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Abstract This paper presents a comparative study of

two path-following controllers developed for guiding

autonomous vehicles in semi-structured outdoor en-

vironments. Part of this paper is focused on the per-

formance of two path-following controllers, which are

implemented using two different approaches, the first

using fuzzy logic and the second using chained sys-

tems theory. The control effort and the errors mag-

nitude along the path are evaluated in a comparative

way. A magnetic guidance system for autonomous ve-

hicles navigation in semi-structured outdoor environ-

ments is also described, integrating redundant encoders

data and absolute positioning data provided by on-

board magnetic sensors and magnetic markers buried in

the road. Simulation and experimental results are pre-

sented showing the effectiveness of the overall control

system.
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1 Introduction

A new approach for mobility providing an alternative

to the private passenger car, by offering the same flexi-

bility but with much less nuisances, is emerging, based

on fully automated electric vehicles, named cybercars

[6, 18]. A fleet of such vehicles might be an important

element in a novel individual, door-to-door, transporta-

tion system to the city of tomorrow. These vehicles must

be user-friendly, easy to handle and functioning with

total safety, not only for passengers but also for other

road users. These vehicles are already in operation in

specific environments featuring short trips at low speed

[3, 6].

For fully automated operation, path-following and

lateral controllers have been widely investigated, using

different control strategies, such as fuzzy-logic, slid-

ing mode and chained form based controllers. In [22],

a simplified nonlinear kinematics model is proposed,

intended to ease the design and implementation of a sta-

ble lateral controller. Fuzzy-logic controllers (FLC) are

described in [10, 11]. The design and simulation eval-

uation of trajectory-tracking and path-following con-

trollers based on sliding mode control is described in

[21].
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Fig. 1 Navigation system

architecture. Two lateral

controllers were developed.

Although only one runs for

each set of experiments they

are both represented in the

figure as fuzzy logic module

and chained form module

This paper describes developments of an au-

tonomous navigation system applied on guiding a

four-wheel actuated electrical vehicle moving in semi-

structured outdoor environments. Its purpose is to pro-

vide guidance control with anti-collision behaviour for

low-speed vehicles moving in cybercars scenarios. Cy-

bercars [6] have to satisfy challenging requirements

like following a path, with high accuracy, in narrow

spaces shared with other vehicles and in some areas

with pedestrians, providing ride comfort, with low level

of jerk and assuring complete safety with human driver-

less control. A suitable controller has to be chosen ful-

filling the previous requirements, which motivated the

comparative study of the two lateral control strategies

presented in this paper.

Odometry being essential for autonomous naviga-

tion is not enough due to its relative and integrative

nature. So, it is required to complement odometric data

with absolute positioning. Data fusion of ABS sensors

and GPS for outdoor localization, based on an Extended

Kalman Filter (EKF) had been presented in [4]. Self-

localization, given a map of the environment, and the

more challenging problem of simultaneous localization

and mapping are two examples of key mobile robot

problems requiring positioning data. The most com-

monly used localization probabilistic approaches em-

ploy Kalman filtering (e.g. [13]), grid-based Markov

localization [9] and Monte Carlo methods [8]. On

the other hand, the California Partners for Advanced

Transit and Highways (PATH) Program has been

given important contributions in the development of a

reference system based on magnets for vehicle lateral

guidance/control [24, 27].

1.1 Navigation architecture

The overall navigation system (see Fig. 1) is composed

of three main subsystems, which are designated by

path-following controller (PFC), vehicle’s pose esti-

mator (VPE) and multi-target detection and tracking

system (MTDTS). The MTDTS is described in [16],

while the PFC and VPE modules are addressed in this

paper. The PFC is made up of two main modules: the

velocity planner (VP) and the lateral controller (LC).

The VP provides local target points of the reference

trajectory and computes the maximum and the com-

fortable velocities, taking into account external factors.

The considered external factors are tyre characteristics

and passenger comfortable lateral and longitudinal ac-

celerations.

Two lateral controllers, one fuzzy-logic-based and

another using chained form theory, were developed

which are described and compared in this paper.

2 Kinematics and odometry model

2.1 Kinematics model

A Robucar (manufactured by Robosoft) is used in

the autonomous navigation experiments. It is equipped

with four wheels, each one driven by an independent
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Fig. 2 Illustrative construction of lateral and heading errors (in

real situation the discrete path points Pi are much closer between

each other, when compared with the vehicle dimensions). Pi de-

note the points that define the reference trajectory; d
cp
e and d ra

e

are the lateral errors at CP and rear axle, respectively; d
tg
e is the

perpendicular distance between the rear axle midpoint and the

current tangent to the path; θ , θ
cp
e and θd are the orientation of the

vehicle, heading error and desired heading, respectively. W � and
R� represent respectively the world coordinate system and the

vehicle local coordinate system with its origin at the midpoint of

the rear axle and its x-axis aligned with the longitudinal axis of

the vehicle

motor equipped with its own encoder. The vehicle has

the ability to steer both the rear and the front pair of

wheels [19], but in our models and experiments only

front steering has been used due to uncertainties on

the odometry model of a double steered vehicle. The

classical model considers an imaginary wheel at the

midpoint of the wheels axles, so that it is oriented in

the direction of the steering command.

The configuration of the vehicle can be described

without ambiguity by (x, y, θ ) (see Fig. 2):

– x and y are the coordinates of the rear axle centre

with respect to the W � coordinates;

– θ is the vehicle heading with respect to the W �

coordinates.

The vehicle kinematic equations are derived ac-

cording to pure rolling, non-slipping and rigid body

assumptions. Therefore, a linear velocity vector and

instantaneous rotation centre exists at the reference

frame located at the midpoint of the rear axle R� and

the velocity is directed along the vehicle axle. Kinemat-

ics models have the property of keeping the steering and

velocity of the vehicle completely decoupled, therefore

turning easy the kinematics-based control design. The

kinematic model of the vehicle, for a reference frame

located at the midpoint of the rear axle R�, is

⎡
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where v1 represents the linear velocity of the vehicle,

v2 is the steering angular velocity, L is the distance

between the rear and front axles, ϕ is the front steer-

ing angle and θ is the vehicle orientation in the world

coordinate system, as depicted in Fig. 2.

A different point of view and more useful in terms of

path-following is the one that describes the vehicle be-

haviour in terms of the path coordinates [14]. Assuming

that the vehicle has to follow a path defined by its arc

length, one can define the following error variables:

Springer



448 Nonlinear Dyn (2007) 49:445–462

� d
tg
e the perpendicular distance between the rear axle

midpoint and the current tangent to the path.
� θ

tg
e the angle between the current tangent to the path

and the x-axis of the vehicle.

Under these assumptions, one can derive the kine-

matic model in terms of the path coordinates,
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where c(s) is the curvature of the path.

2.2 Odometry model

Let the vehicle position be represented by the middle

point rear axle M with Cartesian coordinates (xk, yk)

at time tk , as shown in Fig. 3. The vehicle local co-

ordinate system is defined as having origin M and its

x-axis aligned with the longitudinal axis of the car. θk

is the vehicle heading angle at time tk . Assuming that

the vehicle’s motion is locally circular, its position and

Fig. 3 Vehicle geometrical configuration

Table 1 Vehicle geometrical configuration parameters

L Car length (distance between rear and front axle)

e Half-track (half car width)

ϕR Steering angle from right wheel

ϕL Steering angle from left wheel

ϕ Steering angle of the virtual front wheel

D Curvature radius of virtual front wheel

ρ Curvature radius of the rear axle center

orientation at time tk is given by

⎧

⎪

⎨

⎪

⎩

xk+1 = xk + � cos(θk + ω/2)

yk+1 = yk + � sin(θk + ω/2)

θk+1 = θk + ω

(3)

where � is the arc length and ω the elementary rotation.

Assuming that there is no wheel slippage and using only

data from the rear wheels encoders, then

� =
�RR + �RL

2
, ω =

�RR − �RL

2e
(4)

where e is the half distance between wheels and �RR

and �RL are calculated using the right and left wheel

encoders measurements, respectively.

The vehicle geometrical configuration parameters

are illustrated in Fig. 3 and are summarized in

Table 1.

3 Path-following controllers

The vehicle can execute a point-to-point stabilization,

path-following and trajectory tracking. Point-to-point

stabilization requires that the vehicle moves from point

A to point B with no restrictions on its movement be-

tween these two points. While in path-following, the

vehicle must move along a geometric path, in trajec-

tory tracking, the vehicle must move along a geometric

path at a given speed.

This paper addresses the path-following problem.

The PFC is made up of two main modules: VP and

LC. Two LCs are described in this section with the

following set of inputs:

– for the chained-form-based controller:

uCF =
[

θ tg
e , d tg

e , c(s)
]

(5)
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– for the fuzzy controller:

uFL = [θ cp
e , dcp

e , �θ cp
e , �dcp

e , timp, dile, c(s), v]

(6)

where v denotes the linear reference velocity, timp is the

time-to-collision computed in the MTDTS, dile is the

inline lateral error (see Section 3.2.2) and the differen-

tial errors �d
cp
e and �θ

cp
e , at the control point (CP) are

given by

�dcp
e = dcp

e (k) − dcp
e (k − 1) (7)

and

�θ cp
e = θ cp

e (k) − θ cp
e (k − 1) (8)

Collision avoidance is achieved by controlling the ve-

hicle’s reference velocity, reducing or even stopping

the vehicle in situations of eminent danger. The main

goal of the path-following controller is to ensure that

the vehicle follows the predefined reference path with

appropriate orientation. For the fuzzy logic controller

this can be understood as a task of minimizing the ve-

hicle lateral and heading errors (d
cp
e , θ

cp
e ) with respect

to the reference path, at a given control point (CP) lo-

cated at a distance La denoted by lookahead distance,

as illustrated in Fig. 2.

For both controllers the curvature along the path c(s)

is estimated as described in [15]. From the third row of

(2) one can obtain a linearly parameterizable system in

c(s) written by

y = wa (9)

where

y =
v1d

tg
e tan ϕ

L
− θ̇ tg

e (10)

w = v1 cos(θ tg
e ) +

v1d
tg
e tan ϕ

L
− θ̇ tg

e d tg
e (11)

a = c(s) (12)

Knowing w and y, an estimate of a, i.e. â, is obtained

using the least squares estimator:

J =

∫ t

0

(y − wâ)2 dτ (13)

Solving for â so as to minimize J , the following update

equation for â is obtained:

˙̂a = P(wy − w2â) (14)

where P and its update equation Ṗ are given by:

P =
1

∫ t

0
w2dτ

(15)

Ṗ = −P2w2 (16)

Each controller has to provide the same control vec-

tor ([ϕc, vc, ϕsw]) to the traction control level, where

ϕc (in degrees) is the steering angle, vc (m s−1) is the

velocity command and ϕsw is the rear steering switch

that controls the two possible driving modes: dual and

park modes. In dual mode the rear axle steers in op-

posite direction of the front axle, while in park mode

the rear and front axle steers in the same direction. The

chained form controller provides a steering angle ve-

locity command (ϕ̇c) which has to be integrated before

being issued to the traction control level (see Fig. 4).

The traction controller is common for any controller

type, thus providing modularity to the system architec-

ture. For each wheel and steering axle there is an in-

dependent PID controller as shown in Fig. 4, enabling

control of wheel slippage and the two possible driving

modes: front steered and double steered. Although it

is possible to use the double steered option, only front

steering was used in the implemented controllers.

3.1 Velocity planner

The VP module calculates the linear reference veloc-

ity, as well as determines the local reference trajectory

points. One main objective taken into account was to

make the trip as comfortable as possible, i.e. to give the

system the capability of fully controlling the smooth-

ness of the acceleration profile either lateral or longi-

tudinal.

A Canadian study [7] used a highway testing ground

to test speed and lateral acceleration on both wet and

dry pavement on horizontal curves. They found that

“comfortable lateral acceleration” and “speed environ-

ment” limited the driver’s speed, while pavement sur-

face conditions (dry or wet) and the driver’s gender did
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Fig. 4 Lateral and traction

control structures

not. Drivers adjusted their comfortable speed accord-

ing to their comfortable lateral acceleration tolerance,

approximately between 3.43 and 3.92 m s−2. Another

study [26] revealed the comfortable longitudinal ac-

celeration, i.e. steady deceleration under expected-stop

conditions; drivers generally exert an average steady

braking force of −3.43 m s−2. This amount of braking

force seems comfortable for most drivers.

The previous acceleration limits were used to set

up the maximum comfort acceleration amc and maxi-

mum comfort velocity vmc. The maximum acceleration

without slipping amws and maximum velocity without

slipping vmws still had to be computed to cope with un-

expected situations. To estimate vmws, it is necessary

to know the forces that actuate on the vehicle, which

are basically the horizontal forces, the wheel ground

contact forces, the force that the vehicle exerts on the

ground and the wind force over the vehicle (air resis-

tance). In this study we consider a plane road and no

wind force effects are taken into account.

The friction force is proportional to the normal re-

action, where the proportionality factor is the friction

coefficient μ (static or dynamic).

Taking into account the previous assumptions one

can derive the maximum velocity without slipping

vmws =
√

rg(μ cos(ψ) + sin(ψ)) (17)

Springer



Nonlinear Dyn (2007) 49:445–462 451

Fig. 5 Vehicle following a given path. In the figure some sam-

pling points are marked (11, 21, 31 and 41 ) (x-axis and y-axis

are in meters)

where g is the gravity acceleration, r the curvature ra-

dius and ψ denotes the roll angle of the vehicle.

An estimate of μ is obtained by the following equa-

tion:

μ(S) = (c1(1 − e−c2 S) − c3S)e−c4 Sv
(

1 − c5 F2
z

)

(18)

where S is the resultant slip and the constants ci

(i = 1 . . . 5) are characteristic parameters of various

types of road [12]. The velocity vmc determines the

intended vehicle velocity used in the vehicle motion.

The vmws has a more ruggedness profile, as can be ob-

served in Fig. 6, which shows the velocity profiles

corresponding to the example of a vehicle following

the path depicted in Fig. 5. In order to fulfil the amws,

or the amc constraints, the vehicle should start braking

in advance being more restrictive for the amc profile

(see Fig. 7). The profit of being more restrictive is a

smoother variation on the amc profile.

3.2 Fuzzy logic lateral controller

The fuzzy LC is composed of four independent mod-

ules: front steering controller, rear steering switch,

velocity command generator and lookahead distance

computation (see Fig. 8). In order to properly avoid

collisions with obstacles the time-to-impact timp (also

referred here as time-to-collision), provided by the

MTDTS, is integrated in the velocity command gener-

ator. All modules are fuzzy logic based. Figure 8 shows

the LC identifying the fuzzy logic inference flow from

the input variables to the output variables.

The fuzzy controller is characterized in Table 2. The

fuzzification transforms numerical variables into fuzzy

sets, which can be manipulated by the controller. The

controller uses fuzzy triangular membership functions

and trapezoidal membership functions to encode inputs

and outputs. The controller uses min and max connec-

tives and a singleton sum–product inference mecha-

nism. The center of gravity defuzzification method was

used. Because more than one output term can be eval-

uated as valid, the defuzzification method must be a

compromise between different results. The center of

gravity method was chosen because it takes into ac-

count, better than any other method, the distribution of

the resultant fuzzy set. In this method, the defuzzified

value u is a weighted sum of the term membership:

u =

∑

i μ(xi )xi
∑

i μ(xi )
(19)

where xi is the degree of activation of the i th rule and

μ(xi ) is the output membership function.

The input sets, the output sets, part of the fuzzy

knowledge base and some of the membership functions
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Fig. 6 Velocity profiles for

the example of Fig. 5

(x-axis denotes the

sampling points and y-axis

is in m s−1)
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Fig. 8 Fuzzy lateral controller modules

are presented in [2]. The knowledge base of the LC

expresses how the system should react, a complete de-

scription can be found in [1].

3.2.1 Front steering module

The front steering module computes the steering com-

mand ϕc. The purpose is to minimize both the orien-

tation error θ
cp
e and the lateral error d

cp
e . A steering

increment fuzzy variable (ϕinc) is computed in order to

achieve a faster recovery from an undesirable pose. ϕinc

is the output of a fuzzy module which has as inputs c(s)

and �θ
cp
e .

Table 2 Fuzzy controller structure

Fuzzy system Structure

Input variables 8

Output variables 4

Intermediate variables 1

Rule blocks 5

Rules 615

Membership functions 48

3.2.2 Rear steering switch module

The rear steering switch module enables dual mode or

park mode. The inputs of this module are �d
cp
e and the

inline lateral error dile given by

dile =

∣

∣

∣

∣

d
cp
e

d
cg
e

∣

∣

∣

∣

+ |θ cp
e | (20)

If �d
cp
e is decreasing and dile is small, this module

steers the rear wheels in the same direction as the front

wheels; the result is a decrease in the vehicle’s yaw

motion. The yaw motion is necessary for executing a

manoeuvre but is not desired from the point of view

of the vehicle’s stability control [20]. This module was

only implemented and tested in simulations.

3.2.3 Velocity command generator module

The inputs of this module are �d
cp
e , d

cp
e , �θ

cp
e , θ

cp
e and

the timp. This module computes a weight factor assign-

ing a level of significance to the reference velocity,

i.e. if the errors have a high magnitude or the time-to-

collision has a low magnitude then the velocity must be

decreased, otherwise the reference velocity is applied.

This module is of extreme importance since collision

avoidance is decided here, i.e. if the timp is small, then

the vehicle velocity is reduced or the vehicle is even

stopped.

3.2.4 Lookahead distance computation module

This module computes the lookahead distance, La ,

which is a function of the vehicle velocity, v. If the

velocity increases, the damping factor of the closed

loop system gets worse and is improved by increasing

the lookahead distance. The lookahead distance pro-

vides a prediction behaviour to the controller, since it
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enables the control point to be far ahead of the CG of

the vehicle, see Fig. 2.

3.3 Chained-form-based lateral controller

The control law designed here, based upon the kine-

matics model, uses the chained systems theory [5]. Al-

though mobile robot models cannot be linearized, it has

been proven that one can convert the nonlinear system

in an almost linear system, termed as chained form. A

2-input and n-state chain form system (2, n) has the

following structure:

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1 (21)

...

ẋn = xn−1u1

The vehicle model from Equation (2) can be con-

verted into chained form using the following change

of coordinates and input transformations [14], respec-

tively:

x1 = s

x2 = − c′(s)d tg
e tan

(

θ tg
e

)

− c(s)(1 − d tg
e c(s))

1 + sin2
(

θ
tg
e

)

cos2
(

θ
tg
e

)

+
(1 − d

tg
e c(s))2 tan(ϕ))

L cos3
(

θ
tg
e

)

x3 = (1 − d tg
e c(s)) tan(θ tg

e )

x4 = d tg
e (22)

v1 =
1 − d

tg
e c(s)

cos
(

θ
tg
e

) u1

v2 = α2(u2 − α1u1) (23)

where c′(s) denotes the derivative of c with respect to

s, and

α1 =
∂x2

∂s
+

∂x2

∂d
tg
e

(

1 − d tg
e c(s)

)

tan
(

θ tg
e

)

+
∂x2

∂θ
tg
e

(

tan(ϕ)
(

1 − d
tg
e c(s)

)

L cos(θ
tg
e )

− c(s)

)

α2 =
l cos3(θ

tg
e ) cos2(ϕ)

(

1 − d
tg
e c(s)

)2
(24)

and the other variables are defined in Fig. 2.

Although the system has two inputs, u1 and u2, this

model can be considered single input if u1 is known

a priori. Then the objective of the control law is to

achieve path-following under the assumption that the

vehicle linear velocity u1 is constant.

The controller was made using the smooth time-

varying feedback stabilization method described in

[14], where control is either smooth or at least con-

tinuous with respect to the robot state.

As a first step, the variables of the chained form are

redefined

χ = (χ1, χ2, χ3, χ4) = (x1, x4, x3, x2) (25)

resulting in the chained form system

χ̇1 = u1

χ̇2 = χ3u1 (26)

χ̇3 = χ4u1

χ̇4 = u2

The above reordering is simply an exchange between

the second and fourth coordinates. Path-following is

achieved via input scaling, which requires zeroing the

χ2, χ3 and χ4 variables, independently from χ1. The

system (26) is controllable if u1 is a piecewise contin-

uous, bounded and strictly positive (or negative) func-

tion, as stated in [14]. Therefore, u2 is the only input

to the system as long has u1 is known a priori:

u2(χ2, χ3, χ4, t) = −k1|u1(t)|χ2

− k2u1(t)χ3 − k3|u1(t)|χ4 (27)

The complete deducing of the controller and its

background theory are described in [14].
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4 Vehicle pose estimator

4.1 EKF odometry

The odometry model in (3) and (4) is based only on

the rear wheels encoder. Using also the front wheels

encoders, redundant data become available, which can

be used to produce better estimates of � and ω. The

steering angle of left and right wheels can be expressed

by

ϕL = arctan

(

tan(ϕ)L

L − e tan(ϕ)

)

(28)

ϕR = arctan

(

tan(ϕ)L

L + e tan(ϕ)

)

(29)

where ϕ is the steering angle of the virtual front

wheel.

From (28) and (29) and knowing that � = ρω, a

set of equations can be established which relates the

encoders measurements (from each of the four wheels

and steering) with the parameters � and ω [4]:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

tan(ϕ) = L ω
�

�RL = � − eω

�RR = � + eω

�FL cos(ϕL) = � − eω

�FR cos(ϕR) = � + eω

(30)

Therefore, considering x = [�, ω]T and

y = [tan(ϕ), �RL, �RR, �FL cos(ϕL), �FR cos(ϕR)]T

the state and measurement vectors, respectively, an

EKF can be applied as in [4] to estimate the state vector,

from the redundant data.

4.2 Odometry confidence tests and simulation

In this section, the EKF odometry described in

Section 4.1 is applied. Real data measurements, gath-

ered from Robucar encoders moving along a closed

path as depicted in Fig. 9, were used in the reported

simulations. The qualitative behaviour of the EKF odo-

metric model is very satisfactory in normal road con-

ditions of adherence as illustrated in Fig. 9(a) and (b).

White Gaussian noise was added to the measures with

a signal-to-noise ratio of 10 dB. The EKF filters effi-

ciently coped with the added noise. This result is well

illustrated in Fig. 9(c), where it is shown that the EKF

odometry approaches very closely the real trajectory

(computed with the encoders data without noise), while

the trajectory computed from the noisy measurements

diverges a lot, as expected.

However, this odometric model does not solve the

problem inherent to slippages. If a big slippage oc-

curs, the Kalman filter will not eliminate its effects.

This problem can be attenuated by pre-processing the

redundant data before providing it to the EKF odome-

try algorithm. We can compute an approximate motion

of the rear wheels based on the motion performed by

the front wheels and vice versa, applying the following

equations:

�R =
�RR + �RL

2
ωR =

�RR − �RL

2e

�F =
�FR + �FL

2
ωF =

�FR − �FL

2e

(31)

�F/R =
�R

cos(ϕ)
�R/F = cos(ϕ)�F (32)

�VRL = �R/F − eωF �VRR = �R/F + eωF

�VFL = �F/R − eωR �VFR = �F/R + eωR

(33)

In (31), (�R,ωR) and (�F,ωF) are the parameters with

respect to the midpoint of the rear axle and front axle,

respectively. In (32) and (33), �i/j means �i computed

based on measurements from j , with i, j = {F, R}.

Equations (33) express the designated virtual displace-

ments for each wheel. Based on (33) we define the

following confidence coefficients:

CCR = 1 −
|�VRL − �RL| + |�VRR − �RR|

|�VRL + �RL + �VRR + �RR|

CCF = 1 −
|�VFL − �FL| + |�VFR − �FR|

|�VFL + �FL + �VFR + �FR|

(34)

The confidence coefficients are used to decide if a

virtual measure (�VRR, �VRL, �VFR and �VFL) is used

instead of the real measure. Figure 9(d)–(f) shows re-

sults of using the algorithm in a simulation of slippages

injected on the rear right wheel at t = 10 s and t = 50 s.

As we can see from Fig. 9(d), the EKF with this data
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Fig. 9 (a) EKF estimation for � (real – encoders measures; noise

– measures with white noise; Kalman – obtained estimation);

(b) EKF estimation for ω (real – encoders measures; noise –

measures with white noise; Kalman – obtained estimation); (c)

Odometry results with and without the EKF (real – encoders

measures; noise – measures with white noise; Kalman – ob-

tained estimation); (d) � estimation with a simulated slippage

(noise – encoders measures with a simulated slippage at t = 10

and t = 50 s; EKF-CT – estimation with EKF-CT); (e) Odome-

try obtained with CT (CT – path estimated applying the CT and

odometry model (3); real – path without the simulated slippage;

EKF-CT – path estimated applying the EKF-CT); (f) Odome-

try obtained with EKF without using CT (real – path without

the simulated slippage; EKF – path estimated applying the EKF

odometry)

pre-processing, henceforth known as EKF-CT odome-

try (EKF odometry with confidence tests), will not fol-

low the slippage, hence the algorithm detected a wrong

measure and replaced it by the virtual measure, com-

puted based on the other measures. Estimated paths us-

ing the EKF-CT and the EKF algorithms are illustrated

in Fig. 9(e) and (f). In both, the solid line represents the

real path. In Fig. 9(e), the dotted line represents the es-

timated path using odometry model (3) and confidence

tests.

4.3 Fusion of odometry and positioning absolute data

The vehicle is equipped with sensors which provide

absolute positioning data: (1) a SICK laser which pro-

vides range-bearing data (d, φ) associated to visible

landmarks; (2) two magnetic sensing rulers, one placed

on the front and the other on the rear of the vehicle.

The magnetic sensing rulers developed at ISR [17],

based on an array of adjacent Hall effect sensors, de-

tect robustly magnetic markers which are placed on the

ground defining centerpoints of the path to be followed

by the vehicle.

The fusion of odometry data with absolute position-

ing data is made by means of EKFs. The vehicle’s

pose is defined by the Cartesian coordinates (x, y) and

heading (θ ), which are the state variables of the EKF.

The state variables of the EKF odometry (Section 4.1)

are here treated as inputs to the EKF data fusion, i.e

uk = (�, ω) with an associated noise covariance ma-

trix Ŵk . The range-bearing measurements associated

to each landmark are treated as measurements in the

fusion process.

(1) System model: The system model is defined by

the kinematic nonlinear equations (3), with state

vector xk = [xk yk θk]T, and input uk = [�k ωk]T,

which can be written in the compact form (includ-

ing noises):

xk = f(xk−1, uk−1, γk−1, σk−1) (35)
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Fig. 10 Measurement model variables. In figure, (a, α) denotes

range-bearing data associated to a magnet detection

where γk and σk denote the system and input noises,

with associated matrices Q and Ŵk .

(2) Measurement model (example for the front mag-

netic ruler and laser-based detected landmarks):

let (a, α) be the range-bearing pair, associated to

a detected landmark, defined in the local robot co-

ordinate system (see Fig. 10). Thus, the following

equations yield

a =

√

(y f − yk)2 + (x f − xk)2

α = arctan
y f − yk

x f − xk

− θk (36)

where (x f , y f ) represents the Cartesian position of

the landmark. From (36) we can define the nonlin-

ear measurement model

zk = h(xk) + vk (37)

where h(xk) is the nonlinear vector function

h(xk) =

⎡

⎣

√

(y f − yk)2 + (x f − xk)2

arctan
y f −yk

x f −xk
− θk

⎤

⎦ (38)

and vk is the Gaussian sensor noise vector with co-

variance matrix Rk. The range-bearing data (a, α)

are the observation values entering the EKF, z =

[a α]T, which are calculated from sensor measures

as follows:

(a) for magnetic marker

a =

√

d2
m + L2

1

α = arctan
dm

L1

(39)

where dm is the magnetic ruler measure which

corresponds to the distance between the marker

with known position (xm, ym) and the magnetic-

sensing ruler central point, and L1 is the distance

between the front magnetic ruler and the vehi-

cle rear axis (we are assuming that the ruler is

perfectly parallel with the y-axis of robot coor-

dinate system).

(b) for laser-based detected landmark

a =

√

d2
l + L2

l + 2dl L l cos(φ)

α = arctan
d1 sin(φ)

L l + dl cos(φ)

(40)

where (dl , φ) are the range-bearing data de-

scribed in the laser coordinate system. It is as-

sumed that the laser coordinate system is aligned

with the robot coordinate system, with a distance

L l , defined in the xy-plane, between them.

Another (non-standard) measurement model has

been investigated and applied as described in [23],

which consists on considering in model (37):

z = [x f y f ]T

(41)

h(xk) =

[

xk + a cos(θk + α)

yk + a sin(θk + α)

]

(3) EKF algorithm: It is composed of the following

prediction and correction stages:

Prediction stage

x̂−
k = f (x̂k−1, uk−1, 0, 0)

(42)

P−
k = AkPk−1AT

k + BkŴk−1BT
k + Q

where the system (A) and input (B) matrices

are calculated as the following Jacobian of the
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Fig. 11 (a) θ
tg
e : Heading error using the chained form controller

(dashed line) and heading error using the fuzzy logic controller

(solid line) in degrees; (b) root mean square (RMS), maximum

(MAX) and minimum (MIN) heading error (in degrees) using

the chained form controller (CF) and the fuzzy logic controller

(FUZZY) for three reference velocities (6, 7, 8 ms−1)

system f(·) function:

Ak =

⎡

⎢

⎣

1 0 −�k sin
(

θk + ωk

2

)

0 1 �k cos
(

θk + ωk

2

)

0 0 1

⎤

⎥

⎦

(43)

Bk =

⎡

⎢

⎢

⎢

⎣

cos
(

θk + ωk

2

)

−�k

2
sin

(

θk + ωk

2

)

sin
(

θk + ωk

2

)

�k

2
cos

(

θk + ωk

2

)

0 1

⎤

⎥

⎥

⎥

⎦

Correction stage

Once measurements (a, α) become available the fol-

lowing correction stage is done:

Sk =
(

HkP−
k HT

k + Rk

)

Kk = P−
k HT

k S−1
k (44)

x̂k = x−
k + Kk(zk − h(x̂−

k ))

Pk = (I − KkHk)P−
k

where I is the identity matrix and Hk is the Jacobian of

the measurement h(·) function:

Hk = ∇x h(xk) (45)

4.3.1 Data association

In this work, we have adopted the conventional nearest

neighbour data association method, using the normal-

ized innovation distance

d̄k = υk
TSk

−1υk (46)

where υk denotes the innovation sequence υk = zk −

h(x̂−
k ) and Sk its predicted covariance, for accept-

ing/rejecting observations.

5 Simulation results

5.1 Chained form controller vs. fuzzy logic controller

In simulations, the following gains in (27) were used

as in [15]: k1 = λ3, k2 = 3λ2 and k3 = 3λ with λ = 5.

The value of λ was obtained iteratively starting from

an initial guess λ = 8.

From Figs. 11, 12, 13 and Table 3 one can ob-

serve the effectiveness of both controllers in guiding

the car along a predefined path shown in Fig. 14.

From Figs. 11(a) and 12(a), it is clear that the chained

form controller attempts to reduce the errors with a

faster response, but the reduction is only partially

achieved since afterwards the errors rise again. The
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Fig. 12 (a) d
tg
e : Lateral error using the chained form controller

(dashed line) and lateral error using the fuzzy logic controller

(solid line) in meters; (b) root mean square (RMS), maximum

(MAX) and minimum (MIN) lateral error (in meters) using

the chained form controller (CF) and the fuzzy logic controller

(FUZZY) for three reference velocities (6, 7, 8 ms−1)
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Fig. 13 (a) ϕc : Steering command using the chained form con-

troller (dashed line) and steering command using the fuzzy logic

controller (solid line); (b) root mean square (RMS), maximum

(MAX) and minimum(MIN) steering command (in degrees) us-

ing the chained form controller (CF) and the fuzzy logic con-

troller (FUZZY) for three reference velocities (6, 7, 8 ms−1)

previous errors dynamics reveals a two-lobe shape

when analysed over time, which does not occur with

the fuzzy controller.

Although the fuzzy logic has a better performance

in convergence with a predefined path it also has some

drawbacks, it shows a more oscillatory behaviour on

the steering command (Fig. 13(a)).

From the analysis of Table 3, Figs. 11(b), 12(b) and

13(b) one can deduce that the fuzzy controller is gen-

erally slightly better than the chained form controller

on most of the reference velocities used in the test. The

RMS data presented in Table 3 also reveals that the

steering command effort in the fuzzy logic controller

is not greater than in the chained form controller as it

would be expected by observing (Fig. 13(b)).

Figure 14 shows the path followed by both con-

trollers: the solid line is the predefined path, dashdot

line is the path followed by the vehicle when using the

fuzzy controller and the path followed when using the

chained form controller is the dashed one. The fuzzy

controller behaves better on the curves than does the

chained form controller but it is worst when the path
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Table 3 Comparative effectiveness (reference velocity =

7 m s−1 )

RMS Max Min

(max negative)

Orientation error θ
tg
e (rad)

Chained form 0.1223 0.2862 −0.1292

Fuzzy logic 0.1146 0.1920 −0.0426

Lateral error d
tg
e (m)

Chained form 0.2241 0.5631 −0.2311

Fuzzy logic 0.1190 0.2423 −0.0487

Steering command ϕc (rad)

Chained form 0.2482 0.3491 −0.3491

Fuzzy logic 0.2313 0.1463 −0.3486
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Fig. 14 Path-following simulation results, assuming no odom-

etry errors (neither measurement noise nor cumulative errors)

is a straight line. The chained form analysed here does

not embody the same prediction behaviour, described

in Section 3.2.4, as the fuzzy controller, which may be

one of the reasons of its inefficiency in curve.

Results presented in the following section concern

only with the fuzzy logic controller because when per-

forming simulations or experiments using recalibra-

tion, the heading and lateral errors feeded as inputs

are not continuous in time, showing significant val-

ues change as a result of a recalibration, for which the

chained form controller is not able to cope with.

5.2 Magnetic guidance

The VPE based on fusion of odometry and landmarks,

described in Section 4.3, has been extensively simu-

lated. Some results are shown and discussed in this

section. In the reported simulations two types of distur-

bances are considered: systematic errors and Gaussian

sensors measurement noise.

x
y

added error
added error

added error

Fig. 15 Systematic noise added to the pose (47) with K = 1.03,

[xe, ye] in meters and [θ
cp
e ] in radians

Systematic errors were applied in the process by

multiplying � with a factor K , yielding

⎧

⎪

⎨

⎪

⎩

xk+1 = xk + � × K × cos(θk + ω/2)

yk+1 = yk + � × K × sin(θk + ω/2)

θk+1 = θk + ω

(47)

and so, uncertainty is introduced in the pose (xk, yk, θk).

In order to evaluate the errors introduced by systematic

errors, the magnitude of the disturbance in the vehicle’s

pose (xe, ye, θ
cp
e ) is displayed in Fig. 15.

Additionally, Gaussian noise was added, denoted by

C , resulting in

⎧

⎪

⎨

⎪

⎩

xk+1 = xk + � × K × cos(θk + ω/2) + C

yk+1 = yk + � × K × sin(θk + ω/2) + C

θk+1 = θk + ω + C

(48)

In real environments, the detection of the magnets does

not return the exact center of the magnet, so in or-

der to have simulated measures similar to real ones, a

representative model of the magnetic field radiated by

the magnetic marker was used in simulations. Thus,

a magnetic marker was modelled as a magnetic dipole

with the magnetic field, B(x, y, z), at an arbitrary point

P(x, y, z), expressed as follows (in cgs units):

B =
μ0 M

4πr5
(3xzî + 3yz ĵ + (2z2 − x2 − y2)k̂) (49)
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Fig. 16 Odometry results without EKF corrections

where r =
√

x2 + y2 + z2, M is the magnetic moment

of the magnetic marker and the z-axis corresponds to

the height relative to the marker center.

Results shown in Figs. 16 and 17 exemplify how the

fusion process leads to a correct vehicle path-following.

If no correction is done, the path actually followed is

much different from the reference path. In Fig. 17 the

EKF copes with disturbances by using the magnets lo-

cated at the marked points. Although the errors are

accumulated during the curves, on the straight lines it

recovers by using the detected magnets. The fusion

method also handles false detections either coming

from hardware anomaly or from incorrectly positioned

magnets.

6 Experimental results

Extensive simulations have been done, showing the ef-

fectiveness of the proposed VPE data fusion module.

Field experiments have also been done, with the pur-

pose of analysing the localization system behaviour.

Whenever a sensor ruler detects a magnetic marker,

the measure (dm) enters the data fusion algorithm and

is accepted or not depending on the validation gate re-

sult.

Two types of experiments are reported in this sec-

tion. Both concern the path-following control of a

Robucar moving along a predefined closed path (see

Figs. 18–20). Figure 18 shows the test field environ-

ment where the virtual line represents a rough approxi-

mation of the planned trajectory. In both cases the same

fuzzy path-following controller, described here and in
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Fig. 17 VPE using EKF fusion of odometry and ten magnetic

markers (five markers on each side of the loop)

Fig. 18 Field test environment

Fig. 19 Experimental results obtained using only the front mag-

netic ruler – Robucar moving autonomously under a fuzzy path-

following controller. The four bullets represent the four physical

magnetic markers used in the experiment

detail in [2], was used. However, in one case, the de-

tected magnetic markers information was used in the

on-line computation of the vehicle’s pose, and so used

in the calculation of the errors to the controller, and in

the other case it was not used either in the vehicle’s pose
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Fig. 20 Experiment without odometry calibration – one run,

Robucar moving autonomously. In this experiment 36 magnets

were used. The path followed by the Robucar was recorded using

data from the front magnetic ruler (∗), rear magnetic ruler (+)

and data from the encoders (solid line) (standard odometry (3))

estimation or in the controller. As shown in Fig. 19,

when the vehicle passes through a magnetic marker,

the odometry is calibrated based on the detected lat-

eral deviation of the vehicle. In the experimental result

shown in Fig. 19, only four magnets, all aligned on one

side of the loop, were used. This simple configuration

was enough to keep the Robucar tracking the path. So

as to compare the performance of the navigation sys-

tem, with the calibration method based on the detected

markers, Fig. 20 illustrates an experimental test where

no calibration was done to the odometry system. In the

same figure, the solid line represents the computed path

as obtained by the odometry system and the star marks

represent the path followed by the center of the front

magnetic ruler, while the cross marks represent the path

followed by the center of the rear magnetic ruler. As

can be observed, the Robucar lost track of the path on

the first loop run, when finishing the loop. Notice that

the main error is in its orientation, hence the car before

losing the track of the path, was following a straight

line but with a wrong orientation.

7 Conclusions and future work

The fuzzy controller revealed to be very robust, this

means that it was able to cope with the two types of

errors presented in the simulations and experiments:

the first ones arriving from a normal closed loop con-

troller in path-following and the second ones when it

was submitted to sudden changes in the vehicle posi-

tion, which arise in the odometry recalibration process

using the magnets. If the magnets used in the simula-

tion were disposed in such a way that it would almost

be a continuous line of magnets then the chained form

controller would also had a good performance in cop-

ing the first and second types of errors, otherwise with

less recalibration data over time its use revealed to be

unsuitable on coping with the second type of errors.

The magnetic guidance system revealed good results

in experimental tests. We are now testing extensively

the complete fusion process, integrating also range-

bearing data from laser detected natural features [23].

The majority of systematic errors associated to the

odometry relying only on encoders are eliminated by

the markers calibration. However, that procedure alone

does not solve the slippage (or high-slippage) problem,

which can be reduced by applying confidence tests as

proposed in Section 4.2.

More field experiments are being carried out to

deeply characterize the performance of the overall VPE

data fusion module.

Acknowledgements This work was supported by Institute of

Systems and Robotics and Fundação para a Ciência e Tecnologia

under contract NCT04:POSC/EEA-SRI/58016/2004.

References

1. Bento, L.C.: Fuzzy logic lateral controller of a bi-

steerable four-wheels actuated vehicle. Technical Report IS-

RLM2004/01, Institute of Systems and Robotics, Portugal

(2004)

2. Bento, L.C., Nunes, U.: Autonomous navigation control with

magnetic markers guidance of a cybernetic car using fuzzy

logic. Mach. Intell. Robotic Control 6(1), 1–10 (2004)

3. Bishop, R.: Intelligent Vehicle Technology and Trends.

Artech House, London (2005)

4. Bonnifait, P., Crubill, P., Meizel, D.: Data fusion of four ABS

sensors and GPS for an enhanced localization of car-like ve-

hicles. In: Proceedings of the IEEE International Conference

on Robotics and Automation, Seul, Korea, pp. 1597–1602,

(2001)

5. Cordesses, L., Martinet, P., Thuilot, B., Berducat, M.: Robot

motion planning and control. In: Proceedings of the 16th

IAARC/IFAC/IEEE International Symposium on Automa-

tion and Robotics in Construction, Madrid, Spain, pp. 41–46,

(1999)

6. Cybercars: Cybernetic technologies for the car in the city.

Available via www.cybercars.org (2001)

Springer



462 Nonlinear Dyn (2007) 49:445–462

7. TranSafety: Canadian researchers test driver response to hor-

izontal curves. Road Manage. and Eng. J., TranSafety, Inc.

(Sept. 1998)

8. Fox, D., Burgard, W., Dellaert, F., Thrun, S.: Monte carlo

localization: Efficient position estimation for mobile robots.

In: Proceedings of the 16th National Conference on Artificial

Intelligence, Orlando, FL (1999)

9. Fox, D., Burgard, W., Thrun, S.: Markov localization for

mobile robots in dynamic environments. J. Artif. Intell. Res.

11, 343–349 (1999)

10. Fraichard, Th., Garnier, Ph.: Fuzzy control to drive car-like

vehicles. Int. J. Robotics Autonomous Syst. 34, 1–22 (2001)

11. Hessburg, T., Tomizuka, M.: Fuzzy control for lateral vehicle

guidance. IEEE Control Syst. Mag. 14, 55–63 (1994)

12. Kiencke, U., Nielsen, L.: Automotive control systems. SAE-

Soc. Automotive Eng., ISBN 3-540-66922-1 (2000)

13. Leonard, J., Durrant-Whyte, H.F.: Mobile robot localization

by tracking geometric beacons. IEEE Trans. Robotics Au-

tomat. 7(3), 376–382 (1999)

14. Luca, A., Oriolo, G., Samson, C.: Feedback control of a

nonholonomic car-like robot. In: Robot Motion Planning and

Control, Laumond, J.-P. (ed.) LNCIS, Vol. 229, pp. 171–253,

Springer, Berlin Heidelberg New York (1998)

15. Mellodge, P.: Feedback Control for a Path Following Robotic

Car. M.Sc. thesis in Electrical Engineering, Faculty of

the Virginia Polytechnic Institute and State University,

Blacksburn, VA (2002)

16. Mendes, A., Nunes, U.: Situation-based multi-target de-

tection and tracking with laserscanner in outdoor semi-

structured environment. In: Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems,

Sendai, Japan, pp. 88–93, (2004)

17. Moita, F., Nunes, U.: Magnetic ruler version 1.0. config-

uration, software structure and characterization. Technical

Report ISRLM2004/03, Institute of Systems and Robotics,

Portugal (2004)

18. Parent, M., Gallais, G., Alessandrini, A., Chanard, T.: Cy-

berCars: review of first projects. In: Proceedings of the

9th International Conference on Automated People Movers,

Singapore (2003)

19. Sekhavat, S., Hermosillo, J.: The cycab robot: a differentially

flat system. In: Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, Japan, Vol.

1, pp. 312–318 (2000)

20. Sika, J., Hilgert, J., Bertram, T., Pauwelussen, J.P., Hiller,

M.: Test facility for lateral control of scaled vehicle in an au-

tomated highway system. In: Proceedings of the 8th Mecha-

tronics Forum International Conference, The Netherlands,

pp. 24–26, (2002)

21. Solea, R., Nunes, U.: Trajectory planning with velocity plan-

ner for fully-automated passenger vehicles. In: Proceedings

of the IEEE Intelligent Transportation Systems Conference.

Toronto, Canada (2006)

22. Sotelo, M.A.: Nonlinear lateral control of vision driven au-

tonomous vehicles. Int. J. Mach. Intell. Robotic Control 5(3),

87–93 (2003)

23. Surrecio, A., Nunes, U., Araujo, R.: Fusion of odometry with

magnetic sensors using Kalman filters and augmented sys-

tem models for mobile robot navigation. In: Proceedings of

the IEEE International Conference on Industrial Electronics,

Dubrovnik, Croacia (2005)

24. Tan, A., Guldner, J., Patwardhan, S., Chen, C., Bougler,

B.: Development of an automated steering vehicle based on

roadway magnets-A case study of mechatronics system de-

sign. IEEE/ASME Mechatron. 4(3), 258–272 (1999)

25. Taylor, C.J., Kosecka, J., Blasi, R., Malik, J.: A compara-

tive study of vision-based lateral control strategies for au-

tonomous highway driving. Int. J. Robotic Res. 18(5), 442–

453 (1999)

26. TranSafety: Simulated on-the-road emergencies used to test

stopping sight distance assumptions. Road Manage. and Eng.

J., TranSafety, Inc. (July 1997)

27. Zhang, W., Parson, R.E.: An intelligent roadway reference

system for vehicle lateral guidance/control. In: Proceedings

of the 1990 American Control Conference, San Diego, CA

pp. 281–286 (1990)

Springer


