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fabrice.michel@ecp.fr, nikos.paragios@ecp.fr

Abstract

Visual understanding is often based on measuring simi-

larity between observations. Learning similarities specific

to a certain perception task from a set of examples has been

shown advantageous in various computer vision and pat-

tern recognition problems. In many important applications,

the data that one needs to compare come from different rep-

resentations or modalities, and the similarity between such

data operates on objects that may have different and of-

ten incommensurable structure and dimensionality. In this

paper, we propose a framework for supervised similarity

learning based on embedding the input data from two ar-

bitrary spaces into the Hamming space. The mapping is

expressed as a binary classification problem with positive

and negative examples, and can be efficiently learned us-

ing boosting algorithms. The utility and efficiency of such

a generic approach is demonstrated on several challenging

applications including cross-representation shape retrieval

and alignment of multi-modal medical images.

1. Introduction

Quantifying similarity or dissimilarity of data is one of

the central problems in computer vision and pattern recog-

nition, arising practically in any problem involving compar-

ison, search, or matching. This challenge can be addressed

either in unsupervised or supervised manner. Unsupervised

methods, often common in classification problems, try sep-

arating different data populations based on their statistical

properties, using for example the Kulback-Lelbler diver-

gence [8] and mutual information [36]. In a wide range

of applications such as content-based retrieval, the data are

a high-dimensional representation of complicated concepts

which are very difficult or even impossible to model. High-

order statistical methods run into computational challenges

in high dimensional spaces. One can overcome this limi-

tation through techniques that map the original data into a

simpler representation endowed with a metric that correctly

represents the data similarity. Problems of this type are usu-

ally referred to as manifold learning and nonlinear dimen-

sionality reduction. Notable algorithms in this family are

locally linear embedding (LLE) [23], Isomap [30], Lapla-

cian [1] and diffusion [9] eigenmaps, and multidimensional

scaling (MDS) [4, 22].

Supervised methods could handle these cases through

the definition of a metric that best separates the observed

populations. In the simplest case, one has a set of labeled

examples and can employ a naı̈ve Bayes nearest neighbor

classifier [3]. More generally, the similarity is given in some

parametric form and an optimization problem with respect

to these parameters is employed to construct the optimal

metric. Methods based on convex programming [37] and

support vector machines (SVM) [2, 34] have been proposed.

In [12], neighborhood component analysis is considered to

learn the Mahalanobis metric. A similar approach is used in

[14] in a visual content-based search application.

An important setting of similarity learning is when the

desired similarity is binary (similar/dissimilar). Such simi-

larities arise, for example, in content-based image retrieval

applications, where one wishes to find only images in the

database similar to the query image. In [24, 35], this prob-

lem was addressed using similarity-sensitive hashing. The

aim was to find a projection of the data into the space of

binary codes such that the Hamming metric between the

codes reflects the similarity relations between pairs in the

training set. Such a concept is intimately related to the

locality-sensitive hashing (LSH) [13], where the collision
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probability of the hash is inversely related to the distance

(typically, Euclidean or Lp) between the hashed data. In the

case of similarity-sensitive hashing, this distance is learned

from examples. Considering the hash construction as a bi-

nary classification problem, [24] proposed an efficient so-

lution for this similarity learning problem using AdaBoost

[10]. These ideas were successfully used in [32, 15] for

content-based image retrieval as well as other computer vi-

sion applications [25].

In many cases, the data that one needs to compare come

from different representations or modalities, and often re-

side in a different spaces. For example, in multimodal

medical image alignment, one would like to find similar-

ity between patches in images coming from different imag-

ing modalities, e.g., two MRI contrasts, or a CT and a PET

image. The data formation, processing, and representation

in these modalities can be completely different and statisti-

cally uncorrelated, making the alignment and fusion of such

data practically impossible.

In content-based retrieval and copy detection using the

bag of features paradigm [27, 7], images are represented

as histograms of simple visual features taken from a large

(103 − 106) vocabulary. Similar approaches have been pro-

posed for indexing and retrieval of 3D shapes [20, 21, 31].

The use of different feature descriptors (e.g. MSER [19]

or SIFT [18] in images; spin image descriptors [20] or heat

kernel signatures [29] in shapes), vocabularies of different

size, or just different versions of the same vocabulary would

result in two mutually-incomparable representations. The

similarity relation between such multi-modal data is not a

metric, hence, does not fall into the standard framework of

metric learning or similarity-sensitive hashing. There have

been very few attempts to address the problem of cross-

modality similarity learning like for example in [17] where

an SVM-based approach was proposed for medical image

alignment.

In this paper, we approach the cross-modality similarity

learning problem by means of embedding incommensurable

data into a common metric space. The embedding itself is

used to parameterize the similarity. In particular, we ex-

tend the similarity-sensitive hashing introduced in [24] to

the setting in which the input data come from two differ-

ent spaces. We show that like in the standard similarity-

sensitive hashing, cross-modality similarity learning can be

efficiently solved using boosting techniques. We evaluate

the performance of the method on two difference applica-

tions showing its extreme potentials.

The rest of the paper is organized as follows: In Sec-

tion 2, we review the basics of similarity-sensitive hashing.

Section 3 extends this approach to the multi-modal setting.

In Section 4, we demonstrate the use of our approach for

cross-representation shape retrieval and multi-modal medi-

cal image alignment. Section 5 concludes the paper.

2. Similarity-sensitive hashing

Let X ⊆ R
m be the space of data points, and let

s : X × X → {±1} be an unknown binary similarity func-

tion between the data points. The similarity s partitions

the set X × X of all pairs of data points into positives

P = {(x, x′) : s(x, x′) = +1} and negatives N =
{(x, x′) : s(x, x′) = −1}. The goal of similarity learn-

ing is to construct another binary similarity function ŝ that

approximates the unknown s as faithfully as possible. To

evaluate the quality of such an approximation, it is common

to associate with ŝ the expected false positve and negative

rates,

FP = E{ŝ(x, x′) = +1|s(x, x′) = −1}

FN = E{ŝ(x, x′) = −1|s(x, x′) = +1}, (1)

and the related true positive and negative rates, TP = 1 −
FN and TN = 1 − FP . Here, the expectations are taken

with respect to the joint distribution of pairs (in the context

of retrieval, where (x, x′) are obtained by pairing a query

with all the examples in the database, this means the product

of marginal distributions).

A popular variant of similarity learning involves embed-

ding of the data points into some metric space (Z, dZ) by

means of a map ξ : X → Z. The distance dZ repre-

sents the similarity of the embedded points, in the sense

that the lower is dZ(ξ(x), ξ(x′)), the higher is the proba-

bility that s(x, x′) = +1. Alternatively, one can find a

range of radii R such that with high probability positive

pairs have dZ ◦ (ξ × ξ) < R, while negative pairs have

dZ ◦ (ξ × ξ) > R. A map ξ satisfying this property is said

to be sensitive to the similarity s, and it naturally defines a

binary classifier ŝ(x, x′) = sign (R − dZ(ξ(x), ξ(x′))) on

the space of pairs of data points. In practice this means that

retrieval of a query in a database translates into search of

k nearest neighbors or R-neighbors of the query embedded

into Z by ξ.

In [24], the (possibly weighted) n-dimensional Ham-

ming space H
n was proposed as the embedding space Z.

Such a mapping encodes each data point as an n-bit bi-

nary string. The correlation between positive similarity of

a pair of points and small Hamming distance between their

corresponding codes implies that positives are likely to be

mapped to the same code. This fact allows to interpret the

Hamming embedding as similarity-sensitive hashing, under

which positive pairs have high collision probability, while

negative pairs are unlikely to collide. Such a hashing can

be thought of as an optimal LSH, in which sensitivity to the

desired similarity is explicitly maximized. The hash also

acts as a means of dimensionality reduction when m ≫ n.

The n-dimensional Hamming embedding can be thought

of as a vector ξ(x) = (ξ1(x), . . . , ξn(x)) of binary embed-



dings of the form

ξi(x) =

{

0 if fi(x) ≤ 0;
1 if fi(x) > 0,

(2)

parametrized by a projection fi : X → R. Each such map

ξi defines a weak binary classifier on pairs of data points,

hi(x, x′) =

{

+1 if ξi(x) = ξi(x
′);

−1 otherwise.
(3)

Using this terminology, the Hamming metric between the

embeddings ξ(x) and ξ(x′) of a pair of data points (x, x′)
can be expressed as a (possibly weighted) superposition of

weak classifiers,

dHn(ξ(x), ξ(x′)) =
1

2

n
∑

i=1

αi −
1

2

n
∑

i=1

αihi(x, x′), (4)

where αi > 0 is the weight of the i-th bit (αi = 1 in the un-

weighted case). Observing the resemblance with cascaded

binary classifiers, the idea of constructing the similarity-

sensitive embedding using the standard boosting approach

was proposed in [24]. Specifically, the use of AdaBoost [10]

was made to find a greedy approximation to the minimizer

of the exponential loss function L = E{e−s(x,x′)ŝ(x,x′)},

where in practice the expectation is replaced by an empir-

ical average on the training set. The exponential loss is a

reasonable selection of the objective function, as it consti-

tutes an upper bound on the training error. Furthermore, the

minimization of L is equivalent to the minimization of the

sum of the error rates FN + FP or, alternatively, to the

maximization of the gap TP − FP . The latter is directly

related to the sensitivity of the embedding to the similarity

function being learned [24].

3. Cross-modality similarity learning

An important generalization of the metric learning prob-

lem is the case in which the similarity is between points

from different spaces, X ⊆ R
m and Y ⊆ R

m′

(usually,

m 6= m′). For example, a point in X can be a query image

in some representation, while a point in Y can be an image

in the database in a different representation. The unknown

binary similarity function in this case is s : X×Y → {±1},

comparing data points across modalities. As in the clas-

sical similarity learning problem, cross-modality similarity

learning aims at finding a binary similarity ŝ on X × Y
approximating s.

The central contribution of this paper is the extension

of the embedding framework to the multimodal case. We

propose to construct two maps ξ : X → H
n and η : Y →

H
n such that dHn(ξ(x), η(y)) is small for s(x, y) = +1 and

large for s(x, y) = −1 with high probability. Following

the greedy approach [24], the latter Hamming metric can be

constructed sequentially as a superposition of weak binary

classifiers, now of the form

hi(x, y) =

{

+1 if ξi(x) = ηi(y);
−1 otherwise

= (2ξi(x) − 1)(2ηi(y) − 1), (5)

where ξi and ηi are binary maps parametrized by projec-

tions fi : X → R and gi : Y → R, respectively. Here,

we limit our attention to affine projections of the form

fi(x) = pT
i x + ai and gi(y) = qT

i y + bi, where pi and

qi are, respectively, m- and m′-dimensional unit vectors,

and ai and bi are scalars. Extension to more complex pro-

jections is relatively straightforward.

Our boosted cross-modality similarity learn-

ing algorithm can be summarized as follows:

Input: K pairs (xk, yk) labeled by sk = s(xk, yk).
Output: maps ξi : X → {0, 1} and ηi : Y → {0, 1},

and scalars αi, i = 1, . . . , n.

Initialize weights w1(k) = 1/K.1

for i = 1, . . . , n do2

Select ξi and ηi such that hi in (5) maximizes3

ri =

K
∑

k=1

wi(k)skhi(xk, yk). (6)

Set αi = 1
2 log(1 + ri) −

1
2 log(1 − ri).4

Update weights according to5

wi+1(k) = wi(k)e−αiskhi(xk,yk) (7)

and normalize by sum.

end6

The algorithm follows very much the standard AdaBoost

procedure. It consists of two steps, where first the max-

imization of the weighted correlation ri of labels with

the outputs of the weak classifier (Step 3) is addressed.

This step is followed by the selection of αi in (Step 4)

that minimizes the exponential loss [10]. In case the

unweighted version of the Hamming metric is used, Step 4

is skipped, fixing αi = 1.

3.1. Projection selection

Details of projection selection specific to our cross-

modality similarity learning problem are concentrated in

Step 3. Substituting the affine projection fi and gi into (6),

we obtain

ri =

K
∑

k=1

wi(k)sksign (pT
i xk + ai)sign (qT

i yk + bi). (8)

Maximizing ri with respect to the projection parameters is

difficult because of the sign function. However, this maxi-



mizer is closely related to the maximizer of a simpler func-

tion,

r̂i =

K
∑

k=1

vk(pT
i xk)(qT

i yk), (9)

where xk and yk are xk and yk centered by their weighted

means, and vk = wi(k)sk. Rewriting the above yields

r̂i = pT
i

(

K
∑

k=1

vkxkyT
k

)

qi = pT
i Cqi, (10)

where C can be thought of as the difference between

weighted covariance matrices of positive and negative pairs

of the training data points. This approach to the selection

of projection direction can be considered an extension of

one introduced in [6]. Unit projection directions pi and qi

maximizing r̂i correspond, respectively, to the largest left

and right singular vectors of C. In practice, since the min-

imizers of r̂i and ri are not identical, we project xk and

yk onto the subspaces spanned by M largest left and right

singular vectors. Selecting M ≪ m, m′ allows to greatly

reduce the search space complexity. In our experiments, M
was empirically set to 5; further increase of M did not bring

significant improvement.

The best projection directions pi and qi are selected as a

linear combination of M largest singular vectors, reducing

the search to an M -dimensional space. We generate N pairs

of M -dimensional random vectors; each such pair forms a

candidate for the pair of projection directions pi and qi. For

each candidate, we project the training data points obtaining

two sets of scalars x′

k = pT
i xk and y′

k = qT
i yk. Next, we

search for the scalar parameters ai and bi maximizing ri.

For that purpose, for every pair of scalars (a, b), we define

the cumulative sum

S(a, b) =
K
∑

k=1

1(x′

k + a ≤ 0)1(y′

k + b ≤ 0)vk, (11)

where 1 denotes an indicator function. In this notation, ri

can be expressed as ri(a, b) = 4S(a, b) + S(−∞,−∞) −
2S(a,−∞) − 2S(−∞, b). In order to find (a, b) maximiz-

ing ri, we quantize the space of candidate pairs (a, b) on a

grid of B×B bins and evaluate S(a, b) and, hence, ri(a, b)
in each bin. This technique, largely resembling the idea

of integral images [33], is applied at two resolutions of the

grid, thus allowing to control the tradeoff between accuracy

and complexity.

4. Applications

4.1. Crossrepresentation shape retrieval

In this experiment, we tested the proposed approach on

a three-dimensional shape retrieval application. In shape

retrieval, given a query shape, the goal is to retrieve all

the possible transformations of the shape that appear in the

database of shapes (e.g. in Figure 1, an ideal response to the

query human shape would be all the other human shapes

from the database). We used the ShapeGoogle database

[21], consisting of a total of 1052 shapes from different

classes with rich transformations including isometric de-

formations, topological changes, missing parts, and differ-

ent sampling and triangulation. As of today, this is the

largest non-rigid shape retrieval benchmark, comprising ob-

jects from TOSCA [5], Sumner [28] and Princeton [26]

datasets. 583 transformed shapes from ten classes were

used as queries against untransformed shapes to which 456

other unrelated shapes were added as negatives. Perfor-

mance was evaluated in terms of average precision (AP),

computed as the area below the precision-recall curve for

each query, and the mean average precision (mAP), com-

puted by averaging AP over all queries.

As shape descriptors, we used bags of geometric words

and expressions proposed in [21]. Multiscale heat kernels

were used as deformation-invariant local feature descriptors

[29]; these descriptors were quantized in a geometric vocab-

ulary. Two types of shape descriptors were used: a standard

bag of features counting the frequency of geometric words

in a vocabulary of size 32 (BoF 32), and a spatially-sensitive

bag of features counting the simultaneous occurrence of

pairs of geometric words (“geometric expressions”) in a vo-

cabulary of size 8 (SS-BoF 8). The two descriptors were

represented as 32- and 64-dimensional vectors, respectively

(see Figure 2).

Cross-modality similarity-sensitive hashing with code

length up to 96 bits was built to query 64-dimensional

SS-BoF 8 shape descriptors against a database of 32-

dimensional BoF 32 descriptors. Training was performed

on an independent set of shapes containing 104 positive and

2 × 105 negative pairs, and took approximately an hour.

Figure 3 shows the mAP achieved by comparing the two

different shape descriptors using the learned cross-modality

similarity. 48 bits are sufficient to achieve performance not

worse than one achieved by comparing each of the descrip-

tors separately using the Euclidean distance (92.68% for

SS-BoF 8 and 94.68% for BoF 32). For 96 bits, mAP of

the learned distance exceeds 99.2%, slightly inferior to the

performance of the standard similarity-sensitive hashing ap-

plied to each of the descriptor modalities separately.

4.2. Alignment of multimodal medical images

In the second experiment, we used the proposed ap-

proach as a distance function in multi-modal medical image

alignment application. In the problem of non-rigid align-

ment, we are given a source and target images f and g (for

simplicity, scalar-valued), defined on a domain Ω (Ω ⊂ R
2

in 2D alignment shown in our experiment here, or Ω ⊂ R
3



Figure 1. Top: examples of shapes in the ShapeGoogle database used in our cross-modality shape retrieval experiment. Bottom: examples

of transformations of the human shape (shown are isometric deformations, topological changes, missing parts, coarse triangulation).

Figure 2. Different shapes (top) and their corresponding descrip-

tors: bag of features descriptor using a vocabulary of 32 geomet-

ric words represented as a 32-dimensional vector (middle), and

spatially-sensitive bags-of features descriptor using a vocabulary

of 8 geometric words represented as a 8× 8 matrix (bottom).

in the case of 3D volume registration). In general, the im-

ages are related by a complicated relation,

g(x) = h ◦ f(T (x)), (12)

Figure 3. Mean average precision of similarity-sensitive hashing

as a function of the code length within modalities: BoF 32 queried

against BoF 32 (red), SS-BoF 8 queried agains SS-BoF 8 (blue),

and across modalities: SS-BoF 8 queried against BoF 32 (bold

green). For reference, the performance of the Euclidean distance

within the two modalities is shown (dashed red and blue).

for all x on Ω, involving a geometric deformation T and

a non-linearity h explaining the changes of appearance be-

tween corresponding points.

State-of-the-art registration methods [11] attempt at es-

timating the deformation T on a sparse grid Ω′ ⊂ Ω



(|Ω′| ≪ |Ω|) of control points,

T (x) = x +
∑

p∈Ω′

ρ(‖x − xp‖)∆p, (13)

where ∆p is the displacement vector of the control point

xp. Moving a control point results in a local deformation of

the image around it; the weighting function ρ measures the

contribution of a control point in Ω′ to the displacement of

point in Ω. The deformation field is found by minimizing

the criterion of point-wise similarity between the target and

deformed source images,

E(T ) =
1

|Ω′|

∑

p∈Ω′

∫

Ω

ρ−1(‖x − xp‖)d(g(x), f(T x))dx,

(14)

where d is some similarity function. In order to avoid fold-

ing on the deformation grid, a smoothness term on T is

added.

For a practical and efficient numerical solution, prob-

lem (14) is posed as an assignment problem in the fol-

lowing way [11]: Let L = {u1, ..., uk} be a discrete set

of labels corresponding to a quantized version of the de-

formation space Θ = {∆1, ...,∆k}. A label assignment

up ∈ L to a grid node xp ∈ Ω′ is associated with displac-

ing the node by the corresponding vector ∆up . The defor-

mation field associated with a certain discrete labeling u is

Tu(x) = x+
∑

p∈Ω′ ρ(‖x−xp‖)∆
up . Problem 14 can thus

be posed as discrete Markov random field (MRF) optimiza-

tion with respect to the labeling,

E(u) =
1

|Ω′|

∑

p∈Ω′

∫

Ω

ρ−1(‖x − xp‖)d(g(x), f(Tux))dx

≈
1

|Ω′|

∑

p∈Ω′

Vp(up), (15)

where Vp is a singleton potential function representing a lo-

cal dissimilarity measure. Such a formulation allows to plug

in any dissimilarity function without modifying the scheme

itself.

When the source and the target images arise from dif-

ferent imaging modalities, we land at the problem of com-

puting a cross-modality similarity. Modeling such simi-

larity can be difficult, but learning is possible given ex-

amples of aligned images. In our experiment, we used

ten T1- and T2-weighted MRI images of the brain (Fig-

ure 4) of size 256 × 256. Each T1 and T2 pair of images

was perfectly aligned. We used cross-modality similarity-

preserving hashing to learn the distance between 9 × 9
patches in T1 and T2 MRI images. The training set was

created from two pairs of perfectly aligned images and

consisted of 78887 positive and 788870 negative pairs of

patches. 64-dimensional embedding was trained in about

Figure 4. Demonstration of the effectiveness of the learned metric

between T1 and T2 images on previously unseen images. The

dissimilarity map (right) was generated between the specific patch

delineated by the red square (T1-MRI) and the patches around all

of the pixels in the center image (T2-MRI). We can see that the

blue parts are all situated in regions visually resembling the one

around the inside the square.

103 minutes. The obtained similarity was smooth and dis-

criminative enough to align images in a non-rigid way (see

Figure 4).

The MRF solver from [16] was used to perform the

alignment with the learned metric as a point-wise dissim-

ilarity. As a test set, we used the remaining eight images

of the brain with groundtruth perfect alignment and man-

ual manual segmentations of ventricles. We selected one

image as the reference and aligned the remaining seven im-

ages to it. The recovered transformation was then used to

warp the segmentations. In order to compare the deformed

segmentations to the one of the reference image, we used

the DICE coefficient which measures the overlapping pro-

portion of two regions and constitutes an anatomical crite-

rion for conformity of the transformation. For each image,

we performed ten alignments with different regularization

coefficients in order to take into account the variability of

the results with respect to this parameter. Representative

alignment results are depicted in Figures 5 and 6.

We compared our method with several metrics com-

monly used in multi-modal image alignment including

mutual information (MI), normalized mutual information

(NMI), normalized cross-correlation (NCC) and correlation

ratio (CR) [11]. As a reference, the “ideal” case in which

each source T1-MRI was swapped with the correspond-

ing T2-MRI image and registered by means of uni-modal

alignment using sum of squared differences (U-SSD). As

can be see from Figure 7, in terms of the DICE coefficient

our method significantly outperforms all other multi-modal

alignment approaches and is only slightly inferior to the

“ideal” uni-modal case. For a visual evidence of this fact,

compare Figure 6 (a) to Figure 6 (b).

5. Conclusions

We introduced a generalization of similarity-sensitive

hashing to multi-modal data. To our knowledge, this is the

first attempt to approach the challenging problem of cross-



(a) (b)

(c) (d)

Figure 5. Representative result of T1- to T2-weighted MRI regis-

tration. (a) Source image. (b) Target image. (c) Transformation

applied to a regular grid. (d) Source image deformed with the

transformation obtained after alignment.

modality similarity learning as an embedding problem. We

demonstrated our approach on cross-representation retrieval

of non-rigid shapes; in future studies, we intend to show

further examples of retrieval and copy detection of images

and video across representations. We also showed that us-

ing cross-modality similarity learning allows to efficiently

perform alignment of medical images acquired with differ-

ent modalities. Cross-modality similarity can also be inter-

preted as model learning. In future studies, we intend to

show the use of our approach for building priors in inverse

problems, in particular in image restoration.

While in retrieval applications the Hamming embedding

is advantageous due to its low computational and storage

complexity and easy integration into existing database man-

agements systems, the Hamming metric is discrete-valued

and involves a non-differentiable non-linearity. This fact

might complicate some applications. Our approach can be

extended to representation of cross-modality similarities by

means of embedding into e.g. Lp metrics. In particular,

it is straightforward to extend it to the cosine (correlation)

similarity by removing the sign function and replacing the

AdaBoost iteration by RealBoost.
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