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Data hiding is the process of embedding information into a noise-tolerant signal such as a piece of audio,
video, or image. Digital watermarking is a form of data hiding where identifying data is robustly embedded so
that it can resist tampering and be used to identify the original owners of the media. Steganography, another
form of data hiding, embeds data for the purpose of secure and secret communication. This survey summarises
recent developments in deep learning techniques for data hiding for the purposes of watermarking and
steganography, categorising them based on model architectures and noise injection methods. The objective
functions, evaluation metrics, and datasets used for training these data hiding models are comprehensively
summarised. Finally, we propose and discuss possible future directions for research into deep data hiding
techniques.
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1 INTRODUCTION

Data hiding is the process of hiding some form of information within another media. This could
encompass everything from encoding a secret message into an existing piece of text, to embedding
audio �les into a digital image. As digital assets becomemore diverse and ubiquitous, the importance
and variance in data hiding applications will only grow [47]. The data hiding process has become
crucial in the modern era with the increasing prevalence of digital communication and multimedia
data. Digital services require secure communication across all mediums, and digital intellectual
property (IP) ought to be protected from theft and misuse.

Formally, data hiding can be separated into three categories: watermarking, steganography, and
cryptography [72]. This survey concentrates on the former two —watermarking and steganography.

Digital watermarking employs data hiding techniques in order to embed some form of identi�ca-
tion (ID) into a piece of media that communicates the owners of the intellectual property (IP). This
way, if an adversary attempts to copy or modify the original piece of media, the ID can be extracted
and the owners can thus be identi�ed. The primary application of digital watermarking is for the
authentication of digital assets, however, the process also has uses for licences and identi�cation
[30], digital forensics [9], and data protection in smart cities [22, 58]. Digital watermarking is not
only useful for marking images and documents, but also for real-time audios and videos [33, 40],
languages [1], as well as chip and hardware protection in electronics [63].
Steganography is similar to watermarking in that data is embedded into a piece of media.

However, instead of being a form of ID denoting the creator of the artefacts, the data is a secret
message. This secret message should be transmitted without being detected, intercepted, or decoded.
Steganography di�ers from cryptography in that its main goal is to keep the format of the cover
media readable and not distorted after hiding data within it [37]. The public should still be able
to see what the cover media originally was without being able to detect the embedded messages.
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2 Byrnes et al.

Steganography is applied in several industries including the medical, military, and multimedia
�elds, and is used wherever there is a need for secret communication with security purposes [43].

Fig. 1. A hierarchical diagram showing di�erent methods for classifying deep learning-based data hiding
techniques. Model architectures can be separated into CNN-based and GAN-based structures. A�ack training
refers to the method for organising and generating a�acks during model training. Blindness refers to the
functionality of the data hiding method, further explained in Section 2.

In the past, data hiding has been performed using specialised algorithms, which are classi�ed
based on the domain in which they operate — based on spatial or frequency. Spatial domain
techniques directly embed data into the cover media by manipulating bit streams or pixel values.
They are computationally simple compared to other techniques, and hence are more susceptible to
removal and distortion from adversaries. Frequency domain techniques rely on the manipulation of
frequency coe�cients in the signal medium. These techniques achieve a higher degree of robustness
to attacks, but are more computationally complex [47]. The basic idea is that high frequency areas
of a signal are more suited for data embedding. Frequencies can be manipulated and partitioned
into high/low areas in a number of di�erent ways, after which the secret data is embedded into the
lower frequency areas to optimise embedding quality. Spatial and frequency domain techniques can
also be combined for a more robust strategy [47]. The combination of spatial and frequency-based
methods is the basis of adaptive steganography methods. They can be applied when the senders
and receivers of the data are aware of the attacker’s detection mechanism, and so will modify their
methods to prevent those attackers from corrupting or interfering with the message [13].

The drawback of these traditional algorithms is that their applications are narrow, and the creators
of these algorithms require expert knowledge of the embedding process. Particular techniques
are useful for certain limited tasks, and the growing sophistication of watermark removal and
degradation attacks means that the e�ectiveness of these algorithms may be compromised in the
near future [23, 44]. New advancements in the �eld of deep learning span many industries due to
the strong representation abilities of deep neural networks. In the �eld of data hiding, deep learning
models provide adaptable, generalised frameworks that can be used for a variety of applications in
watermarking and steganography. Currently, most works in this area concentrate on image-based
data hiding, and these are the works that will be compared in this survey. These machine learning
models are able to learn advanced embedding patterns that are able to resist a much wider range of
attacks with far more e�ectiveness than traditional watermarking or steganography algorithms [44].
With further research [1, 59, 85, 96], there is potential and highly critical to develop generalised
frameworks for data hiding that can work with a range of cover media types to robustly embed
data and provide highly secure content authentication and communication services. The advantage
of the deep learning approach is that networks can be retrained to become resistant to new types

J. ACM, Vol. 1, No. 1, Article . Publication date: July 2021.



Data Hiding with Deep Learning: A Survey Unifying Digital Watermarking and Steganography 3

of attacks, or to emphasise particular goals such as payload capacity or imperceptibility without
creating specialised algorithms for each new application [96]. An additional advantage of deep data
hiding techniques can enhance the security of the embedded messages. The high non-linearity
of deep neural models makes it virtually impossible for an adversary to retrieve the embedded
information [44]. Compared to traditional methods, deep learning-based methods are not only
more secure and adaptable to di�erent applications, but they also o�er enhanced robustness to
adversarial attacks and distortions. They are also able to achieve more imperceptible forms of data
embedding.

The data hiding process, consisting of message embedding and extraction, maps intuitively onto
the encoder-decoder network architecture, wherein the learning model is partitioned into two
networks. In these models, an encoder network is trained to embed input messages to images.
The images are then subjected to some forms of attack through distortion layers, and the decoder
network must then extract the original message from the distorted image. These distortions can
include blurring, cropping, compression, etc. The objective of the network training is to minimise an
objective function, which accounts for the di�erences between the cover image and encoded image,
as well as the di�erences between the embedded and extracted input message. The �rst papers
exploring the capabilities of neural network technology for data hiding were released in 2017, and
were based on convolutional neural networks [6, 44]. In recent years, GAN-based approaches have
gained traction, popularised by the HiDDeN model [96], which was the �rst end-to-end trainable
model for digital watermarking and steganography. These deep learning models employ di�erent
message embedding strategies in order to improve robustness, such as using adversarial examples,
attention masks, and channel coding. The continued development of deep learning-based data
hiding models will greatly improve the e�ectiveness and security of digital IP protection, and secure
secret communication.

Since this is a relatively new area of research, current surveys on data hiding primarily concen-
trate on traditional algorithms. There are existing works examining deep learning-based techniques
for steganography and cryptography [38, 45], but there is a lack of works examining deep water-
marking techniques. There is an existing survey looking at deep learning-based watermarking and
steganography [89]; however, a comprehensive survey regarding deep data hiding models unifying
digital watermarking and steganography is still lacking. To the best of our knowledge, ours is the
�rst survey to examine deep learning techniques for deep learning-based digital watermarking and
steganography that includes the largest range of recent works. As this research area continues to
expand, it is important to summarise and review the current methods. The aim of this survey is to
systematically categorise and discuss existing deep learning models for data hiding, separated based
on applications in either watermarking or steganography, as well as presenting future directions
that research may take. The key contributions of the survey are listed as follows:

• This survey systematically categorises and compares deep learning-based models for data
hiding in either watermarking or steganography based on network architecture and noise
injection methods.

• We comprehensively discuss and compare di�erent objective strategies, evaluation metrics,
and training datasets used in current state-of-the-art deep data hiding techniques.

• We also presents a wide range of future directions for deep learning-based data hiding
research.

Paper Collation. In this survey, we have collected, analysed and discussed over 30 papers based on
the search results of Google Scholar1 and DBLP2 with the keywords data hiding, digital watermark-
ing, steganography, deep neural networks, and generative adversarial networks (GANs). Those papers
were selected from a plethora of top-tier Security and Privacy, Computer Vision and Machine
Learning conferences and journals.

1https://scholar.google.com/
2https://dblp.org/
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Organization of the Survey. In the following sections, our survey will cover recent advanced
deep learning based data hiding methods from two forms: digital watermarking and steganography.
Section 2 gives the problem formulation of data hiding. Section 3 highlights the architecture of
data hiding and o�ers a comprehensive review of deep learning based data hiding techniques. This
survey also summarises noise injection techniques in Section 4, objective functions in Section 5,
evaluation metrics in Section 6, and existing datasets in Section 7. Finally, open questions and
future work for deep learning based data hiding task are discussed in Section 8. Section 9 concludes
the paper.

2 PROBLEM FORMULATION OF DATA HIDING

When we evaluate the e�ectiveness of data hiding techniques, there are many factors that should
be considered. The three most important are capacity, how much information can be embedded
into the cover media, imperceptibility, how easy the data is to detect, and robustness, how
resistant the data is to attacks. Here, attacks refer to any alterations made to the cover media with
the intent to degrade or remove the embedded data. There is an implicit trade-o� between these
three aforementioned characteristics. For instance, if there is a high payload capacity, then the
message will be easier to detect, resulting in a lower level of imperceptibility. Similarly, improving
robustness against attacks can potentially decrease both payload capacity and imperceptibility,
since there is added redundancy to the encoded image that allows it to resist distortions.

In digital watermarking, robustness is generally favoured over secrecy because the ability to resist
attacks and distortions is more important than the watermark’s imperceptibility. Conversely, in
steganography, imperceptibility is favoured since the highest priority is that the message remains a
secret. This relationship is illustrated in Figure 2. Due to the adaptable nature of deep learning-based
approaches, the trade-o� between these metrics can be explicitly controlled by the user, and the key
properties of robustness and imperceptibility underpin the objective of the deep learning system.

Fig. 2. A figure showing the trade-o� between the three primary data hiding properties; robustness, imper-
ceptibility, and capacity, as well as which data hiding applications favour each property over the others.

2.1 Digital Watermarking and Steganography Terminology

The basic watermarking process consists of an encoding and decoding process. The encoder �
receives the cover media � and message to be hidden " , and outputs an the encoded media � ′

such that: � (�,") = � ′. Then the decoder receives the encoded media as input and extracts the
message " ′, such that: � (� ′) = " ′. In a robust implementation, " and " ′ should be as similar
as possible in an e�ective strategy. Similarly, maximising the imperceptibility property is done
by minimising the di�erence between � and � ′. Types of data hiding can be classi�ed based on a
variety of properties as follows [47]:

• Blindness: related to how much information is required to extract the original watermark
from the encoded media. Blind techniques do not require the original cover media or original
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watermark to extract the watermark, and are the most practically useful. Semi-blind tech-
niques require only the watermark and not the original cover media to extract the watermark
from the encoded media.Non-blind techniques require both the cover media and watermark
in order to extract the watermark.

• Fragility: related to how the watermark reacts to attacks and distortions applied to it. Fragile
watermarks are designed to show all attacks applied to it so that, when extracted, it is possible
to verify which attacks have been applied to the media. This is useful when verifying the
integrity of themedia. Semi-fragilewatermarks are not robust against intentional distortions
such as warping and noise �ltering that attempt to degrade the watermark, but are robust
against content-preserving distortions such as compression and enhancement. Therefore, it
can be used to trace any illegal distortions made to the media.

• Visibility: whether the watermark is visible to the human eye.
• Invertibility: whether the watermark can be removed from the cover media once embedded.
Invertible watermarks can be removed and non-invertible watermarks cannot.

• Robustness: the ability of the watermark to remain unchanged when attacks are applied
to it. In practice, fragile techniques are often used in conjunction with robust techniques,
so that one watermark will remain unaltered and the other can be used to trace the attacks
applied to the media.

• Security: determines how di�cult it is for an adversarial party to extract the data from the
cover image.

3 DEEP LEARNING-BASED DATA HIDING TECHNIQUES

Deep learning-based data hiding models utilise the encoder-decoder network structure to train
models to imperceptibly and robustly hide information. They present an advantage over traditional
data hiding algorithms because they can be retrained to become resistant to a range of attacks,
and be applied to di�erent end-use scenarios. Deep learning methods negate the need for expert
knowledge when crafting data hiding algorithms, and improve security due to the black-box nature
of deep learning models.
The following section discusses deep learning-based data hiding techniques separated into

techniques focused on watermarking and steganography. The detection and removal mechanisms
are then discussed at the end of this section. The classi�cation of deep learning-based data hiding
techniques detailed in this section is outlined in Figure 3. It should be noted that CNNs incorporating
adversarial training are di�erent to GAN-based methods. Adversarial training in this instance refers
to the use of trained CNNs for noise injection during the attack simulation stage, while GAN-based
methods incorporate a discriminator to scrutinise encoded and cover images to improve embedding
imperceptibility [60].

3.1 Introduction to Deep Learning-based Data Hiding Architectures

Currently, the majority of new watermarking models use an encoder-decoder architecture based
on Convolutional Neural Networks (CNNs). A simple diagram showing the deep learning-based
data hiding process can be found in Figure 4.
In these models, the encoder embeds data in a piece of cover media; this encoded media is

subjected to attack simulation, and then the data is extracted by the decoder network. Through the
iterative learning process, the embedding strategy becomes more resistant to the attacks applied
during simulation, and the extraction process improves the integrity of the extracted data. The
advantage of this technique over previous traditional algorithms is that they require no expert
knowledge to program, and can simply be retrained for di�erent applications and attack types
instead of needing to be designed from scratch. The system exists as a black-box with high non-
linearity where the intricacies of the embedding system are unknown and impossible to ascertain.
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6 Byrnes et al.

Fig. 3. A hierarchical diagram showing the classification of deep learning-based data hiding models presented
in this survey. ‘Adversarial training’ refers to a�ack simulation during training, which includes noise-based
a�acks generated by a trained CNN.

Fig. 4. A diagram showing a general encoder-decoder architecture for digital watermarking.

This makes deep learning-based methods highly secure, as well as adaptable to di�erent end-use
scenarios.

Some variations of the simple CNN encoder-decoder approach shown above include convolutional
auto-encoders, and CNNs with adversarial training components. The U-Net CNN architecture is
common in steganography applications due to image segmentation abilities.

Many models adopt the Generative Adversarial Network (GAN) structure [24]. The GAN frame-
work consists of a generative model and a discriminative model. In deep data hiding, the dis-
criminator network is given a mixture of encoded and unaltered images and must classify them
as such. Throughout the learning process, the generative model improves in its data embedding
capabilities, producing highly imperceptible examples, while the discriminative model improves
at identifying encoded images. The end point of training is reached when the discriminator can
only identify legitimately encoded images 50% of the time – it is making random guesses. The use
of discriminative networks can greatly increase data imperceptibility, and is therefore useful for
steganography as well as watermarking applications. A simple diagram of a GAN-based deep data
hiding model can be found in Figure 5.

There are also further variations of the GAN framework, including Wasserstein GANs (WGANs)
and CycleGANs. The CycleGAN architecture is useful for image-to-image translation, and includes
two generative and two discriminative models. The primary bene�t of CycleGANs is that the
model can be trained without paired examples. Instead, the �rst generator generates images from
domain A, and the second from domain B, where each generator takes an image from the other
domain as input for the translation. Then, discriminator A takes as input both images from domain A
and output images from generator A, and determines whether they are real or fake (and vice versa
for discriminator B). The resulting architecture is highly useful for translating between images. A
simple diagram of a CycleGAN framework used for data hiding can be found in Figure 6.
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Fig. 5. A diagram showing the discriminator component added to the general encoder-decoder framework
shown previously. The cover and encoded image are input to the discriminator, which then learns to distinguish
between watermarked and non-watermarked instances.

Fig. 6. A diagram showing the CycleGAN architecture adopted in [87]. The image discriminator receives
encoded and unaltered images and must decide whether it has been encoded with a secret image, similar
to the previous implementations. However, the decoding generative model receives both cover images and
encoded images as input and a�empts to extract a watermark. The ‘generated message’ is a watermark
generated from an unaltered cover image. The message discriminator must decide whether the input messages
are legitimate watermarks, or simply random generated images from the unaltered cover media.

3.2 Deep Learning-based Watermarking Techniques

In this section, current deep learning models for digital watermarking are categorised based on
their network architecture design. The most important features of deep watermarking models
is robustness, however, the adaptability of the framework is also important. Having controls
to in�uence the trade-o� between robustness and imperceptibility is hugely bene�cial, since
emphasising imperceptibility opens opportunities for applications in steganography.

3.2.1 Encoder-decoder Framework. Due to the encoding and decoding tasks central to the data
hiding process, the encoder-decoder deep learning framework is well suited for data hiding models.
The encoder and decoder networks incorporate CNNs, which are used in a variety of applications
such as detection, recognition, and classi�cation due to their unique capabilities in representing
data with limited numbers of parameters. The layers in the CNN learn non-linear, complex feature
sets, representing the inputs and outputs to the network using weight sharing mechanisms. The
following deep watermarking models adopt the encoder-decoder framework without including a
discriminator, which characterises GAN-based architectures [4, 44, 49, 60, 64, 95]. A simple diagram
of the encoder-decoder deep watermarking structure can be found in Figure 4.
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Auto-encoder based Model. The encoder-decoder architecture is a general framework and
auto-encoder is a special case of the encoder-decoder structure. However, auto-encoder usually
used in unsupervised-learning scenarios by reconstructing the inputs. The potential of the CNN-
based encoder-decoder frameworks for digital image watermarking was �rst explored in [44],
which uses two traditional Convolutional Auto-Encoders for watermark embedding and extraction.
Auto-encoder based CNNs were chosen based on their uses in feature extraction and denoising
in visual tasks, such as facial recognition and generation, and reconstructing handwritten digits.
The intuition was that the auto-encoder CNN would be able to represent the watermark input in a
form that was highly imperceptible when encoded within the cover image. This early CNN-based
method applies two deep auto-encoders to rearrange the cover image pixels at the bit level to
create a watermarked image. The technique was found to outperform the most robust traditional
frequency domain methods in terms of both robustness and imperceptibility. Although promising
for the future of deep watermarking, this technique is non-blind, and therefore not practically
useful.

Robust and blind digital watermarking results can be achieved using a relatively shallow network,
as was shown by WMNet [64]. The watermarking process is separated into three stages: watermark
embedding, attack simulation, where the CNN adaptively captures the robust features of various
attacks, and updating, where the model’s weights are updated in order to minimise the loss function
and thereby correctly extract the watermark message. Embedding is achieved by increasingly
changing an image block to represent a watermark bit. The model is trained to extract watermark
bits from the image blocks after attack simulations have been applied.

The back-propagation embedding technique utilised in WMNet [64] used only a single detector
network, which was found to cause performance degradation if the gradient computation in the
back propagation operation was a�ected by batch normalisation (BN). This de�ciency was improved
by adding an auto-encoder network as well as visual masking to allow �exible control of watermark
visibility and robustness. The auto-encoder network was added to the encoder, and subsequently
shorted time taken for both embedding and detection at the encoder because the feed-forward
operation is generally much faster than back-propagation. These improvements were published in
a follow-up paper [65].

Robustness Controls and Input Preproccessing. Subsequent works after the aformentioned
early techniques in [44, 64] focused on generalising the watermarking process for multiple applica-
tions. Mechanisms such as robustness controls to in�uence the robustness/imperceptibility trade-o�
were introduced to gear models toward both watermarking and steganography applications, and
mechanisms such as host and watermark adaptability were developed to pre-process inputs.
A blind and robust watermarking technique was achieved using the CNN-based system [95].

The aim of this model is to generalise the watermarking process by training a deep neural network
to learn the general rules of watermark embedding and extraction so that it can be used for a
range of applications and combat unexpected distortions. The network structure is characterised
by an invariance layer that functions to tolerate distortions not seen during network training. This
layer uses a regularisation term to achieve sparse neuron activation, which enhances watermark
robustness and computational e�ciency. The layer also includes a redundancy parameter that can be
adjusted to increase levels of redundancy in the resulting image, giving the model a higher tolerance
of errors and increasing robustness. The primary aim of these features is to generalise watermarking
rules without succumbing to over�tting. Over�tting was tested by generating synthetic images
as extreme examples not seen during training. These included blank images of intense red, green,
and blue – the most di�cult to watermark – and the model still showed good results under these
conditions. The model was compared two auto-encoder CNN methods [44, 64], and was found to
achieve greater robustness due to the new features it adopted.

ReDMark [4] uses two Full Convolutional Neural Networks (FCNs) for embedding and extraction
along with a di�erentiable attack layer to simulate di�erent distortions, creating an end-to-end
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training scheme. ReDMark is capable of learning many embedding patterns in di�erent transform
domains and can be trained for speci�c attacks, or against a range of attacks. The model also
includes a di�usion mechanism based on circular convolutional layers, allowing watermark data to
be di�used across a wide area of an image rather than being con�ned to one image block. This
improves robustness against heavy attacks, because if one image block is cropped out or corrupted,
the watermark can still be recovered. The trade-o� between robustness and imperceptibility can be
controlled via a strength factor that can in�uence the pattern strength of the embedding network.

The watermarking model developed by Lee et al. [49] uses a simple CNN for both embedding and
extraction, without using any resolution-dependent layers. This allows for host image resolution
adaptability – meaning that images of any resolution can be used as input to the system to be
watermarked. There is an image pre-processing network that can adapt images of any resolution for
the watermarking process. There is also watermark pre-processing, meaning the system can handle
user-de�ned watermark data. This is achieved by using random binary data as the watermark that
is updated at each iteration of training. The model also adopts a strength scaling factor, which
allows for controllability of the trade-o� between robustness and imperceptibility. The method
showed comparable, if not better, performance compared to ReDMark [4], and two generative
adversarial-based models [55, 96].

Adversarial Training. A further improvement to the CNN-based encoder-decoder framework
was made by adopting trained CNNs for attack simulation. While many other works use a �xed
pool of attacks or a di�erentiable attack layer, using a trained CNN to generate attacks can greatly
improve robustness, and introduces an adversarial component to model training. The focus of the
Distortion Agnostic (DA) model [60] was to directly improve the HiDDeN model [96], primarily
through adding robustness to the watermarking system in situations where the model is trained on
a combination of distortions rather than one predetermined type. Instead of explicitly modelling
di�erent distortions during training from a �xed pool, the distortions are generated via adversarial
training by a trained CNN. This technique was found to perform better in terms of robustness
than HiDDeN [96] when distortions not seen during training were applied to images. The DA
framework also incorporates channel coding, a means of detecting and correcting errors during a
signal transmission, to add an additional layer of robustness to images by injecting extra redundancy.
The watermark message is initially fed through the channel encoder to add redundancy before
being input to the encoder model. Similarly, prior to extraction the redundant watermark message
is input to a channel decoder to retrieve the �nal message.

3.2.2 Generative Adversarial Networks. The second primary approach for deep watermarking
uses GANs, building upon the aformentioned techniques. Current models that adopt the GAN
framework include [55, 83, 87, 90, 96]. Many of the following models also use CNNs within their
network architecture, but their use of the generative and discriminative components of the GAN
framework set them apart from the aforementioned implementations. A simple diagram of the
GAN framework used for data hiding can be found in Figure 5.

The �rst end-to-end trainable framework for data hiding was a model called HiDDeN [96], which
uses an adversarial discriminator to improve performance. It was a highly in�uential paper that
has informed the development of deep watermarking models since its release. The model consists
of an encoder network, trained to embed an encoded bit string in a cover image whilst minimising
perceptual perturbations, a decoder network, which receives the encoded image and attempts to
extract the information, and an adversary network, which predicts whether or not an image has
been encoded.
HiDDeN [96] uses a novel embedding strategy based on adversarial examples. When neural

networks classify image examples to a particular target class, invisible perturbations in the image
can fool the network into misclassifying that example [25]. These perturbations have been shown to
remain preservedwhen exposed to a variety of image transformations [48]. Adversarial examples are
ordinarily a de�ciency in neural networks, since they reduce classi�cation accuracy. However, since
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10 Byrnes et al.

meaningful information can be extracted from imperceptible image perturbations, it was theorised
that in a similar fashionmeaningful information could be encoded in adversarial distortions and used
as a watermark embedding strategy. This embedding technique, paired with the GAN framework,
is able to achieve a higher payload capacity (measured in bits per pixel) than other common data
hiding mechanisms such as Highly Undetectable Steganography (HUGO) [27], Wavelet Obtained
Weights (WOW) [31], and S-UNIWARD [32]. One drawback of HiDDeN [96] was that loss between
encoded and decoded message was minimised when trained only on a speci�c kind of attack
compared to a combination of di�erent attack types. This shows that the model is best when trained
speci�cally to combat one type of attack, but not as e�ective when trained on a variety.
This shortcoming was improved in the model ROMark [83], which builds upon the framework

from HiDDeN [96] by using a min-max formulation for robust optimisation. This was done by
addressing two main goals; �rst, to obtain the worst-case watermarked images with the largest
decoding error, and second, to optimise the model’s parameters when dealing with the worst-case
scenario so that decoding loss is minimised. The idea of this technique is to minimise decoding
loss across a range of attacks, rather than training the model to resist specialised attacks, creating
a more versatile and adaptable framework. Due to the optimisation for worst-case distortions in
ROMark [83] , it performed better when trained on a combination of attacks, particularly on those
that had not been seen during training. ROMark [83] was also more robust in some specialised
attack categories, though HiDDeN [96] had higher accuracy in these categories.
Additional improvements were made to the framework from HiDDeN [96] by Hamamoto et

al. [28]. This work uses a neural network for attack simulation rather than a single di�erentiable
noise layer. There is a rotation layer followed by an additive noise layer, allowing the model learn
robustness against geometric rotation attacks. It also features a noise strength factor to control
the robustness/imperceptibility trade-o�. It was tested against HiDDeN [96] and found to achieve
greater image quality after watermark embedding, as well as greater robustness against JPEG
compression. This model was the �rst to be trained to meet the Information Hiding Criteria (IHC)
for robustness while simultaneously resisting geometric rotation attacks. It is suggested for future
work to combine the architecture with a Scale Invariant Feature Transform (SIFT) detector [57],
which is able to detect image features that are robust for embedding to withstand geometric attacks
in traditional watermarking algorithms.

A novel embedding strategy using Inverse Gradient Attention (IGA) [90] was adopted recently.
Similar to Attention-based Data Hiding [87], the focus is on identifying robust pixels for data hiding
by using an attention mask. In the IGA method, the attention mask indicates the gradient values of
the input cover image, which shows the robustness of each pixel for message reconstruction. It
builds on the idea of adversarial examples �rst used for digital watermarking in HiDDeN [96], and
uses the attention mechanism to locate the worst-case pixels for perturbation. By identifying robust
pixel regions, this method further improves the payload capacity and robustness of watermarked
images in tests against the following papers [60, 91, 96].
A novel two-stage separable deep learning (TSDL) framework for watermarking is introduced

by Liu et al. [55], which addresses the problems with one-stage end-to-end training (OET) such as
slow convergence leading to image quality degradation, and having to simulate noise attacks using
a di�erentiable layer. Instead of relying on di�erentiable approximations, the TDSL framework
can use true non-di�erentiable noise attacks such as JPEG compression during training. This is
because, in OET models, the encoder and decoder are trained using a di�erentiable noise layer,
which means the noise must support back propagation. The TDSL framework consists of noise free
end-to-end adversary training (FEAT), which is used to train an encoder that autonomously encodes
watermarks with redundancy and without reference to any noise. Noise aware decoder only training
(ADOT) is used to train the decoder so that it is robust and able to extract the watermark from any
type of noise attack. The model was tested against HiDDeN [96] and ReDMark [4], and found to
achieve superior robustness for all but one attack category (crop). However, the two-stage training
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method is also robust against black-box noise attacks that are encapsulated in image processing
software, which have not been tested in previous works.

Wasserstein GAN. A popular variation on the traditional GAN technique is the Wassertsein GAN
(WGAN) [5]. This technique improves the model stability during training, as well as decreasing
sensitivity of the training process to model architecture and hyperparameter con�gurations. The
WGAN framework also provides a loss function that correlates with the quality of generated images.
This is particularly useful for watermarking and steganography in the image domain, since image
quality must be e�ectively optimised. Instead of the discriminator component of the network,
WGANs include a critic. Rather than predicting the probability that a given image is real or fake, as
is the discriminator’s goal, the critic outputs a score denoting the ‘realness’ of the input image. In a
data hiding scenario, the encoder’s aim is to maximise the score given by the critic for real instances
– which corresponds to an encoded image. Current papers adopting the WGAN framework for
their watermarking models include [67, 68, 81, 91].
Zhang et al. [91] introduced SteganoGAN. Three variants of encoder architecture are explored,

each with di�erent connectivity patterns. The basic variant applies two convolution blocks, where
the encoded image is the output of the second block. Residual connections have been shown to
improve model stability [29], and in the residual variant, the cover image is added to the encoder
outputs so that it learns to produce a residual image. The third variant uses a method inspired by
DenseNet [34], in which there are additional feature connections between convolutional blocks
that allow the feature maps generated by earlier blocks to be concatenated to those generated by
subsequent blocks.
Using adversarial training, this model achieves a relative payload of 4.4 BPP, 10 times higher

than competing deep learning methods. Although both works [91, 96] have mechanisms in place
for handling arbitrarily-sized cover images as input, the higher payload capabilities of [91] means
it can support a greater range of watermark data. The paper also proposes a new metric, Reed
Solomon Bits Per Pixel (RS-BPP), to measure the payload capacity of deep learning-based data
hiding techniques so that results can be compared with traditional data hiding methods. Although
the primary focus for SteganoGAN is steganography, the high payload capacity and low detection
rate of SteganoGAN produced images can also be applied to watermarking.

Two further works by the same authors also use the WGAN framework. Plata et al. introduced a
new embedding technique where the watermark is spread over the spatial domain of the image [67].
The watermark message is converted into a sequence of tuples, where the �rst element of each is
converted to a binary representation. The spatial message is created by randomly assigning binary
converted tuples to sections of the message, including redundant data for increased robustness. The
paper also introduces a new technique for di�erentiable noise approximation of non-di�erentiable
distortions which allows simulation of subsampling attacks. The attack training pool is expanded
from previous works to include subsampling and resizing attacks, and this wide range of attacks
used during training increases general robustness. However, the spatial spread embedding technique
reduces the embedding capacity, so is only useful for applications where capacity is not a priority.
Furthermore, the training framework proposed requires half as much time as prior methods [4,
60, 96]. The authors expand upon this work in a follow-up paper [68], which introduces the
double discriminator-detector architecture. The discriminator is placed after the noise layer, and
receives both noised cover images and noised encoded images, and thus the discriminator learns to
distinguished watermarked and non-watermarked images with attacks already applied. In practical
contexts, this is useful because it reduces the likelihood of false accusations being made of IP theft.
If the image has already been attacked and must be proven to contain a watermark, this training
technique is useful. Crucially, it does not degrade the overall robustness of the encoded images.
A technique for encoded image quality improvement is introduced by Wang et al. [81] based

on texture analysis. The cover image texture features are analysed by a grey co-occurence ma-
trix which divides the image into complex and �at regions. The paper utilises the StegaStamp

J. ACM, Vol. 1, No. 1, Article . Publication date: July 2021.



12 Byrnes et al.

network [78] for embedding the watermark in the �at texture regions. This reduces the degree of
image modi�cation and improves the quality, and hence imperceptibility, of encoded images. The
network in StegaStamp [78] produces higher quality images from low contrast examples; therefore
the contrast value is used to calculate the texture complexity of the image.

CycleGAN.A further variation on the original GAN framework is CycleGAN [97]. The architecture
is suitable for image-to-image translation tasks, and includes two generative and two discriminative
models. A diagram can be found in Figure 6. As of writing, the only watermarking model that uses
the CycleGAN framework is [87].
Attention-based Data Hiding (ADBH) [87] introduced an attention mechanism that helps the

generative encoder pinpoint areas on the cover image best suited for data embedding. The attention
model is an input processing technique that allows the network to focus on speci�c aspects of a
complex input one at a time. The attention model generates an attention mask, which represents
the attention sensitiveness of each pixel in the cover image. The value is regularised to a probability
denoting whether altering the corresponding pixel will lead to obvious perceptual di�erences in
the image that will be picked up by the discriminator. This improves the embedding process of the
encoder network.

Rather than hiding a binary watermark message, this technique hides a secret image in the cover
image. In the adopted CycleGAN framework, there is a target image generative model and a secret
image generative model. The former generates watermarked images which are then fed to the
cover image discriminative model, and builds on the PatchGAN model to operate on one image
patch at a time [39]. Similarly, the secret image generative model serves as input for the secret
image discriminative model. This architecture uses adversarial learning for both the embedding
and extraction processes, ensuring that the distributions between both the cover and encoded
images, and the encoded and extracted watermarks, are indistinguishable. The extractor network
also operates on unmarked cover images, and inconsistent loss is used to make sure that, when this
happens, there should be no correlation between the extracted data and the original watermark.

The three central contributions of this paper – the attention model, the use of cycle discriminative
models, and the extra inconsistent loss objective – were all tested in isolation and found to improve
the performance of the model overall in terms of both image quality and robustness.

3.2.3 Discussion. From the state-of-the-art deep learning methods discussed above, it seems that
the GAN framework is the most promising in terms of robustness and secrecy optimisation due to
the inclusion of adversarial loss in the objective calculations. To illustrate this, in HiDDeN [96],
tests were conducted without including the adversary network and found to include perceptible
alterations, whereas including the adversary greatly improved performance to produce an invisible
watermarking technique. In tests comparing robustness, GAN-based models performed well, but
were improved by techniques to target robust pixels for watermark embedding, such as the attention
mechanisms used in Attention-based Data Hiding [87] and the IGA method [90].
It is also important for models to be robust against a range of attacks. Papers such as those

by Hamamoto et al. [28] and Plata et al. [67] incorporate geometric rotation techniques, and
subsampling and resizing attacks respectively. Having a wider range of attack types during training
increases general robustness. Additionally, using true non-di�erentiable noise, as shown in the two
stage training technique developed by Liu et al. [55], provides better results for JPEG compression
than models that use di�erentiable approximations. Using a trained CNN to generate attacks,
Distortion Agnostic Watermarking [60] is also a promising approach for diversifying the attacks
encountered during training.
To produce an adaptable, generalised framework, it is important to include features such as

host and watermark resolution adaptability, as well as robustness controls to in�uence the robust-
ness/imperceptibility trade-o�. Robustness controls make these models suitable for both watermark-
ing and stenography, which relies more heavily on imperceptibility. The ideal digital watermarking
model would include pre-processing networks for any watermark data or cover image to be input,
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Table 1. Summary table of deep learning-based digital watermarking methods. The following abbreviations
are used: AE (auto-encoder), RB (residual block), AP (average pooling), ASP (adaptive spatial pooling), AL
(adversarial loss), CB (convolutional block), FC (fully connected), IG (inverse gradient), GP (global pooling),
MP (max pooling), CC (circular convolutional).

Arch Model Domain Embedding Network Extractor Network RA RC Remarks

AE CNN
[44] frequency AE CNN AE CNN First CNN for watermarking. Blind technique
[65] spatial AE and RB RB ✓ Autoencoder + visual mask

CNN

[60] spatial channel coding and CNN channel coding and CNN Channel coding and CNN for attacks
[4] frequency CC layer and DCT layer DCT layer ✓ ✓ Di�usion mechanism
[95] spatial CNN CNN ✓ ✓ Invariance layer and image fusion
[49] spatial CNN and AP CNN ✓ ✓ Robustness against geometric attacks

GAN

[96] spatial AL GP and CNN Adversarial examples for embedding
[90] frequency IG attention mask and CNN CNN IG mask improves capacity and robustness
[83] spatial AL FC layer ✓ Min-max formulation for robust optimisation
[55] spatial AL FC layer ✓ ✓ Two stage training
[28] spatial CNN CNN + FC layers ✓ Robust against rotation and JPEG compression

WGAN

[91] spatial CB and ASP CNN High payload capacity
[67] spatial CNN CNN + AP spatial spread embedding technique
[68] spatial CNN CNN + AP double discriminator-detector
[81] spatial CNN and MP CNN and MP ✓ Uses texture analysis

CycleGAN [87] spatial attention mask and CNN CNN ✓ Uses images as watermark

as the framework was developed by Lee et al. [49], while also taking advantage of an adversarial
discriminator or critic. The techniques used in [83] to improve robustness by obtaining and opti-
mising parameters for ROMark worst-case examples is also a promising technique for improving
robustness.
If a future model could combine these features; attention mechanisms to improve embedding,

robustness against geometric attacks, host and watermark resolution controls, robustness controls,
and handling worst-case distortions, it could result in a highly robust and adaptable framework.
However, the added overhead of all these added features could be an issue in practice.
Table 1 shows a summary of the deep watermarking models reviewed in the above section. It

shows whether the embedding strategy operates in the spatial or frequency domain, the nature of
the watermark embedding and extracting networks, whether the technique supports host resolution
adaptability (so that any cover image resolution can be used) (RA), and whether it includes controls
for in�uencing the trade-o� between imperceptibility and robustness (RC). The remarks column
describes any important information or novel contributions of the paper, and the App (application)
column to denote either watermarking (W) or steganography (S). Although many frameworks can
be used for both applications, we denote the main focus presented in each paper.

3.3 Deep Learning-based Steganography Techniques

This section classi�es deep steganography techniques based on model architecture. Most techniques
adopt the encoder-decoder structure shown in Figure 4, and are based on convolutional neural
networks (CNNs). Other approaches incorporate an adversarial component, using the Generative
Adversarial Network (GAN) structure (see Figure 5). A variation of this structure is the Cycle-
GAN framework (see Figure 6). Many steganography implementations di�er from watermarking
implementations in their use of the U-Net structure for image segmentation [73].

3.3.1 Encoder-decoder Framework. CNN-based encoder-decoder structures have been adopted in
the following papers [6, 15, 20, 62, 76, 78, 84, 88]. A simple diagram of the encoder-decoder deep
watermarking structure can be found in Figure 4. A paper from Google research [6], published
in 2017, presented a deep steganography technique for hiding images inside other images. The
structure contains three components in total. The �rst being the prep network, which serves two
purposes; to adjust the size of a smaller secret image to �t into the cover image, and to transform
the colour-based pixels to recognisable features to be encoded into the cover image. The second
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layer of the encoder is called the hiding network. As the name suggests, this layer creates the �nal
stego-image. The �nal layer is the reveal network which is used to decode the output from the
second layer. The experiments in the work [6] were mainly conducted to show that it was possible
to completely encode a large amount of data with limited visual disturbances in the cover media.
However, such a technique lacked robustness, security, and was not of high quality. It was possible
for attackers to recover both the cover and secret image with a trained network.
Another image encoding technique called StegNet [84] was released in 2018. StegNet used

structures from both auto-encoders and GANs to setup the encoding network. The cover image and
the secret image were concatenated by a channel prior to the CNN encoding structure. Variance
loss was included in loss calculations for the encoder and decoder. It was found that including
the variance loss helped the neural network distribute the loss throughout the image rather than
having concentrated areas of perceptual loss, improving the overall imperceptibility of embedding.
The presented technique was highly robust against statistical analysis and when used against
StegExpose [10], a commonly used steganalysis tool, it was also resistant against those attacks.
Although robust, there were still some limitations to this method. Secret images and cover images
must match in size and noise is still somewhat prominent in smoother regions.

Comparing the method of Baluja et al. [6] and StegNet [84], there has been a vast improvement in
image hiding. The inclusion of components adapted from GANs and auto-encoders in StegNet [84]
increased the robustness of the stego-images and was therefore more resistant to StegExpose [10].
Though StegNet [84] is quite robust, it is still lacking in some areas such as quality, image size
restrictions and noise.
A faster R-CNN (region based CNN) method was introduced in [62]. Firstly, the cover image is

passed through a region proposal network, which makes the selection for feature extraction faster.
Softmax loss is used to box these regions and then speci�c existing steganographic algorithms
are selected and assigned to the boxed regions. Since [62] uses a technique of selecting di�erent
steganography algorithms, using a combination of HUGO [27], S-UNIWARD [32] and WOW [31]
algorithms, it is able to achieve highly imperceptible embedding. Being being able to select e�ective
areas on the cover image also allows Meng et al. [62] to maintain a high level of robustness.
The adaptation the fusion technique [62] allows for minimal distortion in the extracted stego-

image. When looking at StegNet [84], there is concern for noise in smoother areas of the cover
photo. Although [84] has been shown to be robust, it could be further improved in this area with
the box selection the fusion method [62] has. This does lead to a capacity dilemma if there was a
method combining both StegNet [84] and the fusion method [62], since the latter would naturally
be using less cover image area and therefore have a smaller capacity compared to StegNet [84].

A unique approach for steganography is shown by Sharma et al. in [76]. In this paper, both the
encoder and decoder consist of two layers. In the �rst layer, the prep layer, smaller images are
increased in size to correctly �t the cover image, there is a reconstruction of colour-based pixels to
create more useful features, and the pixels are scrambled and then permutated. The second layer, the
hiding layer, produces the stego-image with the output of �rst later and the cover image inputted.
The decoder consists of the reveal layer and the decrypt layer. The reveal layer removes the cover
image and the decrypt layer decrypts the output of the reveal layer. The advantage of this technique
is that the �rst layer and its encryption method are similar to cryptography practises, allowing for
a more secure embedded stego-image. Even when the cover media is known to the attacker, it is far
more secure and di�cult for the attacker to decode the secret image. This technique can also be
applied to audio.

A reversible image hiding method was introduced by Chang et al. [15]. The structure relies on a
concept called long short term memory. To encode, the cover image goes through a neural network
in order to get a prediction, called the reference image. By subtracting the cover image from the
reference image, the cover residuals (prediction errors) are calculated. Using histogram shifting
(HS) on the cover residuals then produces stego residuals, along with an over�ow map that is later
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used for the decoder. The stego-image is then created by adding the stego residual to the reference
image. Where there is a pixel intensity �ow, the over�ow map is pre-calculated to �ag these pixels.
The decoder is essentially the reverse of the encoder, where the stego-image goes through a neural
network to get a reference image, and the rest follows in reverse. This technique creates high
quality, high capacity images that contain minimal noise. Its invertible feature to recover the cover
image is unique to many other CNN based steganography.
Tang et al. [79] produced a steganography technique that uses adversarial embedding, called

ADV-EMB. The network is able to hide a stego-message while being able to fool a CNN based
steganalyser. The encoding network consists of a distortion minimalisation framework which
adjusts and minimises the costs of the image according to features (gradients back propagation)
from the CNN steganalyser. The focus of ADV-EMB [79] is to prevent steganalysers from being able
to detect the stego-image. This shows in their results, with a high security rate and also increased
imperceptibility. They are also able to train the system to counter unknown steganalysers by using
a local well-performing CNN steganalyser as the target analyser, allowing for diverse applications.
Although ADV-EMB [79] is able to decrease the e�ectiveness of adversary-aware steganalysers, it
has a weak pixel domain. However, an increase in payload capacity would increase the detection
rate of steganalysers.

U-Net CNN. U-Net CNNs are used to facilitate more nuanced feature mapping through image
segmentation. This is useful in image steganography applications because a cover image can be
broken up into distinct segments based on a certain property (for example, [20] uses a heatmap to
score suitable embedding areas).
A U-Net CNN technique for reversible steganography was developed by Ni et al. [20]. This

technique is capable of directly encoding the secret image into the cover image by concatenating
the secret image into a six channel tensor. Its decoder is formed from six convolution layers,
each of which is followed by a batch normalisation and a ReLu activation layer. The embedding
technique is not easily e�ected by excessively high or low frequency areas. It is also able to produce
a high-quality image with a capacity that is in general better than other cover-selection and
cover-synthesis based steganography techniques. Even with its high capacity capabilities, like
other steganographic technqiues that do not focus on robustness, too high of an embedding rate
will increase the distortion rate more dramatically compared to robustness based steganography.
StegaStamp [78] has a di�erent implementation to most of the papers surveyed so far. It was
designed to embed hyperlinks into images that can then be scanned either on a screen or physically.
The encoder of this uses the same idea as Ni et al. in [20], with its U-Net structure. The technique
uses four channels with a 400 x 400 pixel input, utilising a dense CNN structure for the decoder. The
method is able to produce good quality images for messages up to 100 bits with a 95% accuracy rate
for recovery. Experiments showed that embedding was robust against di�erent printing machines,
screens, and cameras used to display the encoded image. Although robust, distortions can still be
perceptible in large low frequency regions of the image.

Universal Deep Hiding (UDH) is a model proposed for uses in digital watermarking, steganogra-
phy, and light �eld messaging [88]. The encoder uses the simpli�ed U-Net from Cycle-GAN [97],
and a dense CNN for the decoder. The encoder hides the image in a cover-agnostic manner, meaning
that it is not dependent on the cover image. UDH is an e�ective method due to the high frequency
discrepancy between the encoded image and cover image. This discrepancy makes embedding
robust in low frequency cover images. UDH is also less sensitive to pixel intensity shift on the
cover image. The UDH method was compared with cover dependent deep hiding (DDH). Since the
encoding of the secret image was independent on the cover image, there was not a method to adapt
the encoding mechanism according to the cover image. The cover image may have some smoother
areas which may not be ideal to embed data into, but with UDH there was no method of �nding
out this type of information. UDH is also unable to work well with severe uniform random noise.
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CNN with Adversarial Training. The inclusion of adversarial attack networks during training
can be used to help improve against stegalaysis and promote robustness. Adversarial training helps
the system distinguish small perturbations that an untrained steganography method may bypass.
This is an important feature to have in steganography, since its main focus is to protect message
security. Chen et al. developed a model that incorporates a trained CNN-based attack network that
generates distortions [16], similar to the technique used in the watermarking framework used by
Xiyang et al. in Distortion Agnostic Watermarking [60]. The encoding structure is based o� of a
simple model that hides a secret grey-scale image into channel B (blue) of a coloured cover image,
where both must have the same resolution. From this basic model, the paper was able to add two
other enhanced models, a secure model and a secure robust model. The secure model inserts a
steganalysis network into the basic model where its goal is to increase security against steganalysis.
The secure and robust model uses the secure model and inserts an attack network to increase the
robustness of the system. The separation of each model allows the framework by Chen et al. [16]
to be used in several di�erent scenarios, allowing the user to adjust to their needs. A downside is
that users are unable to send RGB pictures and are limited to just grey-scale images.

The secure model was shown to have the best invisibility against all models and was still the best
when compared to the following methods [6, 71]. The secure and robust model did not perform
as well as the secure model but was still able to improve. The basic model and the secure model
showed increased visual results this comparison, with the secure model having the best visual
results. The visual results of the secure and robust model was similar to ISGAN [93].

3.3.2 Generative Adversarial Networks based models. Generative Adversarial Networks (GANs)
are used extensively in deep steganography. Various new structures have allowed the simple
GAN structure to be improved, increasing the e�ectiveness of steganography. It has brought up
interesting techniques such as coverless steganography, and the ability to generate cover images.
GAN-based architectures have been used in the following papers [14, 50, 61, 70, 93]. Refer to
Figure 5 for a simple diagram of a GAN structure used for steganography.
ISGAN is a steganography technique that uses the GAN structure [93]. Similarly to the secure

technique developed by Chen et al. [16], ISGAN is only able to send a grey-scale secret image. The
encoder �rsts converts the cover image into the YCrCb colour space where only the Y channel
is used to hide the secret image since it holds luminance but no colour information. This colour
space conversion does not a�ect back propagation. The encoder also uses an inception module,
which helps to fuse feature maps with di�erent receptive �eld sizes. To aid the speed of training,
the technique also adds a residual module and batch normalisation. A CNN is used to decode with
batch normalisation added after every convolutional layer excluding the �nal layer. The results
of this model showed that it was able to achieve a high level of robustness, with low detectability
when scrutinised using steganalysis tools.

In comparison to [71], ISGAN residuals were less obvious, showing that the extracted secret
image of ISGAN is much closer to the original than [71]. ISGAN is also able to achieve higher
levels of invisibility since ISGAN uses a grey scale image. Thus, there is a trade-o� between the
complexity of the image (i.e. RGB values) and the imperceptibility of embedded information.
Two separate designs are introduced by Li et al. in [50], which studies embedding data into

texture images. The �rst model separates the texture image generation and secret image embedding
processes. The texture image is generated using a deep convolutional generative neural network.
The output of this is then used as the input for the concealing network for image hiding. The second
model integrates the concealing network with the deep convolutional generative network. This
second network should be able to generate the texture image while simultaneously embedding
another image. The �rst model is easier to train and can be used in more diverse applications
than the second model. Detection rates from steganalysis tools are almost 0 in both cases. These
models provide high security, but with a few limitations. Firstly, the cover images generated are
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only textures and other subjects are not considered. Colour distortions also occur in the second
model when the cover and secret images di�er too much.
Coverless steganography is possible because of the features of GAN. The general encoding

idea of the proposed coverless method [70] was that at �rst convolutional blocks were used to
process the cover image to get a tensor, a. The secret message was then concatenated to a and
processed through another convolutional block to get b which was the same size as a. The paper
details two di�erent models, one called basic model and the dense model. The basic model uses the
aforementioned encoding scheme, whereas the dense model includes a skip connection to increase
the embedding rate. The decoder for both models uses Reed Solomon algorithms on the tensor
produced from the stego-image. The aim with this model was to improve the capacity and quality
that other coverless steganography has not been able to achieve. Encoded image quality and payload
capacity of the stego-images were improved when compared to [91]. The basic model introduced
by Quin et al. [70] was able to perform signi�cantly better in these aspects while the dense model
was able only to match SteganoGAN [91]. The decoding network used in the coverless method
[70] was also more accurate than the one proposed for SteganoGAN [91]. But there is a di�erence
in the media encoded, where the coverless method [70] encodes a string of binary message while
SteganoGAN [91] is able to encode an image.
Many steganography techniques have not been invertible and leave the cover image distorted

after removing the secret piece of media. With the method proposed by Chang et al. [14], the model
was able to achieve invertible stegnaography. The method used is based on the Regular-Singular
(RS) method. RS realises lossless data embedding through invertible noise hiding. There are three
discriminate blocks used in this technique – regular, singular and unusable – in order to get the
RS map. The adversarial learning component serves to capture the regularity of natural images.
The model uses conditional GAN to synthesise, where the generator uses a U-Net structure and
a Markovian discriminator is used. The use of GAN in conjunction with the RS method greatly
improved upon the results of previous RS based models.

Currently, the paper [20] uses a basic GAN structure and could be further improved or diversi�ed
with the adaption of other GAN structures. This could lead to further improvements in cover media
recovery in terms of quality. Overall, the adversarial learning adopted in GAN-based models leads
to greater robustness in steganography applications.

CycleGAN. CycleGAN is a variation of the GAN architecture for image to image translation. A
diagram of a simple CycleGAN structure for data hiding is shown in Figure 6. The CycleGAN
framerwork was adopted for steganography in S-CycleGAN [61]. Within the model, there were
three discriminators, two of which used the same function as the original CycleGAN framework.
The third was an increased steganalysis module used to distinguish the stego-image from the
generated images. The training cycle consists of three stages. First is the translation of the image
from the X-domain to the style of the Y-domain. Second is the use of a LSB matching algorithm to
embed the secret message into the output of the �rst stage. The third stage is where the stego-image
is reconstructed to the input image of the �rst generator to the second generator. The full objective
function included adversarial loss for all discriminators, as well as cycle consistency loss for the
generative models. The advantage of S-CycleGAN is its ability to produce high quality images
which are also robust against steganalysis. Overall S-CycleGAN [61] showed results that were more
resistant to detection, increasing the invisibility of embedded stego-images.

When S-CycleGAN [61] is compared against SGAN [80], the quality of the image is much higher,
with 2.6x the Inception Score and 7x the Frechet Inception Distance of SGAN. In general, the results
of S-CycleGAN [61] showed that it was much more robust than SGAN, and the combined use of
the original CycleGAN framework and traditional steganography algorithm S-UNIWARD [32].
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Table 2. Summary table of deep learning-based steganography methods.

Arch Model Embedding Network Extractor Network Remarks

CNN

[6] CNN CNN Embeds coloured image in coloured cover image
[84] CNN CNN Concatenating channel for embedding
[62] R-CNN and CNN N/A Uses multiple techniques based on selected regions
[76] CNN CNN Embeds by scrambling and permutating pixels
[15] LSTM w/ CNN and HS LSTM w/ convolutional layers and HS Uses HS for reversibility
[79] CNN and adversarial emb N/A Trains stego-images with steganalysers

CNN w/ Adv. Training [16] CNN with ReLU CNN with ReLU Several models for di�erent priorities

U-Net CNN
[20] U-Net CNN w/ BN and ReLU CNN w/ BN and ReLU can withstand high and low frequencies
[78] CNN U-Net CNN Embeds hyperlinks in images
[88] U-Net from Cycle-GAN CNN Improvement on [96] for diverse use

GAN

[93] CNN CNN Hides data in Y channel of cover image
[50] GAN and CNN N/A Generates a textured cover image
[70] CNN CNN Improvement on [91] in capacity and security
[14] U-Net CNN CNN Invertible

CycleGAN [61] CNN CNN Increased imperceptibility

3.4 Data Hiding Detection and Removal Mechanisms

As data hiding techniques improve, so do strategies for detecting and/or removing said data.
Detection mechanisms are of particular important in steganography, as the �eld of steganalysis
exists to detect and extract secret messages. Protecting against data detection in watermarking is
less important than in steganography, as long as said data cannot be altered or removed from the
cover media. This is because the primary purpose of watermarking is to identify the owners of the
media – the hidden data is an ID, not a secret message that should be kept secure. Therefore, the
focus of adversaries in watermarking is on the removal or degradation of the watermark without
altering the original cover media. It is important to understand the goals and methods of adversaries
in data hiding depending on the application, since these scenarios should be mitigated by the data
hiding strategy.

3.4.1 Steganlysis. Steganlysis is the process of detecting hidden steganographic messages from
an adversary’s perspective. These analysis techniques are able to detect �aws in the embedding
process and recognise if a piece of media has been encoded. There are two primary classes of
steganalysis techniques: signature steganalysis and statistical steganalysis [43].
Signature steganalysis is comprised of two types called speci�c signature steganalysis and

universal signature steganalysis. In speci�c signature steganalysis, the adversary is aware of the
embedding method used, whereas universal signature steganalysis does not require this knowledge.
Therefore, universal signature steganalysis can be used to detect several types of steganographic
techniques [43, 66].
The development of steganalysis, along with new steganography techniques, is crucial since it

shows how robust new embedding techniques are to ever-improving detection technologies.

3.4.2 Watermark Removal Strategies. Watermark removal techniques can be separated into three
categories [69]. The �rst, blind watermark removal, is the technique that deep learning methods
can defend against through varied attack simulation strategies. In blind removal techniques, the
adversary has no knowledge of the watermarking process and attempts to degrade the watermark
through attacks such as compression and geometric distortions. In key estimation attacks, the
adversary has some knowledge of the watermarking scheme, and is then able to estimate the secret
key used for embedding. Similarly, in tampering attacks the adversary has perfect knowledge of
the watermarking scheme, resulting to a complete breakdown of the watermarking system where
the secret key is explicitly obtained. In deep learning-based watermarking, the system is a black
box even to its creators, hence the watermarking scheme cannot be uncovered by adversaries.
Deep learning-based strategies only need to protect against the �rst kind of attacks; blind attacks.
However, as watermark removal techniques improve through deep learning methods of their own,
this is likely to change [23].
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Table 3. Comparing deep learning-based watermarking models based on robustness, measured using BER.
The ‘Results Origin’ column shows the paper where the BER result is taken from.

Model Results Origin Architecture Cover Image Dimensions Watermark Bits BER (%)

HiDDeN [96] [90] GAN 128 x 128 30 20.12

IGA [90] [90] GAN 128 x 128 30 17.88
DA [60] [90] GAN 128 x 128 30 20.48

ReDMark [4] [4] GAN 128 x 128 30 18.18
Rotation [28] [28] GAN 64 x 64 8 8.0

DNN [95] [95] CNN 128 x 128 32 20.12
Double Detector-Discriminator [68] [68] GAN 256 x 256 32 5.53

Spatial-Spread [67] [68] GAN 256 x 256 32 8.38
Two-Stage [55] [55] GAN 128 x 128 30 8.3

Table 4. Comparing deep data hiding models based on encoded image quality, measured using PSNR. The
‘Results Origin’ column shows the paper where the PSNR result is taken from.

Model Results Origin Architecture Cover Image Dimensions Watermark Bits PSNR (dB)

Two-Stage [55] [55] GAN 128 x 128 30 33.51
ABDH [87] [87] CycleGAN 512 x 512 256 31.79

ISGAN [93] [87] GAN 512 x 512 256 24.08
DA [60] [60] GAN 128 x 128 30 33.7

HiDDeN [96] [60] GAN 128 x 128 30 32.3
DNN [95] [95] CNN 128 x 128 32 39.93

WMNET [49] [95] CNN 128 x 128 32 38.01
ROMark [83] [83] GAN 128 x 128 30 27.80

IGA [90] [90] GAN 128 x 128 30 32.80
SteganoGAN [91] [90] GAN 128 x 128 30 30.10

3.5 Results

This section shows the results achieved by various deep data hiding models in terms of both
robustness and imperceptibility. There is no standard dataset universally used for testing deep
data hiding models, but COCO [53] is the most popular. Therefore, results achieved using this
dataset were compared. Many papers record both Bit Error Rate (BER) and Peak Signal-to-Noise
Ratio (PSNR), though some only record one. It should also be noted that tests were performed
using di�erent cover image and watermark dimensions, as noted in the tables, and certain papers
simulated a di�erent �xed pool of attacks during testing. Therefore, the results are not directly
comparable, but merely give a rough indication of relative performance.

Table 3 compares deep data hiding models based on Bit Error Rate (BER), a measure of robustness.
All models were tested using the COCO [53] dataset. The BER for all models is not directly
comparable due to the di�erent resolution of cover images and size of watermark payload. For
example, a watermark embedded in a higher resolution image can retain integrity without sacri�cing
encoded image quality, therefore improving robustness. Conversely, a smaller watermark payload
can be embedded with less of a degradation in cover image quality, also improving robustness.

Table 4 compares deep data hiding models based on Peak Signal-to-Noise Ratio (PSNR), a measure
of encoded image quality. All models were tested using the COCO [53] dataset.

4 NOISE INJECTION TECHNIQUES

Aside from model architecture, deep learning-based data hiding techniques can also be classi�ed
based on noise injection methods. This refers to the attack simulation strategies employed during
training, which corresponds to increased robustness in the �nal model. A number of techniques
have been employed to increase robustness through attack simulation, the most common of which is
using a pre-de�ned set of attacks simulated by a di�erentiable noise layer and subsequent geometric
layers. Other approaches include using a trained CNN to generate novel noise patterns [16, 60],
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and adopting a two-stage training process to increase the complexity of simulated attacks [55]. The
following section discusses di�erent noise injection techniques, including their advantages and
shortcomings.

4.1 Identity

Some earlier deep learning-based data hiding techniques [44] had no attack simulation and were
simply a proof-of-concept for the technique. Subsequent models generally include a control training
scenario where no noises are added (such as the ‘Identity’ layer in HiDDeN [96]. Unsurprisingly,
techniques where no noise are added during training result in much lower rates of robustness. For
example, for HiDDeN [96], the model trained exclusively with the Identity layer completely failed
in successfully extracted watermarks when exposed to JPEG and Crop distortions (50% success
rate), and performed signi�cantly worse when exposed to all other attack types.

4.2 Pre-defined A�ack Pool

The most common technique for noise injection is to use a �xed pool of pre-de�ned attack types.
Then, during training, the model can be exposed to one, multiple, or the entire range of attack
types. Each attack includes an intensity factor that can be adjusted in order to vary the strength of
the attack during training. In an ideal scenario, the model would be just as e�ective with all attacks
types when trained against the entire range as when trained with one speci�c attack. In most
scenarios, the model uses a di�erentiable noise layer, meaning that all noise-based attacks must
support back-propagation to cohesively work with the neural network [96]. Since non-di�erentiable
noise attacks such as JPEG compression are common in real attack scenarios, they are incorporated
into training using di�erentiable approximations [96]. The accuracy of these approximations are
crucial to creating models that are robust against non-di�erentiable noise, therefore e�orts have
been made to revise and improve these approximations [67].
Further improvements to the pre-de�ned attack pool include a greater range of attacks. For

example, a rotation layer was added to the framework by Hamamoto et al. [28], and subsampling
and resizing attacks were incorporated by Plata et al. [67]. Various techniques have been introduced
to improve the performance of models on a combined range of attacks, since early techniques using
this method [96] showed improved performance when trained with speci�c attacks rather than a
range. For instance, ROMarK [83] adopts a technique wherein distortions that generate the largest
decoding error are generated and used to optimise the model’s parameters during training.

4.3 Adversarial Training

Another technique for noise injection does not use a �xed set of pre-de�ned attacks, but rather
uses a separately trained CNN to generate novel noise-based distortions [16, 60]. The Distortion
Agnostic model [60] generates distortions based on adversarial examples, using a CNN to generate
a diverse set of image distortions. The Distortion Agnostic model was tested against HiDDeN and
exposed to a number of distortions not seen during training, such as saturation, hue, and resizing
attacks, and found to be more e�ective. Although the Distortion Agnostic model could not surpass
HiDDeN’s e�ectiveness against a speci�c attack when trained only with that type, but this is not
a practical training setup for a end use scenario. Using a trained CNN for attack generation can
greatly improve robustness since distortions are generated in an adversarial training scenario. This
means that distortions are generated explicitly to foil the decoder network throughout training.

4.4 Two-stage Training for Noise Injection

A novel training method developed by Liu et al. [55] improves noise injection techniques in two
ways. Firstly, a training method dubbed Two-Stage Separable Deep Learning (TSDL) is used. This
second stage of training is adopted for the decoder so that can work with any type of noise
attacks, improving practicality. Because of this novel training scenario, this model can be trained
using true non-di�erentiable distortion, rather than di�erentiable approximations. Aside from
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this distinction, a �xed pool of pre-de�ned attacks are still used during training. The use of true
non-di�erentiable noise during training improved robustness against such attacks, including GIF
and JPEG compression, but it is unclear from this work whether the increased overhead of the
TDSL framework us a suitable trade-o� for this improve performance, given the relative accuracy
of di�erentiable approximations.

5 OBJECTIVE FUNCTIONS

Objective functions are used when training machine learning models to optimise their performance.
The function measures the di�erence between the actual and predicted data points. By optimising
the loss function, the model iteratively learns to reduce prediction errors. The loss functions used
for the discussed data hiding models fall into the regression category, which deal with predicting
values over a continuous range, rather than a set number of categories.

The aim of data hiding models is to optimise both robustness and imperceptibility, �nding a
balance between these two properties depending on the application needs. The most common
architecture for deep data hiding models is the encoder-decoder architecture where the model
is partitioned into two separate networks for encoding and decoding. A common method for
evaluating loss is to have two separate equations, one for the encoder and one for the decoder, and
compute total loss across the system as a weighted sum. Architectures that include an adversarial
network also include adversarial loss in this sum. When optimising imperceptibility, the loss
between the initial cover image and �nal encoded image must be minimised. When optimising
robustness, the loss between the initial secret message or watermark information and the �nal
extracted message must be minimised. This is the bases for the encoder-decoder loss method. This
section will go through some common objective functions utilised in deep learning models for data
hiding, as well as novel strategies that do not follow the encoder-decoder loss framework.

5.1 Mean Squared Error (MSE)

A function used to compute the di�erence between two sets of data. It squares the di�erence
between data points in order to highlight errors further away from the regression line. In image-
based data hiding, it can be used to compare the cover image to the encoded image by taking
the square of the di�erence between all pixels in each image and dividing this by the number of
pixels. The equation’s sensitivity to outliers makes it useful when pinpointing obvious perceptual
di�erences between two images. For example, a cluster of pixels that are obviously di�erent from
the original is perceptually obvious, but a change distributed over all image pixels is harder to spot.
The equation is also used to compute the di�erence between the original and encoded watermark
in some applications. For two images - and . of dimensions W × H, the mean square error is given
by the following equation:

"(� (-,. ) =
1

,�

,
∑

8=1

�
∑

9=1

(-8, 9 − .8, 9 )
2. (1)

MSE is used in these works [28, 49, 50, 67, 68, 70, 91, 93] to calculate loss at the encoder, while
many works [4, 16, 20, 55, 60, 76, 78, 81, 84, 96] use it to compute both encoder and decoder loss.
MSE is used in conjunction with SSIM 17 to calculate perceptual di�erence at the encoder [50, 93].
The papers [78, 81] also use LPIPS perceptual loss [94] to evaluate loss at the encoder, which is
discussed in Section 6.2. The Distortion Agnostic Model [60] incorporates additional adversarial
loss into its Euclidean Distance functions. Loss at the encoder incorporates GAN loss with spectral
normalisation to further control the quality of the encoded image. It is similar to the adversarial
loss function used in [96] in Equation (6), but is incorporated into the encoder loss function rather
than being weighted separately in the overall weighted sum.
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5.2 Mean Absolute Error (MAE)

Similar to MSE, MAE is used to compute the di�erence between two sets of data, but instead takes
the absolute value of the di�erence between data points. Therefore, it does not highlight errors
further from the regression line or give any special signi�cance to outliers. It is used to compute
loss at the decoder in [49]. Since the secret message or watermark consists of binary values, it is
more suitable to use MAE, which is suited to discrete values, to compute the di�erence to ensure
balanced training of both the encoder and decoder networks. Additionally, it is used to calculate
encoder and decoder loss in [14, 15, 84, 88]. For two binary watermarks" and" ′ of dimensions -
x . , the mean square error is given by the following equation:

"�� ("," ′) =
1
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5.3 Cross Entropy Loss

This function is used to measure the di�erence between two probability distributions for a given
variable, in this case the initial and extracted binary watermark message. The equation takes in ? (G),
the true distribution, and @(G), the estimated distribution. In digital watermarking this corresponds
to the original watermark and the extracted watermark respectively, where @(G) is the output of the
decoder network representing the probability of watermark bits. Cross entropy loss takes the log
of the predicted probability, therefore, the model will be ‘punished’ for a making a high probability
prediction further from the true distribution. Cross entropy loss is given by the following equation:

� (?, @) = −
∑

G

? (G);>6(@(G)) . (3)

This technique is used for measuring loss at the decoder in [4, 28, 78, 81, 91], and used to compute
adversarial loss in [14, 79]

5.4 Mean-Variance Loss

Variance loss is used to calculate how loss varies across an entire distribution. Using variance loss
in conjunction with mean calculations leads to loss being distributed throughout an image rather
than concentrated in certain areas. When calculating loss at the encoder, it is important that there
are no concentrated areas of di�erence, since this will be easily perceptible. The paper [84] adopts
variance loss and MAE loss for both encoder and decoder loss calculations.

A similar technique is applied by [67, 68], but for a di�erent reason. Variance loss is used to
calculate loss at the decoder rather than MSE since the redundant data used to create the watermark
message means the original watermark and extracted watermark need not be identical. Rather than
extract this redundant data, as was done in [49], the loss function was modi�ed to a joint mean and
variance function. For original message" and extracted message" ′, the mean and variance are
given by:
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where 1 is the number of times every ‘slice’ of" is replicated across the image in the spatial spread
embedding technique [67], and : relates to the number of tuples in the sequence created in this
technique.
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5.5 Adversarial Loss

For deep learning models that use a discriminator network for adversarial learning, an additional
loss function is added to the overall optimisation that accounts for the discriminator’s ability to
detect an encoded image. Adversarial loss can be combined with loss at the encoder, since the
encoder is the generative network, to improve the imperceptibility of the encoded watermark. The
discriminator takes in an image - that is either encoded or unaltered, and predicts �(� )n [0, 1],
denoting the probability that - has been encoded with a watermark. The discriminator optimises
the function for adversarial loss from its predictions given by the following equation:

;0 (-,. ) = ;>6(1 −�(�2 ) + ;>6(�(. )), (6)

where - is the cover image, . is the encoded image. This equation is combined with the loss
function for encoder loss in [28, 83, 96].

5.6 KL Divergence

KL divergence is used to quantify the di�erence between probability distributions for a given random
variable, for instance, the di�erence between an actual and observed probability distribution. It is
often used in Generative Adversarial Networks to approximate the target probability distribution.
This equation was used in [70] to calculate adversarial loss, where it is used in conjunction with JS
divergence. This method for calculating adversarial loss can be represented in the following way:
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where 2 is the cover image, % is the probability distribution function for all cover images, and & is
the probability distribution function for the generated steganographic images.

5.7 Cycle Consistency Loss

This function is often used for CycleGAN implementations. The function performs unpaired image-
to-image translation and is useful for problems where forward and backwards consistency between
mapping functions is important. In both [61, 87], there are two generative and two discriminative
models used, therefore the framework needs to learn the bijective mapping relationship between
two image collections, where the �rst contains the original cover images and the second contains
the secret images that serve as watermarks. The generative model needs to learn to transform
from one source image domain to another, and this mapping relationship cannot ensure that the
extracted watermark is the same as the original. Cycle consistency loss is detailed in [61] as an
equation for the transformation of an X-domain style image to a Y-domain style image, where the
generator models for both domains satisfy backward cycle consistency. Cycle adversarial loss is
abstracted as the following:

�" ("," ′) = �( (�4 (-,",�)), (9)

where �( represents the cycle discriminative network judging the extracted watermarks," is the
original secret watermark," ′ is the extracted watermark,�( is the generative model that generates
secret images to use as watermarks, - is the cover image, and � is the attention mask.

5.8 Wasserstein Loss

The following models [67, 68, 78, 81, 91] use a WGAN framework, therefore using a critic network
rather than a discriminator to train the encoder. Rather than classifying an example as ‘real’ or
‘fake’, the critic outputs a number. The aim is to maximise this number for ‘real’ instances, which
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in this case are images that have been encoded with a message. Wasserstein loss is given by the
following equation:

;F = � (- ) −� (� (-,")), (10)

where � (- ) is the critic output for the initial cover image, and � (� (-,")) represents the critic
output for the encoded image � consisting of the cover image and watermark message" .

5.9 Novel Approaches

Certain approaches to performance optimisation do not follow the above framework for optimising
at the encoder and decoder, along with a third possible adversarial component.

Image Fusion. The technique developed in [95] di�ers from many other deep learning techniques
for digital watermarking by approaching the process as an image fusion task, aiming to maximise
correlation between the feature spaces of images.
The previous techniques focus on preserving certain parts of the cover image in the resulting

encoded image. Di�erent optimisations are applied to control embedding and extraction, and
weights are used to control watermarking strength. Conversely, [95] takes 2 input spaces, �
denoting the cover image, and, denoting the watermark., is mapped onto one of its latent
feature spaces,5 . Watermark embedding is performed by the function {,5 ,�}− > " , where"
denotes the fusion feature space of the watermark and cover image, creating an intermediate latent
space. In this system, loss is computed using the correlation function given by:
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where<8 andF
8
5
are examples of the spaces" and, respectively. 6 denotes the Gram matrix of

all possible inner products and 5 represents the convolutional blocks in the encoder network. A
similar image fusion approach developed independently is utilised in [62]

Distortion Minimisation Framework. The steganography model is detailed in [79], steganog-
raphy is formulated as an optimisation problem with a payload constraint:

<8=(� (-,. ),k (. ) = :, (12)

where - is the cover image, . is the encoded stego-image, and � (-,. ) is a function measuring the
distortion caused by modifying - to create . .k (() represents the data extracted from . and : is
the number of bits that make up the data. Di�erent additive distortion functions may be used for
� that measure the cost of increasing each pixel value in the cover image by 1. Large cost values
are assigned to pixels more likely to cause perpetual di�erences in the �nal stego-image, and will
therefore have a low probability of being modi�ed during embedding.

Inconsistent Loss. The CycleGAN model is introduced in [87], there is an additional loss function
called inconsistent loss that ensures that a secret watermark image can only be extracted from an
encoded image. Since the second generative model �( that extracts the watermarks also receives
un-encoded cover images as input, any data it extracts should be completely di�erent from the real
secret watermark image. This is given by the following equation:

<0G�(
(�( , "

′) =<0G�(
|�( (- ) −�( (. ) |, (13)

where" ′ is the extracted watermark image, - is the original cover image, and . is the encoded
‘target’ image. [87] combines this with adversarial loss and cycle adversarial loss to evaluate the
model’s overall performance.

6 EVALUATION METRICS

Evaluation metrics for data hiding techniques can be divided into two primary categories; those
evaluating robustness and those evaluating encoded image quality. Additionally, there are metrics
for measuring information capacity.
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6.1 Robustness

The follows metrics are used to evaluate the robustness of the embedded data. After attacks are
applied to the encoded image and the data is extracted, these metrics are applied to compute the
di�erence between the original message data and the data extracted from the image to judge how
well that data survived distortions applied to it.

6.1.1 Bit Error Rate (BER):. is the number of bit errors divided by the total number of bits transferred
over a certain time-frame. It therefore gives the percentage of erroneous bits during the transmission.
It is used to compare the extracted message and the initial message, each converted into binary. The
BER between the original message - and extracted message . is given by the following equation:

��'(-,. ) = 100
no. of bits in error

total no. of bits transmitted
(14)

6.1.2 Normalised Correlation (NC):. is a measure of the similarity between two signals as a relative
displacement function. Normalised correlation gives a values in the range [0,1] with a higher value
denoting a higher similarity between images. The normalised correlation between the original
message - and extracted message . is given by the following equation:
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where

X (-,. ) =

{

1, if - = .

0, otherwise

6.2 �ality

The follows metrics are used to evaluate the quality of the encoded image. It is linked to the property
of imperceptibility since embedded data should not produce any detectable perturbations in the
image.

6.2.1 Peak Signal to Noise Ratio (PSNR):. computes the di�erence between two images by taking
the ratio between the maximum power of signal and the power of corrupting noise that a�ects the
signal. In data hiding, it is used to evaluate the di�erence between the cover image and encoded
image, showing the e�ectiveness of the embedding technique. PSNR is expressed in decibels (dB)
on a logarithmic scale, with a value of above 30dB generally indicating that the image di�erence is
not visible to the human eye. Therefore, PSNR can be used to quantify data imperceptibility. PSNR
is de�ned by taking the Mean Square Error (MSE) of two images (cover image �2 and watermarked
image �F) using the following equation.
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6.2.2 Structural Similarity Index (SSIM):. a perception-based model that measures image degrada-
tion as perceived changes in structural information. It considers variance and covariance, which
measure the dynamic range of pixels in an image. Unlike MSE and PSNR, which measure absolute
error, SSIM considers the dependencies between spatially close pixels, incorporating luminance
and contrast masking. SSIM is given in the range [-1.0,1.0], with 1 indicating two identical images.
The SSIM of two images is denoted as follows, where the mean of the two images is given by `G
and `~ , and their variances are given by f2G and f2~ .

((�" (G,~) =
(2`G`~ + :1) (2fGf~ + :2)

(`2G + `2~ + :1) (f
2
G + f2~ + :2)

(17)
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The constants :1 and :2 exist to stop a 0/0 calculation. In the default con�guration, :1 = 0.01 and
:2 = 0.03.

6.2.3 Learned Perceptual Image Patch Similarity (LPIPS). : is another type of perceptual loss. The
aim of LPIPS [94] is to measure human perceptual capabilities by going beyond the simpler SSIM
17 and PSNR 16 metrics, studying the deeper nuances of human perception. It is a model that
evaluates the distance between image patches. The model uses a large set of distortions and real
algorithm outputs. There is consideration of traditional distortions, noise patterns, �ltering, spatial
warping operations and CNN-based algorithm outputs. LPIPS is able to perform better due to a
larger dataset used compared to other datasets similar to this kind, as well as being able to use the
outputs of real algorithms. LPIPS has a scoring system where the lower the score, the more similar
to the compared image while a higher score indicates a larger di�erence between the images.

6.2.4 Frechet Inception Distance (FID):. is a model that measures the quality of a synthetic image.
It was mainly developed to check the quality and the performance of images generated by GAN
structures. FID uses the inception v3 model [77] where in the last layer of FID, it is used to get the
computer-vision-speci�c features of an input image. They are calculated for the activations for
all images, real and generated. These two distributions are then calculated using FID. The score
compares the quality of syntetic images based on how well inception v3 classi�es them as one of
the 1,000 known objects. Essentially the generated images are not compared to real images, instead
they are compared to other synthetic images that has already been compared to real images and
scoring their similarity. A low FID score indicates a higher quality image while a high FID score
indicates a lower quality image.

6.3 Capacity

Capacity is a measure of the amount of information that can be included in the data payload and
subsequently embedded into the cover media.

6.3.1 Bits Per Pixel (BPP). The number of bits is used to de�ne the colour value of a pixel. A higher
BPP value denotes a higher number of possible colour values for a pixel. Therefore, a higher BPP
value for payload capacity shows that more identifying data can be embedded in the pixels of an
image. BPP is used to calculate data payload capacity in [91].

6.3.2 Reed Solomon Bits Per Pixel (RS-BPP). The paper [91] introduces a new metric RS-BPP based
on Reed-Solomon codes. In deep data hiding models, measuring the number of bits that can be
embedded per pixel depends on the model, the cover image, and the model itself, and is therefore
non-trivial to measure just in BPP. Given an algorithm that returns an erroneous bit with probability
? , the aim is to have a number of incorrect bits that is less than or equal to the number of bits that
can be corrected. This can be represented by the equation:

?= ≤
= − :

2
, (18)

where the :
=
ratio is the number of data bits that can be transmitted for each bit of the message.

RS-BPP allows deep data hiding techniques such as [91] to be directly compared to traditional
algorithms in terms of capacity.

7 DATASETS

This section shows a table showing the image databases used to train the discussed deep data
hiding models.

Describable TexturesDataset (DTD):TheDTD includesmultiple kinds of labelled texture images,
consisting of 5640 images in total. It was used to train [50].
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Table 5. Summary table of datasets used to train deep learning-based data hiding models.

Name Trained Description

COCO [53] [28, 50, 60, 62, 67, 68, 87, 90, 91, 96] 330 images of everyday scenes. Cluttered images useful for DH
DIV2K [3] [70, 90, 91] 1000 low resolution images. Includes open scenery di�cult for DH

CIFAR-10 [46] [4, 95] 60k 32x32 images of singular objects
Pascal VOC [21] [4, 93] 15k images of singular objects
BOSSBase [7] [14, 15, 49, 64, 79] 9k 512x512 greyscale images in PGM format

ImageNet [75] [6, 16, 20, 61, 78, 79, 84, 88, 93, 95] 14mil images organised based on WordNet hierarchy

MIRFLICKR [36] [78, 81] 1mil Flickr images under Creative Commons license
Flickr30k [86] [76] 31k images from Flickr under Creative Commons license

Labeled Faces in the Wild (LFW) [35] [93] 13k images of faces from the web

Describable Textures Dataset (DTD) [19] [50] 5k labelled texture images

COCO: COCO is a large-scale object detection, segmentation, and captioning dataset [53]. The
dataset contains 330 thousand images of complex, everyday scenes including common objects. The
goal of the dataset was to advance AI scene understanding by combining the more narrow goals
of image classi�cation, object localisation, and semantic segmentation. Since the dataset consists
of relatively cluttered images picturing multiple objects, there are more surfaces and variation
in textures in which to embed watermarking data, making it useful and popular for data hiding
applications. COCO was used to train [28, 50, 60, 62, 67, 68, 87, 90, 91, 96] and to test [4, 55, 83, 95].

DIV2K: Div2K is a single-image super-resolution dataset of 1000 images of di�erent scenes. The
dataset consists of low resolution images with di�erent types of degradations applied. Compared to
COCO, it contains more images of open scenery, which can present a challenge for data embedding.
Therefore, it is used to train [90, 91] in conjunction with [53] to ensure the model is trained on a
variety of di�erent types of images. On its own, it is used to train [70].

CIFAR-10: CIFAR-10 is a labelled subset of the 80-million Tiny Images Dataset [46], and contains
60 thousand small 32x32 images. They mostly picture single objects such as animals or vehicles,
and are separated into 10 classes depending on the subject, though these are ignored for data hiding
applications. CIFAR-10 was used to train [4, 95].

Pascal VOC: Similar to [46], the Pascal dataset [21] includes pictures of objects such as vehicles
and animals rather than full scenes with multiple objects. This dataset has been widely used as
a benchmark for object detection, semantic segmentation, and classi�cation tasks. It was used to
train [4, 93].

BOSSBase: This dataset contains 9074 512x512 greyscale images in PGM format [7]. It is widely
used for training steganography algorithms. The dataset was used to train [14, 15, 49, 64, 79].

ImageNet: ImageNet contains 14million images organized according to theWordNet hierarchy [75].
Images are classi�ed into ‘synsets’ based on their subjects, all sorted and labelled accordingly. It
was used to train [6, 16, 20, 61, 78, 79, 84, 88, 93, 95].

MIRFLICKR: The MIRFLICKR dataset [36] contains 1 million Flickr images under the Creative
Commons license. It is used to train [78, 81].

Flickr30k: The Flickr30k dataset [86] contains 31,000 images collected from Flickr, together with
5 reference sentences provided by human annotators. It was used to train [76].

Labeled Faces in the Wild (LFW): The LFW dataset [35] public benchmark for face veri�cation,
containing more than 13,000 images of faces collected from the web. The dataset was used to
train [93].

8 OPEN QUESTIONS AND FUTURE WORK

Deep learning for data hiding is a new and evolving research �eld, and there remain many di�erent
avenues to consider moving forward. This section will discuss some open questions that we believe
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warrant further research and consideration including expanding the applications of digital water-
marking to other media domains, pursuing deep learning-based language watermarking, improving
robustness against deep learning-based watermark removal attacks, watermarking machine learn-
ing models, combating the use of watermarking to launch backdoor attacks on machine learning
models, and exploring the applications of watermarking for detecting and identifying synthetic
media. Finally, future directions for steganography are discussed, including steganography used to
spread malware.

8.1 Expanding Applications for Deep Learning Digital Watermarking Models

The deep watermarking models discussed in this survey were all focused on image watermarking,
but there are many other important applications for watermarking other media. Although there
are many traditional algorithms focused on watermarking video, audio, 3D models, and electronics,
there is yet to be any deep learning models focusing on these areas. For example, are already
numerous methods for watermarking 3D models [18], including new promising methods for water-
marking vertices data [12]. There are also existing works concerning GANs generating 3D models
[8, 98]. Furthermore, a recent paper from Google [85] details a promising deep learning technique
of embedding watermark messages into simple 3D meshes which can then be decoded from 2D
rendered images of the model from multiple angles and lighting con�gurations. It is noted in this
work that robustness and capacity will need to be improved before practical application, particularly
robustness to non-di�erentiable 3D attacks. More complex models and lighting arrangements could
be explored with a better-quality renderer. A paper from Google research by Innfarn et al. [85] sets
the precedent for watermarking 3D models using a deep learning, but more work is required before
a generalised, practically-applicable framework for 3D watermarking can be developed.
Audio watermarking is in a similar situation. There already exist GAN-based frameworks for

audio generation, and many traditional methods for audio watermarking [41, 54]. This suggests
that current machine learning models may be capable of learning audio embedding techniques and
applying these to audio databases. To our knowledge there are currently no works exploring deep
learning frameworks for audio watermarking, although considering the current interest in this
�eld, there are sure to be upcoming contributions.

Video watermarking is also a promising future direction. There are existing traditional algorithms
for video watermarking [40], and deep learning techniques are also being considered, for example
in [92]. This paper introduces RIVAGAN, a new architecture for robust video watermarking. The
attention-based architecture is robust against common video processing attacks such as scaling,
cropping, and compression. In the framework, a 32-bit watermark is embedded into a sequence
of frames, and the watermark can be extracted from any individual or collection of frames. The
framework uses an attention mechanism to identify robust areas for embedding, and produces
watermarked footage that is nearly indistinguishable to human observers (approximately 52%
detection accuracy). There is also DVMark [59] from Google Research, which employs a multiscale
design where the watermark is distributed across multiple spatial-temporal scales. It was found to
be more robust than traditional video watermarking algorithms (3D-DWT) and the deep learning-
based image watermarking framework from HiDDeN [96] against video distortions, while retaining
a high level of quality. A 3D-CNN that simulates video compression attacks was used during training
to achieve high levels of robustness. The framework in DVMark [59] also includes a watermark
detector that can analyse a long video and locate multiple short instances of copyrighted content.
This could be useful for reliably identifying copyright infringement on online video platforms such
as YouTube.

8.2 Text Watermarking for Combating Misinformation

Another promising application for deep watermarking is in watermarking text. As natural language
generation technology improves, machine learning models are capable of generating highly �uent
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language that can fool human detectors [2]. There is growing concern that such models will be used
to spreadmisinformation and ‘fake news’ online. TheAdversarialWatermarking Transformer (AWT)
developed by Sahar et al. [1] is the �rst end-to-end deep learning model for language watermarking.
Language watermarking is inherently more complex than image, video, and audio watermarking
because the language itself must be altered, which can case drastic syntactic and semantic changes.
Previous techniques include synonym replacement and altering sentence structure, which rely on
�xed rule-based techniques. The aim of such techniques is to achieve high e�ectiveness, secrecy,
and robustness, while sustaining only subtle changes to the text, preserving correct structure
and grammar, as well as language statistics. The deep learning model AWT [1] uses an attention
mechanism and adversarial training to achieve robustness against attacks such as denoising, random
changes, and re-watermarking. The model undergoes human evaluation and achieves better results
than the state-of-the-art synonym substitution baseline. This technique only works e�ectively
for long pieces of text such as news articles, whereas shorter pieces would require longer relative
watermarks, thereby noticeably degrading the original text. For practical scenarios, it is suggested
to combine this AWT technique with automated or human fact-checking to reduce the likelihood
of false positives. Further research into deep learning-based models for language watermarking is
highly important as text generating models continue to improve and become widely available to
potentially malicious actors. This will help to identify misinformation and di�erentiate generated
from genuine text.

8.3 Mitigating Watermark Removal A�acks

As technology for watermark embedding improves, so too does technology for attacking and
removing thosewatermarks. Thus, the process can be regarded as an ever-evolving, adversarial game
between content owners and attackers. Currently, deep learning-based techniques for watermark
removal exist that are able to remove information robustly embedded using the top frequency
domain algorithms [23]. This technique uses a simple CNN to perform denoising removal attacks,
and is able to not only remove the watermark, but also recover the original cover images without
signi�cant quality degradation. It was tested on a dataset of watermarked images created using
state-of-the-art DCT, DWT, and DFT traditional algorithms in a black-box setting. Although this
technique is focused on traditional algorithms, as deep learning techniques for digital watermarking
evolve, it is inevitable that adversarial techniques will continue to be developed that aim to remove
these watermarks. Therefore, it is important to continue to improve the robustness of watermarking
techniques so they can resist these emerging, deep learning-based removal methods.
Current deep watermarking strategies have been tested against a range of attacks including

cropping, pixel dropout, compression, and blurring. However, in most models these attacks are
encapsulated by a di�eretiable attack layer, as was implemented in [4, 83, 96], meaning that they
must support back propagation, which is not representative of many real-world attack scenarios.
However, it should be noted that these models can still simulate JPEG compression, which is
non-di�erentiable, by using di�erentiable approximations. Promising techniques for improving the
scope of attacks used during training include generating attacks using adversarial examples from a
trained CNN [60], and the use of black-box noise [55], which are from algorithms encapsulated in
the image processing software that are di�cult to simulate. To achieve optimal robustness, it is
important to train models on attacks generated from an adversarial network to improve results,
rather than generating attacks from a �xed pool of di�erentiable attacks, as was done in earlier
implementations.

8.4 Watermarking for Protecting Machine Learning Models

Another important application for digital watermarking is protecting machine learning models
as intellectual property. Although the survey has discussed watermarking digital media such as
images, audio, and video, machine learning models themselves require increasingly large amounts
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of computational resources and private training data to train and operate. Therefore, there is a
growing need to protect machine learning models as intellectual property. Digital watermarking is
just one of many tasks that was once done using traditional algorithms, but is now being o�oaded
to the e�ectiveness of machine learning strategies. As the happens, it is important to protect these
models from theft and misuse, not only because of the resource expenditure by the owners in
creating these models, but because their immense computational capabilities could be used for
malicious activities.
There are many techniques currently being researched for watermarking machine learning

models, most of which rely on embedded identifying information into training datasets [11].
However, as was learned through the concept of adversarial examples, even small perturbations in
training instances can cause extreme degradation in the model’s performance. Therefore, many
watermarking strategies also sacri�ce the model’s classi�cation accuracy.

A famous examples is DeepSigns [74], an end-to-end IP protection framework that inserts digital
watermarks into deep learning models by embedding the watermark into the probability density
function of the activation sets in di�erent layers of the network. It is robust against a range of
attacks, including model compression, �ne-tuning, and watermark overwriting, which proved
challenging for previous model watermarking techniques.
One recent and promising technique for watermarking training datasets is Entangled Water-

marking Embeddings [42]. Instead of only learning features sampled from the task distribution,
the defending model also samples data that encode watermarks when classifying data. Therefore,
watermark data is entangled with legitimate training data, so an adversary attempting to remove
the watermarks cannot do this without damaging the training data itself, and thereby sacri�cing
performance. The method uses Soft Nearest Neighbour Loss to increase entanglement, a new loss
function. And the method is evaluated in the image and audio domains, showing that with this
method an owner can claim with 95% con�dence that model extraction has taken place to produce
a similarly performing model by extracting prediction vectors. This technique notably shows ro-
bustness against adaptive adversaries, meaning the adversary has knowledge of the watermarking
technique being used.

As machine learning models become more ubiquitous across a range of industries, it is important
to implement digital watermarking strategies within the models themselves so that the owner’s
private information remains secure. However, just as was discussed in section 7.2, there will
inevitably be technology developed to remove watermarks, even from machine learning models.
For example, REFIT is a recent uni�ed watermark removal framework based on �ne-tuning. It does
not require knowledge of the watermarks being removed, and is e�ective against a wide range of
current watermarking techniques [17].

8.5 Watermarking for Launching Backdoor A�acks

Watermarks can be embedded into the training examples of machine learning models in order to
cause inaccurate classi�cations when the model is deployed. Many third party cloud computing
providers such as Google, Microsoft, Azure, and Amazon provide Machine Learning as a Service
(MLaaS) to train machine learning models. A malicious party can embed watermarks into training
data images and train the model to misclassify such examples, either randomly (random target
attack), or mislabel as a di�erent example (single target attack). As more third-party providers o�er
MLaaS, andmachine learningmodels becomemore ubiquitous, backdoor attacks on neural networks
are certain to become more common. Therefore, it is important to be able to detect watermarks
embedded in training examples. As digital watermarking technologies become more advanced
through deep learning as discussed in this survey, this will become more di�cult. In this case, the
improving watermark removal techniques discussed in Section 8.2 could be pursued for a benign
rather than malicious purpose. Although existing works discuss visible watermarks embedded
in training images [26, 56], there are growing e�orts to construct invisible backdoor attacks that
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cannot be detected by a human moderator, or by automated backdoor detection techniques [51, 52].
Although the techniques presented in this survey are promising for digital IP protection purposes,
they will inevitably be utilised for malicious purposes such as embedding undetectable, invisible
backdoors in machine learning models.

8.6 Deepfake Detection and Identification

Another promising application for digital watermarking is in the identi�cation and detection of
synthetic media. As GAN technology for producing synthetic media such as images, audio, and
video improve, deepfakes will become both more accurate and easier to produce. When deepfakes
are produced, it is important to be able to identify the original source of the media that has been
manipulated. Similarly, it is important to be able to identify a piece of media as synthetic in the �rst
place, without malicious parties removing this identifying tag and presenting the synthetic media
as genuine. A recent paper presents DeepTag, an end-to-end deep watermarking framework that
includes a GAN simulator that applies common distortions to facial images [82]. The watermark can
be recovered to identify the original unaltered facial image. In future, as regulations surrounding
deepfakes arise, watermarking techniques that are robust to GAN-based distortions will become
increasingly important. A connected application is embedding watermarks into synthetic media so
that it can be easily identi�ed as such.

8.7 Malware using Steganography

Digital steganography can be used maliciously to spread malware to victim technology. The ability
to hide an executable �le within an image or audio �le gives attackers an easy attack vector to
target unaware users. There have also been known cases of attackers using steganography to pass
data through unsuspecting platforms. They can easily set a time for the receiver and either upload
or update an image temporarily. At this set time the receiver can download and save the photo,
decode the message, and then the attacker can restore the image to the original or delete the image.
This could be almost impossible to detect when third parties are unaware of where the attack will
take place, and would be even more unlikely to catch the act if the stego-image used was highly
imperceptible. These high levels of imperceptibility can now be achieved easily though modern
deep learning approaches.
Steganalysis could implemented into antivirus software that not only scans images but scans

sites before entering. Though this would be a di�cult task due to the large amount of power it
would require, constantly scanning almost every website or item on the web page just in case there
is malware present. There could be a �lter that decides when steganalysis could be used such as
situations when users decide to continue onto an already scanned suspicious website. Currently,
the possibilities are limited, but the implementation of steganalysis in antivirus software may be
essential in the future as steganography techniques both improve in performance and become more
widely accessible to the public.

9 CONCLUSION

This survey presented an overview of deep learning techniques for data hiding, including both
watermarking and steganography, comparing current state-of-the-art methods classi�ed in terms
of network architecture and model performance. The survey also compared the objective functions
and evaluation metrics for model performance measurement, and �nally looked at possible future
directions for research in this �eld. This is a promising new �eld of research with the potential to
revolutionise both the protection of digital IP and the security of communication across a range of
industries. As techniques improve, and applications spread to other types of media, deep learning-
based methods for data hiding will likely surpass the capabilities of any traditional algorithms in
all media and greatly enhance digital information security.
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