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ABSTRACT For the fault diagnosis problems of rotating machinery in the real industrial practice, mea-

surement data with imbalanced class distributions negatively affect the diagnostic performance of most

conventional machine learning classification algorithms since equal cost weights are assigned to different

fault classes. Meanwhile, the widely used traditional data generation methods for the imbalanced data

problem are limited by data dependencies over time continuity. To fill this research gap, this paper develops

a new diagnostic framework based on the adversarial neural networks (GAN) and multi-sensor data fusion

technique to generate new synthetic data for data compensation purpose. Two different practice modes are

designed based on this framework according to the position logic of the data fusion, namely a Pre-fusion

GAN mode and a Post-fusion GAN mode. More concretely, without data pre-processing, the designed

generator generates synthetic data to puzzle the discriminator and the synthetic data that out-trick the

discriminator can be used to compensate the minor class. To avoid data dependency and to ensure the

generality of the proposed framework, the network modelling are trained with a more practical approach

where the training and test data are obtained under different rotating speeds. Two imbalanced data sets

on the rotating machinery, one benchmark public rolling bearing data set and another gear box data set

acquired in our lab, are used to validate the proposed method. The performance is examined through a wide

range of data imbalanced ratios (as high as 30:1), and compared with other state-of-the-art methods. The

experiment results conclude that the proposed Pre-fusion GAN and Post-fusion GAN frameworks both have

good performance on the imbalanced fault diagnosis of rotating machinery.

INDEX TERMS Generative adversarial networks, imbalanced fault diagnosis, data continuity, rotating

machinery.

I. INTRODUCTION

Fault diagnosis of the rotating machinery is of vital

importance in manufacturing facilities to ensure a safe work-

ing condition and prevent the loss from escalating dam-

age [1]. As more sensory data on current, temperature and

vibration signals have become available over the past few

years, many data-driven algorithms have been investigated

to solve the fault diagnosis problem [2], which can be gen-

erally categorized into statistical model-based methods and

machine learning methods. Statistical model-based methods

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhiwei Gao .

are mainly refer to the Wiener process [3], particle fil-

ters [4], and Kalman filters [5], etc. In recent years, machine

learning methods including convolutional neural network

(CNN), recurrent neural network (RNN) [6] [7], and deep

auto-encoders [8] have been widely applied in the fault diag-

nosis of rolling machinery. These above diagnosis methods

have achieved promising performance on rotating machinery

when their proposed models are trained to exam a balanced

data set.

However, the imbalanced data have frequently occurred

since most of the instances in industrial practice of rotat-

ing machinery systems are performed under normal or

the healthy working condition (normal class) [9]. Thus,
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the previous aforementioned models may suffer from biases

towards the normal class as the data have a highly imbal-

anced ratio among normal class and faulty classes [10].

Several techniques have been proposed to address this

issue. The two most widely used conventional synthetic

data up-sampling/generation techniques, synthetic minority

over-sampling technique (SMOTE) [11] and Adaptive syn-

thetic sampling approach (ADASYN) [12], aim at linearly

interpolating virtual data into data set based on the neigh-

bor relationship (see [11]–[13] and the references therein).

However, the construction of balanced data sets does not

significantly improve the performance of these two tech-

niques because the synthetic data generated by simple linear

up-sampling may fail to provide sufficient feature informa-

tion for the classifier. In contrast, machine learning methods

prove to be more advanced in feature extraction. For exam-

ple, relevance vector machine (RVM) [14] and auto-encoders

(AEs) [15] are employed to propose models to solve the data

imbalance problem by adjusting the weights of minor data

without the data generation process. Hence, they offer a good

alternative to data generation methods, but at the expense of

tuning the weights of a model for a specific application. This

paper attempts to deal with class imbalances by generating

the minority fault classes and integrate the advantages of data

generation and feature extraction.

The approach proposed in this paper is based on the recent

developed Generative Adversarial Networks (GAN) which is

composed of a generator and a discriminator. The discrimina-

tor is designed to distinguish the generated samples from real

samples as exhaustively as possible. After multiple iterations,

the generator generates data that can deceive the discrimi-

nator, that is, the synthesized data cannot be recognized by

the discriminator. Starting with the original idea proposed

in [16] by Goodfellow et al., several extensions of this net-

work have been proposed for image anomaly diagnosis tasks

(e.g. DCGAN [17] and bidirectional generative adversarial

networks (BiGAN) [18]). This yielded a set of techniques

associated with the disciplines of GAN-based works for

intelligent fault diagnosis: machinery and electronic systems,

including GAN with Adaboost classifier [19], Wasserstein

GAN (WGAN) with gradient penalty [20], Auxiliary Clas-

sifier GAN [21], GAN network for cross-domain fault diag-

nosis problems [22], [23], research on the loss of GAN [24]

and WGAN with stacked auto-encoders [25]. Nevertheless,

considering the fact that multiple fault types and extreme

high imbalanced ratios (e.g.>20:1) of normal to fault sample

number are very common in real industrial applications but

have rarely been investigated in the previous literature, this

study will extend the GAN-based fault diagnosis problems to

more realistic situations by dealing with multiple fault types

under high imbalanced ratios.

In addition, unlike the above-mentioned studies which

mostly utilize sensory measurements recorded from a single

sensor. Our approached framework fuses all appropriate sen-

sor data of the tested machinery to provide more information

and features to the GAN or the diagnosis model to further

enhance the diagnostic accuracy. Based on this, two different

modes are designed according to the position logic of the

data fusion algorithm in our work, namely a Pre-fusion GAN

mode where sensor data are fused before the GAN and a

Post-fusion GAN mode where sensor data are fused after the

GAN.

This paper presents a new GAN-based diagnostic frame-

work that integrates multi-sensor data fusion technique and

data generation technique for the data compensation purpose.

Measured data of different sensor types are fused before or

after the GAN network (i.e., Pre-fusion GAN or Post-fusion

GAN) to improve the diagnosis performance. A convolu-

tional neural network (CNN) is then designed to achieve

multi-fault classification. In the model training and testing

stages, we thereby propose a more practical approach that

the training and testing data are acquired under different

working conditions, which prevents the time dependencies

over time continuity and thus increases the generality of the

trained model. A benchmark CWRU rolling bearing data

set and another gear box data set recorded by our lab are

used to verify the feasibility and effectiveness of the pro-

posed approach. To further validate the effectiveness of the

proposed method, we also compare the current mainstream

data generation methods, such as ADSYN, SMOTENC,

KMeansSMOTE, and SVMSMOTE.

The main contributions of this paper are as follows:

1) The diagnosis framework in this study combines the

benefits of data generation and feature extraction by using

the GAN-based model, the data fusion logic, and the CNN

model. 2) As high as 30:1 normal to fault class-imbalanced

ratio is investigated for multi-class fault diagnosis problem,

which is closer to the real industrial scenarios. 3) The train-

ing and validation datasets are undergoing different oper-

ating conditions, thereby preventing the time dependency

problem in time-series forecasting and prediction problems,

which increases the robustness of the model and demon-

strates the generalizability of the diagnostic model. 4) The

proposed approach will be first verified on a benchmark

public rolling bearing data set. Additionally, a new gear box

data set acquired by our lab will be used to prove the model

effectiveness on general rotating machinery.

This paper consists of five sections. Section II reviews the

basic structure of the GAN and CNN. In Section III, the prob-

lem of this study is formulated and the general diagnostic

framework is explained. Section IV presents the experiment

results based on two rotating machines, with their perfor-

mance compared with other mainstream class-imbalanced

methods. Section V summarises the paper and discusses

future works.

The following notations will be used throughout this work:

the symbol R stands for the real number set and Z for the

positive integer set, and ¯(·) represents the fused data.

II. PRELIMINARIES

This section will show the basic principle of GAN, CNN,

and their structure components including convolutional layer,
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activation function, fully connected layer, pooling layer, and

dropout.

A. NETWORK LAYERS IN GAN AND CNN

Convolutional layer (CONV) is the key module of CNN and

GAN, The CONV layer is made up with a set of learnable

filters that set the width and height of its structural volume.

Each filter performs a convolutional operation on the width

and height based on the structure volume to obtain the dot

product between the filter entry and any position input in

forward transmission. As the filter slides across the width

and height of the input, a activation map is generated that

shows the filter’s response at each spatial location: There is

a complete set of filters in each CONV layer, and each filter

will generate a separate activation map. The activation maps

will be stacked along the depth dimension to form the output.

(dn)m = (Qn ∗ x i(n−1))m + bn (1)

where n = 1, . . . ., n represents the n-th feature map and m

represents the index of filter of the n-th feature map. (dn)m is

the output of the layer n at the m-th position. x i(n−1) is input

from the previous layer n−1 at the i-th position. ‘∗’ means the

convolutional operation. Qn denote the trainable parameters

of filter and bn is the bias of the n-th feature map.

Activation function is introduced here is the Rectified lin-

ear unit (ReLU), the sigmoid and the softmax. Due to its

piecewise constant gradient characteristic, ReLU is selected

as the non-linear activation function:

ReLU (d) = max(0, d) (2)

When dealing with dual classification problems, the sig-

moid is always chosen as the activation function for output:

sigmoid(d) =
1

1 + e−x
(3)

In this paper, the sigmoid activation function is used in the

the discriminator of GAN as the activation function of the

discriminator. The softmax is able to be used as an activation

function for multi-classification problems for output:

softmax(d) =
exp d

∑

exp d
(4)

Pooling layer will be regularly inserted between consec-

utive CONV layers to implement the function of gradually

reducing the size of the representation space, so that param-

eters and calculations in the network are reduced to control

over-fitting. The pooling layer runs independently for each

depth slice of the input, and often the max operation resizes

spatially:

Ajn = max
γ=1,...,ωj

u
j−1

γ+(n−1)I
j
al

(5)

where ω
j ∈ Z is the pooling size, and I

j
al is the stride in the

pooling layer. A
j
n is the output of the pooling layer, and the

u
j−1

γ+(n−1)I
j
al

is the input of the pooling layer.

Dropout [26] is a Google patented regularization technol-

ogy that reduces over-fitting of neural networks by preventing

complex collaborative adjustments to training data.

Fully-connected layer is fully connected to all activation

in the previous layer, that is, the same architecture as the

conventional multi-layer neural network, and its activation

calculation method is achieved by matrix multiplication com-

bined with offset.

B. GAN

The synthesis of virtual artificial data is based on GAN. GAN

is an unsupervised learning method that learns by having two

neural networks interact with each other. This method was

proposed by Goodfellow et al in [16]. After that, the coupled

generative adversarial network [27], wasserstein generative

adversarial networks [17], energy-based generative adversar-

ial networks [28], deep convolutional generative adversarial

networks [29], and the least squares generative adversarial

network [30] are followed. The GAN consists of a generator

denoted by G and a discriminator denoted by D. As shown

in Fig. 2, the role of G as a generator is to generate synthetic

data that may be similar to the real sample, and the function

of D as a discriminator is to distinguish real samples from

false samples as much as possible. Initially, G will randomly

sample from the latent space, and then adjust the parameters

continuously until data produced by G cannot distinguish

by D, that is, the synthetic data can deceive the discriminator.

C. CNN

CNN will be the multi-category imbalanced fault classifier

in this study. In deep learning, the CNN is a regularized

version of the multi-layer perception which always refers to

a full connected layer. CNN can also be defined as a class of

deep neural networks [31], [32]. The regularization is able to

achieved by adding some form of weight measurement to the

loss function. For normalization CNN are using hierarchical

patterns in data meanwhile combining simple patterns with

complex patterns for better results. The outstanding advan-

tage of CNN is that it can mine the inherent relationships

of the same type of data and make the boundaries between

different types of data clear. This not only overcomes the

problem of gradient dilution and the problem of being eas-

ily trapped into local minimums in traditional shallow fault

diagnosis algorithms, but also shortens training time.

III. DATA FUSION GAN FOR MULTI-CLASS IMBALANCED

FAULT DIAGNOSIS

The proposed framework for the multi-class imbalanced fault

diagnosis problem using data fusion and GAN can be gener-

ally divided by three stages: the data fusion process, GAN

for synthetic data generation, and CNN for multi-class fault

diagnosis. The schematic of the proposed diagnostic frame-

work is presented in Fig. 1. In the following subsections,

these three stages will be explained in details in Section III-A,

Section III-B, and Section III-C, respectively.
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FIGURE 1. Imbalanced fault diagnosis of rotating machinery estimation framework.

A. DATA FUSION

In this study, data fusion is proceed to merge the data infor-

mation/features from different sensors before data flows into

the GAN generator or the CNN classifier. As shown in Fig. 1,

data fusion can be expected before Stage 2 or after Stage 2,

in this framework, we denote the former case as Pre-fusion

GAN and the later case as Post-fusion GAN. More specifi-

cally, the Pre-fusioin GAN deals with the raw sensor signals,

on the other hand, the Post-fusion GAN deals with signals

after data data generation by the GAN generator. We will

compare the classification enhancement of both cases in the

later experiments on rotating machinery. Since expressions of

formulas are the same, here we address the data fusion as a

unified problem regardless of which fusion case will be used.

Consider a time series data Si,j = {S
p
i,j}

P
p=1 ∈ R

l×P for

senor i ∈ Z and class j ∈ Z, where P is the sample number

of class j and l is the measurement number of each sample.

Thus, one of the sample S
p
i,j is with the form:

S
p
i,j = [s

p
i,j(1), s

p
i,j(2), . . . , s

p
i,j(l)]

T
. (6)

For data fusion of class j, multiple time-series data streams

corresponding to senors i = [1, 2, . . . , I ] are concatenated

in series to form a fused data set S̄j for data generation or

classification, i.e.

S̄j=
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(7)

Instead of dealing with a binary class-imbalanced diagno-

sis problem, multi-class fault diagnosis problem in this study

involves several representative fault types on the rotating

machinery, regarding to different fault locations, fault rough-

ness levels, and rotating speeds. Hence, the classification

model should process multiple classes corresponding to j =

[1, 2, . . . , J ], where J is the number of classes including nor-

mal class and all fault types. Considering the actual industrial

problems, the ratios of sample number P in the normal case

j = 1 to P in each fault case j = {2, . . . , J} are very high,

resulting in very high normal to fault ratios.
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B. GAN-BASED DATA GENERATION

As shown in Fig. 2, the network structure of the GAN in

the proposed method is consists of a generator G and a

discriminator D.

FIGURE 2. The schematic diagram of GAN.

1) GENERATOR

The G is used to generate synthetic samples as similar as

model input generated by the Stage 1 in Fig. 1.

For the Pre-fusion case, the training data set F̄
j
train = S̄j of

fault class j for j = {2, 3, . . . , J}. In total J − 1 GAN models

will be trained for data generation.

For the Post-fusion case, the training data set F
i,j
train = Si,j

of fault class j for j = {2, 3, . . . , J} and sensor number i for

i = {1, 2, . . . , I }. In total (J−1)I GANmodels will be trained

for data generation.

The generator G consists of fully-connected layers,

batch-norm layers, and leaky ReLU activation layers. The

specific layers in the experiment are shown in Table 4 and

Table 5. Randomly sampled M from the latent space are

initialized to generate the synthetic data with the same dimen-

sion and size as F̄
j
train or F

i,j
train. M , where for the Pre-fusion

case

F̄
j
synthetic = G(M ), (8)

or for the Post-fusion case

F
i,j
synthetic = G(M ). (9)

2) DISCRIMINATOR

The generator makes that both the feature of the original

training set and the pattern of the latent space vector are

learned during the multi-epochs.

The discriminator D is used to distinguish whether input

data is real or generated. The loss function used here is binary

cross-entropy as loss function. Adam [33] is used here as the

optimizer.

C. CNN AS A CLASSIFIER

After fault data sets has been generated, new balanced data

sets can be construed. For the Pre-fusion case, the new

balanced data set of a fault class j is F̄
j
pre = [F̄

j
synthetic,

F̄
j
train]. Together with the normal sample, CNN classifica-

tion model used to be trained for multi-class fault diagnosis

(see classification step in Fig. 1). For the Post-fusion case,

the generated F
i,j
synthetic and F

i,j
train from i = 1 to I will be

concatenated according to construct Eq. (7) to the balanced

fused data F̄
j
post for CNN training. The loss function used in

CNN is categorical crossentropy. Adam [33] is used here as

the optimizer.

IV. EXPERIMENTAL SETUP

This section shows experimental setup to verify the effective-

ness and feasibility of the proposed method for the diagnosis

of multi-class imbalanced rotating machinery on two repre-

sentative data sets: a rolling bearing data from Case Western

Reserve University (CWRU) [34] and a gear box data col-

lected from our laboratory [35]. Both data sets are balanced

datasets since originally generated. Therefore, we are able to

manually adjust the data set composition for the purpose of

validating the effectiveness of the proposed method across

small to high imbalanced ratios (i.e., ratios from 1:10 to

1:30 in this research).

A. DATA SET DESCRIPTION

1) ROLLING BEARING DATA

As shown in Fig. 3, this experimental apparatus includes a

motor (motor shaft is supported by test bearings), a torque

transducer/encoder, and a dynamo-meter. Four kinds ofmotor

loads 0, 1, 2, and 3 hp correspond to four motor rotat-

ing speeds 1797 rpm, 1772rpm, 1750 rpm, and 1730 rpm,

respectively. Accelerometers with a sampling rate of 12 kHz

are used for collecting vibration signals. In this task, four

fault diameters (0.007, 0.014, 0.021, and 0.028 inches

(1 inch = 25.4 mm)) of three fault types (outer race (OR)

fault, inner race (IR) fault, and ball (B) fault) together with

one normal condition, a total of 10 classes, are considered

in this work (see Table 1). Three accelerometers associ-

ated with different positions (drive end (DE), fan end (FE),

and base (BA)) are conducted for this 10-way classification

problem.

FIGURE 3. The CWRU data acquisition environment and equipment:
(a) physical picture [36] and (b) rolling bearing experiment setup. [15].

2) GEAR BOX DATA

The schematic diagram of the gear box experiment is shown

in the Fig. 4, including four key gears: one input high-speed
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FIGURE 4. (a) The Structure of the experimental platform [35] of the data set from our lab (b) The internal schematic of the
gearbox used in the experiment.

TABLE 1. Description of ten rolling bearing working conditions.

gear, one output low-speed gear, and two intermediate gears.

Diverse vibration signals are collected by two accelerometers

on the vertical and horizontal directions, and a current sensor

is used to measure current sensor. Three types of faults and

normal data constitute a four-way classification problem.

More specifically, three types of fault conditions are 1) one

tooth broke in high-speed shaft side, 2) one tooth broke in

low-speed shaft side, and 3) the high-speed shaft gear breaks

one tooth, while the middle shaft gear breaks one tooth. Their

labels are presented in Table 3. The sampling rate of the

acceleromters and sensor are 10 kHz and 1 kHz respectively.

B. DATA PROCESSING AND IMPLEMENTATION DETAILS

1) ROLLING BEARING DATA

As shown in Table 2, ten working conditions including nine

faulty conditions and one normal condition are considered,

where each condition contains P = 300 samples and each

sample is a selected vibration signal segment with a length of

l = 400.

For the Pre-fusion GAN, we first consider construct the

data set under different imbalanced ratios (i.e., 1:10, 1:20,

and 1:30), then merged the data collected by the FE, DE,

and BA accelerometers according to the time, so as to obtain

fused data with a length of 1200. After that, Pre-fusion GAN

TABLE 2. The number of training/testing samples from three different sensors.

TABLE 3. The number of samples from two different sensors.
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FIGURE 5. The loss of Generator/The loss of Discriminator of GAN model.

TABLE 4. Network architecture for rolling bearing data set.

is used to generate new data for classed that have relatively

few samples. For instance, when the imbalanced ratio is

1:10, we first fused the sensory data for each sample, then

a data set was obtained by reserving 300 normal samples and

30 faulty samples in each faulty type. Next, the GAN net-

work is used to generate synthetic data to compensate minor

classes. For Post-fusion GAN, according to the imbalanced

ratio, we generated the synthetic data for each of the three

TABLE 5. Network architecture for gear box data set from our lab.

accelerometers of nine faulty types that have a small amount

of samples, then the data of three accelerometers are fused,

and 300 samples with a length of 1200 in each of ten classes

are finally obtained for CNN classifier.

It should be noted that data of the fan end accelerometer is

vacant in the normal condition (see Table 2), in order to satisfy

the requirement of network training, 300 zero padding of the

same length are added in this part to make the normal data is

consistent with the fault data in length.

In order to avoid the time-series dependency of segmented

data [37], the sensor data under 1797 rpm (0 hp) are used for

training and the data under 1799 rpm (2 hp) are used for test.
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TABLE 6. Comparison of results between proposed approaches and existing major approaches on rolling bearing data set.

TABLE 7. Comparison of results between proposed approaches and existing major approaches on gear box data set.

2) GEAR BOX DATA

As shown in Table 3, four working conditions (i.e., tooth

broken in high-speed shaft, tooth broken in low-speed shaft,

tooth broken in high-speed shaft andmiddle shaft, and normal

condition) are used for imbalanced classification. We choose

one of two vibration signals and the current signal for inves-

tigation. There are P = 450 two-channel signal samples

(I = 2) with a sample length of l = 600 are used to constitute
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FIGURE 6. Comparison of accuracies between proposed approaches and
existing major approaches on the rolling bearing data set.

the initial imbalanced data sets with three different imbal-

anced ratio (1:10, 1:20, and 1:30). According to Eq. (7), for

both the Pre-fusion GAN and Post-fusion cases, 450 samples

with a sample length of 1200 are fused before classification.

FIGURE 7. Comparison of accuracies between proposed approaches and
existing major approaches on gear box data set.

In order to avoid the time-series dependency of segmented

data [37], the data under motor speeds of 400 r/min and

600 r/min of the electric motor are used for training, while

the data under a motor speed of 200 r/min are used for test.

FIGURE 8. Comparative example of synthetic samples generated by GAN and original sample from accelerometer data on fan end (FE): inner race
fault with fault diameters of (a) 0.007In., (b) 0.014In., (c) 0.021In., outer race fault with fault diameters of (d) 0.007In., (e) 0.014In., (f) 0.021In., ball
fault with fault diameters of (g) 0.007In., (h) 0.014In., (i) 0.021In.
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FIGURE 9. Comparative example of synthetic samples generated by GAN and original sample from accelerometer data on base (BA): inner race fault
with fault diameters of (a) 0.007In., (b) 0.014In., (c) 0.021In., outer race fault with fault diameters of (d) 0.007In., (e) 0.014In., (f) 0.021In., ball fault
with fault diameters of (g) 0.007In., (h) 0.014In., (i) 0.021In.

C. EXPERIMENTAL RESULTS AND ANALYSIS

1) THE LOSSES OF GAN

As shown in Fig. 5, as the losses of generator and dis-

criminator decrease and stabilize with the increasing steps,

generated data can be seen as a good representative of original

data.

2) ROLLING BEARING DATA

The diagnosis performances of three imbalanced ratios

(1:10, 1:20, and 1:30) of different diagnosis approaches are

summarized in Table 6 and Fig. 6, this result is obtained from

the network architecture as Table 4. In order to better evaluate

the proposed algorithm, more metrics such as Area Under

Curve (AUC) for Receiver Operating Characteristic (ROC),

precision, recall rate, and F-value are applied to assess this

algorithm, results are shown in Table 4.

Use imbalanced ratio of 1:10 as a representative

case, the accuracy using the proposed Pre-fusion GAN

is 83.91%, while the accuracy using the proposed

Post-fusion GAN is 85.72%. Compared with the perfor-

mance of original imbalanced model (unprocessed), more

than 10% accuracy increase is achieved. Other diagno-

sis approaches, such as ADSYN, KMeansSMOTE, SMO-

TENC, and SVMSOMTE, are used for comparisons with the

proposed methods.

In terms of the imbalanced ratios of 1:20 and 1:30, results

in Table 6 and Fig. 7 show that the proposed Post-fusion

GAN has the best performance. Especially, the post-fusion

GAN achieved the highest experimental accuracy compared

to other approaches under 1:30 the 1:30 imbalanced. The time

series evolution of the representative synthetic vibration data

of FE, BA, and driveDE using the proposedGANnetwork are

shown in the Appendix Fig. 8, Fig. 9 and Fig. 10 respectively.

In order to show the effect of the generated data more

clearly, the probability distribution function is used to display

synthetic and original samples as shown in Appendix Fig. 13.

To be noticed, when the imbalanced ratio is 1:10, the results of

Pre-fusion GAN and Post-fusion GAN are a little worse than

fusion-only method, we think the reason is the imbalanced

problem is weakened after the data fusion when imbalanced

ratio is small, while synthetic data play a role of noise that

reduces the accuracy here.
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FIGURE 10. Comparative example of synthetic samples generated by GAN and original sample from accelerometer data on drive end (DE): inner
race fault with fault diameters of (a) 0.007In., (b) 0.014In., (c) 0.021In., outer race fault with fault diameters of (d) 0.007In., (e) 0.014In., (f) 0.021In.,
ball fault with fault diameters of (g) 0.007In., (h) 0.014In., (i) 0.021In.

FIGURE 11. Comparative example of synthetic samples generated by GAN and original sample as vibration data: (a) Tooth broke in high-speed shaft
gear, (b) Tooth broke in low-speed shaft gear, (c) Tooth broke in high-speed shaft gear and middle shaft gear breaks one tooth.

In addition, with the increase of the imbalanced ratio,

the accuracy improvement brought by the proposed methods

is more obvious than other methods. From this study, it can

be concluded that the more serious the imbalanced problem

is, the accuracy difference between the balanced data and

the imbalanced data will be greater, which confirms that the

compensated data generated by the GAN network captures

accurate hidden feature of the fused or sensor signals.

3) GEAR BOX DATA

The prediction performances of three imbalanced ratios and

different prediction approaches are summarized in Table 6

and Fig. 7. These results are obtained based on the network

architecture shown in Table 5.

The results show that the proposed Pre-fusion GAN and

Post-fusion GAN perform well in the cases of 1:10, 1:20,

and 1:30, and the Post-fusion GAN performs best among all
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FIGURE 12. Comparative example of synthetic samples generated by GAN and original sample as current data: (a) Tooth broke in high-speed shaft
gear, (b) Tooth broke in low-speed shaft gear, (c) Tooth broke in high-speed shaft gear and middle shaft gear breaks one tooth.

FIGURE 13. Comparative example for probability distribution of synthetic samples generated by GAN and original sample from accelerometer data
on fan end (FE): inner race fault with fault diameters of (a) 0.007In., (b) 0.014In., (c) 0.021In., outer race fault with fault diameters of (d) 0.007In.,
(e) 0.014In., (f) 0.021In., ball fault with fault diameters of (g) 0.007In., (h) 0.014In., (i) 0.021In.

the diagnosis methods. Moreover, with the increase of the

imbalanced ratio, the accuracy improvement brought by the

proposed methods is more significant than other methods.

For the post-fusion GANwith the highest experimental accu-

racy, the representative synthetic vibration data and current

data using the proposed GAN network are shown in the

Appendix Fig. 11, and Appendix Fig. 12. In order to show

the effect of the generated data more clearly, the probability

distribution function is used to display synthetic and original

samples, see results in Appendix Fig. 14.

V. CONCLUSION AND FUTURE WORK

In this paper, a new diagnostic framework based on adver-

sarial neural networks (GAN) that integrates a multi-sensor
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FIGURE 14. Comparative example for probability distribution of synthetic samples generated by GAN and original sample as current data: (a) Tooth
broke in high-speed shaft gear, (b) Tooth broke in low-speed shaft gear, (c) Tooth broke in high-speed shaft gear and middle shaft gear breaks one
tooth.

data fusion technique to generate synthetic data for data

compensation purpose was proposed. Two different practice

modes are designed based on this framework according to

the position of the data fusion logic. The experiments on

different imbalanced ratios are designed on the premise of

avoiding the effect of time continuity on the data. The exper-

iments are implemented on two different rotating machinery

multi-channel data sets including a rolling bearing data set

of CWRU and a data set of the rotating gear box from our

laboratory. The multi-channel data generated by different

sensors are fused to derive experimental model. The proposed

approaches are compared with other widely used data gener-

ation methods to verify its effectiveness.

For the future work, we aim to apply the proposed algo-

rithm on more rotating machinery systems to investigate its

generalization, and modify the GAN-based network architec-

ture to produce better synthetic data.

APPENDIX

For the experiment on the rolling bearing data set, examples

of the time series vibration of the the synthetic data based on

the vibration data from accelerometers on FE, BA and DE

are shown in as Fig. 8, Fig. 9 and Fig. 10. For the experiment

on gear box data from our lab, the synthetic vibration data

and current data generated by the GAN network are shown

as Fig. 11 and Fig. 12. In order to show the effect of the gen-

erated data more clearly, the probability distribution function

is used to display synthetic and original samples as shown in

Appendix Fig. 13 and Fig. 14.
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