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This tutorial paper reviews the theory and design of codes for
hiding or embedding information in signals such as images, video,
audio, graphics, and text. Such codes have also been called wa-
termarking codes; they can be used in a variety of applications,
including copyright protection for digital media, content authenti-
cation, media forensics, data binding, and covert communications.
Some of these applications imply the presence of an adversary at-
tempting to disrupt the transmission of information to the receiver;
other applications involve a noisy, generally unknown, communi-

cation channel. Our focus is on the mathematical models, funda-
mental principles, and code design techniques that are applicable
to data hiding. The approach draws from basic concepts in infor-
mation theory, coding theory, game theory, and signal processing,
and is illustrated with applications to the problem of hiding data in
images.

Keywords—Coding theory, data hiding, game theory, image
processing, information theory, security, signal processing, water-
marking.

I. INTRODUCTION

For thousands of years, people have sought secure ways
to communicate. Today secure communication is often
identified with cryptography. However, some aspects of se-
curity are not at all addressed by cryptographic techniques.
For instance, how can we conceal the very fact that we are
communicating secretly? How can we guarantee that the
information we are communicating will be decoded reliably
by the intended receiver? What can the receiver learn about
the communication channel?

The problems that form the subject of this paper consist
of hiding data in a cover object, such as image, video, audio,
or text. There are many applications, ranging from copyright
protection to content authentication and to steganography,
in which data-hiding methods play an important role. In fact
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new applications keep emerging, prompted by new societal
needs, by the rapid development of information networks,
and by the need for enhanced security mechanisms. For an
overview of such applications, we refer the reader to the
recent IEEE TRANSACTIONS ON SIGNAL PROCESSING supple-
ments on secure media (October 2004, February 2005, and
October 2005), the PROCEEDINGS OF THE IEEE special issue
on digital rights management (June 2004), the IEEE Signal

Processing Magazine (September and November 2003),
and special issues of the IEEE TRANSACTIONS ON SIGNAL

PROCESSING (April 2003), the IEEE Communications Mag-

azine (August 2001), Signal Processing (June 2001), and
the IEEE Signal Processing Magazine (September 2000).
The state of the art before 2000 is surveyed in the papers by
Swanson et al. [1] and by Petitcolas [2]. The recent books
by Barni and Bartolini [3], Cox, Miller, and Bloom [4],
Eggers and Girod [5], Johnson, Duric, and Jajodia [6], and
Katzenbeisser and Petitcolas [7] are also valuable resources.

The goal of this paper is to provide an overview of this
field, focusing on the core principles and the mathematical
methods that can be used for data hiding. We do not attempt
to provide a comprehensive overview of the many techniques
that have been developed (indeed, a whole book would be
needed to cover research from the last ten years alone);
instead we have tried to develop a systematic presentation
of the fundamental ideas, emphasizing the connection with
first principles from information theory, coding theory, game
theory, and signal processing. Most of these ideas have been
developed in the last seven years and presented in various
research papers and short courses.

A. A Brief History

The Histories of Herodotus relate the following story
which took place around 480 B.C. Histiaeus wanted to
secretly notify the regent of the Greek city of Miletus to
start a revolt against the Persian occupier. Histaeus chose an
ingenious, albeit rather slow, secret communication method:
shave the head of a slave, tattoo the message on his skull,
allow the hair to grow back, and finally dispatch the slave
to Miletus. There the slave was shaved again to reveal the
secret message.
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In this story, the physical communication medium is kept

out of plain sight. One can also carry secret communication

in plain sight, using a method developed in ancient China.

The message sender and recipient share identical copies of

a paper mask with holes cut out at random locations. The

sender places the mask over a sheet of paper, writes the secret

message through the holes, removes the mask, and fills in

the blanks with an arbitrary composed message, giving the

appearance of an innocuous text. This method was reinvented

500 years ago by the Italian mathematician Cardan and has

become known as the Cardan grille.

A commercial application in which information is camou-

flaged in a visible physical medium is logarithmic tables in

the 17th and 18th centuries. Errors were deliberately intro-

duced in the least significant digits in order to assert intellec-

tual property rights.

In both examples above, casual inspection of the message

carrier fails to detect the presence of hidden information.

Moreover, a secret code is used to embed the information:

the location of the holes in the paper mask and the location

of the numerical errors, respectively.

B. Modern Applications

The advent of the Internet and other public communica-

tion networks has given rise to a multitude of applications in

which information hiding plays (or has the potential to play)

an important role. Let us review some of these applications.

Copyright Protection [8]. This is arguably the most

popular, yet also most controversial application of infor-

mation hiding [9], [10]. The goal is to embed secret digital

signatures in valuable digital documents such as text, audio,

image, or video files. These digital signatures play the role of

copyright notices which cannot be removed by an adversary

without destroying (or severely damaging) the document

itself. Copyright protection led to the emergence of digital

watermarking1 at the beginning of the Internet revolution, in

the early 1990s.

Fingerprinting and Traitor Tracing [11]. This is anal-

ogous to the copyright protection problem, with a twist: the

distribution list for the digital document is limited, and a dis-

tinct digital signature is embedded in each document, making

it possible to trace back unauthorized use of a document to

its original recipient. The 17th-century logarithmic tables are

an example of this application; modern examples include

distribution of digitized movies to theatres, distribution of

audiovisual (A/V) material over restricted private networks,

and distribution of sensitive company and government docu-

ments. Fingerprinting is considered to be a difficult problem

due to possible collusion between users, making it easier for

them to partially identify and degrade the fingerprints.

Content Authentication and Signature Verification

(Forgery Detection). While standard cryptographic pro-

tocols may be used to authenticate message originators,

authentication of A/V content (rather than the electronic

file per se) presents unique challenges. For instance, the

1So called by analogy with watermarks embedded in banknotes. Digital
watermarks may also be visible, but in most applications they are required
to be invisible.

transmission medium may introduce errors, in which case

conventional authentication protocols are inadequate. Ap-

plications include automatic video surveillance [12] and

authentication of drivers’ licenses [13].

Media Forensics. The goal here is to extract information

about any processing that may have been applied to a signal

[14]. For instance, authentication methods would reveal that

an image has been tampered with, but not how. Forensic

methods would take the analysis one step further, e.g., by

indicating which part(s) of the image were modified, identi-

fying new objects that may have been inserted into the image,

etc.

Steganography. This ancient application is alive and well

today. It may be used by people wishing to secretly com-

municate over public networks, including military and in-

telligence personnel, people living under oppressive govern-

ments, and terrorists [15].

The steganography application suggests that the party

wishing to secretly communicate is sometimes the “good

guy” and sometimes the “bad guy.” The adversary trying to

detect or prevent the secret communication can similarly be

either the “bad guy” or the “good guy.”
The problems listed above usually involve an intelligent

adversary, whose objectives conflict with those of the sender.

The nature of these objectives depends on the application.

For steganography, the objective is undetectable communi-

cation: the presence of hidden data should be undetectable

to the adversary. For watermarking, the objective is reliable

transmission of a message or signature embedded in the host

signal. The message itself need not be secret (e.g., a copy-

right notice), nor is the presence of an embedded message.

For traitor tracing, the objective is to reliably extract the sig-

nature of a traitor from an intercepted document.

Other applications in which a message is embedded in a

cover signal are nonadversarial in nature. A requirement is

that the embedding survive common, nonmalicious signal

degradations such as image compression and channel noise

in the communication system. We list some of these applica-

tions because of the mathematical similarity between infor-

mation embedding problems with and without an adversary.

In particular, it is usually desired that the embedding be per-

ceptually transparent (invisible or inaudible).

Database Annotation. Some large A/V databases con-

tain various types of captions (e.g., text or speech). It is

sometimes preferable to integrate the captions with the

A/V file. This may be done using information-embedding

algorithms, with the advantage that the embedded captions

resist common signal processing manipulations.

Upgrade of Legacy Systems. It is sometimes possible to

upgrade conventional signal transmission systems by embed-

ding an “enhancement layer” into the transmitted data. Ex-

amples include digital audio broadcasting in the FM band

[16] and embedding of stereo disparity maps into mono im-

ages [17].

Content Identification. Embedding scene/song iden-

tifiers in commercial TV and radio signals would enable

applications such as automatic content monitoring and

usage surveys (e.g., how many times was this commercial or
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this song played on radio station XYZ; how often was this

political candidate shown on national TV.)

Device Control. Various synchronization and control sig-

nals may be embedded in radio and television signals. An

example reported in [4] is the Dolby FM noise reduction

technique, which was used by some commercial FM stations

and required the use of an appropriate decoder. A signal em-

bedded in the radio signal was used to trigger the receiver’s
Dolby decoder.

In-Band Captioning. Various types of data may be

embedded in television and video programs: e.g., movie

subtitles, financial information, and other data available for

premium customers. Similarly, data for various services can

be embedded in commercial radio signals.

Transaction Tracking. Video is usually produced, edited,

distributed, and reedited multiple times. Embedding of a dig-

ital stamp makes it possible to retrace these steps, with op-

tional security features.

C. Basic Technical Issues

Despite the bewildering variety of applications, each of

them features a relatively small number of key attributes:

Transparency (Fidelity). In most applications, embed-

ding of information should not cause perceptual degradation

of the host signal. Embedded information should be invisible

in images and text, and inaudible in speech and audio. For a

given application there is a tolerable distortion level, generi-

cally denoted as .

Payload. This refers to the number of information bits

that are embedded in the host signal. This can vary from

megabytes of information (for secret communication appli-

cations) to as little as a few bits (for copyright protection ap-

plications). For instance, DVD players have been proposed

that verify the status of only four information bits before rec-

ognizing the file as legitimate and playing it. The payload is

often normalized by the number of samples of the host signal,

resulting in a bit rate per sample of the host.

Robustness. This refers to the ability of the embedding

algorithm to survive common signal processing operations

such as compression, filtering, noise addition, desynchro-

nization, cropping, insertions, mosaicing, and collage. The

algorithm is commonly designed to survive a certain level of

distortion, generically denoted as .

Security. This refers to the ability of an adversary to crack

the information-hiding code and design a devastating attack

wiping out the hidden information, with little or no effect on

perceptual quality. An example of ideal attack would be the

recovery of the original host signal, which contains no trace

of the message of interest.

Detectability. In most data-hiding applications, no secret

is made of the fact that information is embedded in the host

signal. In applications such as steganography, though, the

very existence of secret communication must not be revealed.

This introduces a constraint on the type of data-hiding algo-

rithm that may be used. Detectability may be measured in a

statistical sense, or in a computational-complexity sense.

The distinction between robustness and security is some-

what fuzzy. One may always think of cracking a code and

applying the appropriate attack as an intelligent signal pro-

cessing operation, and of standard signal processing opera-

tions as conventional attacks. If a code cannot be cracked,

conventional attacks are the adversary’s only option.

Security in the sense defined above is not the same as con-

ventional cryptographic security, in which the primary goal

is to make a message unreadable to unauthorized parties. It it

worth noting that in a data-hiding problem, one may always

encrypt the message before embedding to prevent unautho-

rized decryption. Message encryption may slightly increase

the payload to be embedded but has otherwise no effect on

transparency, robustness, or detectability.

There exist fundamental tradeoffs between transparency

, payload or bit rate , robustness and security

, and detectability. Much of the mathematical work

on information hiding consists of analyzing these tradeoffs,

identifying fundamental limits, and developing practical

algorithms that approach those limits.

D. System Issues

In any application, selection of the data-hiding method de-

pends on a number of practical considerations.

• Does the decoder have full, partial, or no knowledge

of the host signal? The corresponding systems are

sometimes called public, semiprivate, and private

data-hiding systems. A slightly more commonly ter-

minology, which is adopted in this paper, is nonblind,

semiblind, and blind, respectively. Availability of side

information about the host signal at the decoder gener-

ally improves detection or decoding performance but

introduces a communication and storage burden.

• What kind of decision does the decoder have to make?

For high-payload applications, the decision space of the

decoder may be very large (return the message which

the decoder believes to be embedded in the received

signal). In other applications, such as signature verifi-

cation, the decoder’s task is simply to make a binary

decision. The latter task is fundamentally much simpler

than the former [18].

• Does the system rely on a cryptographic method, either

public or private? It is widely believed that secure

communication of hidden data requires the use of cryp-

tographic methods. A private-key protocol requiring

a prior key exchange between message sender and

receiver is often impractical. Instead, a public-key

protocol (say, RSA-based) may provide adequate se-

curity against an adversary with limited computational

resources.

• What kind of communication protocol is desirable?

Higher performance is expected if the decoder has

access to side information about the host signal, is able

to communicate with a central repository to acquire

useful information, etc. However, such features increase

storage and/or communication costs and introduce new

potential failure modes.

• What security level is needed for the application at

hand? In most applications this level is quite low,

because the information being protected has relatively
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low value. An example is protection of cable TV pro-

grams against pirates: a certain percentage of pirates are

successful, but this does not put the cable companies

out of business. In some applications the security level

could be much higher, e.g., military grade.

• What detection/decoding accuracy is needed for the ap-

plication at hand? This depends on the cost of making

incorrect decisions. If the system is to be used in a

court of law, false allegations of illegal behavior may

be more damaging than letting the occasional cheat es-

cape. In a video watermarking system, viewers would

have little tolerance for devices that stop playing upon

incorrect detection of a copyright violation. It has been

suggested that probabilities of false alarms should be of

the order of 10 or below for such applications. If the

data-hiding channel is to be used as a regular communi-

cations channel (e.g., for upgrade of a legacy system),

one may require probabilities of decoding errors of the

order of 10 . In other applications, higher error prob-

abilities may be acceptable.

• What are the attacker’s computational resources? If

the “attacker” is a government agency monitoring In-

ternet traffic, real-time signal processing requirements

preclude the systematic application of computationally

complex detection tools; if the attacker is an amateur

hacker trying to cheat the TV company, one may also

expect a relatively low level of technical sophistication

and computational resources.

• How easily can the system be reconfigured in the event

of a major security failure? The worst case scenario

is that of a hacker discovering secret keys and posting

them on the Internet. Proposed solutions include the use

of dynamic, signal-dependent keys as an alternative to

the more conventional static keys.

• Does the attacker have access to multiple signals (data

streams) produced by the same message sender? If

so, this may requires frequent update of the keys used

for data hiding, otherwise the attacker will eventually

manage to learn these keys [19], [20].

• Does the attacker have repeated access to the decoder?

This problem is analogous to the chosen-plaintext at-

tacks in cryptography.

Regarding security of the data-hiding codes, two options

are possible. The first one is security through obscurity: the

algorithm used for data hiding is not publicly revealed. This

option is regarded as theoretically unsafe because such se-

crets are hard to keep. Nevertheless this approach may be

practically acceptable if: 1) the required security level is low;

2) it takes substantial time for adversary to discover which al-

gorithm was used; 3) the marked data become less valuable

as time goes by; and 4) the algorithm is changed relatively

frequently. This approach has been used by the Disney Cor-

poration to embed fingerprints in digitized movies [21].

The second option is the one favored by cryptographers

and is based on Kerckoffs’ law [22]: the algorithm is made

public, but secret cryptographic keys are not. All established

cryptographic methods, such as RSA, satisfy this condition.

An important advantage of making the algorithm public is

that the research community can test it and uncover potential

flaws.

E. Benchmarking and Standards

So far there exists no foolproof watermarking, finger-

printing, or steganography algorithm. In our view this is due

in good part to the lag between theory and practice: theory

is still under development and, while specialized, practical

codes have been developed based on the current theory, they

have some weaknesses.

A few years ago, the music recording industry selected

a particular watermarking code to protect digital music,

and challenged the research community to break this code.

(This became known as the SDMI2 challenge). The SDMI

approach was “security through obscurity.” Sure enough,

the SDMI code was broken shortly afterwards by a team

from Princeton University [23] and a team from France [24].

There were plans to make provisions for watermarking as

part of the international MPEG-4 video standard, but these

plans did not materialize.

In order to rigorously test watermarking algorithms, sev-

eral research groups have developed benchmarking tools.

Programs such as Stirmark can be used to select an attack (or

a cascade of attacks) from a comprehensive list and apply

this attack to the marked data. Other benchmarking tools

have been developed as part of the European Certimark

program, which began in 1999 [25], and the WET project at

Purdue University [26].

F. Basic Theoretical Concepts

Our brief overview of data hiding suggests this is a

highly multidisciplinary field, pooling concepts and tech-

niques from signal processing, cryptography, coding theory,

detection and estimation theory, information theory, and

computer science. An additional feature of these problems

is that they involve parties with competing interests; for

instance, the message sender and receiver do collaborate

against the attacker. More complex applications such as

fingerprinting may involve a team of attackers; one may also

envision applications with a team of message senders and

receivers. While it may be useful to think of such problems

as involving attacks, countermeasures, and counterattacks

on these countermeasures, a more fundamental and elegant

framework for analyzing such problems and deriving appro-

priate strategies is game theory [27]. Randomized strategies

for the message sender and attacker are obtained as the nat-

ural optimal solutions to a variety of data-hiding problems.

Mathematical analyses of data hiding are based on a

number of simplifying assumptions. The goal is to more

clearly understand the fundamental concepts and derive tan-

gible mathematical results. The theory, which is relatively

mature now, provides completely new insights and methods

for data hiding. It also provides a precise framework for

evaluating any data-hiding algorithm and can therefore be

used to benchmark new algorithms. Finally, while different

applications have different requirements, the fundamental

2Secure Digital Music Initiative.
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principles uncovered by the theory cut across all these

applications.

One of the most remarkable aspects of the theory is that

very high communication performance can often be achieved

if one views the host signal in which data are to be embedded

as an interference that is known to the encoder and develops

special codes that optimally adapt to this known interference.

Indeed, there are clear connections between data hiding and

information-theoretic problems of communication with side

information at the encoder and/or decoder [28]–[30]. These

connections have been identified independently by several

researchers in 1999 [31]–[34] and subsequently developed in

great detail. Other researchers, perhaps most notably Cox and

Miller [4], [35], have contributed to bridging the gap between

the theory and practice, which is still fairly large at the time

of this writing.

G. Outline of This Paper

Our emphasis is on the fundamental aspects of data hiding.

The detailed analysis relies on an arsenal of mathematical

and statistical methods which is generally available only to

a limited readership. We have therefore decided to organize

the material in this paper to help readers with limited time

or limited background in these specialized areas to easily

access and digest the information of primary interest to

them. Section II introduces a mathematical model for data

hiding. Section III provides an overview of early data-hiding

codes. Section IV introduces binning schemes, which play a

central role in the design of good data-hiding codes. While

binning schemes are fairly abstract information-theoretic

constructions, we have emphasized the core ideas and il-

lustrated them with several examples. Section V introduces

quantization-based codes, which are good binning schemes

and have been successfully used in recent years. Section VI

requires a more advanced probability background and shows

how one can analyze and design quantization codes which

minimize decoding probability of error—or bounds thereon.

Section VII requires some knowledge of information theory

and derives the connections between quantization codes and

some classical work in information theory. Section VIII

complements the previous section by deriving results for

practical systems such as those based on scalar quantization.

In the following two sections, we address the forefront

of current research: Section IX deals with the design of

data-hiding codes that survive fairly complex attacks such

as signal warping, and Section X deals with the design of

codes that can resist cryptanalysis. Section XI outlines the

application of basic principles to encompass problems of

system-level attacks, steganography, authentication, fin-

gerprinting, media forensics, and some theoretical issues.

Application of data-hiding codes to images is illustrated

in Section XII. The paper concludes with a discussion in

Section XIII. Three short appendixes summarizing relevant

notions of coding theory [36], vector quantization (VQ)

[37], and detection theory [38] have been included.

H. Notation

We use uppercase letters to denote random variables,

lowercase letters for their individual values, calligraphic

fonts for sets, and boldface fonts for sequences, e.g.,

. The length of the vector will be clear

from the context. We denote by , , the probability

mass function (pmf) of a random variable taking its values

in the set ; we use the same notation if is a continuum,

in which case is referred to as the probability density

function (pdf) of . The symbol denotes mathematical

expectation. If is a Gaussian random vector with mean

and covariance matrix , its pdf is denoted by .

Acronyms and specific notation for quantities frequently

encountered in this paper are summarized below.

QIM Quantizer-index modulation.

SSM Spread-spectrum modulation.

STDM Spread-transform dither modulation.

WNR Watermark-to-noise ratio.

WHR Watermark-to-host ratio.

GSNR Generalized signal-to-noise ratio.

VQ Vector quantizer.

DCT Discrete cosine transform.

i.i.d. Independent and identically distributed.

pdf Probability density function.

pmf Probability mass function.

Host signal.

Marked signal.

Perturbation of due to an attacker.

Degraded (attacked) marked signal.

Length of host signal sequence.

Embedded message.

Set of possible messages.

Decoding region for message .

Cryptographic key.

Encoding function.

Decoding function.

Dither sequence.

Self-noise.

Quantizer scale parameter.

Lattice.

Generator matrix for lattice and for

linear code.

Lattice quantization function.

Subsampling matrix.

Lattice dimension.

Codebook.

QIM code scale parameter.
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Fig. 1. Basic communication model for data hiding.

Fig. 2. Constraints on perceptual closeness of s, x, and y can be used to
define a class of admissible encoders and a class of admissible attacks.

Per-sample distortion due to

embedding.

Per-sample distortion due to attacker.

Capacity.

Probability of error.

Bhattacharyya distance between two

pdf’s.

Number of parallel channels.

II. MATHEMATICAL MODELS

In Section II–IX, we focus on a generic data-hiding

problem in which a message is to be communicated

through the attack channel to a receiver. The basic commu-

nication model is depicted in Fig. 1.

A. Encoders and Decoders

The encoder has three inputs: the host sequence ,

the message , and the key shared with the

decoder. The encoder produces a marked sequence

using an encoding function

(2.1)

Often is a cryptographic key, independent of the host

. In some applications, though, is signal-dependent [19],

[20], [39], [40]. In fact, (2.1) is general enough to include

all nonblind and semiblind setups, in which conveys infor-

mation about to the decoder. In general, also provides a

higher level of security against some system attacks, as men-

tioned in Section I-D. The sequences and should be per-

ceptually close in a sense to be made precise. This relation is

represented conceptually in Fig. 2.

The payload of the code is defined as the number

of messages that the encoder is designed to transmit. The

payload could be just a few bits. In some applications, the

payload is much larger, possibly exponentially large in the

length of the host sequence. A more convenient measure

in this case is the code rate, which is expressed in number of

bits per host signal sample

(2.2)

In the watermarking literature, is occasionally referred

to as the “capacity” of the encoder . If one views data hiding

as a communication problem, the above terminology is mis-

leading because it can be confused with capacity in the Shan-

nontheoretic sense. Shannon capacity is the maximum rate of

reliable transmission over all in a given class of encoders,

with respect to a given class of attacks; this topic is covered

in Section VII.

A decoder is a function where is

the received (attacked) signal, is the key shared with the

encoder, and is the decoded message.

B. Attacks

The attacker takes the marked sequence and creates a

modified sequence such that is perceptually close to

and the communication performance between the encoder

and decoder is reduced.

For the time being, we postpone the discussion of “percep-

tual closeness” and “communication performance” and ad-

dress the problem of modeling attacks. Referring to Fig. 2,

we could say that for each there is an admissible set of

degraded signals that satisfy the perceptual closeness re-

quirement. An intelligent attacker would select according

to some optimal strategy, i.e., minimizing communication

performance.

Some typical (not necessarily optimal) choices are listed in

Table 1. The choices include deterministic attacks (e.g., it is

known that will be subject to JPEG compression at a given

quality factor) or more realistically, randomized attacks. By

randomized we mean that the attacker selects one of sev-

eral deterministic attacks with a certain probability distribu-

tion. One such strategy would be for the attacker to choose

between a JPEG and a JPEG2000 compression attack, so

both the encoder and the decoder are uncertain about the at-

tacker’s choice. Clearly this makes system design more com-

plex, both from a theoretical and a practical standpoint.

In the example above, the attacker chooses between only

two deterministic attacks, but the set of possible attacks is

potentially vast. The attacker could select any in the fea-

sible set determined by the perceptual fidelity constraint, by
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Table 1

Attacks

randomly altering according to an appropriate conditional

probability distribution . This will be termed an

“arbitrary attack.”
Some of the essential concepts and methods for data hiding

are obtained if we restrict our attention to attacks with “sta-

tistical regularity.” Loosely speaking, such attacks introduce

a maximum amount of randomness; they include familiar op-

erations such as addition of white noise or colored noise.

C. Distortion

To characterize perceptual closeness, it is convenient to

introduce distortion functions. The distortion between two

signals and is denoted by . A rudimentary but

common choice is the squared Euclidean metric

if

Another choice is Hamming distance

if

The first may be used to measure distortion between audio

signals, between grayscale images, etc. The second is appli-

cable to binary images, text files, and other binary data files.

While tractable, such distortion measures fail to capture

the complexities of human perception, including masking

and threshold effects. The reader is referred to [41] for

an excellent overview of this subject. Detailed perceptual

models for images and speech have been constructed and

refined over time. A popular example in image processing

is Watson’s metric [42], which is based on the concept

of just noticeable differences and captures both threshold

effects and spatial-frequency sensitivity of the human visual

system. Psychovisual studies by Julesz [43] suggest that

image textures with the same second-order statistics are

perceived as identical by the human visual system. More

accurate models have been developed later; given a natural

texture one can extract a set of features and generate syn-

thetic textures that look like the original one [44]. Advances

in computer graphics have likewise made it possible to gen-

erate synthetic images that look like natural ones [45]. The

relevance of this work to image watermarking, for instance,

is that a sophisticated embedder or attacker could replace

a textured portion of an image (say a grass field) with a

similar-looking synthetic texture, introducing negligible

perceptual degradation. A distortion function based on such

texture perception models would take the form

where is a feature mapping and is a distance be-

tween features.

Most perceptual studies involve signals that are synchro-

nized, e.g., they quantify the visibility of local image manip-

ulations. To capture format changes and desynchronization

effects such as temporal or spatial shifts, which have limited

or no impact on perceptual quality, some modifications of

classical distortion measures are needed. For instance, if a

class of transformations parameterized by has no

effect on signal quality, our distortion function should satisfy

0 for all . An example of distortion func-

tion that satisfies this condition is [46]

(2.3)

Examples of transformations include the following.

• Amplitude scaling: , where

.

• Temporal shifts: . If is not an integer,

denotes a resampled version of the shifted, inter-

polated signal .

Based on the psychovisual studies by Julesz and others

[43], [44], a meaningful distortion metric between image tex-

tures and with statistics and would be a function

of and only.

Having defined a distortion function, we can precisely de-

fine a set of feasible data-hiding codes and a set of feasible

attacks, each satisfying a distortion constraint. The distortion

constraint may be “hard” or “soft,” as discussed below.

A hard distortion constraint for the data-hiding code is the

maximum-distortion constraint

(2.4)

A softer constraint is the average-distortion constraint

1 1

(2.5)

where the averaging is over , , and . Here is some

averaging measure on , e.g., a probability distribution on

. There exist fairly good statistical models for host signals

such as images, speech, etc. that can be used to select an

appropriate [47], [48].
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The distortion introduced by the attacker can be measured

in terms of or in terms of . A natural require-

ment for the attacker is that this distortion, measured in a

suitable average or maximum sense, does not exceed some

level . If the distortion is measured with respect to , we

have

(2.6)

and

(2.7)

respectively. The averaging measure on is given by

1 1
1

The use of averaging measures also makes it possible to de-

fine the average distortion with respect to the host

1 1

(2.8)

It is useful to keep some simple quantities in mind when

designing a data-hiding system. Assume

and the distortion function is the squared-error metric. One

can define the WNR as

WNR (2.9)

and the WHR as

WHR (2.10)

(sometimes referred to as watermark-to-document ratio in

the literature). An alternative definition with in place

of in the denominator is sometimes used.

III. EARLY WORK

The first papers on data hiding appeared in the early 1990s

[49]. The ideas proposed during that period include least sig-

nificant bit (LSB) embedding techniques, which are elemen-

tary and nonrobust against noise. They are however closely

related to more advanced binning techniques. The period

1995–1998 saw the development of SSM codes, which are

more robust [50] and have been used in several commer-

cial products; see [1] and references therein. Both SSM and

LSB methods are reviewed next. We also comment briefly

on system performance methods that were often used in the

1990s.

A. Spread-Spectrum Codes

The watermarking problem is analogous to a communi-

cation problem with a jammer. This has motivated many

researchers to apply techniques from this branch of the com-

munications literature—especially SSM techniques, which

have been successfully used against jammers. We first briefly

review these techniques and then show how they can be ap-

plied to watermarking and data hiding.

The jamming problem. In a standard radio or TV

communication system, the transmitter sends a signal in a

relatively narrow frequency band. This technique would be

inappropriate in a communication problem with a jammer,

because the jammer would allocate all his power to that

particular band of frequencies. An SSM system therefore al-

locates secret sequences (with a broad frequency spectrum)

to the transmitter, which sends data by modulating these

sequences. The receiver demodulates the data using a filter

matched to the secret sequences. Essentially, the transmitter

is communicating information over a secret low-dimensional

subspace; only noise components in that subspace may af-

fect communication performance. The jammer must spread

his power over a broad frequency range, but only a small

fraction of that power will have an effect on communication

performance.

The application of SSM to data hiding is illustrated in

Fig. 3. Associated with each message and secret key is a

pattern which is “mixed” with the host to form the

marked signal . Each pattern is typically a pseudorandom

noise (PRN) sequence. The mixing could be as simple as a

weighted addition

1 (3.1)

where is a strength parameter, which depends on the

embedding distortion allowed. The mean-square embedding

distortion is and is usually the same for all

and . The marked signal is possibly corrupted by the

attacker’s noise, which produces a degraded signal

(3.2)

The receiver knows the secret key and can match with the

possible waveforms . If the host is not available

to the receiver, the matching could be a simple correlation

(3.3)

where

(3.4)
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Fig. 3. SSM.

are the correlation statistics. If the host is available to the re-

ceiver, performance can be improved (see discussion at the

end of this section) by subtracting the host from the data be-

fore correlating with the watermark patterns

For the blind data-hiding case, due to (3.1) and (3.2), we

can write the received data as the sum of the watermark

and total noise

(3.5)

Typically the host signal has high energy relative to the em-

bedding and attack distortions. As we shall see in Section VI,

the performance of the decoder is limited by the high total

noise level. For nonblind data hiding, the decoder knows ,

so the noise at the decoder is just .

Several important refinements of the basic system of Fig. 3

have been developed over the years.

1) The embedding strength parameter can be locally

adapted to host signal characteristics, e.g., (3.1) can be

replaced with

(3.6)

where depends on the local characteristics of the host

(e.g., frequency and temporal characteristics) [4], [51].

2) To reduce decoder’s noise in (3.5), one can prepro-

cess the host prior to embedding the watermark [4,

Sec. 5.1]. This can be done using a causal preprocessor,

leveraging information-theoretic results by Shannon on

the capacity of communication systems with side infor-

mation available causally to the encoder [31]. In data

hiding, however, the encoder need not be restricted to

causal strategies. Good results have been obtained using

linear preprocessing [52], [53]. The embedding rule in

[52] is of the form

(3.7)

where is a matrix that depends on the second-order

statistics of and can be optimized against worst case

filtering and colored noise attacks. The embedding rule

in [53] is of the form

(3.8)

where is an optimized linear function of . The

contribution of in the decoder’s noise can be greatly

reduced (and even eliminated) if the attacker adds

signal-independent noise and the code rate is very low

[53], [54].

3) The basic correlator decoder (3.3) is generally not

well matched to noise statistics.3 For colored Gaussian

noise, a weighted correlation statistic is ideal. With

non-Gaussian noise such as impulsive noise, the per-

formance of any correlator decoder can be quite poor.

B. LSB Codes

An early form of data hiding for grayscale images is based

on LSB embedding techniques. In Section IV, we will see

that these schemes may be interpreted as rudimentary bin-

ning schemes.

The method is applicable to host signals of the form

, where each sample is encoded using

bits representing the natural binary decomposition of an in-

teger between zero and 2 1. For instance, could repre-

sent one of the 256 intensity levels of a monochrome image,

such as 69 01 000 101 ; the LSB is one in this case. The

LSB plane is the length- binary sequence made of all the

LSBs. The LSBs can be changed without adversely affecting

signal quality, and so LSB embedding methods simply re-

place the LSB plane with an information sequence; the in-

formation rate is 1 bit per sample of . The payload could

be increased by replacing the second LSB with an informa-

tion sequence as well, but this would increase embedding

distortion.

Note that the value of (i.e., the range of host signal am-

plitudes) is immaterial here. The LSB embedding scheme is

capable of rejecting host-signal interference. Unfortunately,

LSB embedding does not survive modest amounts of noise.

For instance, an attacker could simply randomize the LSB

3An exception arises when the noise is white and Gaussian. Then the cor-
relation statistic is a sufficient statistic [38], and the correlator decoder is
ideal.
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plane, effectively destroying the hidden information that was

originally embedded there.

C. Performance Evaluation

Various methods have been used to evaluate performance

of watermarking and data-hiding algorithms. Many of these

methods are simple but heuristic, e.g., quantify the similarity

of an “extracted watermark” with the actual watermark that

was embedded. However, there generally exists a well-de-

fined, natural measure of system performance such as proba-

bility of error. The weakness of the heuristic methods is that

they do not provide a reliable indication of the actual perfor-

mance index of interest.

IV. BINNING SCHEMES: GENERAL PRINCIPLES

Binning is an important information-theoretic technique

used in many different scenarios ranging from distributed

source coding [55] and the problem of encoding data with

side information at the transmitter only [28], to the classical

problem of decoding data with side information that is avail-

able at the receiver only [30], [56]. Since blind data hiding is

especially related to the problem of transmission with side

information at the transmitter, we provide an overview of

binning in this section. We start with a simple illustrative

example.

Assume we want to embed one bit of information into an

image, given in a raw, uncompressed format. At the same

time we would like to compress the image. We can use one

of several compression formats, for example we may choose

to either use JPEG or JPEG2000 for this task. In fact, by

simply making a choice of compression standard, we can

embed one bit of information into the compressed image. An

intended receiver for this one bit of information can identify

which compression standard was used and, hence, could as-

sociate a JPEG compression with this bit being one while

a JPEG2000 compression would assign this embedded bit

the value zero. Now using information-theoretic jargon, we

say that we have compressed the image using one of two

bins (JPEG and JPEG2000). Note that the compression tech-

niques both constitute different ways to represent a sequence

of numbers (the original image file) as a string of bits. The

latter process is also summarily referred to as vector quanti-

zation (VQ) [37]; see Appendix B for more details.

In data embedding applications, the essential idea of bin-

ning may be described as a VQ task using a family of dis-

tinct VQ mappings (for example JPEG or JPEG2000). In

an information-theoretic context4 VQ may be described as a

generic name for any lossy data compression method. While

the problems of general VQ are difficult and manifold, we

next abstract the notions in an information-theoretic setting.

Let a source be given that produces random sequences

of length over some alphabet . Assume we are given a

collection of length- vectors which play the

role of a quantization codebook together with a distortion

function that measures distortion between vector in .

The VQ problem consists of finding the vector within

4In contrast to classification problems where VQ is also used to denote
pattern classification problems.

Table 2

A Simple Binning Scheme: Embedding Length-2 Binary Messagem Into
Length-3 Binary Sequence S, in a Way That Modifies at Most One Bit of S

the codebook that minimizes the distortion between the

observed and the so called reconstruction vector .

Next, assume that rather than only one codebook we

are given different codebooks ,5 each consisting of a

number of length- vectors . Once we have a collec-

tion of codebooks we may choose which codebook we

want to use for the VQ task. In fact, given codebooks we

can embed bits by this choice. Thus, given any

observed source sequence we can choose to quantize to

a vector where is chosen by the quantizer in order

to embed bits of information and is chosen so as to mini-

mize the distortion between and given the quantizer

index .

The following examples will clarify the basic ideas behind

binning.

Example 1: Let be a binary sequence of length 3.

There are 8 such sequences: 000, 001, , 111, all assumed

equally likely. We want to embed information into , pro-

ducing a new sequence . Simultaneously, we require that

the embedding method must satisfy the distortion constraint

that and may differ in at most one position. We transmit

to a receiver which must decode the embedded informa-

tion without knowing the original host data .6

Question 1: How many bits of information can we embed

in ?

Question 2: How can we design an appropriate encoding/

decoding scheme?

Answer. Under the distortion constraint, the original

can be modified in at most four ways:

000 001 010 100 , so at most two bits of informa-

tion can be embedded. Straightforward spread-spectrum

ideas do not work in this case: simply adding (modulo 2)

one of the four patterns above to , which itself can assume

any of the eight binary strings of length three, conveys no

information to the receiver. Instead, consider a partition of

the eight possible sequences into four bins (columns of

the 2 4 array), as shown in Table 2. Each bin corresponds

to one of the 2-bit information sequences we want to com-

municate. Given an arbitrary sequence and an arbitrary

index 0 1 2 3 that we want to embed in the

quantized version of , we look in bin for the sequence

closest to in the sense of Hamming distance, and

declare that sequence to be . For instance, if 010 and

1, corresponding to the second column in Table 4, we

have to choose between the two sequences 001 and 110 in

bin 1. The latter is closest to and is thus declared to be .

In Table 2, the four choices of corresponding to the four

5These different codebooks are referred to as the bins in binning schemes.

6The name host data refers to the role of S of hosting the embedded in-
formation.
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Table 3

A Simple Binning Scheme: Embedding Messagem (1 bit) Into Length-7
Sequences S, in a Way That Modifies at Most Three Bits of S. The
Modified SequenceX is Later Degraded by Noise With Hamming Weight
at Most 1

possible messages (with 010) have been boxed. The

decoder observes and simply outputs the corresponding

bin index . Observe the following.

1) In any given bin, the two candidates are maximally

distant Hamming distance 3 as should be expected

for a good vector quantization codebook.7

2) In any given bin, there is always one sequence that sat-

isfies the embedding distortion constraint.

3) The receiver can decode the information bits without

error.

Example 2: Let 0 1 2 1 , and partition this

set into the subset 0 2 2 2 of even integers

and the subset 1 3 2 1 of odd integers. Let

be a host data length- sequence in . Here the marked

sequence should satisfy 1 (addition is modulo

2 ) for 1 . Denote by a binary

sequence to be embedded into . Consider the LSB code of

Section III-B which can be written as

2
2

1

So we choose if 0, and if

1. In terms of binning schemes we can interpret this LSB

embedding as a binning scheme where and are the two

bins from which we select depending on the value of .

Example 3: Consider Example 1 again, with the modifi-

cation that observed sequences of length seven are con-

sidered. Now we want to embed one bit of information into

these sequences, which should incur a Hamming distance

between and the transmitted sequence of at most two.

Moreover, we allow for the additional modification that the

decoder now does not have access to the marked sequence ,

but to a degraded sequence . At most one bit of

is corrupted by noise, so there are eight possible noise se-

quences, 0 000 000 0 000 001 10 000 000 . We

ask the same questions Q1 and Q2 as in Example 1.

It turns out we can embed one bit of information using the

binning scheme of Table 3. Here we need two different bins

in order to embed 1 2 bit of information. Each bin

7In fact, the different bins or VQ codebooks here are chosen as cosets of
the linear repetition code of length three, an algebraic construction that will
feature prominently in the next section.

contains eight possible quantization words.8 It can be verified

that the distortion requirements are satisfied for both bins, i.e.

to each of the 2 128 possible sequences there exists a

quantization word at Hamming distance at most two. More-

over the union of the two bins constitutes an error correc-

tion code (7,4,3) with minimum Hamming distance of three,9

which allows the correction of the error that is potentially in-

troduced by .

The decoder observes and simply outputs the index of

the bin which contains a word at distance at most one from

the received word.

Example 3 casts light on the tradeoffs that will be a major

topic in the remainder of this paper. In particular, the dis-

tortion that is allowable in the embedding process is offset

against the amount of information that can be embedded as

well as the distortion that a channel may incur between the

transmitted word and a received word . For example,

while we only can embed one bit of information in the setup

of Example 3 (mostly due to the noisy channel) it is possible

to embed up to four bits of information at a cost of at most

two bits of embedding distortion if the channel would not

incur any further distortion.

Let us make a few comments about terminology before

concluding this section.

• In the watermarking literature, the encoding function

of (2.1) is often viewed as the cascade

of two blocks. The first one produces a watermark

, the second one “adds” it to the host to

produce . These two steps are respectively

termed watermark encoding and watermark casting.

While there cannot be any fundamental advantage to

this representation of the encoding function, there is

nothing wrong with it either,10 and several practical

codes are based on it. The watermark casting step

may also be replaced by a more general mixing step:

, where is the mixing function. See

Section III-A for examples involving spread-spectrum

codes.

• Binning and related methods are frequently termed

“informed embedding” schemes in the watermarking

literature, presumably to distinguish them from more

elementary methods such as spread-spectrum which

are termed “blind embedding” schemes. However, the

encoder always has access to the host, and in this sense

the distinction “informed embedding” versus “blind

embedding” appears artificial. In contrast, the decoder

does not necessarily have access to the original host,

and therefore the “blind decoding” versus “nonblind

decoding” terminology captures two fundamentally

different scenarios.

V. QUANTIZATION-BASED CODES

In 1999, Chen and Wornell introduced a class of

data-hiding codes known as dither modulation codes,

8Both bins corresponds to a coset of the so-called simplex code.

9This is the one-error correcting Hamming code of length seven.

10Provided S is a field, so that addition can be properly defined.
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Fig. 4. Embedding one bit into one sample using original QIM. Here �
and � are the sets of circles and crosses, respectively.

also referred to as quantization-index modulation (QIM)

codes11 [33], [57]. These methods embed signal-dependent

watermarks using quantization techniques. It turns out that

QIM is a binning scheme, in the sense of Section IV. The

main objective of the embedding schemes in this section is,

however, embedding in real-valued host data. These schemes

are, furthermore, related to work from the early 1980s in

information theory (see Section VII). Interestingly, based on

this theory, Willems in 1988 had already formulated a setup

for quantization-based codes [58], but his ideas remained

undeveloped for about ten years. Meanwhile, Swanson et

al. [59] and Yeung and Mintzer [60] invented quantization

codes that are based on sound ideas but introduce excessive

distortion relative to QIM. To introduce QIM, we start out

the simplest case of embedding one information bit in a

single real-valued sample.

A. Scalar-Quantizer Index Modulation

The basic idea of QIM can be explained by looking at

the simple problem of embedding one bit in a real-valued

sample. Here we have 0 1 (1-bit message),

(1 sample), and no key . A scalar, uniform quantizer

with step size is defined as . We may use

the function to generate two new, dithered quantizers12

0 1 (5.1)

where

4 4
(5.2)

The reproduction levels of quantizers and are shown

as circles and crosses on the real line in Fig. 4. They form

two lattices13

4 4
(5.3)

1) Original QIM: In [57], the marked signal is defined as

.
(5.4)

11Later termed “scalar Costa scheme” when scalar quantizers are used
[61], [62]. We retain the original QIM terminology in this paper.

12Dithering is classical technique used in signal compression for im-
proving the perceptual aspect of quantized signals.

13Strictly speaking, two cosets of a lattice � . Lattices are formally de-
fined in Section V-C1.

See Fig. 5. The maximum error due to embedding is

2. If the quantization errors are uniformly distributed

over 2 2 (more details in Section VI), the

mean-squared distortion due to embedding is 12.

Assume the marked signal is corrupted by the attacker,

resulting in a noisy signal . The QIM decoder

is a minimum-distance decoder. It finds the quantizer point

closest to and outputs the estimated message

dist (5.5)

where dist . Clearly this scheme

works perfectly (no decoding error) if 4. Observe

that QIM may be thought of as a binning scheme with some

error protection against noise (analogously to Example 3 in

Section IV). The two bins are the lattices and .

2) Distortion-Compensated Scalar QIM: The above QIM

embedding scheme works poorly if the noise level exceeds

4. However, the scheme can be modified to increase resis-

tance to noise [33], [63]. Given a host-sample , the distor-

tion-compensated scalar QIM embedding function is defined

as

(5.6)

(see Fig. 6), where 0 1 is a parameter to be opti-

mized. Observe that (5.6) coincides with the original scheme

for 1. Also, if 0, (5.6) yields , i.e., the

embedding is degenerate and introduces no distortion. More

generally, adjusting the value of in the range [0,1] allows

us to compensate the distortion introduced by the quantizer.

The embedding formula (5.6) may also be rewritten as the

sum of and a perturbation due to quantization of

.
(5.7)

A third expression for the embedding function is

(5.8)

where

1 (5.9)

is the prototype sloped-staircase function shown in Fig. 6.

This function is symmetric around 0, is made of linear

segments with slope 1 , and takes its values in a union of

intervals of width 1

2
1 1 (5.10)
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Fig. 5. Selection of marked sample X given S and m 2 f0; 1g, using original QIM method. (a) Prototype symmetric function. (b) Embedding function for
m = 0. (c) Embedding function for m = 1.

Fig. 6. Selection of marked sample x given s and m 2 f0; 1g, using distortion-compensated QIM. (a) Prototype X (s). (b) m = 0. (c) m = 1.

The actual marked value takes its values in the offset do-

main . The maximal quantization error is

2 and occurs when 1/2 ,

. The decoder implements

dist

The advantages of this generalized scheme are not obvious

now but will become clear in Section VI when a statistical

model for the attack noise is considered. So compelling

are these advantages, in fact, that the distortion-compen-

sated QIM scheme has replaced the original QIM scheme

in practice, and the qualifier “distortion-compensated” is

often omitted for the sake of brevity. It is interesting to note

that, while the distortion compensation technique outlined

here is widely used, it does not come with any claim of

optimal distortion compensation. In fact it is possible to

find functions other than which exhibit a slightly

better performance than the function of (5.9). However, the

gains offered are fairly small and the complexity of solving

the nonlinear optimization problem to find the best function

in place of (5.9) goes beyond the scope of this paper.

B. Sparse QIM

Chen and Wornell showed how to extend the scalar QIM

scheme above to embed one bit in a length- host sequence.

They considered two basic methods.

The first method, which they called spread transform

dither modulation (STDM), consists of quantizing the

projection of the host vector along a given direction .

Specifically, given a host vector and a unit-length vector

, they define the marked signal as

(5.11)

where the superscript denotes vector transpose. See Fig. 7.

The decoder projects the received data onto direction and

decides whether quantizer or was used

dist (5.12)

Observe that the distortion due to embedding takes place in

direction only; no other component of is modified. There-

fore the embedder can allocate the entire distortion budget in
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Fig. 7. STDM for embedding one bit in L = 2 samples.

direction , enabling the use of a large quantizer step size. For

instance, if is chosen at random, choosing 12

results in an expected per-sample mean-square error equal to

.14 Thelargequantizer stepsize (relative to thecase 1)

offers an increased protection against noise. The distance be-

tweenthelattices and is 2 3 .

In our view, the name “STDM” is somewhat misleading

because the method does not involve a transform of the host

signal—just a projection onto a small-dimensional space. For

this reason we think of it as a sparse QIM coding method.

Various extensions and refinements of the basic STDM

method are possible. In particular, one can use distortion-com-

pensated STDM (as will be seen later, the optimal choice for

is close to one in that case, i.e., the scheme is very similar to

basicSTDM).Another idea is toquantizea fewcomponentsof

the host signal and not just one. All these codes may be thought

of as sparse QIM codes. The number of signal components

used for embedding, divided by , is the sparsity factor of

the code; is sometimes called spreading factor. If one bit

is embedded per signal component, the code rate is equal to

. We note that for a very sparse code, approaches zero. This

observationwillbeof interest inSectionVIII-B.

C. Lattice-Quantizer Index Modulation

Chen and Wornell [33] presented a second extension of the

scalar QIM scheme to the vector case. The idea is to replace

the scalar quantizer of (5.6) with a -dimensional VQ quan-

tizer. Fig. 8 illustrates this concept when 2 and the VQ

is obtained by independently quantizing each coordinate of

with the scalar quantizer of (5.6). In effect is quantized

using one of the two lattices

4 4

4 4
(5.13)

14It isworthwhile to point out that the same performance would beachieved
by, for example, just choosing one element in a length-N vector s in order to
embed information with a distortion budget of� =

p
12ND . While the

per-samplemeansquareerroragainequalsD suchaschemewould incuravi-
sually noticable distortion in the chosen element.

Fig. 8. QIM for embedding one bit in L = 2 samples using cosets �
(circles) and � (crosses) of a cubic lattice.

Observe that the mean-squared distortion due to embed-

ding is still 12. The rate of the code is

1 . The distance between the sets and is now

1

2
3

The decoder’s output is

dist (5.14)

defining dist . The quantity

dist is a coordinatewise sum of squared quantiza-

tion errors.

1) General Construction: The papers [64] and [65] pre-

sented a general approach for constructing structured bin-

ning schemes to approach capacity. The approach is based

on nested lattices.

A lattice in -dimensional Euclidean space is defined as

a set of points in such that and implies

and , which equips with the structure of

an additive subgroup of . A lattice may be defined by a set

of row-vectors . These vectors are stacked

in a matrix called generator matrix. The lattice is

the set of all integral combinations of the basis vectors:

. Given , the choice of is nonunique.

Next consider a sublattice of . Since is a subgroup

of , the cosets15 of form a partition of . A nested lattice

then consists of an -dimensional lattice partition

where and are respectively referred to as the

fine lattice and the coarse lattice.

For a pair of nested lattices there exist corre-

sponding generator matrices and such that

(5.15)

15A coset of a groupG with respect toG is defined asG +g for g 2 G.
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Fig. 9. Nested two-dimensional lattices. The coarse lattice � is the set of heavy dots, and its cosets are represented by squares, circles, and triangles. Each
lightly shaded region is V , the Voronoi cell of � . The darker regions are Voronoi cells for � . (a) Cubic lattice. (b) Quincunx lattice. (c) Hexagonal lattice #1.
(d) Hexagonal lattice #2.

where is an integer matrix, referred to as sub-

sampling matrix, whose determinant satisfies 1.

Then . The density of relative to is equal

to . Thus, the lattice may be decomposed as the

union of cosets 0 of

For each coset of in , we can find an element

of shortest norm such that .

Such an element is called the coset leader of .

The set

0 (5.16)

carries itself a group structure and is termed the quotient

group of by . may be efficiently represented by the

coset leaders of the respective cosets.

Finally, we define

quantization function mapping each point

to the nearest lattice point in ;

0 Voronoi cell of .

Example: Let and

2 2 . We obtain

0 0 2 2 . Then is the -dimen-

sional cube 2 2 ; its normalized second-order

moment is equal to 12. Fig. 9(b) illustrates this design

when 2; is then called the quincunx lattice.

If grows exponentially with (i.e, the code rate

0), the lattice partition should have the following

properties.

(P1) should be a good vector quantizer with

mean-squared distortion ; should thus be,

loosely speaking, nearly spherical.

(P2) should be a good channel code with respect to

Gaussian noise: loosely speaking, the codewords

in should be far away from each other.

To each corresponds a codeword and a

translated coarse lattice . The fine lattice is

the union of all these translated lattices.

Given and , the encoder quantizes to the nearest

point in , obtaining

(5.17)

by quantizing to the nearest point in . The differ-

ence represents a quantization error. Finally, the

marked sequence is given by

1 (5.18)

1 (5.19)
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Table 4

Examples of Nested Lattice Pairs (G ;G )

which is a generalization of (5.6). The payload of the code is

and its rate is 1 .

The decoder quantizes to the nearest point in the fine

lattice . It then outputs the corresponding

index

dist (5.20)

Table 4 and Fig. 9 depict this construction for several ex-

amples in which . The first and third cases are exam-

ples in which the coarse and fine lattices are self-similar. The

coset leaders are labeled by squares, circles, and tri-

angles in Fig. 9. The third case yields the STDM technique

when , as discussed in Section V-B.

2) Practical Codes: To satisfy properties (P1) and (P2)

above, we need and to be high-dimensional. In prac-

tice, one cannot afford using arbitrary high-dimensional lat-

tices, because quantization operations become prohibitively

expensive. Instead one can would use lattices that have a spe-

cial structure, e.g., products of low-dimensional lattices.16

Another powerful idea is to use recursive quantization tech-

niques such as trellis-coded quantization [37], [66] to (im-

plicitly) define the coarse lattice . Similarly, one can use

classical error-correction codes such as Hamming codes and

turbo codes to (implicitly) define the fine lattice . The

latter idea is illustrated in Fig. 10, where the actual message

is first encoded into a longer (redundant) sequence

, which is used as an input to the nested lattice code. These

two codes are termed outer code and inner code, respectively.

Chou and Ramchandran [67] recently proposed the use of an

outer erasure code; their scheme is intended to resist erasures,

insertions, and deletions, in addition to the Gaussian-type at-

tacks that the inner code is designed to survive. Solanki et al.

[68] studied a closely related system and applied it to data

hiding in images.

It should be emphasized that the cascade of linear outer

and inner codes as depicted in Fig. 10 is done solely for

16The cubic lattice is the simplest example of a product lattice.

Fig. 10. Lattice-based encoder and decoder for data hiding, using the en-
coding function (5.18) and the decoding function (5.14).

computational convenience and is a special case of the gen-

eral construction of Section V-C1. Any linear code may be

thought of as a lattice code.

3) External Dithering: Working on different problems,

Eggers et al. [62] and Zamir et al. [65] studied lattice QIM

schemes in which the traditional quantization function

is replaced with a dithered quantization function.

Given any and , a dithered quantizer produces

the output

If the external dither sequence is independent of and uni-

formly distributed over , it turns out that the quantization
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error is also independent of and uniformly distributed

over [76], [77]. This property considerably simplifies the

analysis and understanding of QIM schemes and has there-

fore been popular in theoretical analyses. Additionally, is

shared with the decoder; can thus be used to randomize

the lattice QIM code and provide some level of protection

against attacks on the code.

When dithered QIM is used in place of nondithered QIM,

the basic equations (5.17), (5.19), and (5.20) are replaced

by the following expressions. Given and , the encoder

computes

(5.21)

and outputs the marked sequence

1 (5.22)

The decoder’s output is

dist (5.23)

VI. PROBABILITY OF ERROR

The natural metric for quantifying decoding performance

is probability of decoding error. This type of analysis can be

rather complicated but useful results can be obtained using

appropriate asymptotic methods (as ).

Refer to Fig. 1 and for simplicity of the exposition, as-

sume that the only data available to the decoder is the de-

graded signal (i.e., no side information ). The decoding

rule partitions the received data space into decoding regions

, . The decoder outputs message for all se-

quences that belong to . The probability that message

is not decoded correctly is sent .

It depends on and the statistics of the host signal and

the randomized code. To analyze this problem, it is conve-

nient to study the case of two codewords first. The reader is

invited to review detection-theoretic notions in Appendix C.

For simplicity of the exposition we shall assume that the at-

tacker’s noise is Gaussian. The same type of analysis can be

performed when the noise is non-Gaussian [69], [70].

A. Binary Detection—Scalar Case

Consider the case of binary detection first: 0 1 .

The decoding problem takes the form of the following equa-

tion [(C.1) from Appendix C]:

Some detection rules are relatively simple, e.g., the correla-

tors and nearest-neighbor decoders encountered in SSM and

QIM watermarking. A statistical model such as (C.1) is not

even required in this case.

Improved detection rules can often be derived by ex-

ploiting knowledge of the statistics of . For instance, if

both messages are equally likely, the detector that minimizes

probability of error is the maximum likelihood (ML) detector

[(C.2) from Appendix C, restated below for convenience]

1

The probability of error for this test is given by (C.3) from

Appendix C.

To achieve low , we need to create a substantial disparity

between the pdf’s and . Let us see how some basic data-

hiding codes perform in this respect. We use a simple model

to illustrate the ideas: embed 1 bit into 1 sample.

Example: Consider real-valued , and . The host signal

sample is distributed as 0 . The attack is

(6.1)

where is Gaussian noise, distributed as 0 , and in-

dependent of . The performance of SSM and QIM systems

is derived below.

1) SSM: The spread-spectrum scheme is given by

(6.2)

in which the original is unknown to the detector. Equation

(6.2) is a special case of (3.1). From (2.9) and (2.10), we

obtain

WNR WHR

The rival pdf’s in (C.1) are given by

and

and are shown in Fig. 11. They are hard to distinguish when

. This corresponds to the common case of

a strong host-to-watermark ratio; detection performance is

poor. More precisely, 2 , where

2
2 WNR WHR

is a normalized distance between the two pdf’s, and the

function was defined in Appendix C. Note that detection be-

comes completely unreliable when WHR 0.
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Fig. 11. Rival pdf’s for detection ofm 2 f0; 1g, using SSM.

Fig. 12. Rival pdf’s for detection ofm 2 f0; 1g based on scaled data�Y ,
using scalar QIM with WNR = 0.1 and � = WNR=(1 + WNR).

For detection with the host signal known to the detector

(nonblind watermarking), we have 2 again,

where 2 2 WNR. This performance is

achieved independently of the value of WHR, and so detec-

tion performance is much improved when WHR WNR.

In fact SSM is an ideal modulation scheme for this problem.

2) Scalar QIM: Assume again that is unknown to the

detector. Consider the distortion-compensated scalar QIM

scheme (5.7). The rival distributions of are shown in

Fig. 12. Observe that

1) The perturbation due to embedding (quantization noise)

is limited between 2 and 2. Under Bennett’s
high-rate model for quantization noise, this perturbation

is approximately uniformly distributed between 2

and 2, and the distortion due to embedding is

12. In fact, the uniform quantization

model is exact for any value of if a dither quantizer

is used, as discussed in Section V-C3. For the problem

at hand, this means that is randomized uniformly

over 2 2 and that we keep 2.

Equivalently, given , we select

12 (6.3)

Also WNR 12 .

2) For large , we can view the pdf’s and as quasi-

periodic, with period equal to . Roughly speaking,

the ability to discriminate between and depends

on the overlap between the support sets of and ,

and fairly little on .

3) As mentioned below (5.10), takes its values in the

set . Since is independent of , the

“rounded pulses” that make up the pdf’s and are

given by the convolution of a rectangular pulse of width

1 , with the 0 pdf.

4) For good discrimination between and , the pulses

should have relatively small overlap.

5) In the absence of attacker’s noise 0 , the best

choice for would be one, in which case we obtain

error-free detection.

6) For 0, the choice of results from a tradeoff be-

tween embedding distortion and detection performance.

The tradeoff is determined by the value of the parame-

ters and of the embedding function (5.6).

7) For large , little information is lost by reducing to

the test statistic

2 2
(6.4)

The pdf’s of under and are shown in Fig. 13

for two values of . The minimum-distance decoding

rule (5.14) is replaced by

(6.5)

where 2.

B. Modulo Additive Noise Channel

The advantage of the processing (6.4) of the data is that

it yields approximations to the optimal ML test (C.2) and

to the probability of error (C.3) that are simple, good, and

independent of the exact statistics of . From (3.2), (5.8),

and (6.4), note that

(6.6)

where

(6.7)

is termed self-noise, and

(6.8)

is the aliased attacker’s noise. Indeed the pdf of is an

aliased version of

0 (6.9)

Note that 0 for 1 2 1 2 .

Under the high-rate quantization model, is independent of
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Fig. 13. Rival pdf’s for detection ofm 2 f0; 1g based on ~Y , using scalar QIM with � = WNR=(1 + WNR). (a) WNR = 100. (b) WNR = 0.1.

, and may be approximated with a rectangular pulse of

width 1 centered at zero

1

1
1

This statistical model is exact if dithered QIM is used, as

described in Section V-C3.

Under hypothesis , 0, 1, the data may be viewed

as the sum of an offset and a noise equal to the sum of

the self-noise and the aliased attacker’s noise

(6.10)

Since and are statistically independent, the pdf of is

the circular convolution of the pdf’s of and

0 (6.11)

Therefore, the pdf of under takes the form

0 1 (6.12)

The rival pdf’s , 0,1 are simply translates of .

The detector must decide between the two hypotheses

(6.13)

The role of as a tradeoff between self-noise and attacker’s
noise appears clearly in this formulation of the detection

problem. For small , the self-noise dominates the at-

tacker’s aliased noise . For 1, the self-noise is zero,

Fig. 14. Modulo additive noise channel.

and the attacker’s noise dominates. Equation (6.13) defines

a modulo additive noise (MAN) channel, diagrammed in

Fig. 14.

As an alternative to the simple minimum-distance detector

(6.5), we study the theoretically optimal ML detector (C.2).

The ML detector based on the transformed data and the

statistical model above is

1 (6.14)

It coincides with the nearest-neighbor detection rule (5.14)

if the attacker’s noise distribution is unimodal and sym-

metric.

The probability of error for the optimal test (6.14) is

1

2
(6.15)

If the noise distribution is symmetric around

0, so is . The two rival pdf’s, and , have

means and respectively, and common

variance . For moderate-to-large WNR, we have

1
12
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Fig. 15. Generalized SNR and probability of error P for binary detection based on one single sample. The variable on the horizontal axis is the tradeoff
parameter � for QIM. For comparison, P for the nonblind and blind SSM schemes is given by the ordinate of the dotted horizontal lines. (a) P . (b) GSNR.

So the GSNR for detection is given by

GSNR

1
(6.16)

where 2. The value of that maximizes

GSNR is given by a nonlinear equation. (Note that is a

decreasing function of and tends to if .) A

reasonable approximation for that maximizes GSNR is

GSNR
WNR

WNR 1
(6.17)

whence GSNR 3 WNR 1 . The actual maxi-

mizing is slightly lower than the right side of (6.17) be-

cause .

While GSNR is often useful as a rough measure of sepa-

ration of the pdf’s and , it does not necessarily serve as

an accurate predictor of detection performance. Fig. 15 plots

GSNR and as a function of , for three different values

of WNR. Note that the optimal is slightly different under

the GSNR and criteria.

Quite interesting is the performance gap relative to

nonblind watermarking, which bounds the performance

of any blind watermarking scheme [71]. In this case the

spread-spectrum scheme (6.2) yields an error probability

WNR which is typically smaller than the QIM

error probabilities by a factor of two to three when WNR

ranges from 0.2 to 5; see Fig. 15. The performance loss

is quite small, considering that the QIM detector does not

known the host signal.

C. Binary Detection—Vector Case

The previous two subsections have described the basic

principle of a binning scheme and its benefits in terms of

probability of error for binary detection based on a single ob-

servation. This subsection considers the more realistic case of

observations and studies two approximations to the prob-

ability of error.

Assume we have a host data vector

and we mark each component using the spread-spectrum

and QIM techniques. Moreover,

(a) is Gaussian with mean zero and covariance matrix

;

(b) the marked signal is corrupted by additive white

Gaussian noise with mean zero and variance .

1) SSM: For the spread-spectrum scheme, (6.2) general-

izes to

(6.18)

where the spread sequence is known to the detector. For

blind watermarking we have

The LRT takes the form

1

2
0

(6.19)

and the probability of error of the test (6.19) is 2 ,

where 4 is the GSNR for the de-

tector.
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For nonblind watermarking we have

Then 2 where WNR.

2) Scalar QIM: For the scalar QIM scheme, let

for 0, 1. We assume again that

4 and that the noise pdf is symmetric

around 0. Equation (5.6) generalizes to

(6.20)

where each is viewed as a vector quantizer, in this case

simply a product of scalar quantizers

1 0 1

Without loss of generality, we shall assume 4 and

3 4.

The first step at the receiver is to compute the transformed

data

1 (6.21)

Under the uniform quantization noise model, the prepro-

cessed data 1 are mutually independent,

even though there may be dependencies between the host

signal samples . The detector must decide between the

two hypotheses

(6.22)

where the samples , 1 , are i.i.d. with pdf

given in (6.11). The addition is (componentwise).

The ML detector based on and the statistical model above

is

1 (6.23)

which coincides with the nearest-neighbor detector (6.24) in

some cases.

Similarly to (6.5), the minimum-distance detection rule

may be written in the form

(6.24)

The probability of error is given by

1

2
(6.25)

It may in principle be computed numerically, using integra-

tion over the -dimensional cube 0 . Unfortunately

such methods are impractical even for relatively small .

Monte-Carlo simulations are an alternative, but are time-con-

suming and do not necessarily provide analytical insights.

Two analytic methods for approximating are considered

next.

3) Gaussian Approximation: One may easily derive the

GSNR at the detector, as was done in Section VI-B. Formula

(6.16) generalizes to

GSNR
1

1
(6.26)

If the noise was Gaussian, the probability of error would

be given by

GSNR
(6.27)

However is non-Gaussian, and (6.27) is generally a poor

approximation to the actual .

4) Large Deviations: If GSNR is large (as is always the

case for sufficiently large ), the performance of the detec-

tion test is dominated by rare events (as described by the

tails of the pdf’s and ) and Gaussian approximations

of these tails are usually severely inaccurate. The usual ap-

proach to such problems in the detection literature is based

on large deviations theory, as discussed in Appendix C. For

any , we have 1/2 , where

(6.28)

is the Bhattacharyya distance between the pdf’s and .

The bound is tight in the exponent:17

1

Hence is a more useful predictor of detection per-

formance than is GSNR, and is simple to compute as well.

The Bhattacharyya coefficient depends on the

QIM parameter via and . The log probability of

error when 15 is shown in Fig. 16 as a function of ,

along with the Bhattacharyya and Gaussian approximations.

17In general, a Chernoff bound with optimal Chernoff exponent is tight.
However, due to the symmetry of p and the fact that q and q are translates
of p , the optimal Chernoff exponent is 1/2, and thus the optimal bound is
the Bhattacharyya bound.
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Fig. 16. ~P and its upper bound based on the Bhattacharyya coefficient
B(q ; q ) for binary detection based onN = 15 samples. Also shown is the

Gaussian approximation to ~P , which is overoptimistic by several orders of
magnitude. The variable on the horizontal axis is the QIM tradeoff parameter
�.

The Bhattacharyya approximation is quite good, unlike the

Gaussian approximation which is off by several orders of

magnitude.

D. Multiple Codewords and Lattice QIM

In the case of 2, calculation of the probability of

error

1
sent

presents difficulties if is large. Fortunately, useful bounds

on can be derived. We consider the general case of lattice

QIM; note that scalar QIM is optimal when 2 [71].

Assume equally likely codewords. For linear codes, the

conditional error probability sent is inde-

pendent of the message that was sent. Thus we may arbi-

trarily select message 0 and write

0

A useful upper bound on can sometimes be obtained

using the union bound [38]

1 (6.29)

where

1

2
sent sent

is the probability of error for a binary test between hy-

potheses and . The union bound is typically

useful at low bit rates.

Example: Consider a scalar QIM system in which the

codewords , are designed with letters

4 for all and 1 2 . Let the

message set have cardinality 2 , where , and

the code be a linear code. Thus, any two code-

words differ in at least positions. The worst codeword

pairs are the ones that differ only in positions. The Bhat-

tacharyya distance between such pairs is ,

where is given in (6.28). We obtain

2 1

Given and , this upper bound quantifies the tradeoff

between rate and achievable probability of error;

given , codes with large are clearly desirable. Fig. 17

displays the Bhattacharyya bound on as a function of

for the best known codes of length 256.

In the case where grows exponentially with , the

union bound (6.29) may be loose; if

the union bound becomes trivial ( 1), and the notion of min-

imum distance is less relevant. Finding better bounds in this

case is a topic of current research [72]–[74].

Consider the -dimensional nested lattice code

in (5.16). Recall that and are respec-

tively the Voronoi cell and lattice quantizer associated with

the coarse lattice , and that , 0 are the

cosets of , with associated coset leaders playing

the role of -dimensional dither vectors. A different dither

vector is potentially selected for each length- host-data

block. For simplicity we first consider the case (one

single data block).

Case . Write

0

Under high-rate lattice quantization theory [75], the quanti-

zation noise may be modeled as random, indepen-

dent of , and uniformly distributed over ; moreover, that

model is exact if a dithered lattice quantizer is used [76], [77].

The embedding distortion per sample is given by

1 1

Vol
(6.30)

For the hexagonal lattice, the minimum distance between

lattice points (twice the inradius of ) is given by

72

5
(6.31)
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Fig. 17. Bhattacharyya bound on log probability of error, log ~P versus number of information bits, k = log jMj. In this experiment, D =D = 4 dB
andN = 256. The figure shows representative points for the best known codes [256,128,38], [256,64,62], [256,32,96], [256,16,113], [256,8,128], [256,4,136],
[256,2,170], [256,1,256].

The receiver first implements the modulo lattice operation

Assuming that message was sent, the processed vector

may be viewed as the output of a MAN channel (Fig. 14)

with input and noise

(6.32)

analogously to (6.10) in the scalar QIM case. Here

, the self-noise is uniformly distributed over the scaled

Voronoi cell 1 , and the aliased attacker’s noise is

given by . If dither vector is embedded,

follows the distribution

The receiver decides between the statistical hypotheses

0 (6.33)

Letting be the Bhattacharyya

distance between and , it follows from the union bound

that

1

where .

Case . Denoting by the -th block of

received data, the receiver first implements the modulo lattice

operation

1 (6.34)

The vectors are mutually independent because the

noise process is assumed to be white. Message

is represented using dither vectors , with associated

pdf’s for at the receiver, where 0

and 1 . The receiver decides between the

hypotheses

1 (6.35)

The Bhattacharyya distance between the pdf’s associated

with hypotheses and is given by

Equivalently, if we let be the number of ’s such that

and , we can write

where .
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A possible code construction is the following. Select a

-ary code. Then

where . We obtain

1

Example: Consider the case 3 and

2 using the hexagonal lattice of Fig. 9(e). To encode message

, we choose , i.e., we use a repetition code and

embed the same dither vector in each length-2 block. Let

1. From (6.31), we obtain 72/5. Choose

0

0

These dither vectors are equidistant: 3 for

all . We also have symmetry between the Bhattacharyya

distances: for all .

E. Shaping Gain

The traditional tradeoff in source coding is rate versus dis-

tortion. For high-rate lattice quantization, distortion is the

second-order moment of the Voronoi cell , and rate is a

linear function of . The optimal tradeoffs are obtained

using nearly spherical lattices, in the sense that the normal-

ized second moment

(6.36)

of the lattice approaches the lower bound, 1/2 0.0586

[78].18

In data hiding, distortion is measured the same

way as in source coding, but the rate of interest is

1 . The second-order moment of

the coarse lattice is determined by the embedding distortion

. The attacker’s noise pdf is assumed to be spherically

symmetric, in which case the ideal decoding regions are

spherical. Assuming 0, the ideal shape for the Voronoi

cells of the fine and coarse lattices is spherical because this

geometry maximizes the density of decoding regions in ,

the Voronoi cell for the coarse lattice. Hence this geometry

maximizes rate as well.

Practical Codes. A folk theorem in coding theory is

that almost all random linear codes are good, but only a

few nonrandom codes are good. For large dimensions ,

random linear codes provide (in a probabilistic sense) the

ideal spherical geometry discussed above; unfortunately

such codes lack structure and are prohibitively hard to

18Cubic and hexagonal lattices respectively achieve G(�) = 1/12 �
0.0833 and G(�) = 5/36

p
3 � 0.0802 [78, Sec. 3.3].

decode. Structured linear codes are practical, but it is hard

to find good ones.

VII. CAPACITY

After analyzing probability of decoding error for binning

schemes, we turn our attention to a closely related problem,

namely what is the maximal rate of a code that allows reliable

transmission ( 0 as ). In other words, we wish

to determine a Shannon capacity for data hiding [34].

We assume that the key is a sequence of random vari-

ables defined over an alphabet . Furthermore, , 1

are i.i.d. with pmf . This model accounts for the

possibility of signal-dependent keys. In nonblind data hiding,

is a function of .

The rate of the data-hiding code is

1 , and the average probability of error is

1
(7.1)

A rate is said to be achievable for distortion and for

a class of attack channels , 1, if there is a se-

quence of codes subject to distortion , with rate , such

that 0 as , for any sequence of attacks in

. The data-hiding capacity is then de-

fined as the supremum of all achievable rates for distortion

and attacks in the class , 1.

Gel’fand-Pinsker. The data-hiding problem is closely re-

lated to a fundamental problem of communication with side

information studied by Gel’fand and Pinsker [28] in 1980.

They derived the capacity of a memoryless channel whose

state is known to the encoder but not to the decoder. The

encoder may exploit the state information using a binning

technique, as discussed below. The role of the channel state

is analogous to the role of the host signal in blind data hiding.

Key differences with the Gel’fand-Pinsker problem include

the existence of distortion constraints, the availability of dif-

ferent amounts of side information to the encoder, attacker,

and decoder, and the fact that the attack channel is unknown

to the encoder.

First we state the fundamental capacity result for discrete

alphabets , and and relate it to the Gel’fand-Pinsker

result. Then we consider the case of continuous alphabets

(where , and are real-valued.)

A. Finite Alphabets

For simplicity of the exposition, consider the average dis-

tortion constraints (2.5) and (2.7), and assume the host signal

and the attack channel are memoryless. Then

(7.2)

The data-hiding capacity defined above turns out to be the

solution of a certain mutual-information game and is given

in the theorem below. Let be an auxiliary random
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variable such that forms a Markov chain.

Let be the set of covert channels that satisfy the

constraint

(7.3)

be the set of attack channels that satisfy the con-

straint

(7.4)

and be an arbitrary subset of .

Theorem 7.1: [34] Assume the attacker knows the en-

coding function and the decoder knows and the attack

channel . A rate is achievable for distortion and at-

tacks in the class if and only if , where is given

by

(7.5)

where 1, is the support set of , and

(7.6)

where

denotes conditional mutual information [30].

Key differences between the capacity result (7.5) and the

Gel’fand-Pinsker problem include the existence of distortion

constraints, the availability of at both the encoder and de-

coder, and the fact that the attack channel is unknown to the

encoder—whence the minimization over in (7.5).

Example: Bernoulli-Hamming case: The capacity for-

mula (7.5) can be evaluated in closed form for a few simple

problems. One of these is the case of binary alphabets:

0 1 and Hamming distortion constraints

and for the embedder and attacker, respectively.

As expected, capacity is strictly higher for nonblind wa-

termarking relative to blind watermarking. Capacity for

nonblind watermarking is given by [34]

(7.7)

where 1 1 . Capacity

for blind watermarking is given by [79]

if

if

if ,

(7.8)

Fig. 18. Capacity functions for Bernoulli-Hamming problem whenD =

0.2.

where 1 2 and 1

1 is the binary entropy function. The straight-line

portion of the capacity function is achieved by time-sharing.

See Fig. 18. In both cases, the worst attack is a binary sym-

metric channel (BSC) with crossover probability . The ca-

pacity formula (7.8) was derived in [80] and [81] under the

assumption of a fixed attack channel.

B. Random Binning

In principle, the capacity bound can be approached using

a random binning coding technique [28], [30], which ex-

emplifies the role of the covert channel ; see Fig. 19. A

size--2 codebook is constructed for the vari-

able by randomly sampling the capacity-achieving distri-

bution , and partitioning the samples into equal-size

subsets (lists). The actual embedding of a message

proceeds as follows: first identify an element from

the list of elements indexed by in the codebook , in

such a way that is statistically typical with the current

, then generate watermarked data according to the

pmf . The decoder finds that is statistically

typical with , and obtains as the index of the list to

which belongs. However, memory and computational re-

quirements grow exponentially with block length , and so

such approaches are known to be infeasible in practice. De-

veloping structured binning schemes that approach the ca-

pacity bound is an active research area [33], [61], [64]–[66],

[82]–[84]. This problem is closely related to the problem

of developing good nested lattice codes in Euclidean spaces

which was introduced in Section V-C and will be further de-

veloped in Section VIII. For each , the mapping from

to the list of vectors indexed by may be thought of as a

generalized VQ mapping.

C. Gaussian Channels

Theorem 7.1 can be generalized to the case of infinite

alphabets , , , , . The case of Gaussian and

squared-error distortion measure is of considerable practical

and theoretical interest, as it becomes possible to explicitly

compute the distributions that achieve capacity, leading
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Fig. 19. Random binning technique.

Fig. 20. Optimal data-hiding and attack strategies for Gaussian host data
S � N (0; � ). Here Z � N (0; aD ) and W � N (0; �(D � D ))
are mutually independent random variables, where a = 1 � D =� and
� = � =(� �D ). The optimal channels p(xjs) andA(yjx) are Gaussian
test channels with distortion levelsD andD �D , respectively. For blind
data hiding, � = aD =(aD + D); for nonblind data hiding, one may
choose � = a.

to insightful results. We refer to this case as the Gaussian

channel. Let be the set of real numbers,

and be the squared-error metric. Also

let 0 , meaning that follows a Gaussian

distribution with mean zero and variance . Assume as in

(7.2) that the attack channel is memoryless.

A remarkable result is that the data-hiding capacity is

the same for both blind and nonblind data-hiding problems.

Under the average distortion constraints (2.5) and (2.8), we

obtain [88]

if ,

if
(7.9)

where . When , the

optimal distributions turn out to be Gaussian test channels

[30], [46], [88]; see Fig. 20.

Closely related to this result is one derived by Costa [29]

in 1983 for communications on an additive white Gaussian

noise channel (with power ) in the presence of an i.i.d.

Gaussian interference (with power ) that is known at the

encoder but not at the decoder. When the channel input power

is constrained not to exceed , Costa showed that the ca-

pacity of the channel is exactly the same as if the interference

was also known to the decoder

1

2
1

The analogy to the data-hiding problem is remarkable: the

host signal plays the role of the known interference. Ca-

pacity in the data-hiding problem is slightly lower than in the

Costa problem because the optimal Gaussian attack is not ad-

ditive; however, the gap vanishes in the low-distortion limit

( 0 and 0). In this case, we have

WNR

1 WNR
(7.10)

which admits an elegant MMSE (minimum mean squared

error) interpretation [85]; also see (6.17).

Additional extensions of Costa’s result have recently ap-

peared [65], [86], [87]. In particular, the capacity formula

1/2 1 is still valid if the interfer-

ence is any finite-power sequence, for any values of

and . Also, the capacity for the following two data-hiding

games are identical: (i) the game with average distortion con-

straint (2.7) and memoryless attack channel, known to the de-

coder, and (ii) the game subject to the maximum-distortion

constraint (2.6) with a decoder uninformed about the attack

channel [86].

The optimal decoding rule for Fig. 20 is a minimum-dis-

tance decoding rule

(7.11)

where as 0 and 0. For large ,

we have , and (7.11) is asymptotically equiva-

lent to a correlation rule

(7.12)

This rule is remarkable in its simplicity and robustness. For

instance (7.12) is also optimal if the attacker is allowed to

scale the output of the Gaussian channel by an arbitrary

factor, because all correlations are scaled by the same factor.

Also (7.12) turns out to be the optimal universal decoding

rule in Cohen and Lapidoth’s setup [86]; see Section VII-E.

The property that capacity is the same whether or not is

known at the decoder is illustrated in Fig. 21 using sphere-

packing arguments. Assume that , . With over-

whelming probability, the scaled codewords 1 live in
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Fig. 21. Sphere-packing interpretation of blind Gaussian information hiding. Shaded spheres are indexed by the same messagem.

a large sphere of radius 1 centered at 0. The

encoder in the random binning construction selects a scaled

codeword 1 inside the medium-size sphere of radius

centered at .19 There are approximately 2

codewords (one for each possible message ) within this

medium-size sphere. The received data vector lies within

a small sphere of radius centered at 1 . De-

coding by joint typicality means decoding to the center of

the closest small sphere. To yield a vanishing probability of

error, the small spheres should have statistically negligible

overlap. The number of distinguishable messages, 2 , is

independent of the size of the large sphere .

D. Parallel Gaussian Channels

Real-world signals such as images do not follow i.i.d.

Gaussian models; however they can be decomposed into

approximately independent Gaussian components [46].

Data-hiding capacity can be evaluated by solving a certain

power-allocation problem, as described below.

Assume is a collection of independent sources ,

1 , each producing i.i.d. Gaussian random vari-

ables from the distribution 0 , where .

Thus, we have parallel Gaussian channels, with samples

, and rates , 1 . The distortion

metric is squared error. Let

1
and

1
(7.13)

19Again, this selection step may be thought of as a VQ mapping.

be the distortions introduced by the embedder and the at-

tacker in channel , respectively. We have distortion con-

straints

and (7.14)

As in the Gaussian case, capacity is the same for both blind

and nonblind data hiding [46], [88]

(7.15)

where the maximization and minimization over power allo-

cations are subject to the distortion constraints (7.14). The ca-

pacity-achieving distributions are product distributions, i.e.,

the channels are decoupled. The distributions in each

channel take the form of Fig. 20, where the weights , and

depend on the channel index . We may therefore think of

the weights and as optimal host signal preprocessing

filters for the embedder, and of as an optimal attack filter.

In many signal processing problems, the appropriate dis-

tortion metric is not squared error but weighted squared error:

, where are

nonnegative weights [41]. For instance, 0 if channel

is perceptually irrelevant. The ordinary squared error metric

is obtained by choosing 1. Under the weighted squared

error metric, capacity is still given by (7.15), but with

in place of [148].

In some problems, the host signal components may be

coarsely classified into two categories: significant ones

( , ) and insignificant ones ( , ). In
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this case the capacity expression (7.15) reduces to a much

simpler formula

2
1 (7.16)

where 1 is the fraction of significant components in the

host signal. This result is consistent with the intuition that

for a data-hiding code to be robust, information should be

embedded in perceptually significant components of the host

signal [50].

E. Attack Channels With Memory

Recently, Somekh-Baruch and Merhav [89], [90] have

shown that the capacity formula (7.5) holds under milder

assumptions on the attacks and decoder. They assume the

maximum-distortion constraints (2.4) and (2.6). The de-

coder does not know the attack channel , which is any

channel that satisfies (2.6). Therefore has arbitrary

memory. The key alphabet is allowed to be unbounded.

Capacity can again be achieved using a random binning

scheme closely related to the one described above, and a par-

ticular universal decoder based on the method of types [30],

[91]. This decoder evaluates the empirical first-order statis-

tics of the pairs , for all possible codewords . The

binning scheme is such that the probability distribution for

(averaged over ) is memoryless: ,

where is obtained from the optimal covert channel . (If

the key space were too constrained, this memoryless prop-

erty could not be obtained, and there would be dependencies

between .) Loosely speaking, the randomization over

is such that the attacker derives no advantage from using ar-

bitrary memory in his attack. The data-hiding code is thus

secure.

VIII. CAPACITY OF CONSTRAINED SYSTEMS

While the theory above provides fundamental limits for re-

liable data hiding, it does not indicate how to construct prac-

tical codes. The codes used to prove the capacity theorems

are random codes which cannot be used in practice due to

the exponential complexity of the storage and encoding and

decoding procedures.

The lattice QIM codes mentioned in Section V-C are

practical, but is their performance good enough to approach

the unconstrained capacity (7.9)? Recently Erez and Zamir

proved that the answer is “yes” [73]. Roughly speaking, this

requires the use of lattices with nearly spherical Voronoi

cells. The information-bearing sequence selected by the

lattice encoder (5.18) plays the same role as the sequence

in the random-binning technique of Section VII.

For any practical lattice code, one would like to quantify

the performance gap relative to an unconstrained system. We

first consider the case of scalar quantizers.

A. Capacity of Scalar QIM Systems

Equation (6.22) describes the transmission of two possible

length- codewords and over the MAN channel of

Fig. 14. The channel adds independent samples

to the input codewords. The addition is modulo , the step

size of the scalar quantizer. Referring to (6.10), the noise

has two parts: self-noise due to quantization and aliased

attacker’s noise. The tradeoff parameter controls the prob-

ability distribution of . If we want to transmit many code-

words (as described in Section VI-D), what is the maximum

rate of reliable transmission?

The answer is given by analyzing the MAN channel of

Fig. 14. The maximum rate of reliable transmission for scalar

QIM using parameter and input alphabet is obtained by

maximizing mutual information between input and output of

the MAN channel

WNR (8.1)

where is a probability distribution over . If the code-

word letters are in the binary alphabet 4 (as

was assumed in Section VI-C2), the maximizing distribution

is symmetric: 4 4 1/2. But a larger

value of may be obtained by enlarging . The best

choice is 2 2 , and the resulting optimal

is again uniform over .

The maximum rate of reliable transmission for any scalar

QIM system using alphabet is obtained by optimizing

WNR WNR (8.2)

Using the optimal (largest) choice of given above, we ob-

tain the constrained capacity

WNR WNR (8.3)

The value of the maximizing is obtained numerically

and is not the same as the MMSE choice (7.10). A

good approximation proposed by Eggers et al. [62] is

WNR WNR 2.71 . Both the exact value

and its approximation are close to (7.10) for WNR 1.

Fig. 22 shows capacity as a function of WNR for scalar

QIM and compares it with the capacity expression (7.9) for

unconstrained systems. The gap is approximately 2 dB at a

rate of 0.5 bit/sample.

When the input to the MAN channel is binary-valued,

WNR cannot exceed 1 bit/sample. The performance

loss due to binary alphabets is however insignificant at

rates below 0.7 bit/sample. At high WNRs, the gap between

constrained capacity WNR and unconstrained capacity

WNR is equal to the shaping gain of scalar quantizers,

1/2 2 12 0.254 bit; see Section VIII-C for

more details.
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Fig. 22. Capacity versus WNR for scalar QIM.

B. Capacity of Sparse QIM Systems

It is easy to relate the capacities of QIM and the sparse

QIM systems of Section V-B. The rate of reliable transmis-

sion for a sparse QIM code with sparsity factor is given by

the time-sharing formula

WNR
WNR

0 1 (8.4)

Optimizing over , and , we obtain the constrained ca-

pacity

WNR WNR

WNR

Based on numerical experiments with scalar quantizers,

Eggers et al. [62] observed the following properties:

1) For WNR above a certain critical value WNR , the op-

timal sparsity factor is 1, i.e., the system is the same

as a standard nonsparse QIM system.

2) For WNR below WNR , the optimal is less than one,

i.e., sparse QIM systems outperform their nonsparse

counterparts.

Interestingly, this property is related to information-theoretic

time-sharing ideas:20 the curve WNR is nonconvex at

20See Erez and ten Brink [92] for an equivalent description of the time-
sharing concept.

low WNR , and the curve WNR is the upper

convex envelope of WNR . Thus

WNR

WNR
WNR

WNR WNR WNR

WNR else
(8.5)

is a straight line for WNR WNR and coincides

with WNR beyond WNR . Here WNR is the unique

solution to the nonlinear equation

WNR
WNR

WNR WNR

1

WNR

In conclusion, sparse QIM methods are advantageous at low

WNR but not at high WNR.

C. Capacity of Lattice QIM Systems

Further improvements can be obtained by replacing scalar

quantizers with -dimensional lattice VQs (as described in

Section V-C). We outline Erez and Zamir’s analysis [73],

which sheds insight into the coding problem.

Denote by the Voronoi cell for the coarse lattice , as-

sumed to satisfy the embedding-distortion constraint (6.30).

Analogously to (8.3), the resulting constrained capacity is

WNR 1 (8.6)
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where is a pdf over . Clearly we must have

WNR
1

2
1 WNR (8.7)

but can equality be achieved using suitable and lattice

code?

Due to (6.32), the noise vector in the MAN channel

has mean zero and mean-squared value per component

1 , where

1 (8.8)

and equality is achieved above for the MMSE choice

of (7.10). For any , , , we have

WNR
1 1

1
(8.9)

where denotes differen-

tial entropy of a random variable . Since is independent

of the channel input , the capacity-achieving distribution

is uniform over . For any , we have the following

properties:

• The pdf of is uniform over ;

• 1 1/2 2 , where the right side

is the entropy of a 0 random variable.

Using the first property and (6.36), we have

1 1
Vol

1

2

Using the second property, we obtain

1 1

2

1

To maximize the lower bound on WNR , we select that

minimizes in (8.8) and that minimizes among

all -dimensional lattices

WNR
1

2
1 WNR

1
2

(8.10)

Now there exist “good lattices” such that 1/2

as . Combining the upper and lower bounds

(8.7) and (8.10) on WNR , we conclude that

WNR 1/2 1 WNR , i.e., lattice

VQ is asymptotically optimal. Furthermore, the capacity

gap 1 2 can be evaluated using known

formulas [78] from lattice theory.

We conclude this section with a note about sparse lattice

QIM systems: the gains due to time-sharing are negligible

for large because WNR tends to WNR which is

convex and thus cannot be improved by convexification.

IX. DESYNCHRONIZATION ATTACKS

In addition to noise attacks, an attacker may introduce fil-

tering, amplitude scaling, modulation, delays, warping, etc.

in an attempt to desynchronize the decoder. The perceptual

effects of such operations are normally quite weak, but the ef-

fects on decoding performance can be devastating. Below we

use the terminology “basic decoder” to refer to the standard

correlation decoder for SSM and the standard lattice decoder

for QIM. Thus one can ask three basic questions:

1) How does the performance of the basic decoders de-

grade under such operations?

2) What is the capacity of the data-hiding systems under a

distortion metric such as (2.3), which does not penalize

delays and scaling factors?

3) How can one improve basic decoders to better cope with

desynchronization attacks?

This line of research has recently gained some interest. To

illustrate the concepts, we consider five simple desynchro-

nization attacks. Each one takes the form

(9.1)

where the desynchronization operator is defined below,

and is signal-independent noise. Without loss of gener-

ality, we assume that is zero-mean.

1) Offset. Let for all

1 2 .

2) Amplitude scaling. Let .

3) Cyclic Delay. Let be a cyclic shift by ,

i.e., if is an in-

teger. For noninteger , we use the more general

formula where

is the periodic sinc

interpolating function.

4) Erasures. Some samples are erased, resulting in a

shortened received sequence.

5) Insertions. New values are inserted in the sequence ,

resulting in a longer received sequence.

We focus on the more challenging problem of blind data

hiding; otherwise the host signal can serve as a powerful syn-

chronization signal.

A. Performance of Basic Decoders

SSM. From the basic SSM embedding formula (3.1) and

the noise model (9.1), we obtain

The basic blind SSM decoder (3.4) computes correlation sta-

tistics for all . In general, can have
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Fig. 23. Offset, valumetric, and delay attacks.

a strong effect on the correlation statistics. For instance if

is a white-noise-like sequence, a slight delay would

suffice to destroy the correlation between and .

To see the problem from a slightly more general perspec-

tive, consider the following linear approximation, which is

acceptable for desynchronization attacks such as amplitude

modulation or time warping:

To mitigate the effects of on the correlation statistics, we

would like to have . In other words, for

the basic correlation decoder to perform as intended, the wa-

termarks should be nearly invariant against desynchroniza-

tion attacks. For instance, a slowly varying sequence

does not change much under moderate delays. See [93], [94]

for an application to warping.

QIM. The noise at the decoder is still a weighted av-

erage of quantization noise and aliased attacker’s noise, how-

ever a new term is added to the attacker’s noise

signal-independent noise (see Fig. 23 for an illustration).

1) For an offset attack, the new term is the sequence whose

components are all equal to . The mean-squared error

(MSE) of the attack noise is increased from

1 to , which is significant if

.

2) For an amplitude scaling attack, the new term is equal

to 1 . If 0, the MSE of the attack

noise becomes 1 1 . This effect is

significant if 1 exceeds the noise-to-host power

ratio, .

3) For a cyclic delay, the MSE of the attack noise is asymp-

totic to 1 as 0, where

denotes the sampled derivative

of the signal . This effect is significant if 1

.

4) Erasures and insertions can have a similar catastrophic

effect.

Therefore, the effect of even mild desynchronization attacks

on unsuspecting QIM decoders can be catastrophic.

B. Capacity

First consider the case where the dimension of the pa-

rameter is fixed and independent of .21 As is the case

with more traditional communication problems [91], such

desynchronization attacks have no effect on capacity [34],

[46]. The reason is that desynchronization does not intro-

duce sufficient randomness. Capacity can be achieved, for

instance, using random coding together with pilot sequences

(entailing vanishing rate loss for large ). The poor perfor-

mance of basic QIM decoders under desynchronization at-

tacks should thus be attributed to the suboptimality of these

decoders rather than a fundamental performance limit.

Desynchronization attacks which introduce substantial

randomness (e.g., random jitter [95]) are more pernicious

and generally cause a loss of capacity.

C. Improved Systems

Several ideas are being developed in the literature to better

cope with desynchronization attacks. These includes:

• Two-step decoders. In the first step, the desynchroniza-

tion parameter is estimated, possibly using a large

search over the parameter space . In the second step,

the desynchronization attack is “inverted” using the esti-

mated , and the resulting sequence is fed into the basic

decoder. One problem with this method is the potential

computational complexity of the search.

• Pilot sequences [62], [96]–[102] for estimating desyn-

chronization parameters. The idea is to embed a known

sequence in the host (in addition to the information-

bearing sequence) and have the decoder estimate the

desynchronization parameter from the received data.

If the dimensionality of is small relative to , this can

be done reliably using the method of maximum likeli-

hood or some other consistent estimator [38]. Moreover,

the pilot can be designed to provide high estimation

accuracy at the receiver, and to facilitate the search.

The difficulty with these methods is twofold: 1) the se-

quence should be suitably randomized so that the at-

tacker cannot remove it, and 2) the pilot does not convey

21This condition can be relaxed to account for more complex desynchro-
nization problems.
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information about the actual message, so less power is

available for the information-bearing signals.

• Embedding in invariant domain [103]–[105]. The diffi-

culty with these methods is to construct suitable invari-

ants. This has been done for operations such as scaling,

translation, and rotation, but it is difficult to extend this

approach to more complex desynchronization attacks.

A promising idea is to construct invariants based on per-

ceptually important signal features [106]–[109].

• Embedding redundancy in the data-hiding code. The

simplest example is perhaps repetition codes to combat

cropping or facilitate resynchronization after a delay

attack. Reed–Solomon codes have also been used for

coping with insertions and deletions [68], and synchro-

nization codes have been developed for coping with

more general insertions, deletions, and substitutions

[67], [110].

While promising results have been achieved in limited set-

tings, the gap between theory and practice is still significant

as of the time of this writing. Much research is going into the

design of practical codes that can survive a broad range of

desynchronization attacks. The state of the art for data hiding

in images is overviewed in Section XII.

X. SECRET CODES

So far our presentation has focused on the robustness

properties of the data-hiding code—more specifically its

ability to withstand the addition of memoryless noise

(Sections VI–VIII) and desynchronization operations (Sec-

tion IX). Decoding performance may however collapse if

the attacker develops an appropriate strategy with memory.

To see why, suppose we make the code completely

public—we do not use any secret key at all. It would be

remarkable that such a code could resist the efforts of deter-

mined attackers, but let us see what can be done. The first

observation is that an attacker is able to produce a reliable

(maybe even perfect) estimate of the embedded message

—just like any public decoder. Say the probability of

correct decoding is 1 .

Assume for now an embedding function of the form

, where is deterministic and known to the adver-

sary, and is the embedded message.

• If is invertible for all , the adversary

first computes , which coincides with

the original host with probability 1 . Next, the at-

tacker may select as a forgery, thereby implementing a

so-called estimation attack [25]. This strategy has been

used by Mıhçak et al. to crack a popular audio water-

marking scheme [111]. A related idea is to embed a fake

message into , implementing a remodulation

attack: . In either case, the correct can

no longer be reliably decoded.

The spread-spectrum schemes of Section III-A are re-

versible and therefore inherently vulnerable to disclo-

sure of .

• If is noninvertible, i.e., a many-to-one map, the

adversary cannot reliably reconstruct . The quantiza-

tion-based schemes of Section V have this property

(provided that 0). Still a good strategy for the

attacker is to apply the shortest perturbation vector

leading the degraded signal to an incorrect decoding

region. For scalar and hexagonal QIM systems, the dis-

tortion incurred by the adversary is of the same order

as the embedding distortion [112]. It is likely that the

same result holds for higher-dimensional QIM systems

as well.

To defend against the estimation and modulation attacks

above, one could work with an embedding function that is

mathematically invertible, but computationally hard to invert

[112]–[116]. To our knowledge no practical scheme has yet

been proposed and successfully tested based on this concept.

Another possible idea is to make stochastic, meaning

the receiver is unaware of the particular realization of that

generated the marked data. Such codes are called stochastic

codes in the communication literature. They are viewed with

some suspicion, because they generally have poor theoret-

ical performance relative to randomized codes, in which the

receiver knows [91]. Several stochastic codes have been

proposed in the watermarking literature [112], [115]–[117],

but their own inventors and colleagues have found ways to

defeat them. Stochastic codes have also been used for QIM

steganography; see Section XI-B.

A. Randomized Codes

Several ideas can be used to randomize the codebook.

Mathematically, the embedding function mapping to

the marked signal should depend on a random variable

shared by the encoder and decoder, but unknown to the

attacker. Therefore, the notation adopted in

(2.1) and throughout this paper already accounts for the use

of randomized codes. The results by Cohen and Lapidoth

[86] and Somekh-Baruch and Merhav [89], [90] demonstrate

that suitably randomized codes can be made perfectly secure

against adversaries with arbitrary memory and unlimited

computational resources.

The common source of randomness between encoder

and decoder is usually independent of the host , in which

case we think of it as a conventional cryptographic key. As

discussed in Section II-A, occasionally we might want to

depend on in order to provide side-information to the de-

coder; in this case, we talk about signal-dependent keys. In

the remainder of this section, we restrict our attention to con-

ventional cryptographic keys.

Following cryptographic terminology, two basic types

of systems can be used: private-key systems, based on

Shannon’s theory of security [118]; and public-key systems

as introduced by Diffie and Hellmann [119].22

The study of practical, secure QIM codes is still in its in-

fancy. Ideas include randomized sparse QIM [33], random-

ized dithering [65] and look-up tables [121], and randomized

lattice rotations [70]. Rotations may be implemented explic-

itly for low-dimensional lattices. For longer linear codes, one

22Note that the use of private or public key systems is possible whether or
not the original host is available at the decoder, i.e., we can have nonblind
watermarking using public-key cryptography or blind watermarking using
private-key cryptography.
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may use a randomized generator matrix, or randomized in-

terleavers in the case of turbo codes.

B. Private-Key Systems

In some cases a secret key is shared between the encoder

and decoder. This assumes both parties have been able to ex-

change this key prior to the watermark transmission, which

may be difficult if not outright unrealistic in many applica-

tions. The advantage of private-key systems is that they can

be made provably secure.

To study the secrecy of codes based on private-key sys-

tems, one can compute the mutual information

between a marked signal and the codebook used to

generate it. Equivalently, if is a one-to-one function of the

secret key , we have . The code is

perfectly secure if 0, i.e., observing the marked

data does not convey any information about the code to the

attacker. A related security requirement is 0,

i.e., observing the marked data does not convey information

about the message to the attacker either. From the viewpoint

of an authorized decoder however, we need 0

in order to reliably decode the message given the marked

data and the key. Randomized nonlinear codes can be con-

structed that have the above properties [89], [90], but they

are not practical.

As shown below, it is possible in some very special cases

to construct simple randomized codes with the above prop-

erties.

Example 3, Revisited: Consider the data-hiding code of

Table 3, which lists all 16 codewords in a

codebook . There the host 0 1 , and the message

0 1 . Observe that the Voronoi cell of the coarse lat-

tice contains the all-zero sequence and the seven sequences

with Hamming weight one. We can randomize using a key

space of cardinality 8, i.e., 0 1 7 . All we need

to do is to assign a different sequence to each value

of . Next, in place of the traditional quantizer of Example

3, we use a dithered quantizer with dither sequence . The

resulting code is given by , i.e., its codewords are ob-

tained by adding to the entries of Table 3. Observe that if

uniformly distributed over the space 0 1 and is uni-

formly distributed over 0 1 7 , then is uniformly

distributed over 0 1 as well. Furthermore, an attacker ob-

serving gains information about the pair but not

about or individually: we therefore have 0

and 0.

This example can be straightforwardly generalized. If is

uniformly distributed over Hamming space 0 1 and ran-

domized nested lattice codes are used [65], [71], [80]; then

is also uniformly distributed over Hamming space, no matter

which linear code was used! Here again 0 and

0. However, it appears doubtful that both prop-

erties would be achievable for linear codes in more general

settings, when is nonuniformly distributed. See [122] for

recent, related work.

Furthermore, even in the special setting above, the per-

fect-secrecy property comes at a cost. To see why, assume

our host sequence does not have length 7 as in Example 3,

but say, length 7 , where is a large integer. We can then

view the host sequence as the concatenation of blocks, and

apply the embedding above to each block. Note that we need

to generate independent keys in order to retain perfect se-

crecy. This means the size of the key space is now 8 2 ,

i.e., the length, 3 , of the binary key string is linear in the

length of the host sequence. In general, perfect secrecy would

be practically infeasible for applications of data hiding to

media signals.

To summarize, the main disadvantages of informa-

tion-theoretically secure private-key systems are: (1) the key

exchange protocol, which requires a secure back channel;

and (2) the length of the key, which is prohibitive in media

applications.

C. Public-Key Systems

In case private key exchange between the sender and re-

ceiver is neither possible nor desirable, public-key crypto-

graphic algorithms such as RSA or elliptic-curve cryptog-

raphy can be used. The idea of using public-key cryptography

in watermarking can be traced back to Hartung and Girod

[120]. More recent work includes [112]–[116].

Public-key systems have the following ingredients:

• a secret key and a public key for the receiver;

• an encryption rule ;

• a decryption rule with the following properties:

(1) , and (2) is a trapdoor

one-way function, i.e., it is computationally infeasible

to invert it (i.e., implement the decryption rule )

without knowing the secret key .

A pratical application of this approach to data hiding

could work as follows. A binary-string representation of

the codebook (e.g., its generator matrix, the seed of a PRN

sequence, and possibly other parameters needed for wa-

termark decoding) is produced and encrypted using RSA.

The encrypted string is made publicly available.

The receiver decrypts and therefore obtains the codebook

parameters needed for decoding.

D. Security Weaknesses

If some amount of information about the code leaks to the

adversary, how can he exploit it and develop a powerful at-

tack? This topic has seen quite a bit of research activity lately.

A typical scenario is one where a key-dependent block code

is used, but the same key is used over multiple blocks, or over

multiple images, etc. An intelligent adversary could estimate

the key (the reliability of this estimation increases with the

number of copies available) and implement a remodulation

attack as described in [112], [123]. All these attacks are part

of the same framework of estimation attacks that was dis-

cussed earlier in this section, and can be devastating if reli-

able estimates of can be formed.

If independent keys are used for different blocks, the ad-

versary should be unable to form reliable estimates of .

He may still be able to develop “surgical attacks” that exploit

the structure of the code. In general, a code that is insuffi-

ciently randomized is vulnerable to surgical attacks. Some

preliminary results in that direction have been reported in
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[70], where a -dimensional lattice code was used, and a

key was independently generated for each length- block.

The worst -dimensional attack pdf was derived by min-

imizing the Bhattacharyya performance metric for the de-

tector. In that sense dithering (as described in Section V-C3)

provides some security, but randomized lattice rotations pro-

vide a higher level of security.

XI. RELATED TOPICS

This section provides an overview of various modifica-

tions of the generic data-hiding problem studied so far. These

modifications range from system attacks to problems such

as steganography, authentication, fingerprinting, and media

forensics, to information-theoretic duality issues.

A. System Attacks

In Section X we have alluded to the attacks that exploit the

code structure. To guard against such attacks, the embedder

and decoder need to use randomized codes, indexed by the

secret key . In this subsection we briefly discuss additional

attacks in which the attacker exploits weaknesses in the com-

munication protocol.

Sensitivity Attacks [124]–[126]. If the attacker has unlim-

ited access to the decoder, he could iteratively modify the

signal and monitor the decoder’s response until he is able

to force an incorrect decision. The main application studied

so far has been a copyright protection problem, in which the

receiver makes a binary decision (watermark present or ab-

sent). The motivation for the attacker to cause an incorrect

decision might be, for instance, illegally playing a water-

marked CD or DVD. Can the attacker do better than using

a brute-force approach (which would be infeasible if the key

space is large)? The answer is “yes” for a basic spread-spec-

trum scheme [125] but unknown for more complex schemes.

Copy Attacks [127], [128]. Here the attacker illegally em-

beds a watermark derived from one document into a new doc-

ument. For instance, if the auxiliary document is an image

marked using an LSB embedding technique, the LSB plane

is simply copied to the new image (replacing the original

LSB plane). The attacker can then claim ownership of the

new document. The copy attack is generally effective against

nonrobust methods which embed information in perceptu-

ally insignificant components of a signal. For a more elabo-

rate example, consider the following attack against a textured

image: replace textured patches with similar patches taken

from other images (e.g., replace a grassy patch with another

grassy patch, etc.). It appears to be harder to develop an ef-

fective copy attack against robust watermarking methods, in

which watermark and content cannot be easily separated.

Ambiguity Attacks. The main application is proof of own-

ership [129]. The attacker creates a forgery: a fake original

host , together with a fake watermark (indexed by a fake

message and a forged key ). He claims to have produced

the disputed marked signal using . This at-

tack is successful if he can create such a forgery and the de-

coder returns . We have assumed here that

and are fixed. Such attacks have been successful against

nonblind spread-spectrum watermarking systems [129] and

against some public spread-spectrum systems [4]. To guard

against such attacks, one needs , to be one-way functions,

in the cryptographic sense of the word: it should be compu-

tationally very hard to create a forgery that matches .

Protocol Attacks. The ambiguity attack is an example of

a protocol attack, in which the attacker does not remove the

watermark but makes it impossible for the document owner

to prove ownership. Other protocol attacks are described in

[130]–[132].

B. Steganography

Steganography is a data-hiding problem, with the distin-

guishing feature that the marked signal should “appear” like a

normal unmarked signal. The problem of detecting the pres-

ence of hidden information is known as steganalysis.

If one needs to transmit only a few bits of information,

a foolproof steganographic method can be devised. Say the

transmitter (Alice) sends an image containing a message

0 1 (i.e., bits) to the receiver (Bob). Alice and Bob

have agreed upon the following code: will be decoded by

reading the LSBs at predetermined pixel locations in the

transmitted image. If Alice has access to a database of pho-

tographic images, all she has to do is to find one that will be

decoded as . Roughly speaking, the probability that an ar-

bitrary image satisfies this matching condition is 2 ; there-

fore Alice has to search through an expected number 2 of

images to find a match. The image Alice selects is a perfectly

natural one, and the steganalyzer (also called warden Willie

by analogy to a prisoner’s game [133]) is fooled.

The above method is computationally infeasible if the

length of the message sequence is large. For such appli-

cations, other steganographic methods must be devised.

The LSB embedding method of Section III was a simple

and popular method during the 1990s, the premise being

that changing the value of bits in the LSB plane does not

cause any visual degradation of the image. Unfortunately

LSB replacement produces unnatural statistical artifacts:

the LSB plane of a photographic image exhibits some small

but characteristic dependencies, and more significantly, de-

pendencies with higher-order bit planes as well. These ideas

are described in papers by Fridrich et al., who developed a

simple but surprisingly powerful algorithm (RS steganalysis)

to detect the presence of hidden information in the LSB

plane [134], [135].

Recently improved LSB steganographic methods have

been developed that can resist RS steganalysis, but these

new methods are themselves vulnerable to more advanced

steganalysis methods. Where does the cat-and-mouse game

stop?

Again, statistical detection theory provides a natural

and fundamental framework to answer this question [34],

[136]–[141]. The steganalyzer is essentially faced with

a binary choice: decide whether data are hidden or not.

Assume a statistical model (pdf ) for images or image

features is available. If the steganographic algorithm is also

known, the steganalyzer can infer the pdf for marked

images (or image features). Then the steganalyzer’s decision

is whether the observed signal was generated from or
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from . Based on this model, one can use detection-theo-

retic measures of discrepancy between pdf’s to bound the

steganalyzer’s ability to make the correct decision. If the two

pdf’s are identical, the steganalyzer has a 50\% probability

of error. When the two pdf’s differ, discrepancy measures

such as Kullback-Leibler distance or Chernoff distances may

be used to quantify the performance of optimal statistical

tests.

At the time of this writing, the theory is sound but difficult

to apply to practical problems because no universal statis-

tical image model is known. Therefore modifications of the

above techniques are required, e.g., developing universal de-

tectors [138], [141]. While these practical difficulties might

seem overwhelming for Willie, he still has the advantage

that he can select arbitrary image features and test them for

“naturalness.” Examples of this approach may be found in

[142]–[144].

C. Signature Verification

So far we have focused on coding problems, in which

the decoder knows that one of possible messages is

embedded in the data, and attempts to reliably decode the

message. As discussed in Section I-D, the problem is quite

different when the receiver must perform the simpler binary

decision: Is the received signal marked using a given signa-

ture or not? An application of this problem is signal

authentication, where the signal is declared authentic if the

mark is present [12]–[14], [145]. For convenience one can al-

ways assume that contains a special symbol indicating

the absence of any digital signature. In some applications, it

is known that either the test signature 1 is embedded,

or no signature at all is embedded; we may then simply write

1 .

If the goal is to detect any tampering of the data, a fragile

watermarking technique is often used. A rudimentary ex-

ample of a fragile watermarking code would be a LSB

method in which the LSB plane is a signature known to the

detector, and the detector declares an error if even one bit

in the LSB plane has been modified. (This method can be

easily defeated by an attacker; see [4] for examples of more

secure fragile watermarking schemes.)

To analyze the above problem as well as more general

signature verification problems involving admissible attacks

(e.g., transmission noise and/or desynchronization opera-

tions), we can define an appropriate class of channels

as in Section II. The block-diagram of the system is as in

Fig. 1, with suitable modifications. The receiver has access

not just to the degraded data and the key , but also to the

signature . The decoding function is

replaced with a binary decision rule taking values

in {0,1} and indicating the absence or presence of the tested

signature, respectively.

Given , the basic hypothesis testing setup is

for some
(11.1)

where and are respectively the “signature absent” and

“signature present” hypotheses. The challenge is to design a

good embedding code. The two possible error events at the

detector arefalse positives (deciding when is true) and

false negatives (deciding when is true). Unlike the

coding problems studied so far, it is often useful to trade off

one type of error against the other one.23 For any detection

test of the form24

(11.2)

by varying we obtain a curve giving the probability of true

positives versus the probability of false positives. This curve

is the receiver operating characteristic (ROC) [38] for the

detection test. If the ROC is nonconvex, it can be improved

(convexified) by randomizing .

It turns out that QIM codes are good verification codes as

well. The paper [145] contains the first application of QIM

to signature verification, with encouraging results in image

authentication applications. The special case 1

was analyzed in [13], [54].

The fundamental limits of signature verification schemes

with distortion constraints have been studied by Steinberg

and Merhav [18]. They proved that the detection problem

(11.1) is dramatically easier than the full decoding problem

(due to the small size of the decision space). They assumed

a class of distortion-constrained memoryless channels, as in

(7.4). For a normal decoding problem the receiver can re-

liably distinguish between 2 messages (where is ca-

pacity); for the signature verification problem, the receiver

can reliably identify as many as 2 signatures! A decision

region is associated with each signature ;

the detector decides when . The number of

all possible decision regions is doubly exponential in , and

so is the number of “good” decision regions.

D. Fingerprinting

In a typical fingerprinting problem, users receive a

marked copy of the same document. The mark is different for

each user. A user may try to remove his watermark, exactly

as in the basic watermarking problem. Some users could also

collude, combining their copies to produce a better forgery

(which will evade detection). For instance, they could “av-

erage” their copies in a variety of ways, they could add noise,

or they could try to crack the fingerprinting code. Realisti-

cally it may be impossible for many users to collude: the

maximum number of colluders may be much smaller than

. This is a reasonable assumption when the users are only

loosely acquainted.

The detection problem can be set up as ascertaining the

presence of all residual marks in the forgery, i.e., catching

all colluders. Unfortunately the number of combinations is

23The jMj hypotheses have equal probabilities in the coding problems.

24Note that H is a composite hypothesis [38], and unlike in simple hy-
pothesis testing, there is no guarantee in general that tests of the form (11.2)
have optimality properties.
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choose , which can be extremely large. The detection

problem is often formulated as catching only one of the col-

luders: there are only 1 hypotheses, and the probability

of getting caught is 1 , which can be large enough to deter

would-be forgerers.

From a communication standpoint, the problem is es-

sentially a multiuser version of the watermarking problems

considered so far, which involved one transmitter and one

receiver. The key paper by Boneh and Shaw [11] derives

a lower bound on the maximum number of colluders the

system can accommodate. The derivation is based on the

assumption of binary sequences as well as a marking as-

sumption under which the users do not flip bits at locations at

which their sequences coincide. The marking assumption is

not a natural one for media fingerprinting problem, because

it precludes some useful strategies by the colluders (such

as adding noise) and does not take distortion constraints

into account. Performance analyses have recently been

derived for media fingerprinting problems [146]–[150]. A

typical strategy for the colluders involves linear averaging of

their signals and addition of independent noise. The design

of fingerprinting codes is also an active area of research

[150]–[154].

E. Media Forensics

Data-hiding codes may also be constructed for the purpose

of extracting information about the attack channel. The con-

cept was studied by Kundur and Hatzinakos [14] under the

name of tell-tale watermarks. Examples of tell-tale water-

marks include the following.

• Semifragile watermarks. Here the receiver can make

three possible decisions: : no tampering took place;

: some acceptable degradation was introduced; :

anything else. The media is declared nonauthentic under

.

• Watermarks that convey information about which fre-

quency bands of the signal might have been distorted.

• Watermarks that convey information about which areas

of an image might have been distorted [60].

Security aspects of such codes have been studied in [4].

F. Duality Issues

We have seen that blind data hiding is a communication

problem with side information at the encoder. The problem

is the dual of a certain source coding problem with side in-

formation at the decoder; such problems have been studied

by Wyner and Ziv [56]. The duality aspects of both problems

have been studied in detail in [80]–[82].

XII. DATA HIDING IN IMAGES

This section illustrates the application of the theory to im-

ages. The main challenges are to identify perceptually sig-

nificant image components, resolve desynchronization issues

between encoder and decoder, and develop codes that can not

only cope with desynchronization but also with attacks such

as addition of colored Gaussian noise and image compres-

sion. To this end, we first apply the parallel-Gaussian channel

theory of Section VII-D to images [148]. Next we present a

practical, recently developed QIM method [68] and outline

its connection to the theory. This method represents the cur-

rent state of the art of published research in data hiding for

images—a line of research that started in 1999 and includes

[35], [63], [67], [68], [155]–[157].

A. Capacity Estimates

Several transforms, including the two-dimensional (2-D)

block DCT and the 2-D discrete wavelet transform [158]

decompose images into approximately independent compo-

nents that describe the local spatial-frequency contents of the

image. To simplify the presentation, we focus on the 2-D

block DCT using 8 8 blocks, which is the transform used

in the JPEG image compression standard. Each DCT coef-

ficient corresponds to one of 64 spatial frequencies. Let us

make the approximation that these coefficients are Gaussian

distributed (in fact, a Laplacian model would be more accu-

rate but that would not add any further insight to the expo-

sition here). We may then represent the image as a parallel

Gaussian channel, with 64 equal-size channels, each

corresponding to a different spatial frequency. The number

of samples per channel is equal to , the number of 8

8 blocks in the image ( 4096 for a 512 512 image).

We then compute empirical variances , 1 64, for the

DCT coefficients in that channel. A natural choice for the dis-

tortion metric is weighted squared error. The weighting fac-

tors are chosen to be inversely proportional to the square

of the default JPEG quantizer step sizes . With this choice,

noise with variance distribution is perceptually white.

Overall mean-squared distortion levels 10 and

50 are chosen such that the embedding distortion is just no-

ticeable, and the attack noise is noticeable.

The capacity limit , evaluated from Section VII-D, is

then equal to 0.01 bits per pixel. To correctly interpret this

number, we need to recall that is an asymptotic bound on

the rate of reliable transmission, achievable as tends to

infinity. Due to the limited number of host samples available

for embedding in each channel and to the limitations of the

codes used, we may need to transmit at a rate well below

to obtain a sufficiently low probability of bit error.

B. Practical Codes

The paper by Solanki et al. [68] shows how informa-

tion-theoretic concepts can be applied to practical appli-

cations of data hiding in images. The key ingredients of

their framework are: (1) control of local embedding dis-

tortion based on a perceptual image model, and (2) use of

erasures and errors correcting codes to handle attacks and

desynchronization problems between encoder and decoder.

They describe two schemes, respectively named entropy

thresholding (ET) and selective embedding in coefficients

(SEC). Either scheme can be used to embed thousands of

information bits into an 512 512 image and with-

stand various types of attacks, without incurring a single bit

decoding error.
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Here we describe their ET scheme. The image is parti-

tioned into 8 8 blocks, to which the block DCT is applied.

The energy (or -norm entropy) of each block is computed

(excluding the zero frequency component), and only those

blocks whose energy exceeds a predefined threshold are se-

lected for embedding. There are such blocks. Next,

DCT coefficients are selected at predefined positions (spa-

tial frequencies) within each block. Scalar QIM is then used

to embed a bistream into the sequence of selected coeffi-

cients. The quantizer step size for each coefficient is de-

termined from the standard JPEG quantization table, scaled

according to a predefined quality factor. The quantizer step

size represents a visually acceptable distortion level at that

frequency. The modified coefficients, together with

the remaining unmodified ones, are transformed back to the

image domain using the inverse 2-D block DCT.

This method implicitly defines parallel channels with

samples per channel, perceptual weight for

the squared-error distortion in channel , and an overall dis-

tortion level that is controlled by the predefined energy

threshold and quality factor.

The decoder computes the energy of each block to decide

whether data are hidden there. Observe that two kinds of in-

correct decisions can be made: incorrectly believing there are

hidden data in the given block (which is equivalent to in-

serting bits inside the sequence ) or the converse (effec-

tively deleting bits from the sequence ). To cope with

these insertions and deletions, should be the output of a

code that can correct a number of insertions and deletions,

and has the original information bit sequence as input. The

authors in [68] used a Reed–Solomon code, which is easily

implementable. To better cope with deletions and erasures

occurring in bursts (say due to cropping or tampering of parts

of the image), interleaving (randomized permutation) of the

information sequence is used. Interleaving distributes errors

and erasures more evenly across codewords.

The setup described above fits in the general framework

of Fig. 10, where plays the role of , and the information

bit sequence plays the role of the message . The lattice

is a cubic lattice, and the channel from to introduces

insertions and deletions.

An example presented in [68] is that of a Reed–Solomon

code with 2 symbols (alphabet size 128), length 128, and

dimension 32 (rate 1/4). There are 7 information

bits per symbol of the Reed–Solomon code and 32 sym-

bols per codeword. Using 14 DCT coefficients per

block, they map these 14 coefficients into two code sym-

bols. A 512 512 image contains 4096 8 8 blocks. This

yields 2 4096 128 64 codewords for the whole image.

The total number of embedded bits is therefore be 64

32 7 14 336, corresponding to a data-hiding rate

0.0547 bits/pixel. A fraction of the blocks fail the energy

threshold test (say one half), causing erasures at the encoder.

Nevertheless the information bits can be perfectly recovered

provided that 2 64 128 32 , where is the number

of erasures, and the number of errors.

A useful property of the decoding scheme is that it

provides information about the location of insertions and

Fig. 24. Tampered Lena image. Reproduced with permission from [68].

deletions. This is particularly useful if the image has been

tampered with; see Fig. 24 for an example taken from [68].

The ET scheme is inherently robust against JPEG

compression attacks. It should however be noted that

Reed–Solomon codes are not effective against additive

white Gaussian noise (AWGN). A classical coding ap-

proach to deal with that difficulty consists in using the

Reed–Solomon code as an outer code, following an inner

code matched to AWGN channels. The authors in [68]

did not pursue this approach, but their SEC scheme copes

with insertions, deletions, erasures, JPEG compression, and

AWGN attacks.

Recently the same authors have also demonstrated a

scheme that can resist print-scan attacks [157]. The attack

consists of printing the marked image and then rescanning it.

This process introduces nonlinearities, correlated high-fre-

quency noise, and some geometric distortions. The scheme

proposed in [157] applies QIM to the difference in phase of

adjacent spatial-frequency components of the image.

XIII. DISCUSSION

This paper has reviewed some basic theory for data

hiding, focusing on the fundamental roles of information

theory, coding theory, game theory, and signal processing.

The tradeoffs between embedding distortion, attack distor-

tion, embedding rate, and error probability can be derived

quantitatively, by application of basic principles. From a

qualitative standpoint, some of the most important conclu-

sions are the following.

• When the host signal is unavailable to the receiver (blind

data hiding), special embedding techniques must be de-

vised to achieve high communication performance. The

best methods known to date are based on the informa-

tion-theoretic concept of binning.

• Practical binning schemes have already been developed

based on this theory. They exhibit very good perfor-

mance under memoryless noise attacks.

• Spread-spectrum techniques continue to be popular but

have severe theoretical limitations for blind data hiding.
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• Much research is still needed to design practical binning

schemes that are reliable under complex desynchroniza-

tion attacks. Likewise, research on secure data-hiding

codes is still in its infancy. Sophisticated attacks should

be expected in presence of an adversary, but need not be

a concern in applications where no adversary is present.

The last ten years have seen rapid improvements in the

understanding of this field and in the design of good codes.

They have also seen the emergence of a plethora of new po-

tential applications. Developing good, practical data-hiding

codes that can resist sophisticated attacks appears to be a

hard task. However, research is now at a point where state-of-

the-art data-hiding codes have a valuable potential role to

play in applications requiring a low-to-medium level of se-

curity as well as specialized applications involving private

networks. While such applications differ in their specifics,

solutions can be sought based on the general principles and

methodology surveyed in this paper.

APPENDIX A.

CODING THEORY BASICS

The theory and practice of watermarking is closely related

to coding-theoretic notions. In this appendix we give a short

introduction to some of the relevant basic concepts of coding

theory.

The primary goal of coding is to represent signals as

robustly as possible with respect to a given set of channel

distortions. In the simplest case we might consider a binary

communication scheme with the goal of transmitting binary

digits over a channel. The channel may be modeled as a

probabilistic device which reproduces the input symbol zero

or one with probability 1 at the receiver and changes a bit

either from one into zero or one into zero with probability

. This simple channel, usually referred to as the binary

symmetric channel, poses the challenge that any sequence

of transmitted bits may be altered into another sequence

observed at the receiver. Thus, if we, for example, transmit

a sequence 0 000 000 we may receive a sequence

0 000 100 containing one error. Assume now the

receiver knows that out of the possible 2 sequences of

length seven, the transmitter only transmitted one of the 16

sequences

0 000 000 1 011 000 0 101 100 0 010 110

0 001 011 1 001 110 1 000 101 1 100 010

0 110 001 1 111 111 0 100 111 1 010 011

1 101 001 1 110 100 0 111 010 0 011 101

It is easy to verify that the received sequence differs from

the all-zero sequence in only one position, while it differs

from any other sequence in at least two positions. Provided

we can assume that fewer errors are more likely than more

errors (equivalent to the condition 1/2) we can conclude

that the most likely transmitted sequence has been the all-

zero sequence and that a single error occurred. Indeed, any

other explanation for the observed sequence would imply

at least two errors.

Formalizing the above setup we define a binary code of

length simply as a collection of binary sequences of length

, i.e. 0 1 . A code is coarsely characterized by its

size , i.e. the number of codewords in the code and

the so-called minimum Hamming distance of the code

defined as

The size of a code relates to the data rate , i.e. the number

of bits that we can transmit in the channel uses, as

1 . The significance of the parameter is that

a code with minimum Hamming distance at least 2 1 is

guaranteed to correct errors in a channel. It is easily verified

that the above 16 sequences constitute a code of length seven,

size 16, and minimum Hamming distance three. Indeed, we

are guaranteed to be able to correct one error.

In practice it would be completely infeasible to keep track

of codes by lists of codewords; additional structure on codes

is required in order to keep their description small. In the

example above it can be seen that the 16 codewords can be

added as vectors over the binary field 0 1 using the

familiar XOR sum yielding another codeword in . Thus the

code forms a vector space over and it may be described

by a generator matrix for this vector space. Any code with

this property is called a linear code. It is easily verified that,

indeed, the code may be described as the set of linear com-

binations of rows of the generator matrix

Given two words and in , we can define an inner

product where the sum corresponds to a

sum in (which means it is computed modulo 2). With this

definition we can define a dual space to any vector space as

0

The space , that is dual to , is itself a vector space

generated by the rows of a so called parity-check matrix

for . This name reflects the fact that membership in can be

tested by verifying that all parity-check equations (i.e. inner

products of a given vector formed with rows of the parity-

check matrix) evaluate to zero. For the above code a parity

check matrix is given as
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Indeed, it is easily verified that equals zero for all

and rows of . It is worthwhile pointing out that the

space itself constitutes a linear code with eight codewords

and minimum Hamming distance four. (The reader is invited

to check this.)

Linear codes are one of the cornerstones of coding theory

and are being used throughout modern communications and

a fair deal is known about the tradeoff between the three pa-

rameters , and [36].

In Euclidean space a binary, linear code gives rise to

point sets via the simple embedding that associates

real-valued vectors with codewords via the

mapping 1 . It can be verified that the point sets

obtained in this way from a binary code , have

minimum squared Euclidean distance 4 . For the

connection between coding theory and codes and lattices in

Euclidean space we refer to [78].

APPENDIX B.

VECTOR QUANTIZATION BASICS

The problem of VQ is closely related to the problem of

compressing data with a maximal distortion guarantee. As-

sume we observe the output of a source that produces vectors

of length and let be such a vector. Moreover, assume we

are given a collection of vectors which are

to be used for the VQ task. The goal of VQ is to find the word

that is “closest” to the vector . Once this word is found

it suffices to transmit the index of this work in the codebook

. This can be accomplished at an expense of transmitting

bits, which is usually much less than the number of

bits required for a precise reproduction of .

In order to give a concrete example consider again the code

consisting of the 16 sequences

0 000 000 1 011 000 0 101 100 0 010 110

0 001 011 1 001 110 1 000 101 1 100 010

0 110 001 1 111 111 0 100 111 1 010 011

1 101 001 1 110 100 0 111 010 0 011 101

Moreover assume a binary source produces a sequence

0 100 010 . In order to perform the VQ task with re-

spect to a Hamming distortion, i.e. we would like to repro-

duce with a codeword at minimum Hamming distance,

we choose 1 100 010 . Indeed, the Hamming distance

between and is only one. We then may use four bits

to transmit which of the 16 codewords is the reproduction

vector causing least distortion. In fact it is an easy exercise

to check that any binary vector of length seven is at distance

of at most one from one of the codewords in . Thus using

the above code we have achieved a compression ration of

7/4 at the expense of a reproduction vector of Hamming dis-

tance at most one from the source sequence.

While the above example is meant to exemplify the idea

of VQ, we would like to emphasize that it is this simple prin-

ciple underlying all of data compression. Indeed, given an

image in raw data format a compression according to the

JPEG standard follows the same ideas: A source output de-

scribed by a number of bits in e.g. TIFF format is represented

by a reproduction image that is as similar to the original

image. The JPEG file can be interpreted as the index of the

reproduction image in the codebook that consists of all pos-

sible JPEG encoded images. The involved techniques are of

course far more sophisticated, but at the core all compression

algorithms can be identified as VQs with specific codebooks

and distortion constraints.25

In the main body of this paper we often resort to somewhat

idealized problem settings. In particular, the VQ of Gaussian

sources plays a prominent role. The natural codebooks for

VQ are lattice quantizers, i.e. the set of reproduction vectors

for the quantization task are given by (a subset) of lattice

points. We would like to stress that the spirit of our results

does not hinge around this idealized setting. In fact any VQ

for realistic data may in principle replace the lattice quantizer

in our setting. While analytic expressions are then hard to

find, the basic concepts remain unchanged.

APPENDIX C.

DETECTION THEORY BASICS

The most basic detection problem is deciding which of two

hypotheses and is true. For instance, one may need

to decide whether the observed data are noise only

or signal plus noise . There are two types of errors:

deciding in favor of when is true (often called false

alarm, or false positive), and conversely, deciding in favor of

when is true (often called miss, or false negative). The

statistical test takes the form

(C.1)

where the notation indicates that is a random vector

with probability distribution . The detector often forms a

test statistic , a function of the data, and compares it with

a threshold . If , the decision is ; if , the

decision is . If , the decision may be randomized.

Optimal detection rules can often be derived by exploiting

knowledge of the statistics of . For instance, if both hy-

potheses are equally likely, the detector that minimizes prob-

ability of error is the maximum likelihood (ML) detector [38]

1 (C.2)

where is the likelihood ratio.

The probability of error for the test (C.2) is26

1

2
(C.3)

25In many practical compression schemes the distortion constraints are
given implicitly by the source coding algorithm.

26The integral is a sum if Y is a discrete set.
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Fig. 25. Testing between two statistical hypotheses.

Fig. 25 depicts the distribution of the test statistic (here the

likelihood ratio) under hypotheses and . The two types

of error are shown in the figure. is the average of these two

error probabilities, and .

In some simple cases, can be evaluated explicitly. For

instance, if the rival pdf’s are Gaussian, 0 and

, then 2 , where is

the normalized distance between the two pdf’s, and

2 is the function. Observe that

1/2 as 0, i.e., detection becomes completely unreliable.

For most other problems, including those commonly en-

countered in practice, where is large or even moderately

large, exact calculation of the -dimensional integral for-

mula (C.3) for is intractable. In many cases though, good

approximations can be derived (and bad approximations as

well!).

Consider the core problem encountered in this paper,

where all components of are mutually independent

under as well as , with respective pdf’s and . Then

we have and .

Taking the logarithm of both sides of (C.2) we obtain

0 (C.4)

The mean of the test statistic is equal to

under and to under , where

denotes Kullback-Leibler diver-

gence. Denote by the variance of

under (in many problems, this is also the variance of

under ). Then, analogously to the

definition of the normalized distance in the Gaussian case

above, one can define ,

which is called deflection coefficient, or generalized SNR.

While is sometimes useful as a rough measure of sepa-

ration of the rival pdf’s, it is not necessarily a meaningful

predictor of detection performance. For instance, if the

rival pdf’s have disjoint supports, perfect discrimination

is possible 0 even though is finite. The often

encountered approximation 2 is meaningful

only when the test statistic has Gaussian tails.

For large values of , excellent approximations to can

be obtained based on large-deviations theory. vanishes

exponentially fast with . The errors are due to rare events

whose probability is determined by the tails of the rival

pdf’s. The tails could be much heavier or much lighter

than Gaussian tails. For large , the crude approximation

2 becomes overly optimistic or pessimistic,

respectively, by many orders of magnitudes.

The following upper bound on holds for any :

1

2

where

(C.5)

is the so-called Bhattacharyya coefficient, or Bhattacharyya

distance between the pdf’s and . In the problems en-

countered in this paper, and satisfy a symmetry prop-

erty, and the bound is tight in the exponent

1

Hence is a more useful predictor of detection per-

formance than is GSNR. It is easy to compute, and can be

used to determine how large should be to guarantee a pre-

scribed probability of error.
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