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Abstract: A huge number of data can be obtained continuously from a number of sensors in 

long-term structural health monitoring (SHM). Different sets of data measured at different times 

may lead to inconsistent monitoring results. In addition, structural responses vary with the 

changing environmental conditions, particularly temperature. The variation in structural 

responses caused by temperature changes may mask the variation caused by structural damages. 

Integration and interpretation of various types of data are critical to the effective use of SHM 

systems for structural condition assessment and damage detection. A data fusion-based damage 

detection approach under varying temperature conditions is presented. The Bayesian-based 

damage detection technique, in which both temperature and structural parameters are the 

variables of the modal properties (frequencies and mode shapes), is developed. Accordingly, the 

probability density functions of the modal data are derived for damage detection. The damage 

detection results from each set of modal data and temperature data may be inconsistent because 

of uncertainties. The Dempster-Shafer (D-S) evidence theory is then employed to integrate the 

individual damage detection results from the different data sets at different times to obtain a 

consistent decision. An experiment on a two-story portal frame is conducted to demonstrate the 

effectiveness of the proposed method, with consideration on model uncertainty, measurement 

noise, and temperature effect. The damage detection results obtained by combining the damage 

basic probability assignments from each set of test data are more accurate than those obtained 

from each test data separately. Eliminating the temperature effect on the vibration properties can 

improve the damage detection accuracy. In particular, the proposed technique can detect even 

the slightest damage that is not detected by common damage detection methods in which the 

temperature effect is not eliminated. 

 

Keywords: structural damage detection; temperature effect; data fusion; Dempster-Shafer 

evidence theory 
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1 Introduction 

 

For the past 20 years, a number of damage identification methods have been developed and 

applied in aerospace, mechanical, and civil communities [1]. Most of these methods utilize the 

changes in structural vibration data and are usually based on either measured signals directly or 

numerical models. However, the inevitable measurement noise and the inaccurate finite element 

model [2, 3] limit the successful application of these methods to large-scale civil structures [4, 5].  

 

The information fusion technique is a powerful tool for dealing with uncertainties. This 

technique has been widely applied in structural damage detection because of its inherent 

capability of extracting information from different sources and combining them into consistent, 

accurate, and intelligible information. The Bayesian theory and the Dempster-Shafer (D-S) 

evidence theory [6–13] are information fusion techniques popularly used for structural damage 

detection. The basic strategy of the Bayesian methods is that the posteriori probabilities can be 

updated based on the prior probabilities and conditional probabilities of the measured data using 

the Bayesian inference formula. As an extension of the Bayesian theory, the D-S evidence 

theory has been developed to combine multi-information following certain combination rules to 

reduce the uncertainties. Some researchers have investigated the application of the D-S evidence 

theory to structural damage detection [11–13]. 

 

Recently, studies have noted that environmental factors, such as temperature, humidity, water 

table, and freeze and thaw conditions, alter structural responses and, consequently, the structural 

vibration properties [14]. In addition, the variations in the vibration properties can be larger than 

those caused by structural damages. As a result, neglect of the environmental effects may lead to 

false damage detection.  

 

Wipf [15] studied the relationship between long-term movements of a bridge and ambient 

temperature. In the study of the Alamosa Canyon Bridge, Sohn et al. [16] presented a linear 

adaptive model to discriminate between the change in modal parameters due to temperature 

changes and those due to structural damage or other environmental factors. Peeters and De 
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Roeck [17] developed a black-box ARX model to describe the variation in frequencies of the 

Z24-Bridge in Switzerland as a function of temperature. Ko et al. [18] used neural networks to 

investigate the relation between the natural frequencies and temperature of the Ting Kau 

cable-stayed bridge based on one-year field measurement data. Xia et al. [19] investigated the 

variation in frequencies, mode shapes, and damping, with respect to temperature and humidity 

changes in an experimental reinforced concrete slab. Linear models between the modal 

parameters and temperature and humidity have been established. Xia et al. [20] further 

investigated the non-uniform temperature effects on structural frequencies. Based on a 

sensitivity model-based technique, Kess [21] used a variability test matrix to isolate operational 

and environmental variability for a woven composite plate and to minimize the variability of 

damage indicators. Based on a subspace residue and 2 -type global and sensitivity tests, 

Balmes [22] applied an extended detection algorithm to a simulated bridge deck. Xu and Wu [23] 

investigated the changes in frequencies and mode shape curvatures caused by average (seasonal) 

and asymmetric (sunshine) temperature variations in a cable-stayed bridge. Their results show 

that the frequency changes caused by temperature variation mask the frequency changes caused 

by damages. Yan et al. [24] proposed a principal components analysis-based damage detection 

method, with consideration on environmental conditions. 

 

Clearly, measurement noise, modeling errors, and varying environmental conditions are 

inevitable in practical civil structures. Therefore, these factors should be considered 

appropriately in damage detection and other structural health monitoring applications. Bao et al. 

[25] proposed a D-S evidence theory-based damage identification method through the Bayesian 

approach, in which the measurement noise from multiple sets of data and the modeling errors 

are included. However, the variation in temperatures has not been considered. The current paper 

extends the previous study and presents a data fusion-based damage detection method under 

varying temperature conditions. The relation between the modal properties and the structural 

temperature is investigated and is subsequently used to eliminate the temperature effect on the 

vibration properties. All the vibration data measured under different conditions are transferred to 

those under the same reference temperature. Subsequently, the previously developed D-S data 
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fusion theory is employed for damage detection or condition assessment. Application of the 

developed data fusion method to a laboratory-based experiment shows that this method can 

detect the slightest artificial damage in a portal frame, which cannot be detected without 

considering temperature changes.  

 

2 D-S Evidence Theory-based Data Fusion 

 

2.1 Basic principle of data fusion 

 

Data fusion was first proposed in the 1970s [26] and was developed in the 1980s alongside the 

rapid development of sensor techniques and computer technologies. Data fusion is a technique 

that uses computers to analyze automatically, integrate, and utilize spatial-temporal multi-sensor 

information through certain rules. Consequently, data fusion can explain and describe the 

measured objects consistently as well as fulfill the decision-making and evaluation tasks 

competently [26]. 

 

According to the data abstraction hierarchy, data fusion can be categorized into three levels: 

pixel level, eigen level, and decision level [26]. At the pixel level, the original data collected are 

summarized and analyzed before processing. At the eigen level, the important features from the 

original information, as measured from multiple sensors, are extracted. The decision level, also 

the top level, is where the final results for decision-making are obtained. Methods for decision 

fusion include the Bayesian fusion, the D-S evidence theory, and the fuzzy fusion. Differences 

between the D-S theory and the Bayesian theory have been presented by Klein [27]. In the present 

paper, the D-S evidence theory is employed as the data fusion technique for damage detection. A 

brief introduction to the D-S theory is given as follows. 

 

The D-S evidence theory uses the basic probability assignment function (BPA), the belief 

function (Bel), and the plausibility function (Pl) to quantify evidence and its uncertainty [28]. For 

a finite set of mutually exclusive and exhaustive propositions  , also known as a frame of 

discernment, a power set  2    is the set of all the subsets of   , including itself and a null 

set  . The BPA, represented by m, is a function defined as  : 2 0,  1  m   , such that 
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Respectively, the Bel and Pl measures are  

    
|

=
B B A

Bel A m B

  and (3)

    
|

=
B B A

Pl A m B
 

 , (4)

where A and B are the subsets of the power set, Bel represents the minimal confidence that a 

proposition lies in A or any subsets of A, and Pl represents the maximal confidence that one 

believes A. These two measures are the lower and upper bounds of belief of A, respectively. 

 

The measures of evidence (i.e., BPA) from different resources can be combined using 

Dempster’s rule of combination. As an example, two information sources, S1 and S2, are 

considered; m1 (B) and m2 (C) are the basic probability assignments given by sources S1 and S2, 

respectively. The combination rule is 

        1

1 2= 1
B C A

m A k m B m C


 

  (5)

    1 2=
B C

k m B m C
 

 , (6)

where k is the basic probability mass associated with the conflict between S1 and S2. Item (1-k) 

compensates for the loss of non-zero probability assignments to non-intersecting subsets and 

ensures that the summation of probability assignments of the resultant BPA equals the unit. The 

Dempster’s rule of combination is used to perform data fusion on the proposed damage 

detection method. Other combination rules can be found in Refs. 29–31. 

 

An example is given to understand better Dempster’s combination rule. Suppose two targets in a 

frame of discernment  1 2 ,  a a  , then the power set is     1 22 ,  ,  ,a  a     . Considering 

two evidence sources S1 and S2, the BPAs from S1 and S2 assigned to     1 22 ,  ,  ,   a  a      

are 1  m and 2 m , respectively. Suppose the values of the BPAs are  1 0m   ,  1 1 0.6m a  , 

 1 2 0.2m a  ,  1 0.2m   ,  2 0m   ,  2 1 0.4m a  ,  2 2 0.5m a  , and  2 0.1m   . 
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Table 1 illustrates the calculation. 

 

Table 1. Example of Dempster’s combination rule 

           m1 

m2 

 1 0m     1 1 0.6m a    1 2 0.2m a    1 0.2m    

 2 0m      0m      0m      0m      0m    

 2 1 0.4m a     0m     1 0.24m a     0.08m     1 0.08m a   

 2 2 0.5m a     0m      0.3m     2 0.1m a    2 0.1m a   

 2 0.1m      0m     1 0.06m a    2 0.02m a     0.02m    

 

k is calculated as 

     38.008.03.0000000021  
 CB

CmBmk , (7)

where B and C represent all the subsets of the power set 2 . 

 

The combined BPAs, 12  m , is computed as 

  12 0m    (8)

        
 

1

12 1 1 2

0.24 0.06 0.08
1 0.6129

1 0.38
dB C H

m a k m B m C


 

 
   

  (9)

        
 

1

12 2 1 2

0.1 0.1 0.02
1 0.3548

1 0.38
udB C H

m a k m B m C


 

 
   

  (10)

  12

0.02
0.0323

1 0.38
m   


 (11)

If the number of information sources is more than two, the evidence can also be combined one 

by one, as shown in Eqs. (5) and (6). Klein [27] and Shafer [28] provided a detailed description of 

the D-S evidence theory. 

 

2.2 Application to damage detection 
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A system stiffness matrix   K  can be expressed as an assembly of  N  element stiffness 

matrices as 

 
1

N

i i
i






 K K , (12)

where   iK  is the stiffness matrix of the ith element,  i ( 0 1i  ) is its stiffness parameter 

indicating the elemental damage index, and  N  is the number of structural elements. The 

damage index of a unit indicates no damage; a value of zero implies complete damage of the 

element. An element is defined as damaged when  i  value is less than a specified threshold. 

  iK  can also be the stiffness matrix of a substructure. 

 

Let ,  i dH  and ,  i udH  denote the damaged and undamaged states of the ith element, 

respectively. According to the D-S evidence theory, the frame of discernment is defined as  

  , ,,  i i d i udH H  , (13)

which is composed of two exhaustive and exclusive hypotheses. The power set  2  i  is 

composed of four propositions: 

     , ,2 ,  ,  ,  i
i i d i ud i H  H     , (14)

where the subset   i  is an empty set, and  i  represents uncertainty or the unknown. The 

BPAs are defined for each structural element as the measures of the probability of the four 

propositions. 

 

Sets of modal data are assumed to be estimated from long-term vibration data of the structure. 

The modal data in the nth test are referred to as ˆ
nΛ . 

        
1 1

ˆ ˆ ˆ ˆ ˆ= , , , , ,
m m

Tn n n T n T
n N N  

 Λ φ φ  , (15)

where  ˆ  n
r  and  ˆ  n

rφ  denote the rth frequency and mode shape extracted from the nth data 

set, respectively.   mN is the number of the estimated modes, and superscript   T denotes the 
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transpose of a matrix or vector. When the vibration test is repeated  sN times, the collection of 

  sN sets of modal data is denoted as  1 2
ˆ ˆ ˆˆ ,  ,  ,  

st ND Λ Λ Λ .  sN sets of data are used to 

calculate the distribution of the modal data of the group. The group data can be measured at one 

time or at different times under different temperature conditions. In long-term vibration tests, 

  tN  groups of  ˆ  1, 2, ,t tt ND   are assumed to be available. Their BPAs are 

 ( ) ( ) ( ) ( )
0 1 2, , , , and 

t

i i i i
Nm m m m   , 1, 2, ,i N  , (16)

where ( ) i
tm  1,  2, ,  tt N   is the posterior BPAs of the four propositions of power set 2  i  

based on the tth group data ˆ tD . The calculation of ( )  i
tm will be described in the next section. 

The BPAs of ( )
0  im to ( )  i

tm  are then combined recursively by the D-S combination rule, 

similar to that shown in Eqs. (5) and (6): 

( )
012 ( ) 0i

t im     (17a)

( )
012 ,

( ) ( ) ( ) ( ) ( ) ( )
012 ( 1) , , 012 ( 1) , , 012 1( )

( )

1
( ) ( ) ( ) ( ) ( ) ( )

 1-

i
t i d

i i i i i i
t i d t i d t i d t i t i d t ii

t

m H

m H m H m H m m H m
k   



     



  

 (17b)

     

( )
012 ,

( ) ( ) ( ) ( ) ( ) ( )
, , , ,012 1 012 1 012 1( )

( )

1
( ) ( ) ( ) ( ) ( ) ( )

1 t t t

i
t i ud

i i i i i i
i ud i ud i ud i i ud it t ti

t

m H

m H m H m H m m H m
k   



     



  

 (17c)

 
( ) ( ) ( )
012 012 1( )

1
( ) ( ) ( )

1
i i i

t i i t iti
t

m m Θ m
k   

 
 (17d)

           ( ) ( ) ( ) ( ) ( )
, , , ,012 1 012 1t

i i i i i
i d t i ud i ud t i dt tk m H m H m H m H  

 
, (17e)

where  1,  2,  ,  tt N  , 1,  2,  ,  i N  , and ( )
012  i

tm   is the BPA combining ( )
0  im  through 

( ) i
tm . 

 

3 Bayesian-based Damage Detection Considering the Temperature Effect 

 

In the Bayesian probabilistic damage detection methodology [32], the uncertainties in parameters 
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 1 2

T

N
  θ   are quantified in terms of probability density functions (PDFs) 

obtained from Ns sets of modal data ˆ tD : 

 
         

1 1 1

ˆˆ ˆ ˆ
s s mN N N

n n
t n r r

n n r

p p p p
  

  D θ Λ θ θ φ θ  
(18)

In this approach, the modal data are regarded only as a function of the structural parameters. 

 

Considering the temperature effect on the modal data, the modal data are a function of both the 

structural parameters and temperature. Consequently, temperature is also a variable of the modal 

data. Thus, Eq. (18) is extended as 

 
         

1 1 1

ˆˆ ˆ ˆ, , , ,
s s mN N N

n n
t n r r

n n r

p T p T p T p T
  

  D θ Λ θ θ φ θ , 
(19)

where T is the temperature. The observed frequency can be expressed as 

      0 ˆ
ˆ ˆ, , ,

r
r r rT T T e


     θ θ θ , (20)

where  0 ,  r T θ  is the frequency at a reference temperature 0T ,  ˆ ,  r T θ  is the 

variation in frequency caused by the temperature change, and 
ˆr

e


 is the frequency error 

obeying a zero-mean Gaussian distribution with a variance 2
r , which is computed by 

   



sN

n
r

n
r

s
r N 1

22 ˆ
1  , 

(21)

where   r  is the mean of  ˆ n
r , 1,  2,  ,  sn N  . The PDF of the frequency is then 

calculated as 

 
 

2

2
1

ˆ ˆ1
ˆ , exp

2
r r r

r
r

p T c
  



    
    
   

θ ,
(22)

where 1  c  is a normalization constant.  

 

Similarly, the measured mode shape including the temperature variable is 

       ˆ0ˆ ˆ, , ,
r

r r r rT T T


   φ θ φ θ φ θ e , (23)
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where  0 ,  r Tφ θ  is the mode shape at the degrees of freedom measured at the reference 

temperature 0 T ,  ˆ ,  r Tφ θ  is the variation caused by the temperature change, ˆ  
r

e  is the 

mode shape error, and  r is a scaling factor. Consequently, the PDF of the mode shape is 

 

 
          

2
2 22

ˆ ˆ ˆ ˆ
1

ˆ , exp
2

T
n n n nT

r r r r r r

r

r r

p T c


     
  

 
 

φ I φ φ φ φ φ
φ θ

φ
 

(24)

  

 





s

r

N

n
n

r

r
n

r

sN 1
2

2

2

ˆ

ˆ1

φ

φφ
  

(25)

 
2

ˆ ,r r
r

r

 
φ φ

φ
, 

(26)

where 
22  r r φ  is the diagonal element of the covariance matrix of ˆ  rφ , and 2  c  is a 

normalization constant. Eqs. (20) and (23) show a general relation between modal data and 

temperature. Given a specific relation, the PDFs of the modal data can be obtained explicitly or 

numerically. A case study in the next section demonstrates the procedures for eliminating the 

temperature effect from the frequencies and mode shapes. 

 

The initial PDF of the model parameters  θ  is assumed as 

 
     1

3 0 0

1
exp

2
T

p T c       
θ θ θ S θ θ , 

(27)

where S is a diagonal variance matrix of  θ and can be determined based on engineering 

experience or published references, 3  c  is a normalization constant, and 0  θ  is the initial 

value of   θ  taking  0 1,1, ,1
Tθ  , indicating that no damage is present in the structure. 

 

According to Eqs. (19), (22), (24), and (27),  ˆ ,  tp Tθ D  is 

        1ˆ ˆ, , exp
2t tp T cp T p T c J

     
θ D D θ θ θ , (28)

where 
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       a
T JJ  

0
1

0 θθSθθθ , (29)

 
                 2

22 2
1 1

ˆ ˆ ˆ ˆˆ ˆs m

T
n n n nTn n n

N N r r r r r rr r r

a
n r r r r

J
  

  

    
 

φ I φ φ φ φ φ

φ
, (30)

and   c  is the normalization constant.  

 

The marginal PDFs of  i  can be obtained by integrating the joint PDF in Eq. (28) using 

Laplace’s method for asymptotic expansion [33]: 

   ˆ
ˆ ,

ˆ
i i

i t
i

p T
  


 
   

 
D , (31)

where     is the standard Gaussian PDF, ˆ  i  is the most probable model obtained by 

minimizing    J θ  in Eq. (29), and 2ˆ  i  is the ith diagonal element of the Hessian matrix of 

   J θ  evaluated at ˆ θ . 

 

The damage probability of the ith substructure    iP  is defined as [29] 

 
      ˆ ˆ ˆ ˆ1 , , ,i pd ud ud pd ud pd

i i i iP d P d T T    D D , (32)

where   0,1  id    is the damage threshold of the ith member, superscripts ud and pd denote 

the quantities corresponding to the undamaged structure and the possibly damaged structure, 

respectively, and ˆ  udD  and ˆ  pd D  are the group of modal data obtained from the undamaged 

structure and the possibly damaged structure at temperatures  udT  and  pdT , respectively. 

Using the Gaussian approximations for the marginal distributions,    iP  is calculated by [29] 

 
     

     2 22

ˆ ˆ1

ˆ ˆ1

ud pd
i i i i

i
ud pd

i i i

d
P d

d

 

 

 
    

   

, (33)

where       is the standard Gaussian cumulative distribution function. 
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The tth BPAs     i
t im  ,    , i

t i dm H ,    ,  i
t i udm H , and      i

t im  ( 1,  2, , tt N  ) are then 

defined as follows: 

     0i
t im   , (34a)

      i
i

tdi
i

t dPHm , , (34b)

 
        , 1i i
t i ud t im H P d  , (34c)

      ( ) ( ) ( )
, ,1 1i i i

t i t i d t i udm m H m H       , (34d)

where [0,1]    is the weighting coefficient reflecting the reliability of the damage decision of 

the member using the Bayesian method. 

 

At the initial stage, data are unavailable for the calculation of BPAs. Therefore, the initial BPAs 

are defined as follows: 

  ( )
0 0i

im   ;  ( )
0 , 0i

i dm H  ;  ( )
0 , 0i

i udm H  ;  ( )
0 1i

im   , (35)

where  ( )
0 1 i

im    implies that the damage state of the ith member has the maximum 

uncertainty. 

 

The flow chart of the proposed damage identification procedure is shown in Fig. 1. The first step 

is to obtain the modal data sets  ˆ  1, 2, ,t tt ND  . Second, the temperature effect on the data 

sets is eliminated according to the relation between the temperature and the modal data. Third, 

initial BPAs calculated by Eq. (35) are updated using the measured multi-data sets in a 

progressive time sequence following the D-S combination rule. In the progressive updating 

procedures, the effect of uncertainties on damage detection decision obtained from individual 

data sets will be reduced, and the accuracy of the final damage detection decision can be 

improved. 
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Fig. 1. Flow chart of the damage detection approach 

 

4 Case Study 

 

4.1 Introduction to the experiment 

 

The experimental model is a two-storey steel frame structure, as shown in Fig. 2. The cross 

sections of the beam and column are 50.0×8.8 mm2 and 50.0×4.4 mm2, respectively. The mass 

density and Young’s modulus are 7.67×103 kg/m3 and 2.0×105 MPa, respectively. The detailed 

geometry and sensor locations of the frame are illustrated in Fig. 3. The frame is modelled using 

20 planar Euler-Bernoulli beam elements. 

 

Fig. 2. Experimental model 
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Fig. 3. Configuration of the frame 

 

The frame was exposed to sunlight from morning to afternoon on August 27, 2010. The 

temperatures of the beams and columns were measured every 30 seconds using 8 thermocouples 

(T1–T8). The frame was excited using an instrumented hammer, and the vibration responses 

were recorded by 14 accelerometers (S1–S14). A total of 30,720 data points were collected at a 

sampling rate of 2,048 Hz for each hammer impact. The vibration tests were performed 5 times 

every 20 minutes. A total of 5 28 140    sets of vibration data were recorded throughout the 

day. 

 

The damage was subsequently introduced by cutting the section of one column, as shown in Fig. 

3. In this experiment, three damage scenarios are simulated by a cut length of 20 mm and depth 

de = 5, 10, and 15 mm, respectively. The equivalent losses of element bending stiffness for the 

three damage cases are about 3%, 7%, and 15%, respectively. In each damage scenario, a 

one-day vibration testing was conducted, and the temperature and vibration data were measured 

similarly, resulting in 140 sets of vibration data for each damage case. 
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The temperatures of the frame in the undamaged and one damaged states are shown in Fig. 4. 

The maximum variation in the structural temperature during the day occurred at about 30 °C. 

The peak temperature occurred at about 12:00. Clearly, the temperatures of the beams (T3–T6) 

are higher than those of columns (T1, T2, T7, and T8). 
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Fig. 4. Measured temperature of the frame 

 

The first five mode shapes are shown in Fig. 5, in which the points and solid lines represent the 

experimental and analytical mode shapes, respectively, and the dashed lines are the undeformed 

model. The modal frequencies and mode shapes were identified using the rational fraction 

polynomial method [34]. 
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Fig. 5. Analytical and experimental mode shapes of the undamaged structure 

 

4.2 Relation of modal parameters with temperature 
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The relation between the first five modal frequencies and the temperature of the frame in all 

damage cases are shown in Fig. 6, in which the temperature is the mean value of the eight 

temperature gauges. The figure demonstrates that all five frequencies decrease with an increase 

in temperature. For most of the modes, the frequencies decrease with the increase in damage 

severity under the same temperature. In addition, the frequencies of the undamaged structure at 

a higher temperature are smaller than the frequencies of the slightly damaged structure (de = 5 

mm) at a lower temperature, indicating that temperature has a more significant effect on the 

frequencies than do slight damage. In more severe damage cases of de = 10 and 15 mm, the 

changes in frequencies caused by the damage are larger than those caused by temperature 

change.  
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Fig. 6. Relation of the measured frequencies with temperature  

 

To determine the effect of temperature on the mode shapes, the modal assurance criterion (MAC) 

[34] is investigated. The MAC value is defined as 

     

2
ˆ

ˆ ,
ˆ ˆ

T
r r

r r T T
r r r r

MAC 
φ φ

φ φ
φ φ φ φ

, (36)

where ˆ  rφ  and   rφ  are the rth measured and theoretical mode shapes. If two mode shapes 

are identical, the MAC value will equal unity. Any variation in the mode shapes will generate a 

MAC value less than unity. The MAC values of the first five modes, with respect to the 

averaged temperature of the structure, are shown in Fig. 7. No clear relation between the MAC 

values and the temperature can be observed. The variations in the MAC values of the first five 

modes caused by the damage are significant, especially damage case de = 15mm.  

 

Based on these observations, the variation in temperature has a significant effect on the 

structural vibration frequencies but not on mode shapes. Consequently, only the temperature 

effect on frequencies is eliminated in the damage detection in the current study. 
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Fig. 7. Relation of the measured mode shapes with temperature 

 

4.3 Elimination of the temperature effect on frequencies 

 

As the measured frequencies show a linear relation with temperature, a linear regression model 

between the frequency and temperature is established as 
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ˆ0ˆ ,

r

r r
r TT T      θ , (37)

where  
0  r  (intercept) and    r

T  (slope) are regression coefficients, and ˆ  
r

  is the error 

of the r-th frequency. The regression coefficients can be obtained using least-squares fitting. 

 

Next, a reference temperature 0 T  is selected. The measured frequencies at temperature  T  

can be transformed into those at the reference temperature by 

 
     

     0

ˆ ˆ ˆ, , ,

ˆ           ,

e
r r r

r
r T

T T T

T T T

  

 

  

  

θ θ θ

θ
, (38)

where  ˆ ,  r T θ  is the measured frequency, and  ˆ ,  e
r T θ  is the transformed frequency at 

temperature 0 T . The third frequency of the undamaged frame is employed as an example, as 

shown in Fig. 8. The reference temperature is set to 40 °C. The measured frequency  3ˆ , jT θ  

is transformed to  3 0
ˆ ,  e T θ by 

        3
3 0 3 0ˆ ˆ, ,e

j T jT T T T    θ θ . (39)

In this example, regression coefficients  3
0 61.5463  Hz,  3 0.0118 T   Hz/°C, and 

(3) (3)
0 0.019% T    . This result indicates that a unit increase in temperature leads to a 

decrease in the frequency by 0.019%. In this manner, all frequencies measured under different 

temperature conditions can be transformed into those at the same temperature (40 °C), as shown 

in Fig. 9. The figure shows that the variation in frequencies caused by temperature has been 

removed.  
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Fig. 8. Elimination of the temperature effect on the third frequency 
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Fig. 9. Elimination of temperature effect on the measured frequencies 

 

4.4 Damage detection 

 

As described in Section 4.1, a total of 140 sets of vibration data are measured in each damage 

case. Each set of data include the first five modal frequencies and mode shapes at the 14 sensor 

points. As the physical model has 20 elements, each having one unknown stiffness parameter. 

The optimisation problem is identifiable. The measured modal parameters are assorted into 

 7 tN   groups, each with  20 sN   sets of data  1 2
ˆ ˆ ˆˆ ,  ,  ,  

st ND Λ Λ Λ . As an example, 

PDFs of element 2 (θ2) for the undamaged and damage case de = 10 mm are illustrated in Fig. 10. 

The mean value of θ2 in the damaged state is smaller than that in the undamaged state. The 

BPAs of each element in each group ( ( ) ( ) ( ) ( )
0 1 2, , , ,

t

i i i i
Nm m m m   , 1,  2,  ,  i N  , Nθ = 20 here) can 

be calculated using the method presented in Section 3. The weighting coefficient is estimated as 

 0.85    based on engineering experience. The BPAs from the seven groups of data are then 

combined using the D-S combination rule, as described previously. 
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Fig. 10. One pair of PDFs of 2  for the undamaged and damage cases de = 10 mm without 

removing the temperature effect 

 

Figs. 11–13 show the damage detection results using each group of data and the data fusion 

approach without eliminating the temperature effect for damage cases de = 5, 10, and 15 mm, 

respectively. The BPAs in the left column of the figures are those using the individual group of 

data; the right column shows the evolution of the BPAs when individual groups of data are 

combined. In particular, the BPAs of “Update 1” are the same as those of “Test 1” (the first 

group); the BPAs of “Update 2” combine the BPAs of “Test 1” and “Test 2” (the second group) 

using the D-S combination rule; and “Update 7” gives the final BPAs, integrating all seven 

groups of data. Fig. 11 indicates that this small damage cannot be identified even if all groups of 

data are combined. When the extent of the damage increases to de = 10 mm, the damage located 

at element 2 can be identified correctly using the D-S combination rule, as shown in Fig. 12. 

However, element 7 is incorrectly identified as damaged. Fig. 13 shows the damage detection 

results of damage case de = 15 mm, in which the true damage can be detected correctly. Figs. 12 

and 13 illustrate that the damage detection results obtained by combining the damaged BPAs 

from the seven groups of data through the D-S method are better than the results obtained using 

each group of data exclusively; if more groups are combined, better damage identification 

results are achieved.  
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Fig. 11. Damage detection results of damage case de = 5 mm without considering the 
temperature effect 
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Fig. 12. Damage detection results of damage case de= 10 mm without considering the 

temperature effect 
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Fig. 13. Damage detection results of damage case de = 15 mm without considering the 

temperature effect 
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These results verify that the slightest damage cannot be identified correctly without considering 

the variation in temperatures, although the uncertainties in the measurement data and the 

modeling are considered using the Bayesian method. The detection of the three damage cases 

with the proposed elimination of the temperature effect on frequencies is shown in Figs. 14–16. 

In particular, Fig. 14 shows that the slightest damage (de = 5 mm) can be identified successfully 

with the D-S fusion. The damage detection results of damage case de = 10 mm are shown in Fig. 

15. The true damaged element can be detected correctly, and the probability of a false 

identification is low. The results are more accurate than those in Fig. 12, in which the 

temperature effect is not eliminated. These observations demonstrate that the elimination of the 

temperature effect on frequencies can improve the damage detection results, especially for slight 

damages. Fig. 16 shows the damage detection results of damage case de = 15 mm, in which the 

damage is correctly located, and false identification has lower probability than when the 

temperature effect is neglected. 

 

This investigation demonstrates that the individual damage detection is still dramatically 

affected by uncertainty, even if the temperature effect has been removed. For example, Fig. 15(a) 

shows that the individual results of “Test 1” indicate that the damage is on element 2; however, 

the individual results of “Test 2” show that elements 2 and 11 are damaged. The damage 

detection results are inconsistent among the different tests. Similar phenomena are also observed 

in Figs. 14(a) and 16(a). To this end, the data fusion technique is required to combine these 

individual results to obtain a consistent result.  
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Fig. 14. Damage detection results of damage case de = 5 mm after eliminating the temperature 

effect 
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Fig. 15. Damage detection results of damage case de = 10 mm after eliminating the temperature 

effect 
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Fig. 16. Damage detection results of damage case de = 15 mm after eliminating the temperature 

effect 
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5 Conclusions 

 

A data fusion-based damage detection method, with consideration on the temperature effect, is 

proposed. A series of experiments is carried out on a two-storey steel frame under different 

temperature conditions to verify the effectiveness of the proposed method in damage detection.  

 

The temperature has a significant effect on the vibration frequencies in a linear manner 

approximately, whereas it has little effect on mode shapes. Based on the linear relation between 

the frequencies and temperature, the frequencies measured under different temperature 

conditions can be transformed into those at the reference temperature. Consequently, the 

frequencies of the undamaged and damaged structures can be regarded as the measurements 

under the same temperature.  

 

The temperature effect on the frequencies masks the effect of the damage, especially when there 

is slight damage on the element. The damage detection results, with the elimination of the 

temperature effect, are improved, especially for slight damage, compared with those in which 

temperature variation is not considered. 

 

Uncertainties in the measurement noise and finite element modeling may result in the true 

damages not being detected correctly, even when the temperature effect on the vibration 

measurements has been removed. Combination of the BPAs from different sets of data using the 

D-S approach can reduce the false identification induced by these uncertainties. Thus, the 

damages can be detected more accurately than those using the measured data separately. The 

measurement noise, modeling error, and environmental variation are considered in an integrated 

manner. The experimental results demonstrate that the method improves the accuracy and 

reliability of vibration-based damage detection methods. 
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