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ABSTRACT

An increasing amount of applications build their function-
ality on the utilisation and manipulation of web resources.
Consequently REST gains popularity with a resource-centric
interaction architecture that draws its flexibility from links
between resources. Linked Data offers a uniform data model
for REST with self-descriptive resources that can be lever-
aged to avoid a manual ad-hoc development of web-based
applications. For declaratively specifying interactions be-
tween web resources we introduce Data-Fu, a lightweight
declarative rule language with state transition systems as
formal grounding. Data-Fu enables the development of data-
driven applications that facilitate the RESTful manipulation
of read/write Linked Data resources. Furthermore, we de-
scribe an interpreter for Data-Fu as a general purpose engine
that allows to perform described interactions with web re-
sources by orders of magnitude faster than a comparable
Linked Data processor.

Categories and Subject Descriptors
H.5.4 [Hypertext/Hypermedia]: Architectures

1. INTRODUCTION

There is a growing offer of functionality via web APIs'.
Increased value comes from combining data from multiple
sources and functionality from multiple providers. The im-
portance of such compositions is reflected in the constant
growth of mashups — small programs that combine multiple
web APIs [33]. There is a strong movement in the web com-
munity toward a resource-oriented model of services based
on Representational State Transfer (REST [11]). Flexibil-
ity, adaptivity and robustness are the major objectives of
REST and are particularly useful for software architectures
in distributed data-driven environments such as the web [22].
However, data sources and APIs are published according to

! Alone http://programmableweb.com/ lists 7,991 APIs on
November 24th 2012, which is almost twice the number from
one year earlier.
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different interaction models and with interfaces using non-
aligned vocabularies, which makes writing programs that
integrate offers from multiple providers a tedious task.

The goal of our work is to provide a declarative means
to specify interactions between data and functionality from
multiple providers. Such declarative specifications provide
a modular way of composing the functionality of multiple
APIs. Also, declarative methods allow for automatically
optimising a program and parallelising the execution.

In a REST architecture, client and server are supposed to
form a contract with content negotiation, not only on the
data format but implicitly also on the semantics of the com-
municated data, i.e., an agreement on how the data have
to be interpreted [32]. Since the agreement on the seman-
tics is only implicit, programmers developing client appli-
cations have to manually gain a deep understanding of the
provided data, often based on natural text descriptions. The
combination of RESTful resources originating from differ-
ent providers suffers particularly from the necessary manual
effort to use and combine them. The reliance on natural
language descriptions of APIs has led to mashup designs in
which programmers are forced to write glue code with little
or no automation and to manually consolidate and integrate
the exchanged data.

Linked Data unifies a standardised interaction model with
the possibility to align vocabularies using RDF, RDFS and
OWL. However, the interactions are currently constrained to
simple data retrieval. Following the motivation to look be-
yond the exposure of fixed datasets, the extension of Linked
Data with REST technologies has been explored [5, 34] and
led recently to the establishment of the Linked Data Plat-
form? W3C working group.

Several existing approaches recognise the value of combin-
ing RESTful services and Linked Data [17, 26, 30]. In this
paper, we go one step further and propose Data-Fu, a data-
and resource-driven programming approach leveraging the
combination of REST with Linked Data. Data-Fu enables
the development of applications built on semantic web re-
sources with a declarative rule language. The main goal of
Data-Fu is to minimise the manual effort to develop web-
based applications and the preservation of loose coupling by

e leveraging links between resources provided by Linked

Zhttp://www.w3.org/2012/1dp/charter



Data, and

e specifying desired interactions dependent on resource
states, which is enabled by a uniform state description
format, i.e., RDF.

A further requirement for our programming approach in
a web-based environment is a fast and scalable execution
of the applications. While there has been recent work on
extending the Map/Reduce model for data-driven process-
ing [15, 4], these approaches are geared towards deployment
in data centers. In contrast, our approach operates on the
networked open web.

This paper is based on a previous publication on a data-
driven programming model for the web [27] and describes

e how self-descriptive resources can be designed to en-
able loosely coupled clients (Section 4.1);

e a service model for REST based on state transition
systems as formal grounding (Section 4.2);

e the Data-Fu language, a declarative rule-based exe-
cution language to allow an intuitive specification of
the interaction with resources from different providers
(Section 5);

e an execution engine as an artefact to perform the de-
fined interactions in a scalable manner (Section 6).

We provide a motivating scenario in Section 2. We evalu-
ate our approach in two ways: (i) we describe throughout
the paper how our motivating scenario can be realised with
Data-Fu; and (ii) we conduct performance experiments with
the Data-Fu interpreter in Section 7. Section 8 covers exist-
ing work. We conclude in Section 9.

2. MOTIVATING SCENARIO

In our scenario, we consider the Acme corporation, a con-
sumer goods producer, that aims at extending their social
media activities to a broader range of dissemination channels
(for more on multi-channel communication see [7]). Acme’s
marketing department observes that while the number of po-
tential channels is constantly increasing, the channels can be
broadly categorised into micro blog services and social net-
works. Information about new products, special offers, and
other news should be disseminated in the following ways:
(i) posts on the company’s micro blogs; and (ii) messages to
social network users who are followers of the company.

We assume that the dissemination channels offer Linked
APIs, i.e., resources are exposed that offer read /write Linked
Data functionality.?

The marketing department orders a system from Acme’s IT
that manages the dissemination channels and automatically
disseminates a post to all available channels either as a micro
blog entry or as a personal message. Initially the micro
blog service MB and the social network SNA have to be
supported. Marketing will supply their posts in an Acme-
specific vocabulary as so-called Infoltems.

After a while, the marketing department decides to add

3If there is no Linked API available, the conventional APIs
can be easily wrapped to consume and produce RDF, see,
e.g., [29, 17]. Wrapping APIs is out of scope of this paper.

Table 1: URI prefixes used throughout this paper

Prefix | IRI

acme: http://acme.example.org/company/

p: http://acme.example.org/vocabulary/
sna: http://sna.example.org/lapi/

snb: http://snb.example.org/rest/

mb: http://mb.example.org/interface/

the new social network SNB as a dissemination channel,
which requires two steps: (i) the IT department extends the
dissemination system to support the interface of SNB; and
(ii) the marketing department adds the Acme’s identity in
SNB to the dissemination channels.

Throughout the paper, we will illustrate our technical contri-
butions by realising bits and pieces of the proposed scenario.
When modeling services and interactions, we will use a num-
ber of URI prefixes for brevity that are either common? or
listed in Table 1.

3. BACKGROUND

According to the Richardson maturity model [24] REST is
identified as the interaction between a client and a server
based on three principles:

e The use of URI-identified resources.

e The use of a constrained set of operations, i.e., the
HTTP methods, to access and manipulate resource
states.

e The application of hypermedia controls, i.e., the data
representing a resource contains links to other resources.
Links allow a client to navigate from one resource to
another during his interaction.

The idea behind REST is that applications, i.e., clients, us-
ing functionalities provided on the web, i.e., APIs, are not
based on the call of API-specific operations or procedures
but rather on the direct manipulation of exposed resource
representations or the creation of new resource representa-
tions. A resource can be a real world object or a data object
on the web. The representation of a resource details the
current state of the resource. A manipulation of the state
representation implies that the represented resource is ma-
nipulated accordingly. For brevity in this paper we often
talk about ”"the manipulation of a resource”, when we actu-
ally mean "the manipulation of the state representation of a
resource and the subsequent change of the resource itself”.

The flexibility of REST results from the idea that client ap-
plications do not have to know about all necessary resources.
The retrievable representation of some known resources con-
tains links to other resources, that the client can discover
during runtime. Clients can use such discovered resources
to perform further interaction steps.

The Linked Data design principles® also address the use of
URI-identified resources and their interlinkage. However

4See http://prefix.cc/ for their full URIs, accessed on
November 22nd 2012.
Shttp://www.w3.org/DesignIssues/LinkedData.html



Linked Data is so far only concerned with the provision-
ing and retrieval of data. In contrast to REST, Linked
Data does distinguish explicitly between URI-identified ob-
jects (i.e., non-information resources) and their data repre-
sentation (information resources). An extension of Linked
Data with REST to allow for resource manipulation leads to
read/write Linked Data, i.e., information resources can be
accessed and manipulated. REST furthermore implies that
a change of an information resource implies a change in the
corresponding non-information resource.

The development of applications in a REST framework is
especially challenging, since the links between resources and
the resource states can only be determined during runtime,
however, programmers have to specify their desired interac-
tions at design time.

Traditional service composition approaches that aim to de-
crease the manual effort to use web offered functionality lead
to a tight coupling between client and server, i.e., they sac-
rifice flexibility and are prone to failures due to server-side
changes. Traditional composition approaches often fail to
leverage links between resources and do not provide straight-
forward mechanisms to dynamically react to state changes
of resources. The reaction on state changes becomes espe-
cially important in a distributed programming environment,
since a client cannot ex ante predict the influence of other
clients on the resources, i.e., REST does not allow a client
to make assumptions on resource states.

4. READ/WRITE LINKED DATA

In this section, we describe our approach for modelling of
RESTful services based on Linked Data. Our approach has
two layers:

e individual Read/Write Linked Data Resources and their
descriptions that allow predicting the effect of the exe-
cution of a functionality before invocation (Section 4.1);

e A formal REST Service Model. A single REST ser-
vice can consist of several resources, potentially spread
over different servers. The service model is the ground-
ing for describing the interactions that are offered by
the individual RESTful Linked Data resources and the
overall service (Section 4.2).

4.1 Read/Write Linked Data Resources

In a RESTful interaction with Linked Data resources only
the HT'TP methods can be applied to the resources. The se-
mantics of the HT'TP methods itself is defined by the IETF®
and do not need to be explicitly described.

Table 2 shows an overview of the most important HTTP
methods. We can distinguish between safe and non-safe
methods, where safe methods guarantee not to affect the
current states of resources. Further, some of the methods
require additional input data to be provided for their in-
vocation. The communicated input data can be subject to
requirements that need to be described to allow an auto-
mated interaction, e.g., the input data can be required to
use a specific vocabulary. Furthermore, the effect of a non-
safe method on the state of an addressed resource can de-

Shttp://www.ietf.org/rfc/rfc2616.txt

Table 2: Overview of HTTP methods
Method Safe | Input Intuition

required

GET X Retrieve the current
state of a resource.
Retrieve a descrip-
tion of possible inter-
actions.

Delete a resource
Create or overwrite
a resource with the
submitted input.
Send input as subor-
dinate to a resource
or submit input to
a data-handling pro-
cess.

OPTIONS X

DELETE
PUT X

POST X

pend on the input data. The dependency between commu-
nicated input and the resulting state of resources also needs
to be described. Therefore, only the non-safe HT'TP meth-
ods that require input data need further description mecha-
nisms. Note, the POST method can also influence the states
of not directly addressed resources. The precise effect of a
POST depends on the resource, since POST allows to send
input data to a data-handling process of a resource.

The state of a Linked Data resource is expressed with RDF.
It is sensible to serialise the input data in RDF as well,
i.e., data that is submitted to resources to manipulate their
state. To convey the resulting state change after application
of a HTTP method we use RDF output messages. In previ-
ous work [20] we analysed the potential of graph patterns,
based on the syntax of SPARQL”, to describe required input
as well as their relation to output messages. The resulting
graph pattern descriptions are attached to the resource and
can be retrieved via the OPTIONS method on the respec-
tive resource. Therefore the resources stay self-descriptive,
i.e., their current state can be retrieved with GET, the pos-
sibilities to influence their state with OPTIONS.

Example. Acme’s IT creates the resource acme: Acme rep-
resenting Acme. A GET on acme: Acme returns the following
initial description: acme:Acme rdf:type p:Company .
The marketing department updates the acme: Acme resource
with the dissemination channels SNA and MB by perform-
ing a PUT with the following input data:

acme:Acme rdf:type p:Company .

acme:Acme p:dissChannel sna:Acme, mb:Acme .
sna:Acme rdf:type p:SocialNetworkID .
mb:Acme rdf :type p:MicroBlogTimeline .

A subsequent GET on acme: Acme would result in exactly the
description that marketing supplied with their PUT request.

A GET on sna:Acme, Acme’s identifier in the social network
SNA, would result in a description of Acme in SNA’s vocab-
ulary including its fans:

"http://www.w3.org/TR/rdf-sparql-query/
#GraphPattern



sna:Acme rdf:type sna:CommercialOrganisation .
sna:Acme sna:founded "11/20/2012" .
sna:Acme sna:hasFan sna:Userl, sna:User2, ... .

The resources representing users in the SNA network provide
functionality to send messages to the corresponding users.
A POST can be employed to send a message to a user re-
source (e.g., to sna:Userl). The input data for the POST
contains its sna:sender and its sna:content, according to
the description of the user resource that can be retrieved
with an OPTIONS request:

INPUT: ?m rdf:type sna:Message .
?m sna:sender ?s .
?m sioc:content 7c.

OUTPUT: ?m sna:sender ?s .
?m sioc:content 7c.
?m sna:receiver sna:Userl.

Acme’s timeline mb:Acme on the micro blogging service MB
also supports the POST operation. Figure 1 illustrates the
timeline resource mb:Acme of our example, with a set of en-
tries in the current state and the graph pattern that describe
how a new entry can be POSTed.

Applying a DELETE on a blog post, e.g., one that advertises
an expired sale, does not require input; its effect is inherently
defined by the method: the entry is erased.

4.2 REST Service Model

A REST service can be identified with the resources it ex-
poses. An interaction within a REST architecture is based
on the manipulation of the states of the exposed resources.

We develop a model, that allows to formalise the function-
alities exposed by a REST API based on read/write Linked
Data resources. A formal service model serves as rigorous
specification of how the use of individual HTTP methods
influences resource states and how these state changes are
conveyed to interacting clients.

We model a Linked Data-based RESTful service as a REST
state transition system (RSTS) similar to a state machine
as defined by Lee and Varaiya [18]. The behavior of the
clients themselves is not in the scope of this model, it rather
formalises all possible interaction paths of a client with the
resources.

DEFINITION 1. A REST state transition system (RSTS)
is defined as a 5-tuple RSTS = {R,%,1,0,6} with:

e A set of resources R = {r1,ra,...}.
o A set of states ¥ = {01,...,0m}. Fach state o € &
of the RSTS is defined as the union of the states of

all resources: o = Uneer. The state of a single

resource 7; € R in a state o is given by its RDF
representation ¥ € G, where G is the set of all possible
RDF graphs.

e An input alphabet I = {(r,pn,g) : R X M x G}, where
M = {GET,DELETE, PUT, POST} is the set of the
supported HTTP methods®.

8For brevity we focus here on the four most important meth-
ods. Other methods can be added analougously.

o An output alphabet O = {(c,0) : C x G}, where C is
the set of all HTTP status codes.

e An update function 6 : ¥ x I — X x O that returns
for a given state and input the resulting state and the
output. We decompose § into a state change function
6% : X x I — X and an output function 6° : X x I — O,
such that 6(c,i) = (6°(0,1),0°(0,4)). We define the
state change function as

Ok, if u= GET
ox \ {rF}, if w = DELETE

(ox \{rf}Ug, ifu=PUT
post; (0%, 9), if w= POST,

5S(Jk7 (Tiv 1y g)) =

where the function post; encapsulates the resource-specific
behaviour of a POST request, as described by its IN-
PUT/OUTPUT patterns, which can be obtained via an
OPTIONS request on the resource. Let o, be the new
state as defined by §°, we define the output function as

(c, rF), if p = GET

(c, 0), if w = DELETE
(¢, o\ox), tif p=PUT
(C,O’l\ak), if,LL:POST.

6O(Uk7 (T’iv H, g)) =

A client interacting with a service modelled by an RST'S =
{R,X%,I,0,6} creates an input ¢ = (r;, 4, g) for RST'S by in-
voking the HTTP method p on the resource r; and passing
the potentially empty RDF graph g in the request body. De-
pending on the current state o of the service the following
happens:

1. The service transitions into the state 6°(ox, (73, 4, g))-
2. The client gets an HTTP response with the HTTP
code ¢ and the RDF graph g in the body, where (¢, g) =

50(Uk7 (T’i’ Hy g))

Safe methods that do not change any resource states, de-
scribe self-transitions, i.e., transitions that start and end in
the same state.

Resources not necessarily allow the use of all HT'TP meth-
ods. Note that all state change functions are defined for
every resource, i.e., every resource can be addressed with all
methods: If a resource does not allow for the application
of a specific method, the state change function describes a
self-transition.

The defined service model serves as formal grounding of the
execution language described in Section 5. However, the
self-descriptive resources provide sufficient information for
the interaction with the exposed resources.

e The current state of Linked Data resources — and there-
fore the state of the RSTS — can be accessed as RDF.

e The possible transitions and the state they result in are
independent of the specific resource, except for POST
transitions. The effect of POST transitions is declared
with graph pattern descriptions (see Section 4.1).

Example. Figure 2 illustrates a state transition in RSTS
where an entry is POSTed to mb:Acme. Note, that a client
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Figure 1: Self-descriptive resource: current state

OPTIONS

GET OPTIONS
mb:Acme a sioc:Forum. POST-Input: POST-Output:
mb:Acme/p1 a sioc:Post. ?p a sioc:Post. ?p a sioc:Post.
mb:Acme/p1 sioc:container mb:Acme | | ?p sioc:content ?c. ?p sioc:container mb:Acme.

?p sioc:content ?c.

a1

ry (mb:Acme)
mb:Acme a sioc:Forum.
mb:Acme/p1 sioc:conta

| [ a sioc:Post;
i sioc:content ?c. |

________ S

iner mb:Acme.

r, (mb:Acme/p1)

mb:Acme/p1 sioc:conte

mb:Acme/p1 a sioc:POST.

POST(mb:Acme, g)

can be accessed with GET, input/output description with

a2

ry (mb:Acme)

mb:Acme a sioc:Forum.

mb:Acme/p1 sioc:container mb:Acme.
mb:Acme/p1 sioc:container mb:Acme.

nt “Product...“.

Response:
201:CREATED _______ | ___________
:rmb:Acme/pZ a sioc:Post.
! mb:Acme/p2 sioc:container mb:Acme.

i mb:Acme/p2 sioc:content “Special Offer...".

P! | r, (mb:Acme/p1)

mb:Acme/p1 a sioc:POST.
mb:Acme/p1 sioc:content “Product ...“.

rz (mb:Acme/p2)
mb:Acme/p2 a sioc:POST.
mb:Acme/p2 sioc:content “Special Offer...“.

Figure 2: State transition of a RSTS, with excerpts of two states.

could derive the input for the POST method from the states
of other resources (e.g., from Acme Infoltems).

5. THE DATA-FU LANGUAGE

In this section, we present Data-Fu, an ezecution language
to instantiate a concrete interaction between a client and
resources, which preserves the adaptability, robustness and
flexibility of REST.

In a resource-driven environment, applications retrieve and
manipulate resources exposed on the Web. Since the re-
sources can potentially be accessed by a multitude of clients,
applications have to react dynamically on the state of the re-
sources. Therefore, an important factor in the development
of resource-driven applications is the dependency between
the invoked transitions and resource states. The dependency
between the invoked state transitions (i.e., applied HTTP
methods) and the states of resources is that

1. input data for the transition is derived from RDF de-
tailing the states of resources and/or

2. the transition is only invoked, if resources are in a spec-
ified state.

Data-Fu, a declarative rule-based execution language, en-
ables programmers to define their desired state transitions.
Data-Fu rules specify the interaction of a client with REST-
ful Linked Data resources and congruously a path through
the RSTS. Further Data-Fu allows to specify the conditions
under which a specific transition is to be invoked as subject
to the states of resources.

DEFINITION 2. A rule p is of the form u(r,g) <+ gq,
where u € M is an HTTP method, r € RUV is a resource

or a variable, g € GUP is a (potentially empty) RDF graph
or graph pattern, and q € P is a conjunctive query. Ifr is a
variable, it must be bound in Q. If g is a graph pattern, all
its variables must be bound in Q.

The head of a rule corresponds to an update function of
the RSTS in that it describes an HTTP method that is to
be applied to a resource. The rule bodies are conjunctive
queries that allow programmers to express their intention
under which condition a method is to be applied. Thus,
programmers can define an interaction pattern with a set of
rules for their client applications.

The use of conjunctive queries is motivated by the idea that
clients have to maintain a knowledge space (KS) in which
they store their knowledge about the states of the resources
they interact with [17, 25]. KS is filled with the RDF data
the client receives after applying an HTTP method, as de-
fined by the output functions of the RSTS. The output al-
ways informs the client about the current state after the
application of the method.

Concretely N3 graph pattern are employed as queries g,
which are evaluated over KS. If the evaluation of ¢ is suc-
cessful, i.e., matches are found in KS, the defined HTTP
method p is applied to r with input g. The query ¢ can also
used to dynamically (i.e., during runtime)

1. derive input data from the states of other resources, as
stored in KS and

2. identify the resource an HTTP method has to be ap-
plied to, i.e., leveraging hypermedia controls.

Regarding 1: Instead of specifying the input data g explicitly
as RDF graph, a graph pattern can be used. If a match is



found for ¢ in KS, the identified bindings for ¢ are used to
replace the variables in g to establish the input data for the
interaction (with HTTP method p at resource 7). g as graph
pattern and ¢ act together similar to a SPARQL construct

query.

Regarding 2: To preserve the flexibility provided by REST
our execution language has to be able to make use of links
in the resource states to other resources. Rather than spec-
ifying the adressed resource r of a rule explicitly as URI, a
variable can be used. If a match is found for ¢ in KS, an
identified binding for a variable ¢ is used for the variable r.
r as variable and ¢ act together similar to a SPARQL select
query.

A Data-Fu program terminates when there are no active
transitions and no rules can be activated that could trig-
ger new transitions. In general, termination of a program
cannot be guaranteed, as every transition can result in data
that triggers new transitions. However, the termination of a
program is not necessarily intended by a programmer, in the
case of applications that are supposed to continuously inter-
act with resources. Furthermore, the deletion and change of
resources can lead to applications with a non-deterministic
execution behavior. For discussions about properties of rule
sets in related languages that guarantee termination and de-
terminism, we refer the reader to [2].

Example. The IT department of Acme creates the dis-
semination system with four Data-Fu rules. The market-
ing department has simply to create new Infoltems and the
system automatically distributes the information over the
dissemination channels of Acme. The rules are defined as
follows:

1. Whenever a Infoltem is found, retrieve the resource
acme:Acme to get an up-to-date list of the current dis-
semination channels.

GET (acme:Acme, {}) < { ?x rdf:type p:Infolten }

2. If a p:MicroBlogTimeline is found (from the retrieved
dissemination channels), post a new entry to the time-
line using the content from the Infoltem.

POST (7mb, { [] rdf:type sioc:Post ;
sioc:content 7c. 1)
+—{ ?x rdf:type p:Infoltem.

7x p:content ?c.
?mb rdf:type

3. If a social network ID of Acme is found (from the re-
trieved dissemination channels), retrieve the represen-
tation of Acme from the social network to get a list of
Acme’s followers.

GET (7sidq, {})
+ { ?sid rdf:type p:SocialNetworkID } .

4. Post to every found follower of Acme on SNA a mes-
sage with the content of the Infoltem.

POST (7f, { [] rdf:type sna:Message ;
sna:sender  sna:Acme ;
sna:content 7c . b

< { sna:Acme sna:hasFan 7?f.
7x rdf:type p:Infoltem .
?x p:content  ?c .

p:MicroBlogTimeline } .

The described rules disseminate new information items au-
tomatically to social network SNA and the micro blog MB.
IT deploys the dissemination system itself as a read/write
Linked Data resource under acme:Dissemination. Market-
ing uses the dissemination service by POSTing a graph to
the dissemination resource that corresponds to the following
input pattern:

{ ?x rdf:type p:Infoltem. ?x p:content ?c } .

Other dissemination channels can easily be added to the
system, simply by adding corresponding rules in the system.
For example, we consider that IT adds support for social
network SNB by adding a rule that uses SNB’s vocabulary
for retrieving followers and sending a message:
POST (7£,{ [] rdf:type snb:PrivateMsg ;
snb:origin snb:ACME ;

snb:text 7c. b
< { snb:ACME snb:followedBy 7f .
7x rdf:type p:Infoltem .
7x p:content ?c }.

The new dissemination channel is active when marketing
PUTs Acme’s identifier in SNB’s network to acme:Acme.

6. THE DATA-FU INTERPRETER

The Data-Fu interpreter is an execution engine for service
interactions specified as a set of Data-Fu rules. The engine
implements the KS as well as the functionality to invoke in-
teractions with resources as defined in the rules. In practice,
we translate a Data-Fu program into a logical dataflow net-
work, which is then optimised (e.g., re-using triple patterns
and joins). The optimised logical network is then trans-
formed into an evaluator plan that actually implements the
dataflow network.

We realise the evaluator plan for the Data-Fu engine as a
streaming processor that can process several queries in par-
allel. We implement the processor as a multi-threaded com-
ponent with one thread evaluating individual triple patterns,
and separate threads for each join operator and for each rule
head, i.e., the component that performs the state transitions
by invoking the corresponding HTTP methods on resources.
The joins are implemented as symmetric hash join opera-
tors [35]. The implemented dataflow network is similar to a
parallel version of the Rete algorithm [12].

To enable a wide variety of applications the engine can in-
clude an extension to support the interaction with REST
resources that are not based on Linked Data. The engine
can store data entities (e.g., binaries, JSON documents) re-
ceived from such services separately. A triple pointing to
a received non-RDF entity can be included in KS, thus the
entities can be used in the logic of the execution rules. How-
ever, an interaction with such non-RDF entities requires to
fall back to a more mashup-like programming approach.

Example. The dataflow network shown in Figure 3 evalu-
ates the plan generated for the Data-Fu program for Acme’s
dissemination system. We can see that joins (e.g., the join
on ?7x) are re-used, i.e., have multiple outgoing edges. The
triple stream is initialised by the service input, which is sent
by the client via a POST request. If the input data con-
tains a description of an information item, it will trigger
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Figure 3: Dataflow network of Acme’s dissemination system

the rule retrieving Acme’s description containing links to
its dissemination channels. The social networks will fire a
rule, which then retrieves the social network id’s of Acme
and thus retrieve the corresponding followers. Both social
network followers and micro blog timelines will then trigger
the corresponding POST actions that will sent the informa-
tion item in the appropriate vocabulary to the dissemination
channels, i.e., as micro blog posts or personal messages to
followers.

7. EVALUATION

To evaluate the scalability of the Data-Fu engine we com-
pared execution times for different numbers of interactions
and rules with Cwm? a data-processor for the Semantic Web.
Cwm uses a local triple store that supports the full N3 lan-
guage to save data and intermediate results. The local triple
store of Cwm uses seven indices to allow for a rapid readout
of the local data with almost every combination of subject,
predicate and object patterns. For inferencing Cwm uses a
forward chain reasoner for N3 rules. The pattern matching
for the rules is done by recursive search with optimisations,
such as identifying an optimal ordering for the evaluation of
the rules and patterns.

Cwm is build as a general purpose tool to query, process, fil-
ter and manipulate data from the Semantic Web. As such,
the motivation behind Cwm is closest to the Data-Fu engine,
compared with any other rule-engine or reasoning system, to
the best of our knowledge. However, Cwm is not targeted on
the direct RESTful manipulation of web resources, but their
retrieval and the local manipulation of the data. Therefore
to make the systems comparable we limit the evaluated in-
teractions to GET transitions, i.e., we use only rules that
retrieve resources, if a match for the rule body is found.
Please note that the limitation to GET transitions does not
influence the validity of the evaluation: Since additional ex-
ecution time when using non-safe interactions (e.g., PUT,
POST) only results from time required to transmit data to
resources and the subsequent time necessary to process this
data by the server, where the resource resides. This time
overhead caused by non-safe transitions is neither influenced
by the Data-Fu engine, nor could it be avoided by any other

“http://www.w3.org/2001/sw/wiki/CWM

system that we could use as comparison.

We conducted the experiments on a 2.4 GHz Intel Core 2
Duo with 4 GB of memory (2 GB assigned to Java virtual
machine on witch the experiments run). Thus we evaluate
the Data-Fu engine on commodity hardware with the intent
to show the parallisation-based scalability of the Data-Fu
engine not only on high-end industrial machines.

We deploy Linked Data resources used for the interactions
locally on an Apache Tomcat!'® server to further minimise
execution time variations caused by establishing HT'TP con-
nections and retrieving data over the web. In the rules used
by the Data-Fu engine and Cwm the resources are addressed
with their localhost address. Every deployed resource repre-
sents a number. Every number resource is typed as number
and contains its value as literal and a link to the successor
of the number:

local:1 rdf:type local:Number.
local:1 1local:value ",
local:1 1local:successor local:2.

We chose this design to easily keep track of the number
of performed interactions.

For the evaluation we start with the resource number 0,
which we manually inject into the Data-Fu engine and Cwm.
We identify and retrieve the successor of the number. The
successor of a number yields a new successor to retrieve,
and so on. The interactions of this set-up are illustrated in
Figure 4.

retrieve
successof|

retrieve

local:0 ocossor local:1

retrieve
successor -

v

local:2

Figure 4: Interactions of evaluation set-up with one
rule

We realise the interactions with the Data-Fu Engine and
Cwm (for the latter in two different ways) as follows:

Ohttp://tomcat .apache.org/



e Data-Fu: For the Data-Fu engine we use a rule:

GET (?suc, {}) < {?n rdf:type local:number
?n local:value ?v

?n local:successor ?suc}

The rule body queries for a resource (variable 7n) that
is typed as number, has a value and a successor. If
a match is found, a GET transition is triggered at
whatever URI is identified to be the successor of the
matched number. The Data-Fu engine adds the re-
trieved representation of the successor to the data flow
network, which results in the identification of the next
successor to retrieve. Thus, all numbers are iteratively
found and retrieved.

e Cwm direct: Cwm offers built-in functions to perform
web-aware queries in rules. The keyword log:semantics
in a query of a rule allows to resolve a URI and bind
the retrieved RDF data to a variable as formula. The
formula bound to a variable can then be used to con-
struct triples in the rule head. We used the following
rule to perform the desired interaction:

{{ :n rdf:type local:number.
:n local:value :v.
:n local:successor :suc }
local:is local:known. }
:suc log:semantics :sem.
=
{ :sem local:is local:known. }

Like in the approach for the Data-Fu engine we query
for the successor of a number. The successor is re-
trieved and bound as formula in subject position to a
new triple that is written to the triple store. Since the
retrieved representation of the number appears only as
formula in triples we have to extend the query in the
rule body to search for the successor of a number in
a formula in subject position of a triple, thus making
the query slightly more complicated than in the case
of the Data-Fu engine. Cwm continuously applies the
rule to the triple store, thus retrieving all numbers.

e Cwm import: To compare the performance of Cwm
with the Data-Fu engine, where the query of the rules
are equally complex, we implemented the desired re-
trieval with another approach: We used the following
rule:

{ :n rdf:type local:number.
:n local:value :v.
:n local:successor :suc }
=
{ :n owl:imports :suc. }

We use the same query to identify the successor of
a number as for the Data-Fu engine. For every found
match we write a triple to the Cwm store, that marks
the identified successor with owl:imports. Cwm of-
fers a command to retrieve all resources marked with
owl:imports. This allows us to programmatically in-
struct Cwm to apply the rule and retrieve the suc-
cessor, as many times as needed. Note, that this im-
plementation of the interaction does not deliver the
same functionality as with the Data-Fu engine: We
have manually to define how often the rule followed by

the retrieve command is to be applied (once for every
number), rather then having the engine automatically
retrieve all the numbers.

We evaluate the execution time of the interaction with all
three setups for sets of 20, 40, 60, 80 and 100 numbers.
With the approaches Data-Fu and Cwm direct the interac-
tion ends when the last number in a set does not refer to a
next successor to retrieve. For Cwm import we had to decide
manually how often the rule is applied and thus how many
numbers are retrieved and when the interaction stops. The
results are shown in Table 3 and Figure 5. We provide the
average execution times from ten runs to reduce variations.

Table 3: Average execution time from ten runs for
different evaluation set-ups with one rule

number set size | Data-Fu Cwm direct Cwm import

20 342 ms 1549 ms 468 ms
40 371 ms 5144 ms 976 ms
60 500 ms 11272 ms 1595 ms
80 555 ms 21005 ms 2309 ms
100 594 ms 32213 ms 3688 ms
sec
100
==Cwm Direct
“&Cwm Import
Data-Fu
10
1
0,1

20 40 60 80 100
number of transactions per rule

Figure 5: Average execution time from ten runs for
different evaluation set-ups with one rule

The Data-Fu engine is able to execute the interaction by or-
ders of magnitude faster than the other to approaches with
Cwm. Also the growth-rate of the execution time with the
increasing size of number sets is much lower with Data-Fu
compared to the Cwm approaches (note the log scale in Fig-
ure 5). The Data-Fu engine achieves this time saving by
leveraging the data flow network: Data-Fu has just to put
the new results after an interaction through the data flow
network to find new bindings. Cwm on the other hand has
to apply the rules continuously over the increasing dataset
in its triple store.

To evaluate the capabilities of the Data-Fu engine with re-
gard to parallelisation we run the same interaction of retriev-
ing successors of numbers again, with ten different “kinds”
of numbers (A-J) in parallel. The numbers are distinguished
by different namespaces. Each of the three evaluation set-
ups requires ten rules for the interaction (each addressing



another namespace), analog to the previously shown rules.
Figure 6 illustrates this evaluation set-up.

. retrieve retrieve retrieve
A. local_A:0 local_A:1 local_A:2
= successor - successor = successor
. retrieve retrieve retrieve
B: local_B:0 local_B:1 local_B:2
- successor - successor - successor
J: | tocalsio Fomeve )} ocal st [OUIVE__f o) ), |etTEVE
N N N >
ocal successor -| 10— successor 7| 0= successor

Figure 6: Interactions of evaluation set-up with one
rule

The results for the different evaluation set-ups are shown
in Table 4 and Figure 7 as average from ten runs. Again
Data-Fu executes the interaction significantly faster with a
lower growth rate than Cwm in the other set-ups: In the
case of the most interactions (10 x 100) Cwm direct requires
over 17 minutes and Cwm import over 32 seconds, while the
Data-Fu engine handles the same interactions in under 4
seconds.

Table 4: Average execution time from ten runs for
different evaluation set-ups with ten rules in parallel

number set size | Data-Fu Cwm direct Cwm import

20 1833 ms 22513 ms 2836 ms
40 2421 ms 108421 ms 7067 ms
60 2916 ms 310498 ms 13518 ms
80 3889 ms 621798 ms 21729 ms
100 3944 ms 1038524 ms 32983 ms
sec
1000
=o-Cwm Direct /
=“&Cwm Import
Data-Fu /
100
10 -
1
20 40 60 80 100

number of interactions per rule

Figure 7: Average execution time from ten runs for
different evaluation set-ups with ten rules in parallel

Comparing the results of the interactions with a single rule
and the interactions with ten rules in parallel we note, that
the Data-Fu engine suffers less than Cwm from the ten times
increased workload when executing ten rules in parallel. On
average for the individual sizes of number sets

e Data-Fu requires 6.2 times longer,
e Cwm direct requires 25 times longer,
o Cwm import requires 8 times longer,

when running with ten rules compared to one single rule.

The reason for this time advantage is the capability of the
Data-Fu engine to execute several components of the inter-
action in parallel, e.g., the evaluation of the triple patterns
of the queries and the communication with several web re-
sources. Note, that the theoretically possible speedup due
to parallelisation on a dual core system implies that a 10
times increased workload results in a 5 times longer execu-
tion time. However, the Data-Fu engine cannot quite reach
this optimal speedup, since not all parts in the interaction
can be completely parallelised, e.g., the management of the
individual threads. These parts of an interaction that can-
not be completely parallelised result in a slightly diminished
speedup, as stated with Amdahl’s Law [3].

Following the results of the evaluation in comparison with
Cwm, we devise a final evaluation setting to test the scala-
bility of the Data-Fu engine when performing large amounts
of interactions. Similar to the previous evaluation setting we
retrieve number resources that are identified during runtime
as successor of an already found number. We fix the size
of the number sets to 100, i.e., we deploy sets of 100 con-
secutive number resources that are distinguished with their
namespace. Then we retrieve the numbers of every set with
a respective rule. We evaluate the runtime of the Data-Fu
engine with 20, 40, 60, 80 and 100 rules/number sets, thus
performing between 2 000 and 10 000 interactions. Addition-
ally we measure the time needed to calculate the evaluation
plan separately to compare it with the total execution time.
The results are shown in Table 5 and Figure 8.

Table 5: Average execution time from ten runs of
Data-Fu engine with number sets of size 100

rules/number sets | execution time evaluation plan

20 8357 ms 4 ms
40 17195 ms 6 ms
60 30767 ms 7 ms
80 49430 ms 8 ms
100 75764 ms 9 ms

The results of the evaluation for large amounts of interac-
tions show that the Data-Fu engine scales well up to thou-
sands of interactions even on commodity hardware. The
Data-Fu engine is capable of interacting with 10 000 web
resources in about 1:15 min. The necessary time required
to establish the evaluation plan increases with the number
of rules, but remains a very small fraction of the overall
execution time and is therefore negligible.

The evaluation shows the advantages of the parallel process-
ing of queries and interactions and provides evidence that
the Data-Fu engine is capable of performing rapid interac-
tions with web resources as desired. We did not consider the
necessary time to establish HT'TP connections on the web
and the response time of the servers, where resources are
deployed, since these additional time requirements would be
the same for any employed interaction system. Note how-
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Figure 8: Average execution time from ten runs of
Data-Fu engine with number sets of size 100

ever, that due to its parallel processing nature, the Data-Fu
engine could further benefit from longer response times of
servers compared to other systems: At the same time as the
Data-Fu engine performs the manipulations and retrieval of
resources other rules can be evaluated, thus the overall exe-
cution time can be minimised.

We provide the data used for the evaluation and an exe-
cutable jar online! to re-run the experiments.

8. RELATED WORK

Pautasso introduces an extension to BPEL [21] to allow a
composition of REST and traditional web services. To al-
low for a BPEL composition REST services are wrapped in
WSDL descriptions. For a comparision between RESTful
services and “big” services see [23].

There exist several approaches that extend the WS-* stack
with semantic capabilities by leveraging ontologies and rule-
based descriptions (e.g., [28, 10, 8]) to achieve an increased
degree of automation in high level tasks, such as service
discovery, composition and mediation. Those approaches
extending WS-* became known as Semantic Web Services
(SWS). An Approach to combine RESTful services with
SWS technologies in particular WSMO-Lite [31] was inves-
tigated by Kopecky et al. [16]. In contrast to SWS, REST
architectures do not allow to define arbitrary functions, but
are constrained to a defined set of methods and are built
around another kind of abstraction: the resource. There-
fore our approach is more focused on resource/data centric
scenarios in distributed environments (e.g., in the Web).

Active XML introduces service calls as XML nodes that are
placeholders for new XML documents that can be retrieved
from the service [1]. The service calls are comparable to hy-
permedia links in resource descriptions and the active XML
document corresponds to the knowledge space. In contrast
to Active XML, our work discovers links to new resources in-
stead of links to function calls. The resource model provides
more flexibility, e.g., a Data-Fu program could perform a
DELETE on a discovered resource, whereas the Active XML
equivalent would be constrained to the predefined operations
in the original link.

Uhttp://people.aifb.kit.edu/sts/datafu/evaluation/

The scripting language S [6] allows to develop Web resources
for REST interactions with a focus on performance due to
parallelisation of calculations. In their definition resources
can make use of other resources, thus also enabling a way
of composing REST services. S does not explicitly address
flexibility aspects of REST and has no explicit facilities to
leverage hypermedia controls or to infer required operations
from resource states.

RESTdesc [30] is an approach in which RESTful Linked
Data resources are described in N3-Notation. The composi-
tion of resources is based on an N3 reasoner and stipulates
manual interventions of users to decide which hypermedia
controls should be followed.

Hernandez et al. [14] proposes a model for semantically
enabled REST services as a combination of pi-calculus [19]
and approaches to triple space computing [9] pioneered by
the Linda system [13]. They argue, that the resource states
can be seen as triple spaces, where during an interaction
triple spaces can be created and destroyed as proposed in an
extension of triple space computing by Simperl et al. [25].

Similar to the idea of triple spaces is the composition of
RESTful Linked Data resources in a process space, proposed
by Krummenacher et al. [17] based on resources described
using graph patterns. Speiser and Harth [26] propose sim-
ilar descriptions for RESTful Linked Data Services. Our
approach shares the idea that graph pattern described re-
sources read input from and write output to a shared space.
We improve on this approach by providing a rigid service
model and a more explicit way of defining the interaction
with resources.

9. CONCLUSION

In this paper, we addressed the problem of creating value-
added compositions of data and functionalities. As a unify-
ing model for both static data sources and dynamic services,
we described how Linked Data Resources can be extended
with descriptions for RESTful manipulation. The natural
extension of Linked Data with RESTful manipulation of re-
sources enables a framework with uniform semantic resource
representations for REST architectures. We have proposed
to exploit the advantages resulting from the combination of
REST and Linked Data in a programming framework for the
Semantic Web. We have introduced Data-Fu, a declarative
rule-based execution language with a state transition system
as formal grounding, and the challenges we address with this
language, i.e., achieving scalability and performance while
preserving the flexibility and robustness of REST. Further-
more, we described our implementation of an execution en-
gine for the Data-Fu language.

For future work, we plan to extend our approach in the fol-
lowing directions. First, we will add capabilities to improve
handling of failures of resource interactions. Second, we will
extend our formal model of Data-Fu to provide clearly de-
fined semantics in the presence of non-deterministic rules.
Third, we will integrate support for rule-based reasoning into
the execution engine. The rules bring useful expressivity for
aligning different vocabularies and can be easily supported
in the engine by introducing triple-producing rule heads in
addition to the current state transition handlers.
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