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Rapid progress of networking technologies leads to an exponential growth in the number of unauthorized or malicious network
actions. As a component of defense-in-depth, Network Intrusion Detection System (NIDS) has been expected to detect malicious
behaviors. Currently, NIDSs are implemented by various classi	cation techniques, but these techniques are not advanced enough
to accurately detect complex or synthetic attacks, especially in the situation of facing massive high-dimensional data. Besides, the
inherent defects of NIDSs, namely, high false alarm rate and low detection rate, have not been e
ectively solved. In order to solve
these problems, data fusion (DF) has been applied into network intrusion detection and has achieved good results. However, the
literature still lacks thorough analysis and evaluation on data fusion techniques in the 	eld of intrusion detection. �erefore, it is
necessary to conduct a comprehensive review on them. In this article, we focus on DF techniques for network intrusion detection
and propose a speci	c de	nition to describe it. We review the recent advances of DF techniques and propose a series of criteria
to compare their performance. Finally, based on the results of the literature review, a number of open issues and future research
directions are proposed at the end of this work.

1. Introduction

Network Intrusion Detection System (NIDS) is a new gener-
ation of network security equipment following the traditional
security measures such as 	rewall and data encryption
[1], which has been rapidly developed in recent years. It

successfully resists many attacks and malicious actions and
is called the second line of defense in the Internet. However,
in the current big data era, the large amount of tra�c data
makes NIDS face critical challenges. First, large amounts of
high-dimensional data increase processing complexity and
need huge computing and storage resources. Second, many
redundant and unrelated data could adversely a
ect network
security detection. �ird, some new attacks are di�cult to
detect due to big data process and analytics. Besides, the
inherent weakness of NIDSs, such as high false positives
(FP) and high false negatives (FN), raises urgent requests
on e
ective solutions. Data Fusion (DF), as a promising
technology of big data, has been applied into the domain
of network intrusion detection to overcome the above-
mentioned challenges in recent years.

�e concept of DF originated from the US Air Force
project; the US Department of Defense 	rst proposed a
Joint Directors of Laboratories (JDL) DF model based on
national defense monitoring needs in 1987 [2]. Subsequently,
DF was gradually studied and applied in other 	elds, such as
automatic control, image recognition, target detection, and
cyber security, and many scholars have proposed de	nition
of DF based on their own studies and researches [3]. In
order to clearly show the role of DF technology in network
intrusion detection, an expression of DF in the 	eld of NIDS
is presented in this article.

In general, DF can be applied into three layers according
to where fusions are needed, namely, data layer, feature
layer, and decision layer. �e data layer is the lowest system
layer, playing the role of processing and integrating raw
network data; the feature layer is the middle layer, fusing and
reducing features of the preprocessed data; the decision layer
is the highest layer, fusing and combining the inferences or
decisions of various processing units. In the 	eld of NIDS,
most researches of data fusion only focus on the feature layer
and the decision layer. It is because the network data they
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need to fuse comes from public datasets that have already
been fused at the data layer. �e use of DF technology at the
feature level can greatly reduce the size of data processing,
thereby enhancing the e�ciency of NIDSs. Besides, useful
and re	ned data generated by feature fusion can support
decision-making and further improve the robustness and
accuracy of the system. As for using of DF technology at the
decision level, the decision fusion center fuses the decisions of
multiple local detectors to obtain more accurate and reliable
identi	cations of network behaviors.

Currently, a lot of research work has been carried out on
DF for intrusion detection in order to improve the perfor-
mance of NIDS. However, we found that the open datasets,
the number of experimental data samples, and the fusion
techniques used in many literatures are diverse. It is di�cult
to understand and analyze the strengths and weaknesses of
di
erent fusion techniques. �us, it becomes essential to
specify uniform criteria to evaluate them in view of a large
number of references and give performance statistics of the
current literature. �is work is meaningful because it can
make it easier for researchers and practitioners to under-
stand the characteristics of the current DF techniques and
methods.

In this article, we provide a thorough review on DF
techniques in NIDS. We 	rst describe DF for NIDS by
representing the process and role of fusion for motivating
this research work. We review existing DF techniques used
in intrusion detection and propose evaluation criteria to
analyze and compare the characteristics and performance
of di
erent fusion techniques. Besides, we simply analyze
di
erent open network datasets that can be used for testing
intrusion detection techniques. Based on our review, we put
forward current main challenges and point out promising
research directions in this 	eld.

�emain contributions of this survey are listed as follows.

(1) We give a description of DF for NIDS in order to
motivate related research in this 	eld.

(2) We propose a number of evaluation criteria for
evaluating fusion techniques for network intrusion
detection.

(3) We further employ the proposed criteria to review
the performance of di
erent fusion techniques, which
o
ers a good reference for scholars in the 	elds of
network security and information fusion.

(4) We propose the challenges and promising research
directions of DF for network intrusion detection
based on our review.

�e remainder of this article is organized as follows.
Section 2 gives a brief introduction about the background
knowledge of NIDS and DF. Several commonly used fusion
techniques are elaborated in Section 3. Section 4 puts for-
ward the evaluation criteria of data fusion techniques based
on a large amount of literatures. �e power of di
erent
fusion techniques is analyzed and compared in Section 5.
In Section 6, the existing issues of DF are discussed, and
some promising research directions are proposed. Section 7
summarizes the whole article.

2. Background Knowledge

In order to better understand this article, this section
introduces some basic theory, including network intrusion
detection and DF. Network intrusion detection is an old
topic that has been repeatedly studied. We mainly present
two kinds of intrusion detection techniques, anomaly-based
and misuse-based, and explain their advantages and disad-
vantages, separately. As regards DF, we introduce it from its
source, de	nitions, levels, and applications and put forward
a general DF framework for intrusion detection to facilitate
intuitive understanding.

2.1. Network Intrusion Detection. NIDS is a kind of network
security scheme that can monitor the network transmission
in real time and alert or take corresponding measures when
detecting some behaviors that threaten network security.
Actually, NIDS can be regarded as a pattern of recognition
system that can distinguish malicious attacks from normal
network behaviors. Intrusion detection technology plays an
important role in the process of identifying malicious behav-
iors. �e intrusion detection techniques based upon data
mining generally fall into two categories: misuse detection
and anomaly detection [4, 5]. �e misuse-based detection,
also called signature-based detection, is based on known
attack signatures. It usually uses the well-known attack
signatures to match and identify attacks. �e advantages and
disadvantages of the misuse-based detection are as follows
[6].

(1) Advantages

(i) Fast and e�cient detection of known attacks or
speci	c attack tools.

(ii) Detecting attacks without generating an over-
whelming number of false alarms.

(iii) Allowing system administrators, regardless of
their security skills, to track their system secu-
rity issues and run exception handlers.

(2) Disadvantages

(i) Hard to detect novel or unknown attacks.

(ii) Hard to detect the variants of known attacks.

Due to the e�cient detection and low false positive rate
(FPR), the misuse-based IDSs are widely used in commercial
networks. Furthermore, much excellent open-source so�-
ware has also been implemented, typically represented by
Snort. �e Snort IDS is one of the commonly used misuse-
based NIDSs, which performs real-time tra�c analysis,
content searching, and content matching to discover attacks
using preidenti	ed attack signatures [7]. It is popular with
many researchers because of its open source and adaptability
to various platforms. In [1], Tian et al. fused the alerts through
Snort to test the performance of their proposed detection
fusion system.

Although the misuse-based detection is e�cient, it can
only detect known attacks and cannot detect novel or zero-
day attacks [38]. To detect novel attacks, the anomaly-
based NIDS have been proposed. In many related literatures,
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most of the network behaviors acquired by researchers are
normal, so NIDSs usually uses the anomaly-based detection
techniques. Anomaly detection is a recognition model based
on normal behaviors of the network connections. Any devi-
ation from the established pattern of normal behaviors is
considered to be a suspicious action. �e anomaly detection
seems to be able to detect all types of attacks, including
unknown attacks. However, it indicates that some activities
are suspicious but not malicious, resulting in high FP [39].
�e advantages and disadvantages of the anomaly-based
detection are as follows [6].

(1) Advantages

(i) It can detect novel or unknown attacks.

(ii) It Produces information that can in turn be used
to de	ne signatures for misuse detectors.

(2) Disadvantages:

(i) It requires extensive training data of network
connections and behaviors.

(ii) FPR is not ideal.

�e misuse-based detection is e�cient in detecting
known attacks but cannot detect novel attacks, while the
anomaly-based detection can detect unknown attacks but
usually has a high FPR. �erefore, NIDS used only one
of these two which could be limited in performance and
scope of application. To avoid the above defects, many
hybrid approaches have been proposed, which combine the
advantages of both misuse and anomaly detection [40].
Hybrid intrusion detection technology can be divided into
three categories as follows.

(1) Anomaly-based detection on top of misuse-based
detection

(2) Misuse-based detection followed on top of anomaly-
based detection

(3) Misuse-based and anomaly-based detection in paral-
lel

Zhang et al. [15] implemented a hybrid system through
the following 	rst approach. �is hybrid system can be
used to detect known intrusions in real time and to detect
unknown intrusions o�ine. Generally, in the past two
decades, NIDSs have been fully studied. Intrusion detection
technologies continue to improve and update. �e perfor-
mance of NIDSs has been greatly optimized accordingly, but

NIDSs still face many challenges. �e use of DF technology
in the 	eld of NIDS is a very promising research direction,
which holds great potential to deal with these challenges.

2.2. Data Fusion

2.2.1. Data Fusion De�nition. �e concept of DF 	rst
appeared and applied in the military 	eld in the 1980s, with
strongmilitary characteristics, which was called “intelligence
synthesis.” Joint Directors of Laboratories (JDL) de	nes DF

from the perspective of military applications as follows: DF is
a process dealing with the association, correlation, and com-
bination of data and information from single and multiple
sources to achieve re	ned position and identity estimates,
complete and timely assessments of situations, threats, and
their signi	cance. Waltz and Llinas [41] supplemented and
modi	ed the above de	nition in their work, replaced the
“position estimate” with the “state estimate,” and added the
detection function, which gave the de	nition: data fusion is a
multilevel andmultifaceted process andmainly completes the
detection, integration, correlation, estimation, and combina-
tion of data from single andmultiple data sources. Its purpose
is to achieve an accurate estimate of the status and identity
of the target and to make a complete and timely assessment
of the situation and threats. Many other DF de	nitions are
presented by some scholars based on their own researches
and analysis. Although these de	nitions give us inspiration
and guidance to some extent, they are not exhaustive in
a particular area. A more speci	c expression of DF in the
	eld of intrusion detection is bene	cial to researchers within
the 	eld and motivates their own work. �erefore, based
on these facts, we presented a speci	c description of DF in
NIDS: “single source or multisource data collected from the
network is preprocessed to obtain a uniform data format.
More re	ning data of greater quality is obtained through
feature fusion and association, which greatly improves the
identi	cation of malicious network behaviors. �e initial
decisions generated from multisource data are integrated
in a decision fusion center to achieve more accurate and
comprehensive inferences or decisions.” �is expression is
based on network intrusion detection; the goal of DF is
to improve e�ciency, accuracy rate (ACC) and robustness
while reducing FNR and FPR, saving computing resources
of system. We believe that the proposed de	nition is helpful
to practitioners and researchers in the 	eld of intrusion
detection.

2.2.2. Data Fusion Levels. �e data fusion is mainly applied
at three levels with respect to the processing stage of the
fusion [42]. Normally, three main levels are discerned: data,
feature, and decision. At di
erent levels, the representation of
information is di
erent: the outputs of the data level fusion
and the feature level fusion are the “states,” “characteristics,”
and “attributes,” and the outputs of the decision level fusion
are “inferences” or “decisions.” Di
erent fusion techniques
and methods are usually used in di
erent levels to improve
overall performance of data processing.

�e brief description of fusion levels is shown as below.

(1) Data level fusion: it is also called low level fusion,
which combines several di
erent raw data sources
to produce re	ned data that is expected to be more
informative and synthetic.

(2) Feature level fusion: it combines many data features
and is also known as intermediate level fusion. �e
objective of feature fusion is to extract or select a lim-
ited number of important features for subsequent data
analysis through feature reduction methods, which
can reduce computation and memory resources.
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(3) Decision level fusion: it is also called high level
fusion, which fuses decisions coming from multiple
detectors. Each detector completes basic detection
locally including preprocess, feature reduction, and
identi	cation to establish preliminary inferences on
observed objectives. And then these inferences are
fused into a comprehensive and accurate decision
through the decision fusion techniques.

2.2.3. Data Fusion Applications. As a technology, DF is a
multidisciplinary research 	eld with a wide range of poten-
tial applications in such areas as automatic control, image
recognition, target detection, and intrusion detection. �e
following is a brief introduction to DF applications based on
the review of some related literatures.

In [43], Cao et al. presented a 	re automation control
system based on DF by applying it into intelligent building.
�e control system consists of six layers (sensor layer, sensor
subsystem layer, primary fusion subsystem layer, decision
management subsystem layer, actuator subsystem layer, and
actuator layer). It can be applied into intelligent building to
automatically realize accurate 	re alarm and 	re protection.

Zhang et al. proposed a DF based smart home control
system [44]. �e proposed smart home control framework
includes the Internet access module, information acquisition
module, and internal network service module with Bluetooth
connection, data fusion controller that uses fuzzy logic and
fuzzy neural network, and embedded computer in household
appliances. It integrates information from multiple sources
to control household appliances to create an intelligent home
environment.

In [45], DF system based on D-S (Dempster-Shafer)
evidence reasoning was proposed, in which two Charge
Coupled Device (CCD) cameras and an Infrared Radia-
tion (IR) sensor are used to extract the characteristics for
identifying a missile target. Based on the D-S evidence
reasoning, the authors recognizedmissile target and jamming
light on region square feature and clutter and 	re pile on
position feature, respectively.�e probability of identi	cation
obtained by integrating the three sensors with D-S evidence
is greatly improved comparing with the method of using a
single sensor.

Hu and Wang applied DF fuzzy theory to develop
a 	re alarm system based on a wireless sensor network
[46]. �is system not only o
ers detection correctness, but
also improves the intelligence of monitoring. �e proposed
method has excellent performance and it is superior to
traditional diagnostic methods with a single sensor.

In [47], a deep model for remote sensing DF and clas-
si	cation was proposed. �e Convolutional Neural Network
(CNN) is used to e�ciently extract abstract information char-
acteristics from Hyperspectral Image/Multispectral Image
(MSI/HSI) and Light Detection and Ranging (LIDAR) data,
respectively. �en, Deep Neural Networks (DNN) was used
to fuse the heterogeneous characteristics obtained by CNN.
�e proposed depth fusion model provides competitive
results in terms of classi	cation accuracy. In addition, the
proposed deep learning idea opens a new window for future
remote sensing data fusion.

In [48], Yan et al. appliedDF to reputation generation and
proposed a reputation generation method based on opinion
fusion and mining. �e opinions were fused and classi	ed
into a number of major opinion sets containing opinions
with similar or identical attitudes. Based on these opinion
sets, the rating is aggregated to normalize the reputation of
the entity. �e experimental results from actual data analysis
of several popular Chinese and English commercial websites
demonstrated the versatility and accuracy of the method.

Liu et al. collected four articles to study the application of
DF in the Internet of �ings (IoT) [49]. With a large number
of wireless sensor devices, IoT generates a large amount
of data, which are massive, multisourced, heterogeneous,
dynamic, and sparse. In the special issue, they believed that
DF was an important tool for processing and managing these
data to improve processing e�ciency and provide advanced
intelligence. By exploiting the synergy among the datasets,
DF can reduce the amount of data, 	lter noise measurements,
and make inferences at any stage of data processing in
IoT.

A DF model for intrusion detection was presented in
[42], based on clustering. �e model uses a centralized
approach to fuse data from di
erent analyzers and then
make a 	nal analysis decision. �e main strength of the
proposed approach lies in its accuracy to fuse information
from di
erent detection modules and its adaptability to
scalability. In addition, the DF module takes into account the
e�ciency of each analyzer in the process of fusion and can
predict upcoming network threats.

2.2.4. A General Fusion Framework for Network Intrusion
Detection. Herein, we specify a general fusion framework
for network intrusion detection, as shown in Figure 1. �e
framework is comprised of the following parts.

(a) Input/Data Source. In order to monitor network status
and detect and prevent attacks, we need to collect data from
multiple sources in the network. �ese data include di
erent
types of packets and the statistical logs of network devices,
for example, hosts, routers, and switches. �ey have di
erent
types and formats and cannot be processed directly.

(b) Data Preprocessing. �e function of data preprocessing
is to eliminate obviously wrong, invalid, or duplicate data
and to get the valid data that can be used. �e raw data
is normalized and digitized through data preprocess, which
is then converted into a uni	ed format for analysis and
processing.

(c) Feature Fusion. �e network data has the characteristics
of big data. Massive network data not only overly consumes
computing and storage resources, but also cause dimensional
disasters. Feature fusion occurs at the feature level and can
reduce a large number of features to few features. �e more
streamlined data a�er feature fusion play a more important
role in decision-making than the original features while
accelerating data processing and increasing the detection
accuracy of NIDS.
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Figure 1: A general fusion framework for network intrusion detection.

(d) Classi�cation. Intrusion detection can be seen as a pattern
recognition system. Its performance is determined by the
classi	ers. Classi	er models are obtained through training
to identify abnormal network behaviors and make timely
responses to the network attacks.

(e) Decision Fusion. Decision fusion is the integration of
multiple results of basic detectors. �e so-called decisions in
the intrusion detection can be understood as the detection
results of network behaviors. Decision fusion can achieve
improved accuracy and more speci	c inference than the way
of using a single detector alone. Besides, decision fusion
can e
ectively detect complex attacks by integrating multiple
decisions.

(f) Output/Decision. Output is the 	nal decision, which
usually is a judgment in the NIDS, either an abnormal
behavior (e.g., an attack) or a normal behavior.

3. Data Fusion Techniques for NIDS

�is section introduces the data fusion techniques, mainly
focusing on feature fusion and decision fusion. We classify
the fusion techniques shown in Figure 2 and describe the
commonly used fusion techniques.

As mentioned above, DF techniques in NIDS can be
classi	ed into the data layer fusion, the feature layer fusion,
and the decision layer fusion. To the best of our knowledge,
the majority of researches on NIDS are based on open
datasets, which leads to the result that the data level fusion is
omitted in the related literatures.�erefore, wemainly review
the DF techniques at the feature layer and the decision layer.

�ere are two main categories for feature fusion in
NIDS: 	lters and wrappers [50]. �e 	lters are applied
through statistical methods, information theory based meth-
ods, or searching techniques [51], such as Principal Com-
ponent Analysis (PCA), Latent Dirichlet Allocation (LDA),
Independent Component Correlation Algorithm (ICA), and
Correlation-Based Feature Selection (CFS).�ewrapper uses
a machine learning algorithm to evaluate and fuse features to
identify the best subset representing the original dataset. �e

wrapper is based on two parts: feature search and evaluation
algorithms. �e wrapper approach is generally considered
to generate better feature subsets but costs more computing
and storage resources than the 	lter [27]. �e 	lter and
the wrapper are two complementary modes, which can be
combined. A hybrid method is usually composed of two
stages. First, the 	lter method is used to eliminate most of the
useless or unimportant features, leaving only few important
ones, which can e
ectively reduce the size of data processing.
In the second stage, the remaining few features representing
the original data are used as input parameters to send into
the wrapper to further optimize the selection of important
features.

�e decision fusion methods are divided into two classes:
winner-take-all and weighted sum, by considering how to
combine decisions from basic classi	ers [32]. Majority vote,
weighted majority vote, Näıve-Bayes, RF (Random Forest),
Adaboost, and D-S evidence theories are classi	ed as the
type of winner-take-all because they all havemeasured values
for each basic classi	er and the 	nal decision depends on
the classi	er with the highest measured value. In case of the
weighted sum, the weight of each basic classi	er depends
on its own capabilities. �e weights of basic classi	ers are
calculated, and then their outputs with the weights are added
to give a 	nal decision. �e method of weighted sum mainly
includes average and neural network. Figure 2 gives the
categories of fusion techniques. In what follows, we brie�y
described several commonly used feature fusion and decision
fusion techniques, respectively.

3.1. Feature Fusion Techniques. �ere are many types of fea-
ture fusion methods in the literature. We introduce some of
them due to space limitations. Some classic fusion techniques
are described below.

3.1.1. PCA. Principal Component Analysis (PCA) is a multi-
variate statistical technique used for feature reduction [12, 52].
�e goal of PCA in intrusion detection is to extract n (small
integer) most important features representing the dataset.
It can achieve dimensionality reduction while removing
noise from the data and improving the performance of
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Figure 2: Categories of fusion techniques.

the system. In order to achieve these goals, PCA needs to
extract new variables, that is, the main components. �e
	rst principal component has the largest variance that is
the most representative of the entire dataset. �e second
principal component is computed under the constraint of
being orthogonal to the 	rst component and to have the
largest possible variance. �e other principal elements are
calculated in the sameway.�ese principal components form
the new features of the original data. Before applying PCA,
the data must be averaged and normalized to avoid the
imbalance between the data values. PCA is popular in feature
fusion because its simplicity and high precision. Nonetheless,
in fact, each principal component can be represented by a
linear combination of primitive features, which leads to a lack
of interpretability for these principal components, especially
when a large number of features are involved.

3.1.2. CFS. Correlation-Based Feature Selection (CFS) evalu-
ates and ranks feature subsets rather than individual features
[27]. It tends to have a set of attributes highly correlated
with the class but with low intercorrelation. CFS o�en uses a
variety of heuristic search strategies (such as hill climbing and
best-	rst) to search a feature subset space within a reasonable
time period. It 	rst calculates the matrix of feature-class and
the feature-feature correlation from the training data and

then uses best-	rst to search the feature subset space [50].�e
equation for CFS is

�� =
��−��

√� + � (� − 1) �−��
, (1)

where �� is the heuristic of the feature subset � con-
taining � features, �−�� is the average value of all feature-

classi	cation correlations, and �−�� is the average value of

all feature-feature correlations. �e molecular ��−�� means
the predictive ability of features, and the denominator

√� + �(� − 1)�−�� indicates the redundancy between fea-

tures.

3.1.3. GA. Genetic Algorithm (GA) is a search heuristic
model for simulating natural selection processes [53]. �is
heuristic approach is o�en used to generate useful solutions
for optimization and search problems. GA is a kind of
Evolutionary Algorithm (EA), which uses natural evolution-
inspired techniques (such as genetic, mutation, selection, and
crossover) to generate solutions for optimizing results. We
can use the evaluation function to calculate the goodness of
each chromosome.�is operation begins with the initial pop-
ulation of randomly generated generations of chromosomes,
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and the quality of each individual is gradually increased.
Each individual chooses three basic GA operators, namely,
selection, crossover, and mutation. In intrusion detection,
in the face of a large number of features of original data,
the GA can search for a subset of the raw features through
Support Vector Machine (SVM), Neural Networks (NN), or
other classi	ers as evaluation functions.�e advantage of this
approach is that it has a �exible and powerful global search
capability that converges from multiple directions without
regard to previous knowledge of system behaviors. �e main
drawback is the high consumption of computing resources.

3.2. Decision Fusion Techniques. Comparing with feature
fusion, the level of decision fusion is higher, and the data
to be merged is more abstract. �e decision fusion further
improves the performance of the detection system, especially
when a single detector is di�cult to identify complex network
behaviors. In what follows, we introduce several common
decision fusion techniques.

3.2.1. Weighted Majority Vote. Weighted majority vote can
assign weights to each basic classi	er, which indicates the
importance of the outputs of di
erent classi	ers for a 	nal
decision [32]. �e weight varies according to the ability of
the basic classi	er to separate the samples. �e formula is as
below.

�
∑
�=1
��	�,� (
) = max

1≤	≤�

�
∑
�=1
��	�,	 (
) , (2)

where 	 = [	�,1, . . . , 	�,�]
 ∈ {0, 1}�, � = 1 ⋅ ⋅ ⋅ � is the
outputs of the classi	ers from the decision vector 	, where �
is the number of classi	ers and 	�,	 = 1 is 1 or 0 depending
on whether classi	er � chooses �, or not, respectively. �e
	nal decision to fuse multiple classi	ers is determined by the
base classi	er’s output 	�,	(
) and corresponding weights ��.
�is method assigns a higher weight to the basic classi	er
with higher accuracy, but it ignores other inaccurate base
classi	ers. �e weights for the base classi	ers are di�cult
to obtain and adjust. �erefore, it is di�cult to detect new
network attacks.

3.2.2. Bayesian Estimation. Bayesian estimation is applied
to DF for a long time. It is an excellent method if prior
probability is known. In order to obtain themost accurate and
comprehensive information, this method 	rst analyzes the
compatibility of various sensors, removes false information
with low con	dence, andmakes the Bayesian estimate of use-
ful information under the assumption that the corresponding
prior probabilities are known. �e advantages of Bayesian
approach include explicit uncertainty characterization and
fast and e�cient computation. Moreover, Bayesian networks
o
er good generalization with limited training data and easy
maintenance when adding new features or new training data
[23].�e disadvantage of Bayesian estimation is that it cannot
distinguish unaware and uncertain information, and it can
only handle the related events. In particular, it is di�cult
to know the prior probabilities in practical applications.

When the hypothetical prior probabilities are contradictory
to reality, the results of the inference will be undesirable and
will become quite complicated when dealing with multiple
hypotheses and multiple conditions. In fact, the Bayesian
inference methods are now rarely applied in DF because of
these defects.

3.2.3. D-S Evidence �eory. �e Dempster-Shafer evidence
theory, abbreviated as D-S theory, is a complete theory of
dealing with uncertainty. Its most notable feature is the
usage of “interval estimates” rather than “point estimates”
for the description of uncertainty information. It shows
great �exibility in distinguishing between unknown and
uncertain. �ese advantages make it widely applicable to
information fusion, expert systems, intelligence analysis, and
multiattribute decision analysis.

In the NIDS using the DS evidence theory, the results of
each basic classi	er are considered to be di
erent “evidences.”
Di
erent pieces of evidence of the same hypothesis (e.g.,
network connection categories, such as normal or attack) are
integrated to obtain the supporting degree of the hypothesis.
On the basis of the supporting degree, whether the network
connection is normal or intrusion can be 	nally judged [31].
Zhao et al. used D-S theory to fuse several basic classi	ers
[33]. �e correct rates of fused results in terms of every
kind of intrusions are all close to, or even higher than, the
highest correct rates of all basic detectors, which achieves
a high correct rate to all intrusions. D-S Evidence �eory
is considered as the generalization of the Bayesian theory.
It can well represent “uncertainty” and does not need to
know prior probabilities, compared with the Bayesian theory.
Besides, it also has some drawbacks, such as the fact that the
evidence is required to be independent and there is a potential
exponential explosion in computation.

3.2.4. Neural Network. Neural Network (NN) is a supervised
learning method that consists of input neurons, output
neurons, and hidden neurons. In order to represent the rela-
tionship between the input neuron and the output neuron,
the neural network needs a large amount of labelled data to
train and obtain an accurate model. NN has the character-
istics of self-learning, self-adaptation, self-organization, and
fault-tolerant, which enable it to solve complex nonlinear
problems. Furthermore, the advantage of NN is that it
can automatically adjust the connection weights without
any domain-speci	c knowledge, while other methods use
preselected weights to combine outputs [32]. �erefore, its
strong capabilities can be well adapted to the requirements of
multisource DF in NIDS. In network intrusion detection, the
classi	cation results of multiple detectors are used as input
neurons, and the output neurons are integrated classi	cation
results. �e output of the neural network is used as feedback
to adjust the training parameters. With the improved param-
eters, the detectors can be fused to produce an improved
resultant output.�emain drawback ofNN is the lack of valid
criteria for creating, selecting, and combining the results of
the base classi	ers. For example, one may use a Multilayer
Perceptron (MLP) or a radial basis function to 	nd fusion
weights with di
erent structure.
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Please note that the DF techniques are not limited to
the above-mentioned ones. Other techniques are no longer
described in detail. �ese techniques can be applied to
fuse network data. �e performance comparison of di
erent
fusion techniques is given in Section 5 based on the criteria
proposed in Section 4.

4. Evaluation Criteria of DF Techniques

�e application of DF techniques in intrusion detection has
received particular attention in the 	eld of network security.
Many studies on DF have been conducted to improve the
performance of NIDS. However, DF in NIDS still faces many
serious challenges, such as how to reduce the complexity
of massive data, how to ensure data security, and how to
overcome the complexity and improve the e�ciency of the
fusion. �erefore, in order to facilitate the analysis and
comparison of di
erent fusion techniques, we propose a
number of criteria for evaluating the performance of fusion
techniques in NIDS based on the traditional criteria of
IDS performance. Herein, we introduce speci	c evaluation
criteria. Sincemost of the experiments forNIDS performance
testing are based on a few public datasets, we 	rstly introduce
the commonly used datasets for intrusion detection.

4.1. Datasets. Since real-time network data brings personal
or organizational privacy issues and cannot be used for
comparison of di
erent algorithms, most of researches con-
duct experiments based on open datasets. Fusion techniques
may show di
erent performance based on di
erent datasets.
Herein, we introduce some classic datasets and new but
more realistic datasets that are used in the 	eld of intrusion
detection research.

4.1.1. DARPA Dataset. In order to evaluate di�cult intru-
sion detection techniques, the United States MIT Lincoln
Laboratory successfully constructed a complete dataset in
1998, namely, DARPA 1998. �e dataset is a 9-week network
connection data collected from a simulated US Air Force
LAN, dividing into training data and testing data.�e testing
data contains some types of attacks that do not appear in the
training data, which makes the dataset more realistic. �e
KDD99 dataset was generated for the KDD cup competition,
which extracts 41 features from the DARPA 1998 dataset.
It is one of the most popular and comprehensive intrusion
detection datasets and is widely applied to evaluate the
performance of NIDSs [54]. It includes a complete training
set, 10% training set, and a testing set. Each connection record
in the KDD99 training dataset contains 41 feature attributes
and an attack type label.�e type of attack in KDD99 training
dataset mainly includes Denial-of-Service (DOS) attacks,
Probe attacks, User-to-Root (U2R) attacks, and Remote-to-
Local (R2L) attacks. �e KDD99 10% packet is a 10% sample
of KDD99 packets, with approximately 490,000 data records,
which is used in most of the literatures. However, there
are many problems in KDD99; for example, the number
of di
erent types of attacks is not balanced and some data
records are duplicate or invalid. To address these problems

in the KDD99 dataset, as a new revision of the KDD99, NSL-
KDD was proposed by Tavallaee et al. [55]. �e training and
testing datasets of the NSL-KDD consist of approximately
125,973 and 22,544 connection records, respectively. Similar
to the KDD99 dataset, each record in this dataset has 41
quantitative and qualitative features.

4.1.2. Kyoto 2006+ Dataset. �ere is a fatal problem in the
existing dataset benchmark (KDD99) for network security,
which does not re�ect the current network security situa-
tion and the latest attack characteristics. �is is because it
generated from a simulated network nearly 20 years ago.
To overcome its limitations, the Kyoto 2006+ dataset was
presented by Song et al. [56]. It is a dataset based on
actual tra�c data from 2006 to 2009, which comes from
di
erent types of honeypots installed in the Kyoto University.
�e dataset consists of 14 conventional features captured by
honeypots based on the KDD99 dataset and 10 additional
features. Conventional features include the duration of the
session, service, source byte, and destination byte, which is
meaningful and important for subsequent data processing
or decision-making. In addition to 14 statistical features,
additional features were extracted, which may enable us to
investigate e
ectively what kinds of attacks happened in
networks. It can be used for further analysis and evaluation
of NIDSs.�e Kyoto 2006+ dataset includes about 50,033,015
normal sessions and 434,343,255 attacks, in which 425,719
attacks are unknown. Each connection in the dataset has
23 features. Compared to the KDD99 dataset, the Kyoto
2006+ dataset is generated in the real network. By using the
Kyoto 2006+ dataset, researchers can access more realistic
and practical network security attacks.

4.1.3. UNSW-NB15 Dataset. �e above-mentioned datasets
cannot meet the needs of research on the current network
security situation, especially KDD99 and NSL-KDD. �e
UNSW-NB15 [57] was created by the IXIA PerfectStorm tool
in the Cyber Range Lab of the Australian Centre for Cyber
Security (ACCS) for generating a dataset that consists of
real modern normal activities and synthetic contemporary
attacks. �e data collection period was 16 hours on January
22, 2015, and 15 hours on February 17, 2015. Tcpdump tool
is used to capture 100GB of the raw tra�c. �is dataset
contains nine types of attacks, namely, Fuzzers, Analysis,
Backdoors, DoS, Exploits, Generic, Reconnaissance, Shell-
code, and Worms. Moreover, the Argus and Bro-IDS tools
are used and twelve algorithms are developed to generate in
total 49 features with class labels. �ere are 175,341 records
in the training set and 82,332 records in the testing set. �e
key characteristics of the UNSW-NB15 dataset are a hybrid
of the real modern normal behaviors and the synthetic attack
activities.�us, this dataset is considered as a newbenchmark
dataset that can be used for evaluating NIDSs by the NIDS
research community [57]. It is worth noting that the IXIA tool
contains all the information about the new attacks that are
continuously updated from CVE site 4. �is site is a public
information security vulnerability and exposure dictionary.
However, it is undeniable that the UNSW-NB15 dataset is
more complex than the KDD99 dataset [58].
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Table 1: �e formulas of the metrics.

Measures Equations

ACC (TP + TN)/(TP + FP + TN + FN)

PR TP/(TP + FP)

RR TP/(TP + FN)

F-Measure (2 ∗ PR ∗ RR)/(PR + RR)

FPR FP/(TN + FP)

FNR FN/(FN + TP)

FAR (FPR + FNR)/2

4.2. Validity. �e validity is the key to measuring the quality
of the NIDS. �e purpose of the application of fusion tech-
nology is to improve the performance of intrusion detection.
�erefore, the validity can still be used to measure the fusion
technology.

�e elements of the validity evaluation metrics include
TP (the number of positive samples predicted to be positive),
FP (the number of negative samples predicted to be positive),
FN (the number of positive samples predicted to be negative),
and TN (the number of negative samples predicted to be neg-
ative). Based on these measurement elements, the accuracy
(ACC), precision rate (PR), recall rate (RR), F-Measure, FPR,
andFNRare applied to evaluate the performance of the fusion
techniques. �ese metrics’ formulas are listed in Table 1.

4.3. E�ciency. In the big data era, communications and
activities between people generate high volume and high-
dimensional network data that require real-time classi	ca-
tion. In NIDS, not only the network behavior classi	cation
technology needs to be e�cient, but also the e�ciency of
data fusion is crucial [59], which determines the e�ciency
of NIDS. Training time and testing time can be used to
measure the e�ciency of fusion technology. Besides, the
number of features produced by feature fusion also measures
the e�ciency of the fusion technique.

4.4. Data Security. In actual network monitoring, DF and
classi	cation techniques concern data security issues in order
to provide trustworthy data fusion results, such as data
con	dentiality, integrity, and creditability. We must consider
that the privacy of individuals or organizations cannot be
compromised when we analyze and fuse network data.
�erefore, data security and data privacy also need to be
considered in data fusion.

4.5. Scalability. Digital communications will enter the era
of 5G with the rapid technology development. Large-scale
heterogeneous networks have become the trend of network
development, and mass data and heterogeneous DF tech-
nologies are increasingly important. Fusion techniques and
frameworks should take scalability into consideration, such
as compatibility with di
erent data formats and scalability of
memory and CPU, which, therefore, becomes a measure of
fusion technologies.

5. Comparisons and Discussions

Based on the above evaluation criteria, we conduct a rig-
orous review and analysis on 31 related studies, of which
23 are feature fusion techniques and the remaining 8 are
decision fusion techniques. �e results of research and
analysis are listed in Tables 2 and 3, respectively. �e exper-
iments reported in the above work were conducted based
on published datasets, including KDD99, NSL-KDD, Kyoto
2006+, and UNSW-NB15. We analyzed and compared the
performance of di
erent fusion techniques in terms of the
feature fusion and the decision fusion based on the proposed
criteria and speci	ed metrics. It must be mentioned that the
following comparisons are made based on di
erent datasets.
In addition, the experimental details in the literature are
di
erent, which may a
ect the performance evaluation of
data fusion techniques.

5.1. Comparison of Feature Fusion Techniques. In this part,
we review feature fusion techniques based on our proposed
criteria and show our evaluation results in Table 2.

�e original intention of feature fusion is to reduce the
size of data and improve the operation e�ciency of NIDS.
�erefore, the e�ciency is the key to measure the quality
of feature fusion. We concern with training time compared
with testing time in evaluating the e�ciency of feature fusion.
�is is because the training time is usually far longer than
the corresponding testing time.We 	rst analyze and compare
the training time of classi	ers using di
erent feature fusion
techniques based on di
erent datasets. For the KDD dataset
series (DARPA99, KDD99, and KDD99 10%), we can 	nd
that the training time of network intrusion classi	er using
the following feature fusion techniques is shorter than others,
such as GFR, FRM-SFM [18], and CART [23]; CFS-GA [25]
is very e�cient for the NSL-KDD dataset; based on the Kyoto
2006+ dataset, PLS [12] helps to reduce time consumption
of classi	er training. In summary, these mentioned fusion
techniques are outstandingly e�cient in the training time
of network behavior classi	er. What these fusion techniques
have in common is that fewer features are generated regard-
less of the dataset, with a minimum of 4 features in [25].
�e 	lter is more e�cient than the wrapper among these
feature fusion techniques, and the hybrid methods usually
have excellent e�ciency.

In addition to e�ciency, the validity is also an important
measure of feature fusion techniques. For the KDD dataset
series, SA-SVM [20], GA-LR [16], (Filter-MISF, FMIFS) [17],
PCA [11], MIFS [24], (FRM-SFM, GFR) [18], SVM [9, 10, 19],
(GeFS-mRMR, GeFS-CFS) [19], and NN [9] achieved very
high accuracy, exceeding 99.20%, and the highest was 99.96%
of SA-SVM. In addition, the FPR of Filter-MISF, GA-LR,
Filter, MIFS, MLCFS [24], and SVM are less than 0.50%.
We found out that GA-LR, SVM, Filter-MISF, and MISF
perform very well in terms of validity in the KDD dataset
series. As for the NSL-KDD dataset, (FMISF, MIFS, FLCFS)
[24], Chi-Square [21], FVBRM [27], and CFS [30] performed
excellently in accuracy, both exceeding 96.75% and up to
99.91% of FMIFS. �e FPR of FMISF, MIFS, and FLCFS are
all lower than 0.53%, and Chi-Square’s FAR is 0.13%. �ese
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feature fusion techniques have outstanding characteristics in
NIDSs based on NSL-KDD datasets. In the Kyoto 2006+
dataset, the accuracy of (FMIFS, MIFS, FLCFS) [24] and
(HVS, PCA) [12] was all higher than 97.12%, and the FPR of
FMIFS, MIFS, and FLCFS are all below 0.58%.

A notable fact is that the accuracy of the classi	cation
in the new dataset (UNSW-NB15) is not as good as the old
datasets mentioned earlier (such as KDD dataset series). �e
major reason is that the UNSW-NB15 dataset is considered
complex due to the similar behaviors of the modern attack
and normal network tra�c compared to the KDD99 dataset
[55]. So far, the e
ectiveness of network intrusion detection
is not good based on the UNSW-NB15 dataset. �e accuracy
in [16] reached the highest accuracy 81.42% based on our
statistics, and the corresponding feature fusion technique
and classi	er are GA-LR, C4.5, respectively. Decision Tree
(DT) classi	er has indeed performed better in the UNSW-
NB15 dataset [55] than other methods. �e misfortune is
not alone. �e FAR of NIDSs in the UNSW-NB15 dataset is
also bad. �erefore, advanced classi	cation techniques and
feature fusion techniques need further study. In general, GA-
LR, SVM, Filter-MISF, and MISF show excellent validity
in the KDD dataset series; FMISF, MIFS, FLCFS, and Chi-
Square are more valid in the NSL-KDD dataset; the feature
fusion techniques with high-validity are FMIFS, MIFS, and
FLCFS in the Kyoto 2006+ dataset. Because the performance
of network intrusion detection based onUNSW-NB15 dataset
is not very good, more advanced fusion and classi	cation
techniques should be further investigated in order to identify
the anomalies from this complex dataset.

Unfortunately, the fusion techniques in the literature we
have reviewed have not considered the security of data fusion.
�e data privacy issues were not covered because existing
experiments were based on the public datasets. In addition,
the scalability of fusion technologies and frameworks were
normally not mentioned in the past work. However, these
properties of data fusion are particularly important in the big
data era.More e
orts are needed in order to solve these issues.

5.2. Comparison of Decision Fusion Techniques. In this sub-
section, we analyze the performance of di
erent decision
fusion techniques based on the proposed criteria and show
our evaluation results in Table 3.

According to Table 3, we can 	nd that the training and
testing time of the classi	ers are not recorded. �e reason is
that decision fusion techniques fuse the recognition results
of basic classi	ers. Although the training and testing time
of classi	ers can re�ect the e�ciency of classi	ers, it cannot
re�ect the merits of decision fusion techniques. Besides, the
KDD dataset series are used in the most statistical literature.
So herein, we mainly analyze the validity of decision fusion
techniques based on the KDD dataset series. �e accuracy
of D-S Evidence �eory [32, 33] and NN [33] is over 99%,
which is usually higher than the accuracy of a single basic
classi	er. �e FPR is also reduced through the integration
of basic classi	ers. �e FPR in [31] (D-S Evidence �eory)
is as low as 0.19%. As a group, D-S Evidence �eory, Data-
Dependent Fusion, NN, RF, and Adaboost show good fusion
performance in combining multiple basic decisions.

Like the feature fusion techniques, the existing decision
fusion techniques did not consider the credibility of basic
decisions and data security in the process of integration,
which will a
ect the reliability of the 	nal results or cause
privacy leakage. Besides, most of the literatures also fail to
analyze the scalability of decision fusion. We believe that
these aspects are very important and should attract special
attention.

6. Open Issues and Future
Research Directions

In recent years, DF has achieved special attention and
has developed rapidly in many 	elds. In the 	eld of net-
work intrusion detection, scholars have conducted extensive
researches in DF and have made signi	cant progress. How-
ever, the current data fusion techniques still face some serious
challenges or open issues, which are summarized as below
according to our literature review.

First, most of the existing researches were conducted
based on open datasets and the practicability of these
fusion algorithms or techniques needs further validation. Few
researches used real network data because it is easy to expose
privacy and cannot measure or compare with other existing
works, which is not conductive to the development of data
fusion technology. In fact, this is a di�cult contradiction,
which hinders the further development of network intrusion
detection.

Second, in the era of big data, the network security
monitoring and prevention may need real-time fusion and
processing of massive network data. However, large data
communication overhead and long computation delay are
obviously a big challenge to overcome.

�ird, existing DF technologies do not consider data
security, including con	dentiality and credibility.�e feature
fusion techniques could reveal the privacy of individuals or
organizations, and the decision fusion techniques need to
identify the credibility of local decisions. All above are not
considered in the past work.

Fourth, sincemost of the researches conducted their work
over some public datasets and these datasets are prepro-
cessed, there are few data level fusion techniques used in
intrusion detection. However, we are facing a large number of
di
erent types of raw data in actual networks. �us, the data
layer fusion becomes indispensable for intrusion detection.
Special e
orts are expected on data fusion with regard to
network intrusion detection.

Fi�h, there is a lack of studies on the visualization of data
fusion. �rough utilizing the visualization algorithm, we can
not only deeply understand the features and e
ectiveness of
the fusion technology, but also easily identify the distribution
characteristics of the fused data. Few articles use a visual
method to analyze classical datasets. In [60], Ruan et al.
performed a visual analysis of theKDD99 dataset usingMDC
and PCA techniques to clearly identify normal and attack
clusters. Based on this research, we believe that it is also
necessary to provide a beautiful and comprehensive data
fusion expression.
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In addition, based on the above open issues, we further
proposed a number of promising research directions in the
	eld of data fusion for network intrusion detection.

First, the improvement of data fusion technology depends
on new datasets to evaluate and verify. Most of the fusion
techniques and intrusion detection technology show excel-
lent performance on some old datasets, such as KDD99 and
NSL-KDD. However, these datasets are out of date and do
not represent the current network security situation, which
deviates from the actual network security detection. More
research needs to be done on new dataset collection, such as
UNSW-NB15. �e existing problem is that the performance
of feature fusion based on the UNSW-NB15 dataset is not
good.We should further studymore advanced or appropriate
fusion techniques to better identify abnormalities from com-
plex network data.

Second, big network data fusion techniques should be
investigated. �e current fusion techniques are di�cult to
e
ectively and adaptively integrate network data of high-
velocity, varieties of formats and types. In the era of big data,
in addition to the large amount of data, the network data that
needs to be collected come from di
erent sources in di
erent
types of networks.�erefore, the collection of heterogeneous
network data is required to research more advanced fusion
methods.

�ird, universal, �exible, and extensible fusion frame-
work should be studied. �ere are many kinds of data fusion
technologies, and the principles and mathematical theories
of some fusion technologies are not easy to understand.
�erefore, the simple, easy-to-use, universal, and easy-to-
expand network data fusion architecture is worth studying. It
can modularize mature fusion techniques and provide open
interfaces for new fusion methods and architectures; thus, it
greatly promotes the development of data fusion in the 	eld
of intrusion detection.

Fourth, data security in data fusion should be ensured.
Most of the existing researches are based on public datasets,
and security issues were not considered at all. In an actual
network, network data includes personal or organizational
information, which is easily revealed during the integration
process, and the credibility and integrity of network data are
di�cult to guarantee. Data security and privacy should be
protected and ensured in order to achieve trustworthy data
fusion.

Finally, data layer fusion is an essential part of study
towards e�cient and practical data fusion in real-time
network intrusion detection. �e data layer fusion has not
been seriously studied by relevant literature because of the
widespread use of public datasets. �e study of data layer
fusion is also very signi	cant, especially for practical applica-
tions. However, it is very di�cult to collect and evaluate the
original network data containing various modern attacks.

7. Conclusion

In this article, we categorically presented a detailed review
on the feature fusion techniques and the decision fusion
techniques used in NIDSs. A speci	c description of DF in

the 	eld of intrusion detection was presented in order to
motivate thiswork. Based on the literature study,we proposed
the evaluation criteria of data fusion techniques in terms of
NIDS. �e performance of di
erent data fusion techniques
is measured using the proposed criteria. We found that,
in the feature fusion, in addition to some excellent fusion
techniques, such as SVM and MIFS, the improved types of
fusion techniques and hybrid fusion techniques are generally
e�cient and valid. For the decision fusion techniques, D-
S Evidence �eory, NN, RF, and Adaboost can combine
multiple decisionsmore precisely than othermethods regard-
ing the studies based on KDD dataset series. In addition,
we found many e
ective classi	cation algorithms in NIDS,
namely, RF, C4.5, NN, and SVM, as well as their variants.
Unfortunately, the current fusion techniques normally did
not consider the security and the scalability of DF.

DF has been regarded as one of the most important
technologies in improving the performance of theNIDSs.�e
use of DF can well alleviate the defects of network intrusion
detection and improve the comprehensive performance of
NIDSs. However, there are still many de	ciencies in current
DF techniques. Based on our review, we pointed out themain
challenges and promising future research directions in this
	eld of research. In summary, this article provides a good
reference for researchers and practitioners in the 	eld of
network intrusion detection.
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