to-mesenchymal transition (EMT), inflammatory response and 

KRAS pathways (Figure 2E). Other highly upregulated genes as part of these pathways were matrix 

metalloproteinase, collagen and growth factor genes (Table 1). Interferon alpha and gamma responses, IL-

6/JAK/stat signaling, and angiogenesis were also upregulated in TT vs. ANT while oxidative 

phosphorylation, fatty acid metabolism, adipogenesis and P53 pathway were downregulated (Figure 2E). 

The key genes involved in each of these pathways are presented in Table 1. Apart from the hallmark gene 

sets, it is worth mentioning that HOX genes belonging to all the 4 clusters (A, B, C, D), and the 

corresponding long non-coding RNAs (lncRNAs) were also highly upregulated in the TT vs. ANT contrast. 

Interestingly, proliferation-related gene sets E2F targets, MYC targets and G2M checkpoint were 

downregulated in the TT vs. ANT contrast. In contrast, they were the top upregulated pathways in the TT 

vs. HC as well as the ANT vs. HC comparisons (Figure 2F &G). Largely, the same set of genes were 

involved in both comparisons (Table 1). EMT pathway was also upregulated in the two contrasts but didn’t 

involve any MMPs as in the TT vs. ANT contrast. Instead, mainly genes encoding extracellular matrix 

proteins and adhesion molecules were upregulated (Table 1). In the other direction, genes involved in heme 

metabolism, P53 pathway and apoptosis were downregulated. Counterintuitively, TNF-alpha signaling via 

NFKB and inflammatory response pathway were also downregulated.  Overall, the results from the ANT 

vs. HC contrast demonstrate presence of oncogenic changes in the ANT consistent with field cancerization. 
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As secondary analysis, we also compared within the OSCC cases between samples with and without lymph 

nodes involvement. At an FDR cutoff of ≤ 0.05, only 227 DEGs were identified (50 at fold change ≥ 2.0); 

using a more lenient cutoff (0.2) increased the number to 1,311 DEGs (Supplementary File 5). At the gene 

level, FDCSP (cancer cell migration and invasion), KIR2DL3 (immune response), SLC30A10 (anti-

apoptotic), MAB21L2, PCDH9 (cell adhesion), PEG3 (cell proliferation) were found to be highly expressed 

in the LN-positive samples. At the pathway level, MYC targets, E2F targets, MTORC1 and KRAS signaling 

were significantly enriched in LN-positive group (Supplementary File 5, & Supplementary Figure 4).  

  

Low abundance yet unique, transcriptionally active multi-kingdom microbiome in OSCC tissues 

 Loads of bacteria, fungi and archaea normalized to human beta-actin gene were determined by qPCR 

analysis of DNA extracted from the same cells as for RNA. Bacterial and fungal DNA were detected in all 

the samples; however, archaeal DNA was only detected in the HC (tongue scraping) group (Figure 3A). As 

expected, the microbial loads were far higher in the HC (~104 fold and ~15 fold for bacteria and fungi 

respectively). The abundance of bacterial DNA in adjacent normal tissue was marginally but significantly 

higher than tumor (p ≤ 0.001); a similar trend was seen for fungal DNA, but the differences were not 

statistically significant. 

 

Despite low abundance, analysis of non-human, non-ribosomal RNA sequences with HUMAnN 3.0 pipeline 

identified a transcriptionally active, multi-kingdom microbiome in the samples. In the taxonomic profiling 

step by MetaPhlAn 3.0, a total 14 phyla, 165 genera and 483 species were identified. The relative 

transcriptional abundances of each of these taxa in individual samples are presented in Supplementary File 

6. The average taxonomic profiles based on the 20 most abundant phyla and genera in each group are 

presented in Figures 3B & C; the corresponding species-level profiles are presented in Supplementary 

Figure 5. In the HC samples, the microbial transcriptome was dominated by the bacterial phyla Firmicutes, 

D
ow

nloaded from
 http://aacrjournals.org/cancerrescom

m
un/article-pdf/doi/10.1158/2767-9764.C

R
C

-22-0349/3324110/crc-22-0349.pdf by guest on 01 O
ctober 2023



15 
 

Proteobacteria, Bacteroidetes, Fusobacteria and Actinobacteria (in this order of abundance). The TT and 

ANT groups had similar profiles with Actinobacteria being the most transcriptionally abundant, followed 

by Firmicutes and viruses; the latter accounted for a significant proportion of the transcripts (12.2 % and 

20.4 %, respectively, compared to 2.3% in the HC samples). Fungal transcripts were identified in all three 

groups at very low abundance. At the genus level, Gemella was the most transcriptionally abundant in the 

HC group, followed with other typical oral genera including Prevotella, Neisseria, Campylobacter, 

Streptococcus, Fusobacterium and Veillonella. On the other hand, while Streptococcus, Gemella and 

Neisseria were also among the top transcriptionally abundant taxa in the TT and ANT groups, Cutibacterium 

(predominantly Cutibacterium acnes) was the most abundant accounting for more than 20% of the 

transcripts on average (compared to < 1% abundance in the HC). Also, Cloacibacterium (predominantly 

Cloacibacterium normanens) and bacteriophage Siphoviridae (including Yuavirus) were among the most 

abundant taxa. Yuavirus was predominantly represented by bacteriophage alpha proteobacterium JL001. In 

PCA analysis (Figure 3D), the HC group clustered separately from the TT and ANT groups (P=0.001, 

PERMANOVA); however, the latter two groups did not differ and showed significant dispersion.  

 

Following taxonomic profiling, the sequences were mapped to ChocoPhlAn 3 and UniRef90 databases 

which identified around an average of 23,556, 23,845 and 98,569 genes per sample in the TT, ANT, and 

HC groups, respectively.  Rarefaction analysis of the number of microbial genes detected in each sample as 

a function of number of mapped reads (Supplementary Figure 6) revealed that all samples reached 

saturation with a Good’s Coverage Index of > 99%. The gene lists were then regrouped and functionally 

annotated using MetaCyc database. The individual sample enzyme class (EC) and metabolic pathway 

profiles are presented in Supplementary File 7. The average functional profiles based on the top 20 ECs 

and top 20 pathways in each group are presented in Figure 3E and Supplementary Figure 7, respectively. 

Despite major differences in taxonomic profiles, the most abundant ECs and pathways were common to all 

3 groups consistent with functional redundancy.  Abundant ECs included those involved in DNA replication 

D
ow

nloaded from
 http://aacrjournals.org/cancerrescom

m
un/article-pdf/doi/10.1158/2767-9764.C

R
C

-22-0349/3324110/crc-22-0349.pdf by guest on 01 O
ctober 2023



16 
 

and transcription (DNA polymerase, DNA helicase and RNA polymerase), response to oxidative stress 

(superoxide dismutase, peroxiredoxin and thioredoxin-disulfide reductase), and metabolism (e.g. adolase, 

phosphoglycerate kinase, dihydrolipoyl dehydrogenase and pyruvate kinase). At the pathway level, 

glycolysis, biosynthesis of nucleotides and biosynthesis of peptidoglycan were the dominant pathways. PCA 

analysis by ECs did not show separate clusters between the three groups, but the HC group formed a compact 

sub-cluster with little dispersion (Supplementary Figure 8).   

 

For comparison and validation, we also performed 16S profiling on DNA extracted simultaneously with the 

RNA. Statistically, the 16S and RNA-seq bacterial taxonomic profiles were overall significantly different 

(P=01, PERNAMOVA) with the RNA-seq profiles showing more dispersion (Supplementary Figure 9). 

Notably, Gemella, which was the most transcriptionally abundant genus in the HC group and third most 

abundant in the TT and ANT groups, did not show up among the 20 top abundant genera by 16S sequencing. 

Conversely, Corynebacterium was among the top genera in the TT/ANT samples but accounted for less 

than 0.5% of the transcripts in the RNA-seq data. Nevertheless, there were consistencies between the two 

methods, e.g., Cutibacterium (formerly Propionibacterium) was the most abundant genus in the TT and 

ANT groups in both methods. 

 

Cutibacterium acnes, Malassezia restricta, Human Herpes Virus 6B, Nupapillomavirus, bacteriophages 

and hyaluronate lyase are key features enriched in OSSC tissues 

Pairwise (TT vs. ANT, TT vs. HC, and ANT vs. HC) differential abundance analysis was performed with 

MaAsLin2 on CLR-transformed taxonomic (genus and species level) and functional profiles. The full results 

of this analysis in the form of lists of taxa and functional features and the corresponding coefficients and 

FDR values are provided in Supplementary Files 8 & 9.  No significant differences in microbial profiles 

were found between the TT and ANT groups; however, the differences were dramatic for the TT vs. HC 

and ANT vs. HC contrasts, and for the most part, were similar between the two comparisons as seen in 
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Figure 4 (top differentially abundant genera and ECs) and Supplementary Figure 10 (top differentially 

abundant species and pathways). Thirty-six bacterial genera that are commonly found in the oral cavity were 

transcriptionally more abundant in the tongue scrapings (HC group), including Gemella, Prevotella, 

Neisseria, Campylobacter, Fusobacterium, Veillonella, Streptococcus, Haemophilus, Capnocytophaga, 

Tannerella, Actinomyces, Rothia and Porphyromonas but Stomatobaculum was the most differentially 

abundant (Figure 4A). In the TT and ANT tissues, however, less common/typical oral bacteria were 

transcriptionally enriched including Chlamydia, Moraxella, Enhydrobacter, Claocibacterium, 

Acinetobacter and Cutibacterium. Of these, Cutibacterium (predominantly C. acnes) was the most abundant 

and thus chosen for validation by qPCR (Supplementary Table 4) which showed consistent results 

(Supplementary Figure 11). Besides bacteria, the fungus Malassezia restricta and several viruses were 

also transcriptionally more abundant in the TT and ANT groups. Enriched viruses can be grouped into 

human viruses (Roseolovirus represented by Human Herpes Virus 6B and Nupapillomavirus), 

bacteriophages (predominantly Siphoviridae, genus Yuavirus, species alpha proteobacterium JL001), plant 

viruses (e.g. Bromovirus) and retroviridae (Supplementary Table 5). The latter group was detected in very 

low abundance and included mainly Avian Endogenous Retrovirus EAV-HP. 

 

Hierarchical clustering of samples by top differentially expressed ECs and pathways is presented in Figure 

4B and Supplementary Figure 10B, respectively. Based on ECs, the analysis resulted in a cluster with all 

HC samples and two clusters with mixed TT and ANT samples, with the smaller of the two being closer to 

the HC cluster – roughly similar clusters were seen at the pathway level. Regardless of clustering, ECs that 

were overexpressed in most TT/ANT samples include methylmalonyl-CoA decarboxylase, trehalose-

phosphatase, dimethyl-sulfide monooxygenase, malate synthase, triacylglycerol lipase, 

endoglycosylceramidase, proteasome endopeptidase complex, formimidoylglutamate deiminase and 

hyaluronate lyase (HL). Of these, we found the latter to be of potential relevance as it has hyaluronic acid 

degrading properties and can contribute to extracellular matrix breakdown and consequently facilitate tumor 
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invasion. Based on HUMAnN results, HL was exclusively contributed by C. acnes in the TT/ANT samples 

(Figure 5). 

 

OSSC-associated microbial taxa potentially modulates host proliferation pathways   

To predict potential microbiome-host interactions, we performed unsupervised correlation analysis between 

the microbial features and host genes and then, for each feature, performed GSEA analysis on significantly 

correlating genes to identify host pathways potentially modulated by that feature. The detailed outputs from 

these analyses are included in Supplementary files 10-12. Only OSCC-associated genera, including 

roseolovirus, Cutibacterium, retroviridae, Chlamydia, Dermococcus, Yuavirus showed substantial 

correlations (>3000 genes each) and resulted in significant gene set enrichment (Figure 6A & B). All these 

taxa showed association with upregulation of proliferation-related gene sets E2F targets and G2M 

checkpoint. Roseolovirus and Cutibacterium were also correlated with upregulation of MYC targets. As 

examples, the 10 most positively correlated and 10 most negatively correlated MsigDB genes with 

Roseolovirus, Cutibacterium and Yuavirus are presented in Figure 6C-E. Functionally, 3 ECs, namely 

guanosine phosphorylase, terephthalate 1,2-dioxygenase and nitrate reductase (NADH) were also associated 

with upregulation of proliferation-related pathways Supplementary Figure 12A & B. 

 

Data integration with MOFA reduced the variation in host and microbiome data to 7 factors, of which two 

factors showed significant differences between the three groups Supplementary Figure 12C & D. Factor 

1 accounted for ~ 20% of the variation and was equally contributed to by the host and microbiome; the 

differences between the groups were consistent those presented in Figures 3 and 4. However, Factor 2 was 

exclusively contributed to by the host and revealed similarities between TT and HC.    

 

Cutibacterium acnes upregulates MYC expression in SCC25 oral cancer cells 
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To assess whether the observed correlations based on integrative data analysis could represent actual 

microbe-host cell interactions, we performed a preliminary in vitro validation experiment focusing on C. 

acnes and MYC gene. This pair was selected because 1) C. acnes was the bacteria with the highest number 

of significant correlations (see Figure 6A); 2) MYC is a key driver oncogene and was enriched as part of 

two of the pathways that showed association with C. acnes; 3) There was a strong correlation between the 

two (Figure 7A). The experiment was performed as previously described for other species (48). Briefly, C. 

acnes NCTC 737 (ATCC, USA) grown to mid-log phase was used to infect SCC25 cells (RRID: 

CVCL_1682, ATCC, USA) at multiplicity of infection (MOI) of 50, 100 or 200 for 24 hours, before the 

bacteria were washed and the cells used for RNA extraction. Measurement of MYC mRNA levels 

normalized to GADPH mRNA was performed using one-step q-RT-PCR. As shown in Figure 7B, infection 

with C. acnes resulted in upregulation of MYC expression by 1.25-1.5-fold, which was statistically 

significant at MOI of 200. 

 

Discussion 

Using ultra-deep metatranscriptomic analysis of micro-dissected cancerous and adjacent normal epithelium, 

we identified a low abundance, yet transcriptionally active, intra-tumoral multi-kingdom microbiome in 

OSCC. Laser microdissection has been widely used in OSCC host transcriptome studies, but, to our 

knowledge, this is the first time it is employed to study the microbiome associated with oral cancer. For 

global gene expression analysis, Illumina recommends a sequencing depth of 30–60 million reads per 

sample. In anticipation that microbial sequences would be concealed by the highly abundant host transcripts, 

we performed sequencing at unprecedented 400 million paired end reads/sample (brute-force deep 

sequencing) which enabled us to capture the microbial transcriptome that indeed turned out to be present in 

very low abundance as confirmed by q-PCR. Similarly, while adjacent normal tissue is an ideal control for 

analysis of the host transcriptome, we thought it may not be for that of the microbial metatranscriptome 

since the microbiome in normal tissue may be a continuum of that in the cancerous tissue. Therefore, we 
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also included tongue scrapings from matched healthy subjects as an additional control group; a 

dermatological curette was used to ensure deep epithelium sample is collected to make is as comparable as 

possible to the tumor samples.  

 

Microbiome profiling identified novel findings including enrichment of C. acnes, M. restricta, Human 

Herpes Virus 6B, Nupapillomavirus, and bacteriophages in TT and ANT vs. HC. C. acnes was the most 

transcriptionally abundant species in the TT/ANT groups (~ 25 times higher than in the HC group). While 

C. acnes has not been implicated in oral cancer before, several studies have found it to be associated with 

prostate cancer (49-54). C. acnes is believed to contribute to prostate carcinogenesis through inducing 

chronic inflammation (55,56), so it may play a similar role in OSCC. In this study, we found the enzyme 

hyaluronate lyase (HL) to be exclusively expressed by C. acnes and to be significantly overexpressed in TT 

and ANT. HL degrades hyaluronic acid, an important component of the extracellular matrix of connective 

tissues. Two HLs have been characterized in C. acnes (57). In Streptococcus pneumoniae, HL is a known 

virulence factor involved in the spread of infection (58). Therefore, it is reasonable to hypothesize that C. 

acnes may contribute to tissue break down and thus invasion by cancer cells in OSCC via production of 

HLs. Further studies are required to test this hypothesis. 

 

Other bacterial taxa less typically found in the oral cavity were associated with OSCC including known 

pathogens (Moraxella catarrhalis, and Acinetobacter junii) and species found typically in the skin (e.g 

Enhydrobacter Aerococcus) or in the gut (Cloacibacterium normanense); while it is not clear these may 

play a role in OSCC, some of these species (or sister species) were found to be enriched in colorectal cancer 

(59).  Contrary to the literature, Fusobacterium was not found to be associated with OSCC in our data set, 

with the relative abundance being significantly higher in the tongue scrapings vs. the OSCC tissues; 

however, Fusobacterium nucleatum did tend to be higher in the TT vs. ANT groups (P=0.1).    
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Viral transcripts were also enriched in the TT/ANT samples, mostly bacteriophages belonging to genus 

Yuavirus and family Siphoviridae. Interestingly, Siphoviridae have been found to be the most abundant 

viruses associated with colorectal cancer (60). However, their role in cancer remains not known and merits 

further investigation. Apart from bacteriophages, human herpesvirus 6 (HHV6) was transcriptionally more 

abundant, actually exclusively found, in TT and ANT, which is not entirely novel, since HHV6 has been 

identified in association with several types of cancer, including OSCC (61). However, unlike other herpes 

viruses, such as EBV and HHV8, there is no direct evidence on carcinogenicity of HHV6 (61); it is 

hypothesized that HHP6 may have a contributory rather than direct oncogenic role (61).  Nupapilloma virus 

was also significantly associated with TT/ANT. This virus is represented by one species, Nupapilloma virus 

1 or HPV41 (https://www.hpvcenter.se/human_reference_clones/) which has been detected in some skin 

carcinomas and premalignant keratosis (62), but has never been implicated in oral cancer. Finally, a small 

number of sequences aligned to retroviridae primarily Avian endogenous retrovirus EAV HP, which was 

more abundant in the TT and ANT samples. This particular species shares sequence homology with another 

group of viruses, Avian Leukosis Virus Subgroup J, which are known to cause diverse avian tumors (63,64). 

Notably, human homolog of above virus, Human endogenous retroviruses (HERVs) are also strongly 

correlated with progression of multiple tumors including HNSCC (65,66). However, possible role of avian 

retroviruses in human tumor samples is not known.  

 

In a previous study using ITS sequencing, Candida albicans was identified as the dominant species of a 

dysbiotic mycobiome associated with OSCC, while Malassezia restricta was found to be associated with 

health (67).Similarly, a recent study on salivary mycobiome found a correlation  between better overall 

survival and genus Malassezia abundance in OSCC patients (68). In contrast, in this study C. albicans was 

identified in only a single sample while Malassezia restricta was identified frequently and was 

transcriptionally more abundant in the OSCC samples. One possible explanation for this apparent 

contradiction is that previous studies were amplicon-based, i.e., the species identified may have not been 
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transcriptionally active. Indeed, in line with our findings, there is emerging evidence implicating Malassezia 

in inflammatory bowel disease as well as colorectal and pancreatic cancers (69). Consequently, the role of 

Malassezia in OSCC is worth further investigation.  

 

In order to have a direct comparison between amplicon and RNA-seq based profiles, we performed 16S 

RNA gene sequencing on DNA obtained from the same cells on which metatranscriptomics was carried out. 

While largely the same major taxa were identified by both methods, the relative abundances/rank of these 

taxa varied between the two methods. For Gemella and Corynebacterium, the difference was drastic. while 

Gemella was the most transcriptionally active genus in HC and also among the top taxa in TT/ANT, it did 

not feature even in top 20 most abundant genera by 16s RNA sequencing.  Conversely, Corynebacterium 

was among the most abundant genera in TT/ANT by 16S sequencing but found in very low abundance in 

the RNA-seq data. These finding demonstrate that more abundant genera may not necessarily be 

transcriptionally active and vice-versa. 

 

In addition to taxonomic profiling, we also obtained functional profiles in terms of enzyme classes and 

metabolic pathways, for which we made a few important observations. First, despite differences in 

taxonomic profile, the major functional features were largely similar across the three groups, which 

substantiates evidence for microbial functional redundancy (13). Second, the top abundant enzyme classes 

and pathways were related to DNA replication and transcription, response to oxidative stress and 

metabolism, supporting presence of a viable and transcriptionally active microbiome. Thirdly, despite 

similarity in major functional groups, there were still significant difference between the TT/ANT and HC 

groups, including potentially relevant feature to OSCC such as HL as discussed above.  

 

The host transcriptome in OSCC is well characterized as it has been comprehensively analyzed in several 

studies based on microarray and RNA-seq data sets available from the Cancer Genome Atlas (TCGA) and 
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Gene Expression Omnibus (GEO) (70,71).  A detailed comparison with results from those studies here is 

not feasible and largely out of the scope of the paper. However, there are a few points to make. Overall, our 

results were consistent with the literature. For example, out of the top 25 upregulated genes and top 25 

downregulated in head and neck cancer as per the TCGA project (lists available from the University of 

Alabama at Birmingham Cancer data analysis Portal; UALCAN (72)), 49 genes were also differentially 

expressed in the same direction in our data.  Similarly, most of the protein coding genes, lncRNAs and hub 

genes identified as master regulators and potential biomarkers of OSCC in recent cross-database studies 

(70,73), were consistently up- or downregulated in our data.  

 

A unique aspect of our study is that we also included epithelial tongue scrapings as matched controls from 

healthy individuals which allowed us to make 3 pairwise comparisons. While many of the DEGs identified 

in HC vs. TT and ANT may not be related to the cancer process (since the samples are coming from different 

subjects), GSEA showed that these DEGs were enriched in several cell proliferation and cancer progression 

associated pathways such as E2F targets, G2M checkpoint, epithelial mesenchymal transition, angiogenesis, 

DNA repair pathways, not only in the TT vs. HC contrast but also in the ANT vs. HC contrast. The latter is 

interesting and novel in that it indicates presence of oncogenic changes in normal adjacent epithelial tissue 

collected even they are not evident by histopathology evaluation, which is consistent with field cancerization 

(74). Understanding these potentially early oncogenic processes may have important implication for 

treatment of OSCC and prevention of its recurrence. Another unique aspect of our host transcriptome data 

is the unprecedented depth at which the samples were sequenced, which provides an opportunity for 

secondary analysis to identify rare transcripts and splice variant that could be playing a key role in oral 

carcinogenesis. 

 

Finally, we performed integration of the microbiome and host transcriptome data to predict cancer-related 

host genes/pathways that are potentially modulated by the microbes. Given there were as many upregulated 
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genes and microbial taxa in the HC group as there was in the TT/ANT group, one would expect, based on 

pure statistical associations, to see more or less equal number of gene-microbe correlations for health-

associated and OSCC-associated taxa. However, we observed far more significant correlations for OSCC-

associated taxa. Furthermore, only genes correlating with OSCC-associated taxa resulted in significant 

pathway enrichment. Together, these observations indicate the correlations identified represent potential 

biological interaction, not just statistical associations. Several OSCC-associated taxa, including 

Cutibacterium, Yuavirus and Roseolovirus, showed significant correlations with more than 3,000 genes 

each, many of which belonged to the E2F targets, MYC targets and G2M check point gene sets suggesting 

these taxa may contribute to carcinogenesis through interaction with proliferation pathways. Since the 

results based on sequencing data are highly correlative and may not necessarily reflect actual biological 

interactions, we performed a preliminary in vitro validation study in which we showed that infection by C. 

acnes upregulated expression of the oncogene MYC in SCC25 oral cancer cells, suggesting that at least 

some of the observed correlations are biologically valid. We are currently developing a prioritization 

algorithm to identify microbe-gene candidates for further validation experiments.   

 

The study has limitations to note. First, the sample size is small, so any generalization must be done with 

caution. Second, given the nature of the study (i.e., analysis of sequencing data), the results are purely 

correlative and should be viewed only as hypothesis-generating. Third, while no RNA was detected in 

negative extraction control, it should have still been included in library preparation and sequencing as done 

with 16S analysis, to provide additional contamination control. Additionally, the study would have benefited 

from also including a positive control (e.g. RNA/DNA extracted from a human cell line infected with a 

mock community). A fourth limitation is that although the controls were matched to the cases with respect 

to tumor site, age, sex and ethnicity, the two groups differed in terms of lifestyle factors (namely tobacco 

use and alcohol consumption) which may have confounded the results. Finally, while RNA-seq has the 
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advantage of studying the microbial transcriptional activity, it is limited to the expressed sequences and thus 

does not provide information about the full composition of the microbiome in the samples.  

 

In conclusion, to the best of our knowledge, this is the first OSCC metatranscriptomic study where the host 

and microbiome transcriptomes are studied simultaneously. On the host side, the study did not only confirm 

known oral cancer-associated genes and pathways, but also provided evidence for field cancerization by 

showing oncogenic changes in the adjacent normal tissue. These genes can be used as potential diagnostic 

markers at early stages of carcinogenesis. On the microbial side, we identified a low abundance yet unique, 

transcriptionally active multi-kingdom microbiome in OSCC tissues. No differences in microbiome 

composition between tumor/normal pairs; but marked differences compared to healthy controls. 

Nevertheless, the major functional features were similar across the three groups (functional redundancy). 

Cutibacterium acnes along with its enzyme hyaluronate lyase in addition to Malassezia restricta, Human 

Herpes Virus 6B, Nupapilloma virus, bacteriophages were key features enriched in OSSC tissues and 

showed potential interactions with the host transcriptome through proliferation-related pathways, which 

requires further validation in future mechanistic studies. Overall, this work provides novel insights into 

microbiome-host interaction in OSCC and opens new avenues for future microbiome research.    
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Table 1. Key genes within significantly enriched host pathways 
 

Tumor tissues compared to the adjacent normal tissues 
Pathway Genes 

Upregulated 
Epithelial-to-mesenchymal 
transition 

INHBA 
Matrix metalloproteinases: MMP1, MMP2, MMP3, MMP9, MMP10, 
MMP11 and MMP14 
Collagen genes: COL4A1, COL4A2, COL11A1, COL12A1 and CTHRC1 
Growth factors: TGFBI, IGF2 and CSF2 
Others: FSTL3 (Follistatin-like 3) and ITGA5 (Integrin subunit α5) 

Inflammatory response  

KRAS signaling 

Interferon alpha and gamma 
responses 

Interferon-induced proteins: IFI27, IFIT1, IFI35, IFIT3 and ISG15 

IL-6/JAK/stat pathway  CXCL genes, IL-6, STAT1, TGFBI and CSF2 
Angiogenesis  VAV2, SPP1, COL5A2, PDGFA and POSTN 
Others HOX genes (clusters A, B, C, D) and (e.g. HOTAIR) 
Down-regulated 
Oxidative phosphorylation MPC1, ETFDH, VDAC2, ACADSB, ACAA1, ACADVL, RETSAT 
Fatty acid metabolism  ADH7, HPGD, CBR3, ALDH3A1, ALDH3A2 
Adipogenesis CYP4B1, EPHX2, PPARG, ELOVL6, MGLL 
P53 pathway  KLF4, GLS2, BAIAP2, CDKN2AIP, and EPS8L2 

Tumor/Adjacent normal compared to healthy controls 
 Pathway Genes 

Upregulated 
E2F targets  STAG, PRIM2, SMC6, MRE11, PRKDC, CHEK2 and BRCA2 
MYC targets  CBX3, DDX18, HSPD1, NOP56, MCM4 and NOLC 
G2M checkpoint genes  STAG1, CDC27, SRSF10, MYC, WRN, CENPE and MNAT1 
Epithelial-to-mesenchymal 
transition 

Extracellular matrix proteins and adhesion molecules: DST, COL4A1, 
CDH6, PLOD3, GEM, LAMC1, MYLK, COLGALT1 and LAMA3 

Down-regulated 
Heme metabolism  FBXO34, HBB, BPGM, RHCE, ADIPOR1, and LMO2 
P53 pathway  MXD1, TGFA, CDKN2AIP, HMOX1, SAT1, FOXO3 
Apoptosis  EMP1, SQSTM1, HMOX1, BCL2L1, H1-0, IL18, CDKN1A and BCL10 
TNF-alpha signaling via 
NFKB 

DUSP5, TNIP1, MXD1, IL23A, MAP2K3, IL1A, IL-1B and TNF 

Inflammatory response 
pathway  

MXD1, FFAR2, IRAK2, IL1A, SPHK1, RAF1 and CXCL8 
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Figure Legends 

Figure 1.  A flow chart of study design and procedures. Left: Study groups, sampling, sample 

processing, qPCR, RNA library preparation and sequencing. Right: Bioinformatic analysis pipeline used 

to map, analyze and integrate the host and microbiome sequencing data.   

 

Figure 2.  Host transcriptome. Sequences were mapped to human reference GRCh38 and quantified at the 

gene-level using STAR aligner and HTSeq, respectively. DESeq2 was used to identify differential expressed 

genes (DEGs) which are depicted in volcano plots for (A) Tumor vs. adjacent normal (paired comparison), 

(B) Tumor vs. healthy control, and (C) Adjacent normal vs. healthy control—the color code in the volcano 

plots corresponds to the fold change and FDR cutoffs (2 and 0.05 respectively). (D) A PCA plot based on 

the most variable 1,500 DEGs, generated using "plotPCA" function from DESeq2 R/Bioconductor package. 

Lists of DEGs pre-ranked by Wald statistic were used as input for Gene Set Enrichment Analysis (GSEA) 

to identify upregulated and downregulated pathways in each contrast (E-G) based on Hallmark gene sets 

(MSigDB 7.1).   

 

Figure 3.  Microbial loads and transcriptional profiles. DNA extracted from the same cells as for RNA 

was used to determine bacterial, fungal and archaeal loads in the samples relative to human actin-β gene 

by q-PCR (A). Non-human, non-ribosomal RNA sequences were used as input for HUMAnN 3.0 for 

microbial taxonomic and functional profiling. (B) Microbial phyla and (C) top 20 genera identified in 

each of the study groups ranked by their average transcriptional relative abundances. (D) A PCA plot 

based on CLR-transformed genus-level profiles (created with Phyoseq and microbiome R packages). (E) 

Top 20 expressed enzyme classes ranked by their average transcriptional abundances (CLR transformed 

counts) in each sample type.  

 

 

D
ow

nloaded from
 http://aacrjournals.org/cancerrescom

m
un/article-pdf/doi/10.1158/2767-9764.C

R
C

-22-0349/3324110/crc-22-0349.pdf by guest on 01 O
ctober 2023



32 
 

Figure 4.  Differentially abundant microbial features. Taxonomic and functional profiles obtained with 

HUMAnN 3.0 were CLR transformed and differential abundance analysis was performed with MaAsLin2 

setting FDR cutoff to 0.05. (A) Bar plots of the top differentially abundant genera in the tumor vs. control and 

adjacent normal vs. healthy control contrasts. (B) A heat map showing clustering of samples based on top 

differentially abundant enzyme classes. The plots were created with ggplot2 and pheatmap R packages. 

 

Figure 5.  Hyaluronate lyase expression by Cutibacterium acnes. Relative abundance of hyaluronate 

lyase transcripts in individual samples. The transcripts were exclusively contributed by Cutibacterium 

acnes based on HUMAnN 3.0 results. 

Figure 6.  Microbiome-host data integration. Unsupervised Spearman rank correlation was performed 

between appropriately transformed host gene and microbial genus counts. Significant correlations were 

defined as those with absolute correlation coefficient (rs) ≥ 0.6 and FDR ≤ 0.05. For each microbial 

feature, the correlating genes, ranked by rs, were subjected to GSEA. (A) genera that correlated with > 

1,000 host genes and whether GSEA turned significant results for each genus. (B) interaction of selected 

genera with the host pathways based on GSEA results. Red edges denote activation while blue edges 

denote inhibition. For each edge, the number of genes involved is displayed. (C-E) MSigDB genes with 

the highest correlations with Roseolovirus, Cutibacterium and Yuavirus, respectively. Red edges denote 

positive correlation while blue edges denote inhibition. For each edge, rs is displayed. 

 

Figure 7.  Preliminary in vitro experimental validation in SCC25 cells. (A) Cutibacterium acnes and 

the MYC gene were chosen for this experiment based on their strong correlation in the sequencing data. rs, 

Spearman correlation coefficient; CLR, centered log-ratio; Rlog, regularized log transformation defined in 

the DESeq2 package. (B) C. ances NCTC 737 grown to mid-log phase was co-cultured with SCC25 cells 

at multiplicity of infection (MOI) of 50, 100 and 200 for 24 hours. Levels of MYC mRNA were measured 

by qRT-PCR, normalized to GADPH and relative to the non-infected cells (controls). * Statistically 

significant, Welch-corrected t-test.   
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