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    Abstract—The effectiveness of probabilistic tracking of objects

in image sequences has been revolutionized by the development
of particle filtering. Whereas Kalman filters are restricted to
Gaussian distributions, particle filters can propagate more gen-
eral distributions, albeit only approximately. This is of particular
benefit in visual tracking because of the inherent ambiguity of
the visual world that stems from its richness and complexity.

One important advantage of the particle filtering framework is
that it allows the information from different measurement sources
to be fused in a principled manner. Although this fact has been
acknowledged before, it has not been fully exploited within a
visual tracking context. Here we introduce generic importance
sampling mechanisms for data fusion and discuss them for fusing
color with either stereo sound, for tele-conferencing, or with
motion, for surveillance with a still camera. We show how each of
the three cues can be modeled by an appropriate data likelihood
function, and how the intermittent cues (sound or motion) are
best handled by generating proposal distributions from their
likelihood functions. Finally, the effective fusion of the cues by
particle filtering is demonstrated on real tele-conference and
surveillance data.

Index Terms— Visual tracking, data fusion, particle filters,
sound, color, motion

I. INTRODUCTION

V ISUAL tracking entails the detection and recursive local-

ization of objects, or more generally features, in video

sequences. The tracking of objects has become an ubiquitous

elementary task in both online and offline image based ap-

plications, including visual servoing (e.g., [34]), surveillance

(e.g., [19]), gestural human-machine interfaces and smart

environments (e.g., [38], [11], [33]), video compression (e.g.,

[56]), augmented reality and visual effects (e.g., [35]), motion

capture (e.g., [36]), environmental imaging (e.g.,[12], [37]),

and many more.

Recently Sequential Monte Carlo Methods [15], [18], [20],

[31], otherwise known as Particle Filters, have become popular

tools to solve the tracking problem. Their popularity stems

from their simplicity, flexibility, ease of implementation, and

modeling success over a wide range of challenging applica-

tions. Within a visual tracking context these methods have

been pioneered in the seminal paper by Isard and Blake [20],

in which the term CONDENSATION was coined. This has

subsequently led to a vast body of literature, which we shall

not attempt to review here. See examples in [7], [13], [14],

[26], [28], [41], [43], [45], [46], [48], [49].

One important advantage of the sequential Monte Carlo

framework is that it allows the information from different

measurement sources to be fused in a principled manner.

Although this fact has been acknowledged before, it has not
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been fully exploited within a visual tracking context, where

a host of cues are available to increase the reliability of

the tracking algorithm. Data fusion with particle filters has

been mostly confined to skin color and edge cues inside and

around simple silhouette shapes in the context of face and

hand tracking [21], [50], [58], [59].

In this paper we present a particle filter based visual tracker

that fuses three cues in a novel way: color, motion and sound

(Fig. 1). More specifically, we will introduce color as the

main visual cue and fuse it, depending on the scenario under

consideration, with either sound localization cues or motion

activity cues. The generic objective is to track a specified

object or region of interest in the sequence of images captured

by the camera. We employ weak object models so as not to

be too restrictive about the types of objects the algorithm can

track, and to achieve robustness to large variations in the object

pose, illumination, motion, etc. In this generic context, contour

cues are less appropriate than color cues to characterize the

visual appearance of tracked entities. The use of edge based

cues indeed requires that the class of objects to be tracked is

known a priori and that rather precise silhouette models can

be learned beforehand. Note however that such conditions are

met in a number of tracking applications where shape cues are

routinely used [2], [3], [25], [30], [40], [44], [53].

Color localization cues are obtained by associating some

reference color model with the object of interest. This ref-

erence model is then compared, in some sense, to similar

models extracted from candidate regions in the image, and the

smaller the discrepancy between the candidate and reference

models, the higher the probability that the object is located

in the corresponding image region. The color reference model

can be obtained from some automatic detection module, or

by allowing the user to label the object of interest by hand.

The model can then be defined in parametric form, using for

instance mixtures if Gaussians (e.g., [23], [55], [59]). In this

paper we use instead a histogram based color model inspired

by the powerful deterministic color trackers by Bradski [4]

and Comaniciu et al. [9], [10]. The likelihood is built on the

histogram distance between the empirical color distribution in

the hypothesized region and the reference color model [39].

Along the same lines we also introduce motion cues based

on histogramming successive frame differences. Using a form

similar to the color likelihood, the motion likelihood is de-

signed to favor regions exhibiting a temporal activity larger

than the average temporal activity in the scene. It will prove to

be particularly effective in drawing the attention of the tracker

back to objects moving in front of a still background in cases

where lock has been temporarily lost.

For audio-visual tracking the system setup consists of a

single camera and a stereo microphone pair. The line con-

necting the microphones goes through the optical center of
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Fig. 1. Three types of raw data. We consider color based tracking combined with either motion cues (for surveillance with a static camera) or stereo
sound cues (for speaker face tracking in a tele-conference setup). The corresponding measurements are respectively: (Left) RGB color video frames, (Middle)
absolute luminance differences for pairs of successive frames, and (Right) stereo pairs of sound signal sections.

the camera, and is orthogonal to the camera optical axis.

Sound localization cues are then obtained by measuring the

Time Delay of Arrival (TDOA) between signals arriving at

the two microphones comprising the pair. The TDOA gives

an indication of the bearing of the sound source relative to the

microphone pair. Given the configuration of the system this

bearing can in turn be related to a horizontal position in the

image (Fig. 2).

The color cues tend to be remarkably persistent and robust

to changes in pose and illumination. They are, however, more

prone to ambiguity, especially if the scene contains other

objects characterized by a color distribution similar to that

of the object of interest. The motion and sound cues, on the

other hand, tend to be intermittent, but are very discriminant

when they are present, i.e., they allow the object to be located

with low ambiguity.

The localization cues impact the particle filter based tracker

in a number of ways. As is standard practice, we construct

a likelihood model for each of the cues. These models are

assumed to be mutually independent, an assumption that can

be justified in the light that any correlation that may exist

between the color, motion and sound of an object is likely

to be weak. The intermittent and discriminant nature of the

motion and sound cues make them excellent candidates for

the construction of detection modules and efficient proposal

distributions. We will exploit this characteristic extensively.

Finally, the differing nature of the cues and the configuration

of the system allow us to experiment with the order and

manner in which the cues are incorporated. For example,

since the sound cue only gives localization information in the

horizontal direction of the image, we can search this direction

first, and confine the search in the remainder of the state-space

to regions for which the horizontal image component have

been deemed highly likely to contain the object of interest.

This strategy is known as Partitioned Sampling [32], and

allows for a more efficient exploration of the state-space.

The remainder of the paper is organized as follows. Sec-

tion II briefly outlines the Bayesian Sequential Estimation

framework, and shows how a Monte Carlo implementation

thereof leads to the Particle Filter. It also presents some alter-

native particle filter architectures for cases where information

from multiple measurement sources are available. Section III

presents and discusses all the ingredients of our proposed

data fusion tracker based on color, motion and sound. This

section is concluded with a summary of the tracking algorithm.

Section IV presents some tracking scenarios, and illustrates

the performance of the tracking algorithm under a variety of

conditions. The usefulness of each localization cue, and their

combined impact are evaluated. Finally, we conclude the paper

in Section V with a summary and some suggestions for future

research.

II. SEQUENTIAL MONTE CARLO AND DATA FUSION

Sequential Monte Carlo techniques for filtering time series

[15], [18], [20], [31], and their use in the specific context

of visual tracking [22], have been described at length in

the literature. In what follows we give a brief summary of

the framework, and discuss in some detail the architectural

variations that are afforded by the presence of multiple mea-

surement sources.

Denote by xn and yn the hidden state of the object of

interest and the measurements at discrete time n, respec-

tively. For tracking the distribution of interest is the posterior

p(xn|y1:n), also known as the filtering distribution, where

y1:n = (y1 · · ·yn) denotes all the observations up to the

current time step. In Bayesian Sequential Estimation the

filtering distribution can be computed according to the two

step recursion1

prediction step:

p(xn|y1:n−1) =
∫

p(xn|xn−1)p(xn−1|y1:n−1)dxn−1 (1)

filtering step:

p(xn|y1:n) ∝ p(yn|xn)p(xn|y1:n−1), (2)

where the prediction step follows from marginalisation, and

the new filtering distribution is obtained through a direct

application of Bayes’ rule. The recursion requires the spec-

ification of a dynamic model describing the state evolution,

p(xn|xn−1), and a model that gives the likelihood of any state

in the light of the current observation, p(yn|xn), along with

the following conditional independence assumptions:

xn ⊥ y1:n−1|xn−1 and yn ⊥ y1:n−1|xn. (3)

The recursion is initialized with some distribution for the ini-

tial state p(x0). Once the sequence of filtering distributions is

known point estimates of the state can be obtained according to

any appropriate loss function, leading for example to the Max-

imum a Posteriori (MAP) estimate, arg maxxn
p(xn|y1:n),

1Notation “∝” means that the conditional distribution on the left is
proportional to the function on the right up to a multiplicative “constant”
that may depend on the conditioning argument.
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and to the Minimum Mean Square Error (MMSE) estimate,∫
xnp(xn|y1:n)dxn.

The tracking recursion yields closed-form expressions in

only a small number of cases. The most well-known of these

is the Kalman filter [1] for linear Gaussian likelihood and

state evolution models. The models encountered in visual

tracking are often non-linear, non-Gaussian, multi-modal, or

any combination of these. One reason for this stems from the

fact that the observation model often specifies which part of

the data is of interest given the state, leading to p(yn|xn) being

non-linear and often multi-modal with respect to the state xn.

This renders the tracking recursion analytically intractable, and

approximation techniques are required.

Sequential Monte Carlo methods [15], [18], [20], [31],

otherwise known as Particle Filters, have gained a lot of

popularity in recent years as a numerical approximation to the

tracking recursion for complex models. This is due to their

simplicity, flexibility, ease of implementation, and modeling

success over a wide range of challenging applications.

The basic idea behind particle filters is very simple. Starting

with a weighted set of samples {x(i)
n−1, w

(i)
n−1}

Np

i=1 approxi-

mately distributed according to p(xn−1|y1:n−1), new samples

are generated from a suitably chosen proposal distribution,

which may depend on the old state and the new measurements,

i.e., x
(i)
n ∼ q(xn|x(i)

n−1,yn), i = 1 · · ·Np. To maintain a

consistent sample the new importance weights are set to2

w(i)
n ∝ w

(i)
n−1

p(yn|x(i)
n )p(x

(i)
n |x(i)

n−1)

q(x
(i)
n |x(i)

n−1,yn)
, with

Np∑

i=1

w(i)
n = 1.

(4)

The new particle set {x(i)
n , w

(i)
n }Np

i=1 is then approximately

distributed according to p(xn|y1:n).
Approximations to the desired point estimates can then be

obtained by Monte Carlo techniques. From time to time it

is necessary to resample the particles to avoid degeneracy of

the importance weights, that is the concentration of most of

the weight on a single particle. In absence of resampling, this

phenomenon always occurs in practice, dramatically degrading

the sample based approximation of the filtering distribution,

along with the quality of any point estimate based on it. The

resampling procedure essentially multiplies particles with high

importance weights, and discards those with low importance

weights, while preserving the asymptotic properties of the

sample based approximation of the filtering distribution. This

procedure can be applied at each time step, or be invoked only

when a measure of the “quality” of the weights falls below a

threshold. A full discussion of degeneracy and resampling falls

outside the scope of this paper, but more detail can be found

in [15]. The synopsis of the generic particle filter iteration is

given in Tab. I.

The performance of the particle filter hinges on the qual-

ity of the proposal distribution. The Bootstrap Filter [18],

2 This can be seen by considering sample trajectories x
(i)
1:n [15]. These

are distributed according to q(x1|y1)
∏n

k=2 q(xk|xk−1,yk) instead of true

target distribution p(y1:n)−1p(x1,y1)
∏n

k=2 p(yk|xk)p(xk|xk−1). Ac-
cording to importance sampling theory [16], the discrepancy is compensated
for by associating importance weights proportional to the ratio of the target
distribution to the proposal distribution, which yields in this case the recursion
in (4).

With {x
(i)
n−1, w

(i)
n−1}

Np

i=1 the particle set at the previous time step, proceed
as follows at time n:
Proposition: simulate x

(i)
n ∼ q(xn|x

(i)
n−1,yn).

Update weights:

w
(i)
n ∝ w

(i)
n−1

p(yn|x
(i)
n )p(x

(i)
n |x

(i)
n−1)

q(x
(i)
n |x

(i)
n−1,yn)

, with
∑Np

i=1 w
(i)
n = 1.

If resampling:

simulate ai ∼ {w
(k)
n }

Np

k=1, and replace {x
(i)
n , w

(i)
n } ← {x

(ai)
n , 1

Np
}.

TABLE I

GENERIC PARTICLE FILTER.

which is the first modern variant of the particle filter, uses

the state evolution model p(xn|xn−1) as proposal distribu-

tion, so that the new importance weights in (4) become

proportional to the corresponding particle likelihoods. This

leads to a very simple algorithm, requiring only the ability

to simulate from the state evolution model and to evalu-

ate the likelihood. However, it performs poorly for narrow

likelihood functions, especially in higher dimensional spaces.

In [15] it is proved that the optimal choice for the pro-

posal distribution (in terms of minimizing the variance of

the importance weights) is the posterior p(xn|xn−1,yn) ∝
p(yn|xn)p(xn|xn−1). However, the normalizing constant for

this distribution,
∫

p(yn|xn)p(xn|xn−1)dxn = p(yn|xn−1),
is rarely available in closed form, making direct sampling from

this optimal proposal distribution impossible. The challenge

in particle filtering applications is then to design efficient

proposal distributions that approximate the optimal choice as

closely as possible. We will give careful consideration to this

issue in the design of our tracker in Section III.

For multiple measurement sources the general particle filter-

ing framework can still be applied. However, it is possible to

devise strategies to increase the efficiency of the particle filter

by exploiting the relation between the structure of the model

and the information in the various measurement modalities.

In what follows we will suppress the time index n for

notational compactness. Assume that we have M measurement

sources, so that the instantaneous measurement vector can be

written as y = (y1 · · ·yM ). We will further assume that the

measurements are conditionally independent given the state,

so that the likelihood can be factorized as

p(y|x) =

M∏

m=1

p(ym|x). (5)

With this setting the generic filter summarized in Tab. I could

be used as is, with the weight update involving M likelihood

evaluations according to (5). However, the factorized structure

of the likelihood can be better exploited. To this end, we

introduce the following abstract framework: let us assume that

the state evolution and proposal distributions decompose as

p(x|x′) =

∫
pM (x|xM−1) · · · p1(x

1|x′)dx1 · · · dxM−1 (6)

q(x|x′,y) =

∫
qM (x|xM−1,yM ) · · · q1(x

1|x′,y1)dx1 · · · dxM−1,

(7)
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With {x
(i)
n−1, w

(i)
n−1}

Np

i=1 the particle set at the previous time step, proceed
as follows at time n:
Initialize: {x0(i), w0(i)}

Np

i=1 = {x
(i)
n−1, w

(i)
n−1}

Np

i=1
Layered sampling: for m = 1 · · ·M

• Proposition: simulate xm(i) ∼ qm(xm|xm−1(i),ym
n ).

• Update weights:

wm(i) ∝ wm−1(i) p(ym
n |xm(i))pm(xm(i)|xm−1(i))

qm(xm(i)|xm−1(i),ym
n )

, with
∑Np

i=1 wm(i) = 1.

• If resampling: simulate ai ∼ {wm(k)}
Np

k=1, and replace

{xm(i), wm(i)} ← {xm(ai), 1
Np

}.

Terminate: {x
(i)
n , w

(i)
n }

Np

i=1 = {xM(i), wM(i)}
Np

i=1.

TABLE II

GENERIC LAYERED SAMPLING PARTICLE FILTER TO FUSE M

OBSERVATION MODALITIES.

where x1 · · ·xM−1 are “auxiliary” state vectors. Eq. (6) sim-

ply amounts to a splitting of the original evolution model

into M successive intermediary steps. This can, for example,

be done when the state is M -dimensional and corresponding

component-wise evolution models are independent, and/or

when the evolution model is linear and Gaussian, and can

thus be easily fragmented into M successive steps with lower

variances.

If we make the approximation that the likelihood for the m-

th measurement modality p(ym|x) can be incorporated after

applying the m-th state evolution model pm(xm|xm−1), we

can set up a recursion to compute the new target distribution

that takes the form

πm(xm) ∝
∫

wm(xm,xm−1)qm(xm|xm−1,ym)

· πm−1(xm−1)dxm−1, m = 1 · · ·M
(8)

with wm(xm,xm−1) =
p(ym|xm)pm(xm|xm−1)

qm(xm|xm−1,ym)
, (9)

where π0 and πM are respectively the previous and the

new filtering distributions, x0 = x′, and xM = x. This

recursion can be approximated with a layered sampling

strategy, where at the m-th stage new samples are simu-

lated from a Monte Carlo approximation of the distribution

qm(xm|xm−1,ym)πm−1(xm−1), with an associated impor-

tance weight proportional to wm(xm,xm−1) to yield a prop-

erly weighted sample. The synopsis of this generic layered

sampling strategy for data fusion is given in Tab. II.

As it stands the layered sampling approach provides no

obvious advantage over the standard particle filtering frame-

work. Its true benefit arises in cases where the measurement

modalities differ in the level of information they provide about

the state. If the measurement modalities are then ordered from

coarse to fine, the layered sampling approach will effectively

guide the search in the state-space, with each stage refining

the result from the previous stage.

In some special applications the likelihood and state evolu-

tion models are independent over a component-wise partition-

ing of the state-space, i.e.,

p(y|x) =
M∏

m=1

p(ym|xm) (10)

p(x|x′) =
M∏

m=1

p(xm|x′
m), (11)

with x = (x1 · · ·xM ). For models of this nature the layered

sampling procedure, with

pm(xm|xm−1) = p(xm
m|xm−1

m )
∏

k 6=m

δ
x

m−1
k

(xm
k ) (12)

in (6) and (9), is exact, and known as Partitioned Sampling

[32]. It effectively replaces the search in the full state-space

by a succession of M easier search problems, each in a lower

dimensional space. We will make use of these strategies when

designing our tracking algorithm in Section III.

III. DATA FUSION VISUAL TRACKER

In this section we describe in detail all the ingredients of

our tracking algorithm based on color, motion and sound. We

first present the system configuration and the object model,

and then proceed to discuss the localization cues and their

impact on the tracking algorithm in more detail. The section

is concluded with a summary of the tracking algorithm.

A. Audio-Visual System Setup

The setup of the tracking system is depicted in Fig. 2. It

consists of a single camera and a stereo microphone pair.

The line connecting the microphones goes through the optical

center of the camera, and is orthogonal to the camera optical

axis. Note, however, that in our experiments the object of

interest will not always be a talking head in front of the

camera. In such cases sound measurements will generally be

absent, and we will only rely on the visual cues.

The system requires only a small number of calibration

parameters: the microphone separation d, the camera focal

length f , the width of the camera image plane in the real

world W̃ , and the width in pixels of the digital image W .

These parameters are normally easy to obtain. Nevertheless,

the tracking algorithm we develop is robust to reasonable in-

accuracies in the system setup and variations in the calibration

parameters. Since it is probabilistic in nature, these errors are

easily accommodated by explicitly modeling the measurement

uncertainty in the corresponding likelihood models.

Our objective is to track a specified object or region of

interest in the sequence of images captured by the camera. To

this end the raw measurements available are the images them-

selves, and the audio signals captured at the two microphones

comprising the pair. Since the tracking is performed in the

video sequence the discrete time index n corresponds to the

video frame number. As opposed to the video sequence that

is naturally discretized, the audio samples arrive continuously,

and there is no notion of natural audio frames. For the purposes

of the tracking algorithm, however, we define the n-th audio

frame as a window of Ns audio samples centered around

the sample corresponding to the n-th video frame. If Tv
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Fig. 2. Setup for audio-visual tracking. The system calibration parameters are the microphone separation d, the camera focal length f , the width of the

image plane in the real world W̃ , and the width in pixels of the digital image W .

and Ts denote the sampling period for video frames and

audio samples, respectively, the center of the audio frame

corresponding to the n-th video frame can be computed as

ns = [(n − 1)Tv/Ts + 1], (13)

where [·] denotes the rounding operation. The number of

samples in the audio frame Ns is normally taken such that

the duration of the audio frame is roughly 50ms.

The raw image and audio frames are very high dimensional,

and contain lots of information that is redundant with regard

to object tracking. We thus pass the raw data through a

signal processing front-end with the purpose of extracting

features important for the tracking process. More specifically,

we extract color and motion features from the image data, and

Time Delay Of Arrival (TDOA) features from the audio data.

With color being the most persistent feature of the object we

will use it as the main visual cue and fuse it with the more

intermittent motion and sound cues. In what follows we will

denote the combined color, motion and sound measurements

at time n by yn = (yC
n ,yM

n ,yS
n). We will suppress the time

index n in cases where there is no danger of ambiguities

arising. The measurement procedures for each of the cues are

described in detail in the relevant sections that follow.

B. Object Model

Our objective is to track a specified object or region of

interest in the image sequence. We will aim to use models

that make only weak assumptions about the precise object

configuration, so as not to be too restrictive about the types

of objects that can be tracked, and to achieve robustness to

large variations in the object pose, illumination, motion, etc.

In the approach adopted here the shape of the reference region,

denoted by B⋆, is fixed a priori. It can be an ellipse or

rectangular box as in [4], [6], [9], but our modeling framework

places no restrictions on the class of shapes that can be

accommodated. More complex hand-drawn or learned shapes

can be used if relevant.

Tracking then amounts to recursively estimating the pa-

rameters of the transformation to apply to B⋆ so that the

implied region in each frame best matches the original ref-

erence region. Affinity or similitude transforms are popular

choices. Since the color model we will describe in Section

III-C is global with respect to the region of interest, we

consider only translation and scaling of the reference region.

This means that the reference region can be parameterized

as B⋆ = (x⋆, y⋆, w⋆, h⋆), where (x⋆, y⋆) is the center of

the reference region bounding box, and w⋆ and h⋆ are its

width and height, respectively. We define the hidden state

as xn = (xn, yn, αn) ∈ X , with X denoting the state-

space, so that the corresponding candidate region becomes

Bxn
= (xn, yn, αnw⋆, αnh⋆). The variables (xn, yn) thus

form the center of the candidate region, and αn acts as a

scale factor.

Most objects move in a fairly predictable way. It is thus

good practice in general to design the state evolution model

p(xn|xn−1) to capture the salient features of the object

motion. However, we desire our algorithm to be applicable

to any object that may be of interest, including people, faces,

motor vehicles, etc. Within such a large population of objects

the variability in the characteristics of the object motion is

likely to be high. Furthermore, we are interested in tracking in

the image sequence, and not in the real world. The mapping

of the motion from the three dimensional world to the two

dimensional image representation is dependent on the system

configuration and the direction of the motion, and is unknown

in practice. We acknowledge these uncertainties by adopting a

very weak model for the state evolution. More specifically, we

assume that state components evolve according to mutually

independent Gaussian Random Walk models. We augment

these models with a small uniform component to capture the

(rare) event where erratic motion in the real world is perceived

as jumps in the image sequence. It also aids the algorithm in

recovery of lock after a period of partial or complete occlusion.

Thus the complete state evolution model can be written as

p(xn|xn−1) = (1 − βu)N(xn|xn−1,Λ) + βuUX (xn), (14)

where N(.|µ,Σ) denotes the Gaussian distribution with mean

µ and covariance Σ, UA(·) denotes the uniform distribution

over the set A, 0 ≤ βu ≤ 1 is the weight of the uniform com-

ponent, and Λ = diag(σ2
x, σ2

y, σ2
α) is the diagonal matrix with

the variances for the random walk models on the components

of the object state. The weight of the uniform component is

typically set to be small. The object model is completed by

the specification of the distribution for the initial state, and

here we assume it to be uniform over the state-space, i.e.,

p(x0) = UX (x0).

C. Color Cues

When a specific class of objects with distinctive shape is

considered and a complete model of this shape can be learned
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offline, contour cues are very powerful to capture the visual

appearance of tracked entities [2], [3], [25], [30], [40], [44],

[53]. They can, however, be dramatically contaminated by

clutter edges, even when detailed silhouette models are used

[52]. Also, they are not adapted to scenarios where there is no

predefined class of objects to be tracked, or where the class of

objects of interest does not exhibit very distinctive silhouettes.

The two tracking scenarios we consider here fall respectively

in these two categories.

When shape modeling is not appropriate, color information

is a powerful alternative to characterize the appearance of

tracked objects. As demonstrated for example in [4], [9], [10],

[39], robust tracking can be achieved using only a simple

color model constructed in the first frame, even in presence

of dramatic changes of shape and pose. Hence, the color

features of an object or a region of interest often form a

very persistent localization cue. In the two tracking scenarios

we are interested in, color information is naturally chosen as

the primary ingredient. In this section we derive the color

likelihood model that we use.

If color cues are powerful for tracking, their simplicity

sometimes results in a lack of discriminative power when it

comes to (re)initialize the tracker. In Sections III-D and III-E

we show how motion or sound cues can be combined with

color cues to resolve ambiguities and increase the robustness

of the tracker in two distinct scenarios. In particular, the good

detection properties offered by these two auxiliary modalities

will be fully exploited in the design of good proposal densities.

Color localization cues are obtained by associating a refer-

ence color model with the object or region of interest. This

reference model can be obtained by hand-labeling, or from

some automatic detection module. To assess whether a given

candidate region contains the object of interest or not, a color

model of the same form as the reference model is computed

within the region, and compared to the reference model. The

smaller the discrepancy between the candidate and reference

models, the higher the probability that the object is located

inside the candidate region.

For the color modeling we use independent normalized

histograms in the three channels of the RGB color space.

We denote the B-bin reference histogram model in channel

c ∈ {R,G, B} by hc
ref = (hc

1,ref · · ·hc
B,ref ). Recall from

Section III-B that the region in the image corresponding to

any state x is given by Bx. Within this region an estimate for

the histogram color model, denoted by hc
x

= (hc
1,x · · ·hc

B,x),
can be obtained as

hc
i,x = cH

∑

u∈Bx

δi(b
c
u
), i = 1 · · ·B, (15)

where bc
u

∈ {1 · · ·B} denotes the histogram bin index as-

sociated with the intensity at pixel location u = (x, y) in

channel c of the color image yC , δa denotes the Kronecker

delta function at a, and cH is a normalizing constant such that∑B
i=1 hc

i,x = 1.

The color likelihood model must be defined in such a way

so as to favor candidate color histograms close to the reference

histogram. To this end we need to define a distance metric on

histogram models. As is the case in [9] we base this distance

on the Bhattacharyya similarity coefficient, defining it as

D(h1,h2) =
(
1 −

B∑

i=1

√
hi,1hi,2

)1/2

. (16)

In contrast to the Kullback-Leibler divergence this distance is a

proper metric, it is bounded within [0, 1], and empty histogram

bins are not singular. Based on this distance we finally define

the color likelihood model as

p(yC |x) ∝ exp
(
−

∑

c∈{R,G,B}
D2(hc

x
,hc

ref )/2σ2
C

)
. (17)

The assumption that the squared distance is exponentially

distributed is based on empirical evidence gathered over a

number of successful tracking runs. The histogram based

definition of the color likelihood is summarized in Fig. 3.

If the object of interest is comprised of patches of distinct

color, such as the face and clothes of a person, the histogram

based color model will still successfully capture the color

information. However, all the information about the relative

spatial arrangement of these different patches will be lost.

Keeping track of the coarse spatial layout of the distinct color

regions may benefit the performance of the tracking algorithm.

Such a goal is easily achieved within our modeling framework

by splitting the region of interest into subregions, each with

its own reference color model. More formally, we consider

the partition Bx = ∪NR

j=1Bj,x, associated with the set of

reference color histograms {hc
j,ref : c ∈ {R,G, B}, j =

1 · · ·NR}. The subregions are rigidly linked. It is, however,

possible to introduce additional state variables to model the

relative movement and scaling of the subregions, should this

be necessary. By assuming conditional independence of the

color measurements within the different subregions defined

by the state x the multi-region color likelihood becomes

p(yC |x) ∝ exp
(
−

∑

c∈{R,G,B}

NR∑

j=1

D2(hc
j,x,hc

j,ref )/2σ2
C

)
,

(18)

where the histogram hj,x is collected in the region Bj,x.

This color likelihood model is in contrast with the

foreground-background models developed in [23], [55]. For

any hypothesized state the latter models evaluate the pixels

(or grid nodes) covered by the object under some reference

foreground model, and the remaining pixels (or grid nodes)

under location dependent background models. The likelihood

for the scene is obtained by multiplying the individual pixel

(or grid node) likelihoods under the independence assumption.

Even though this type of likelihood is more principled, it

suffers from numerical instabilities, and in our experience the

histogram based color model proposed here is a more powerful

tracking cue.

The histogram based color measurements can also be used

to construct an efficient proposal for the particle filter, guiding

it towards regions in the state-space that are characterized by

a color distribution similar to the object of interest [21], [39].

In our setting such a distribution will be of the same form

as the one for the motion measurements described in Section

III-D. However, due to the ambiguity inherent in the color
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1 2 3 4 5 1 2 3 4 5

{hB
ref ,hG

ref ,hR
ref} Bx, yC hx = {hB

x ,hG
x ,hR

x } p(yC |(x, y, 1))

Fig. 3. From color histograms to color likelihood. (Left) A three-fold reference color histogram href = {hR
ref

,hG
ref

,hB
ref

} is either gathered in an

initial frame (within a region picked manually or automatically) or learned offline (e.g., skin color). (Middle) Later in the sequence, and for a hypothesized
state x, the candidate color histogram hx is gathered within the region Bx and compared to the reference histogram using the Bhattacharyya similarity
measure. (Right) The exponentiated similarity yields the color likelihood, plotted here on a subsampled grid as a function of the location only (scale factor
fixed to α = 1). Note the ambiguity: strong responses arise over both faces and a section of the door.

measurements for the two tracking scenarios considered here,

we prefer to use the more intermittent, but less ambiguous,

motion and sound measurements to construct proposal distri-

butions.

D. Motion Cues

Beside color, instantaneous motion activity captures other

important aspects of the sequence content, and has been

extensively studied from various perspectives. In particular,

the problem of motion detection, i.e., the detection of objects

moving relative to the camera, is covered by an abundant

literature, which we shall not attempt to review here (see

the review in [29]). In the case of a static camera, the basic

ingredient at the heart of such an analysis is the absolute frame

difference computed on successive pairs of images. This is this

cue we consider here.

We propose to embed the frame difference information in

a likelihood model similar to the one developed for the color

measurements. It unifies the description and implementation,

and ensures a similar order of magnitude for the two visual

cues. Alternative models can easily be accommodated.

We will denote by yM
n the absolute difference of the

luminances at times n and n − 1. As was the case for the

color model, a measurement histogram hM
x

= (hM
1,x · · ·hM

B,x)
is associated with the region implied by the state x. The

region Bx within which the color information is collected

will often lie inside the object of interest. In contrast, a large

part of the motion activity generated by a moving object is

concentrated along the silhouette of the object. To ensure that

the silhouette is included we consider a larger region for the

motion measurements, i.e., B̃x = (x, y, α(w⋆+η), α(h⋆+η)),
with η set to a few pixel units (5 in our experiments). The

construction or learning of a reference histogram model for

the motion measurements is not a straightforward task. The

amplitude of these measurements depend on both the appear-

ance of the object (its contours) and its current motion. If the

examined region contains no movement, all the measurements

will fall in the lower bin of the histogram. When movement

commences the measurements usually fall in all bins, with

no definitive pattern: uniform regions produce low absolute

frame difference values, whereas higher values characterize the

contours (both the silhouette and the photometric edges). To

accommodate these variations we chose the reference motion

histogram hM
ref to be uniform, i.e.,

hM
i,ref =

1

B
, i = 1 · · ·B. (19)

Similar to the color likelihood in (17), we define the motion

likelihood as

p(yM |x) ∝ exp(−D2(hM
x

,hM
ref )/2σ2

M ). (20)

The construction of this likelihood is illustrated in Fig. 4.

Motion Proposal: In the majority of cases the perceived

motion of the object of interest in the image sequence will

satisfy some minimum smoothness constraints. In these cases a

proposal distribution that mimics the characteristics of the state

evolution model should be sufficient for successful tracking.

However, it often happens that lock is lost due to short

periods of partial or total occlusion, and it is then necessary

to reinitialize the tracker. In another setting such as tele-

surveillance, the objects of interest might be moving entities.

In both cases it is useful to design a more sophisticated

proposal distribution that exploits the motion measurements to

allow jumps in the state-space to regions of significant motion

activity.

We build such a proposal distribution by evaluating the

histogram similarity measure on a subset of locations over

the image, keeping the scale factor fixed to α = 1. These

locations are taken as the nodes of a regular grid for which

the step size depends on the affordable computational load.

Typically we used a step size of 10 pixel units. Using simple

thresholding, locations that satisfy D2(hM
(x,y,1),h

M
ref ) > τ are

retained. Based on these locations of high motion activity,

denoted by pi = (xi, yi), i = 1 · · ·NM , we define a mixture

proposal for the object location (x, y) as

qM (xn,yn|xn−1, yn−1,y
M
n ) =

βRWN((xn, yn)|(xn−1, yn−1), (σ
2
x, σ2

y))

+
(1 − βRW )

NM

NM∑

i=1

N((xn, yn)|pi, (σ
2
x, σ2

y)).

(21)

The first component is the same Gaussian random walk used

for the (x, y) location in the state evolution model in (14), and

ensures the smoothness of the motion trajectories. The second

component is a mixture centered on the detected locations of

high motion activity. When no such location is found (NM =
0), the weight of the random walk component is set to one.
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1 2 3 4 5 6 7 8 9 10
0

0.7

1 2 3 4 5 6 7 8 9 10
0

0.7

hM
ref B̃x, yM hM

x p(yM |(x, y, 1))

Fig. 4. From frame difference histograms to motion likelihood. (Left) Uniform reference histogram. (Middle) At a given instant of the sequence, and

for a hypothesized state x, the candidate motion histogram hM
x

is gathered within the extended region B̃x, and compared to the reference histogram using
the Bhattacharyya similarity measure. (Right) The exponentiated similarity yields the motion likelihood, plotted here on a subsampled grid as a function of
the location only (scale factor fixed to α = 1).

yM 1 − D2(hM
(x,y,1),h

M
ref ), {pi}

NM
i=1

∑NM

i=1 N((x, y)|pi, (σ
2
x, σ2

y))

Fig. 5. From frame difference histograms to motion proposal. (Left) Absolute luminance frame difference at a given instant. (Middle) Similarity measure
between the candidate histogram and the uniform reference histogram, plotted on a subsampled grid as a function of the location only (scale factor fixed to
α = 1). Locations of high motion activity are detected by thresholding this function (τ = 0.9), and indicated with crosses. (Right) Mixture of Gaussians
around the high motion activity locations, forming the motion based proposal distribution.

Fig. 5 illustrates the construction of this motion based proposal

distribution.

E. Sound Cues

This section describes the sound localization cues, following

[54]. As is the case for the motion cues, the sound cues

are intermittent, but can be very discriminating when present.

The sound localization cues are obtained by measuring the

Time Delay of Arrival (TDOA) between the audio signals

arriving at the two microphones comprising the pair. Due to

the configuration of the system the TDOA gives an indication

of the bearing of the sound source relative to the microphone

pair, which can in turn be related to a horizontal position

in the image. In what follows we first describe the TDOA

measurement procedure. We then derive a likelihood model

for the TDOA measurements. Finally, we develop an efficient

TDOA based proposal for the particle filter, based on an

inversion of the likelihood model. This proposal is especially

useful for initialization and recovering of lock in cases where

track is lost during brief periods of partial or total occlusion. It

can also be used to shift the focus between different speakers

as they take turns in a conversation.

1) TDOA Measurement Process: Numerous strategies are

available to measure the TDOA between the audio signals

arriving at spatially separated microphones. For our tracking

application the TDOA estimation strategy is required to be

computationally efficient, and should not make strong as-

sumptions about the number of audio sources and the exact

characteristics of the audio signals. One popular strategy that

satisfies these requirements involves the maximization of the

Generalized Cross-Correlation Function (GCCF) [5], [27].

This strategy, with various modifications, has been applied

with success in a number of sound source localization systems,

e.g., [42], [47], [51], [57]. We subsequently adopt it to obtain

TDOA estimates for our tracking algorithm. Computation of

the GCCF is described at length in [5], [27], and we will omit

the detail here.

The GCCF is essentially the correlation function between

pre-whitened versions of the signals arriving at the micro-

phones. The positions of the peaks in the GCCF can then be

taken as estimates of the TDOAs for the sound sources within

the acoustic environment of the microphones. Apart from the

true audio sources, “ghost sources” due to reverberation also

contribute to the peaks in the GCCF. Rather than attempting

to remove these by further signal processing, we retain all

the peaks above a predefined threshold as candidates for

the true TDOA. More specifically, for any frame the sound

measurement vector can be denoted as yS = (D1 · · ·DNS
),

with Di ∈ D = [−Dmax, Dmax], i = 1 · · ·NS . The maximum

TDOA that can be measured is easily obtained from the

microphone separation d and the value used for the speed of

sound c (normally 342ms−1) as Dmax = d/c. Note that the

number of TDOA measurements varies with time, and quite

frequently no TDOA measurements will be available. To cope

with the ambiguity due to the presence of multiple candidates

for the true TDOA we develop a multi-hypothesis likelihood

model, which is described next.

2) TDOA Likelihood Model: In this section we develop

a multi-hypothesis likelihood model for the TDOA measure-

ments. Similar likelihood models have been developed before

for radar based tracking in clutter [17], and tracking single

[20] and multiple [32] objects in video sequences.
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The TDOA measurements depend only on the x position

in the image, i.e., p(yS |x) = p(yS |x). Furthermore, for

any hypothesis of the object x position in the image, a

deterministic hypothesis for the TDOA can be computed as

Dx = g(x) = g3 ◦ g2 ◦ g1(x), (22)

with

x̃ = g1(x) = W̃ (x/W − 0.5)

θ = g2(x̃) = arctan(f/x̃)

Dx = g3(θ) = Dmax cos θ.

(23)

The function g1 is a simple linear mapping that relates the x
position in the image to the corresponding x̃ position in the

camera image plane. The width of the image W is measured

in pixels, whereas the width of the image plane W̃ is measured

in metric units. Using a pinhole model for the camera, with f
the focal length, the function g2 then relates the x̃ position in

the camera image plane to the sound source bearing. Finally,

the function g3 makes use of the Fraunhoffer approximation

to relate the sound source bearing to the hypothesized TDOA.

Since the mapping g is entirely deterministic the likelihood

can written as p(yS |x) = p(yS |Dx). We will use this latter

form of the likelihood in the exposition below.

We assume the candidate TDOA measurements to be inde-

pendent, so that the likelihood can be factorized as

p(yS |Dx) =

NS∏

i=1

p(Di|Dx). (24)

In practice, however, clutter measurements due to reverbera-

tion are expected to be at least somewhat coherent with the true

source, thus violating the independence assumption. Accurate

modeling of reverberation requires detailed knowledge about

the composition and acoustic properties of the environment,

which is difficult to obtain in practice, and thus not attempted

here. Nevertheless, the model still performed well, as we will

demonstrate in Section IV.

Of the TDOA measurements at most one is associated

with the true source, while the remainder is associated with

clutter. To distinguish between the two cases we introduce a

classification label ci, such that ci = T if Di is associated with

the true source, and ci = C if Di is associated with clutter.

The likelihood for a measurement from the true source is taken

to be

p(Di|Dx, ci = T ) = cxN(Di|Dx, σ2
D)ID(Di), (25)

where IA(·) denotes the indicator function for the set A, and

the normalizing constant cx is given by

cx = 2
(

erf
(Dmax − Dx√

2σD

)
− erf

(−Dmax − Dx√
2σD

))−1

, (26)

with erf(x) = 2√
π

∫ x

0
exp

(
−t2

)
dt the Gaussian error func-

tion. Thus within the range of admissible TDOA values the

measurement is assumed to be the true TDOA corrupted by

additive Gaussian observation noise of variance σ2
D. Empirical

studies proved this to be a reasonable assumption, as the results

in Fig. 6 show.

(30 dB, 0.05 s) (30 dB, 0.30 s) (30 dB, 1.00 s)

(15 dB, 0.05 s) (15 dB, 0.30 s) (15 dB, 1.00 s)

−2 0 2

(0 dB, 0.05 s)

−2 0 2

(0 dB, 0.30 s)

−2 0 2

(0 dB, 1.00 s)

Fig. 6. TDOA measurement statistics. TDOA measurement error his-
tograms and Gaussian approximations for a range of signal-to-noise levels
and reverberation times.

Similar to what was done in [32] for example, the likelihood

for measurements associated with clutter is taken to be

p(Di|ci = C) = UD(Di). (27)

Thus the clutter is assumed to be uniformly distributed within

the admissible interval, independent of the true source TDOA.

For NS measurements there are a total of NS + 1 possible

hypotheses. Either all the measurements are due to clutter, or

one of the measurements corresponds to the true source, and

the remainder to clutter. More formally,

H0 = {ci = C : i = 1 · · ·NS}
Hi = {ci = T, cj = C : j = 1 · · ·NS , j 6= i}, (28)

with i = 1 · · ·NS . The likelihoods for these hypotheses follow

straightforwardly from (24), and are given by

p(yS |H0) = UDNS (yS)

p(yS |Dx,Hi) = cxN(Di|Dx, σ2
D)ID(Di)UDNS−1(yS

−i),
(29)

where yS
−i is yS with Di removed.

However, for any set of measurements the correct hypothesis

is not known beforehand, and the final likelihood is obtained

by summing over all the possible hypotheses, i.e.,

p(yS |Dx) =

NS∑

i=0

p(Hi|Dx)p(yS |Dx,Hi), (30)

where p(Hi|Dx) is the prior probability for the i-th hypothesis.

In what follows we fix the prior probability for the all clutter

hypothesis to Pc, and set the prior probabilities for the remain-

ing NS hypotheses to be equal. Under these assumptions the

likelihood for the TDOA measurements finally becomes

p(yS |Dx) ∝ Pc

2Dmax
+

cx(1 − Pc)

NS

NS∑

i=1

N(Di|Dx, σ2
D)ID(Di).

(31)
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In the case where no TDOA measurements are available the

likelihood is simply set to p(yS |Dx) ∝ 1. The construction of

the TDOA likelihood is illustrated in Fig. 7.

3) TDOA Proposal: As was the case for motion, it is

possible to use the sound localization cues to design an

efficient proposal distribution for the particle filter. Such a

proposal would allow the tracker to recover lock after brief

periods of partial or total occlusion. In another setting the

objects of interest might be speakers participating in a video

tele-conference. In this case a sound based proposal can aid

the tracker to switch focus between the speakers as they take

turns in the conversation.

These objectives can be achieved by designing a proposal

distribution for the object x position that incorporates the

TDOA measurements when they are available. Informally,

the inverse of the mapping in (22) is easy to obtain. Each

TDOA measurement can then be passed through the resulting

inverse mapping g−1 to yield a plausible x position for the

object. To capture the notion of smooth motion trajectories

and exploiting the information in the TDOA measurements

we define a TDOA based proposal for the object x position

of the form

qS(xn|xn−1,y
S
n) = βRWN(xn|xn−1, σ

2
x)

+
(1 − βRW )

NS

∣∣∣dg(xn)

dxn

∣∣∣
NS∑

i=1

N(g(xn)|Di,n, σ2
D).

(32)

The first component is the same Gaussian random walk used

for the x component in the state evolution model in (14),

and ensures the smoothness of the motion trajectories. The

second component is a mixture that incorporates the TDOA

measurements, and is obtained by inverting the non-clutter part

of the likelihood model in (31). All the TDOA measurements

are equally weighted in the mixture. The derivative of the

mapping g is easily obtained by using the chain rule. The

weight of the random walk component is set to one if no

measurements are available, in which case no jumps are

allowed in the object x position.

Generating samples from the TDOA based proposal is

straightforward. First a mixture component is picked by

sampling from the discrete distribution equal to the mixture

weights. Sampling from the random walk component is trivial.

Sampling from the component for the i-th TDOA measure-

ment can be achieved by first sampling a candidate delay

according to Dxn
∼ N(Dxn

|Di,n, σ2
D), and then passing the

resulting delay through the inverse of the mapping in (22), i.e.,

xn = g−1(Dxn
).

F. Tracker Architecture

We conclude this section by summarizing the composition

of our tracking algorithm. We consider two main scenarios.

The first, summarized in Tab. III, is a desktop setting such

as depicted in Fig. 2, where we use color as the main cue,

and fuse it with the information in the sound localization cue.

Such a setting forms the basis for video tele-conferencing

applications. The second setting, summarized in Tab. IV,

is representative of surveillance and monitoring applications

involving a static camera. Here sound localization cues will

With {x
(i)
n−1, w

(i)
n−1}

Np

i=1 the particle set at the previous time step, proceed
as follows at time n:
Proposition: simulate x

(i)
n ∼ qS(xn|x

(i)
n−1,yS

n).
Update weights:

w
(i)
n ∝ w

(i)
n−1

p(yS
n |x

(i)
n )p(x

(i)
n |x

(i)
n−1)

qS(x
(i)
n |x

(i)
n−1,yS

n)
, with

∑Np

i=1 w
(i)
n = 1.

Resample:

simulate ai ∼ {w
(k)
n }

Np

k=1, and replace x
(i)
n ← x

(ai)
n .

Proposition:

simulate (y
(i)
n , α

(i)
n ) ∼ p(yn, αn|y

(i)
n−1, α

(i)
n−1), and assemble x

(i)
n ←

(x
(i)
n , y

(i)
n , α

(i)
n ).

Update weights: w
(i)
n ∝ p(yC

n |x
(i)
n ), with

∑Np

i=1 w
(i)
n = 1.

If resampling:

simulate ai ∼ {w
(k)
n }

Np

k=1, and replace {x
(i)
n , w

(i)
n } ← {x

(ai)
n , 1

Np
}.

TABLE III

PARTICLE FILTER FOR VISUAL TRACKING BASED ON COLOR AND SOUND.

With {x
(i)
n−1, w

(i)
n−1}

Np

i=1 the particle set at the previous time step, proceed
as follows at time n:
Proposition: simulate p

(i)
n ∼ qM (pn|p

(i)
n−1,yM

n ).
Update weights:

w
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n ∝w

(i)
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n ,α
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n−1)p(p

(i)
n |p

(i)
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qM (p
(i)
n |p

(i)
n−1,yM

n )
, with

∑Np

i=1 w
(i)
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Resample:

simulate ai ∼ {w
(k)
n }

Np
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(i)
n ← x

(ai)
n .

Proposition:

simulate α
(i)
n ∼ p(αn|α

(i)
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(i)
n ← (p

(i)
n , α

(i)
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Update weights: w
(i)
n ∝ p(yC

n |x
(i)
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∑Np
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(k)
n }

Np
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(i)
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(i)
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(ai)
n , 1

Np
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TABLE IV

PARTICLE FILTER FOR VISUAL TRACKING BASED ON COLOR AND MOTION.

NOTATION p STANDS FOR LOCATION (x, y).

generally be absent, and we thus fuse color with the motion

localization cue.

In both settings we employ a form of partitioned sampling.

In the first setting the sound likelihood only gives information

about the object x coordinate in the image. We thus simulate

and resample for this component first, before simulating new

values for the remaining state components (object y coordinate

and scale factor α) and resampling with respect to the color

likelihood. This implies that we do not search directly in the

three dimensional state-space, but rather partition the inference

into a search in a one dimensional space, followed by another

in a two dimensional space. In general this increases the

efficiency of the particle filter, allowing us to achieve the same

accuracy for a smaller number of particles. We follow a similar

strategy in the second setting where we fuse color and motion

in that we first simulate and resample the location parameters

with respect to the motion likelihood, before simulating the

scale factor α and resampling with respect to the color

likelihood.



PÉREZ et al.: DATA FUSION FOR ROBUST VISUAL TRACKING 11

0 1000 2000 3000 4000

0 1000 2000 3000 4000

Sound signals

−6 −4 −2 0 2 4 6

x 10
−4

0

0.1

0.2

0.3

0.4

GCCF and detected peak

−6 −4 −2 0 2 4 6

x 10
−4

0

1

2

3

4
x 10

4

Likelihood p(yS |Dx) as a function of TDOA Dx .

50 100 150 200 250 300
0

1

2

3

4
x 10

4

Likelihood p(yS |x) as a function of horizontal position x.

Fig. 7. From sound measurements to TDOA likelihood. (Left) A stereo pair of 4096 sound samples corresponding to the 1/30 seconds of one video
frame. (Middle) GCCF of the two stereo signals, and detected peak. (Right) Associated likelihood as a function of the TDOA, and of the horizontal pixel
coordinate in the image frame, respectively.

IV. DEMONSTRATIONS

In this section we will demonstrate the performance of

our tracking algorithm on a number of challenging video

sequences. We will first consider the behavior of the tracker

when using each of the cues in isolation, and then show

how the shortcomings of such single modality trackers can

be eliminated by fusing the information from multiple cues.

We will use the values in Tab. V for the fixed parameters of the

likelihood, proposal and state evolution. Due to the efficiency

of the motion and sound proposals, and the relatively low

dimensionality of the state-space, good tracking results can

be achieved with a reasonably small number of particles. For

our experiments we use Np = 100 particles.

A. Single Modality Tracking

1) Color Only: Since the color of an object is its most

persistent feature, we use it as the main cue for our tracking

algorithm. As is the case for the deterministic color based

trackers proposed in [4], [6], [9], our probabilistic tracker using

color only is able to robustly track objects undergoing complex

changes of shape and appearance. This is exemplified by the

sequence of the football player in the top row of Fig. 8. The

robustness of the tracker to color clutter and large movements

is further increased by its ability to incorporate multi-region

color models, as is illustrated in the home video example in

the bottom row of Fig. 8.

The downside of the color persistence is its lack of discrimi-

nating power in certain settings. In cases where the background

contains objects of similar color characteristics to the object

of interest, the likelihood will exhibit a number of modes.

A typical example is given in the office scene in Fig. 3,

where the wooden door is close in color space to the faces

of the subjects being tracked. Under these circumstances the

ambiguities might lead to inaccurate tracking, or in the worst

case, a complete loss of lock.

In these scenarios the robustness of the tracking algorithm

can be greatly increased by fusing color cues with other cues

exhibiting complementary properties, i.e., with lower persis-

tence, but being less prone to clutter. As discussed before,

motion and sound are two such cues. The former will prove to

be a valuable addition to color in static camera settings, such as

tele-surveillance and smart environment monitoring, whereas

the latter will combine with color in tele-conferencing applica-

tions, where a calibrated stereo microphone pair can easily be

added to the broadcasting or recording equipment. We will first

demonstrate the power and limitations of motion and sound

as single modality tracking cues, and then investigate the two

fusion scenarios.

2) Motion Only: In this section we illustrate the behavior

of the tracker using the frame difference motion cue only.

With this cue moving objects are tracked with a reasonable

degree of accuracy, as the result for the sequence in Fig. 9

indicates. However the motion cue is intermittent, and when

motion ceases there is no more localization information, and

the particles diffuse under their dynamics, as is illustrated in

Fig. 10. We will see in Section IV-B.1 how the fusion of

motion with color effectively eliminates these shortcomings.

3) Sound Only: In this section we illustrate the behavior

of the sound only tracker, i.e., tracking only the horizontal

position of a speaker in the image, based on the TDOA

measurements obtained from the stereo microphone pair. As

will be evident, this cue not only allows localization in the

x coordinate, but also endows the tracker with the ability

to switch focus between speakers as they take turns in the

conversation.

We consider two sequences, each featuring two subjects

in discussion in front of a camera. In the first sequence the

environment is relatively noise-free, and speech is consistently

detected when present. Fig. 11 shows snapshots of the tracking

result for this sequence. It is clear that the sound based

proposal defined in (32) allows the tracker to maintain focus

on the current speaker to a sufficient degree of accuracy. It also

facilitates the switching of focus between the speakers as they

alternate in conversation. Note that the tracking is accurate

even beyond the limit of the image plane, as is evident for the

subject on the right.

This result is even more encouraging in the light that it was

obtained using low cost off-the-shelf equipment. Extreme care

in the placement of the microphones relative to the camera

was not required. The system was only roughly calibrated,

and proved to be robust to the exact values chosen for the

intrinsic parameters of the camera. Furthermore, no explicit

attempts were made to compensate for the reverberation or

background noise.

In the second sequence, for which snapshots are given in

Fig. 12, the signal-to-noise ratio is higher due to a higher level

of air-conditioner noise in the background, and the subjects

being further from the microphones. Due to the higher noise

level speech is often undetected (NS = 0). This is further
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standard deviations of dynamics (σx, σy , σα) = (5, 5, 10−2)
uniform weight in dynamics βu = 0.01
random walk weight in proposals βRW = 0.75
standard deviations of likelihoods (σC , σM , σD) = (2 × 10−2, 2 × 10−2, 10−5)
clutter probability in sound likelihood Pc = 10−3

speed of sound c = 342ms−1

microphone separation d = 0.2m
focal length f = 0.02m

width of the image plane W̃ = 0.01m

TABLE V

MODEL PARAMETERS FOR THE TRACKING EXPERIMENTS.

Fig. 8. Color based tracking with single and multi-region reference models. Using a global color reference model generated from a hand-selected region
in the initial frame, a region of interest (player 75 in the top sequence, the child in the bottom sequence) can be tracked robustly despite large motions,
significant motion blur, dramatic shape changes, partial occlusions, and distracting colors in the background (other players in the top sequence, the sand and
the face of the mother in the bottom sequence). In the top sequence a single region was used, whereas two regions, corresponding to the face and shirt of the
child, were used in the bottom sequence. The yellow box in each frame indicates the MMSE estimate.

9 74 227 344

Fig. 9. Tracking moving objects with motion cues only. The uniformly initialized particle filter locks on to the moving vehicle a few frames after it
enters the scene, thanks to the motion based proposal. The tracker maintains lock on the moving vehicle as it drives through the parking lot. The yellow box
represents the MMSE estimate.

513 524 535

Fig. 10. Intermittence of motion cues. When the vehicle tracked in the sequence of Fig. 9 eventually stops, the motion cues disappear, and the particles
diffuse under their dynamics. The rectangles indicate the hypothesized regions before resampling, with the yellow rectangles depicting the ten best particles.
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1 64 212 251

274 298 338 398

Fig. 11. Sound based tracking under accurate speech detection. After the first period of silence (frames 1 to 17), where the uniformly initialized particles
keep on diffusing, the sound based tracker consistently tracks the horizontal position of the current speaker. The vertical segments indicate the positions of all
the particles at the current time step, with the yellow segments depicting the ten best particles. Only particles falling inside the image are displayed. Hence
the particle cloud is partly to completely invisible when the tracker correctly follows the speaker on the right exiting and re-entering the field of view of the
camera (e.g., frames 251, 274, 298).

exemplified by the graphs in Fig. 13 that show the speech

detections for each speaker in relation to the ground truth.

These detection failures result in a rapid diffusion of the

particles, as is evident from a number of snapshots in Fig.

12.

Since the sound cue lacks persistence, either through detec-

tion failures or the absence of speech, the sound based tracker

is unable to provide consistent tracking in time. In addition,

the sound cue gives no information about the vertical location

y or scale factor α of the object being tracked. We will see in

Section IV-B.2 how the fusion of sound with color will solve

these problems, while retaining the desirable properties of the

sound localization cue.

B. Multiple Modality Tracking

1) Color and Motion: As we have mentioned in Section

IV-A.1, the greatest weakness of the color localization cue is

the ambiguity that results due to the presence in the scene of

objects or regions with color features similar to those of the

object of interest. An extreme example where tracking based

on color only fails completely is given in Fig. 14.

By fusing the color and motion cues the ambiguity can be

greatly reduced if the object of interest is indeed moving. This

is exemplified by the likelihood maps for each of the individual

cues and the combination of the cues in Fig. 15. As a

further illustration the combination of color and motion allows

accurate tracking of the vehicle in Fig. 16, where color only

tracking failed. During periods of motion the tracker utilizes

mainly the information in the motion cue, while relying on the

color information for the localization when the motion ceases

at the end of the sequence.

The utility of the motion based proposal is illustrated by the

tracking results on the sequence in Fig. 17. In this case the

localization information is ambiguous in both the color and

motion cues, when considered individually. Without the event

based motion proposal a uniformly initialized tracker simply

settles on one of the spurious modes of the combined likeli-

hood. With the help of the motion based proposal, however, the

tracker is able to lock on to the target (face) as soon as it enters

the scene. Even though the motion based proposal continues

to generate hypotheses in all the regions of significant motion

activity (face, torso and monitor), those that do not comply

with the color likelihood are eliminated during the resampling

procedure, so that lock is maintained, as is shown in Fig. 18.

2) Color and Sound: To demonstrate the fusion of color

and sound we consider again the second sequence presented

in Section IV-A.3. We now initialize a reference color model

composed of three subregions (for better positioning accuracy)

on the face of the left subject, as depicted in Fig. 19. Using

color only the particle filter, after a uniform initialization, locks

on to one of the subjects at random, and maintains lock on

this subject throughout the video sequence, as is shown in Fig.

19.

By incorporating the sound localization cues, the tracker is

able to jump between the subjects as they take turns in the

conversation, as is depicted in Fig. 20. During the absence

of sound cues, either through detection failures or periods of

silence, the tracker maintains accurate lock on the last active

speaker due to the information in the color cues.

V. CONCLUSIONS

In this paper we introduced generic mechanisms for data

fusion within particle filtering, and used them to develop a

particle filter based tracker combining color, motion and sound

localization cues in a novel way. Color, being the most per-

sistent, was used as the main cue for tracking. The ambiguity

inherent in color representations was resolved by the more

intermittent, but less ambiguous, motion and stereo sound

cues. We considered two main scenarios. In the first, color

was combined with sound in a desktop setting that forms the

basis for video tele-conferencing applications. In the second,

representative of more general tracking applications such as

surveillance, we fused color with the motion localization cue.
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5 18 47 62 79 191

200 214 219 222 252 284

Fig. 12. Sound based tracking under sporadic speech detection. Due to the low signal-to-noise ratio speech is only occasionally detected (e.g., frames
18, 62, 191, 214, 219, 252). The remainder of the time no localization cues are available, and the particle filter simply diffuses under its dynamics (e.g.,
frames 47, 79, 200, 222, 284).

left person right person

Fig. 13. Speech detection against ground truth for the two subjects of the sequence in Fig. 12. The left (resp. right) graph concerns the subject on the
left (resp. right) in the scene. The lines indicate the speech detections, which all correspond to correct horizontal localization of the speaker in the image.
The shaded area indicates the hand-labeled ground truth.

car that should
be tracked car that should

be tracked 

car that should
be tracked 

car that should
be tracked 

9 74 227 344

Fig. 14. Color tracking under ambiguity. The reference color histogram, generated from a region selected by hand around the moving vehicle in frame
74, leads to a high degree of ambiguity. Soon after a uniform initialization, the tracking algorithm gets stuck on a very strong local minimum of the color
likelihood, corresponding to one of the parked vehicles. The yellow box represents the MMSE estimate.

p(yC |(x, y, 1)) p(yM |(x, y, 1)) p(yC ,yM |(x, y, 1))

Fig. 15. Color and motion compound likelihood. Head movement, as captured by the motion likelihood, helps to reduce the ambiguity inherent in the
color cues, as is exemplified by the three likelihood maps: color likelihood, motion likelihood, and the product of the two likelihoods, plotted as a function
of the location only (scale factor fixed to α = 1).

In both scenarios the combination of cues proved to be more

robust than any of the cues individually.

As is standard practice, we defined independent likelihood

models for each of the localization cues. We also constructed

mixture proposal distributions based on the motion and sound

cues, whenever these were available. These proposals act

as detection and initialization modules for the particle filter.

They also facilitate a more efficient exploration of the state-

space, and aid the recovery of lock following periods of

partial or complete occlusion. Within the context of multi-

object tracking such event based proposals are essential for the

detection of new objects when they appear in the scene. We

also used different stratified sampling procedures to increase

the efficiency of the particle filter. These layered procedures

effectively substitute the difficult estimation problem in the

complete state-space with a sequence of easier estimation

problems, each in a reduced space.

This combination of appropriate conditionally independent

data models, event based proposal densities, and layered

importance sampling could now be extended to other visual

tracking scenarios involving the fusion of other information,

such as shape cues when a predefined class of object has to

be tracked.

Although not considered in this paper, the fusion of multiple

measurement modalities is an essential requirement in adaptive

systems. In such scenarios a high degree of confidence in one
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4 9 74

227 344 535

Fig. 16. Fusing color and motion. As was the case in Fig. 14, the reference color model is generated from a region selected by hand around the moving
vehicle in frame 74. The motion based proposal allows the tracker to lock on to the moving vehicle as soon as it enters the scene. Lock is maintained
throughout the period of motion, mostly due to the presence of the motion cues. When motion ceases towards the end of the sequence, the tracker relies on
the color cues to maintain lock, in contrast to the motion only tracking in Fig. 10. The yellow box represents the MMSE estimate.

Motion cues

Color cues

Color and motion cues

Color and motion cues, and motion based proposal

8 12 38 59

Fig. 17. Using color and motion cues with the motion based proposal. (Top) In this example of a person traversing the field of view, the motion cues
are very ambiguous due to the activity around the face and torso of the moving person, and around the computer monitor. (Second row) The reference color
model, initialized on the face of the person, leads to additional ambiguities. After a uniform initialization the particles settle on a spurious local mode of
the color likelihood. It is only towards the end of the sequence, when the face approaches this region, that the particles lock on to the desired target. (Third
row) Combining the color and motion modalities, while retaining the smooth proposal, does not alter the behavior of the color only tracker significantly (the
particles move to the face a few frames earlier). (Bottom) In contrast, the combined tracker with the motion based proposal allows the tracker to lock on to
the face as soon as it enters the scene, and to track it throughout. All regions of high motion activity are continually explored (e.g., face, torso and monitor),
but those that do not comply with the color model are discarded during the resampling procedure. The rectangles indicate the hypothesized regions before
resampling, with the yellow rectangles depicting the ten best particles.
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12 38 50 59 70

Fig. 18. Using color and motion cues with the motion based proposal. MMSE result for the tracker that combines the color and motion localization
cues with the motion based proposal on the sequence in Fig. 17.

1 2 7

Fig. 19. Two different runs of the color tracker. The reference color model is defined on the three-fold selection on the left in frame 1. After a uniform
initialization the tracker rapidly locks on to one of the subjects at random, and maintains lock on this subject throughout the sequence. The rectangles indicate
the bounding boxes for the particles, with the yellow rectangles depicting the ten best particles.

5 18 47 62 79 191

200 214 219 222 252 284

Fig. 20. Fusing color and sound. The tracking result for the fusion of color and sound cues on the same frames as in Fig. 12. The sound based proposal
allows the tracker to jump between the subjects as they alternate in conversation (frames 18, 62, 191, 214, 219, 252). In the absence of sound cues lock is
maintained on the last active speaker due to the information in the color cues. The yellow rectangle in each of the frames depicts the MMSE estimate of the
particle bounding box.

modality facilitates the adaptation of the model parameters as-

sociated with complementary modalities, while simultaneously

minimizing the risk of learning a wrong appearance model,

such as the background [8], [24], [55], [59]. Such adaptive

systems are most useful in multi-object tracking systems where

it may be desirable to individualize a generic model to each

of the objects in the scene.
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