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Abstract. Given the vast volume of data that needs to be stored reli-
ably, many data-centers and large-scale file systems have started using
erasure codes to achieve reliable storage while keeping the storage over-
head low. This has invigorated the research on erasure codes tailor made
to achieve different desirable storage system properties such as efficient
redundancy replenishment mechanisms, resilience against data corrup-
tion, degraded reads, to name a few prominent ones. A problem that has
mainly been overlooked until recently is that of how the storage system
can be efficiently populated with erasure coded data to start with. In this
paper, we will look at two distinct but related scenarios: (i) migration
to archival - leveraging on existing replicated data to create an erasure
encoded archive, and (ii) data insertion - new data being inserted in the
system directly in erasure coded format. We will elaborate on coding
techniques to achieve better throughput for data insertion and migra-
tion, and in doing so, explore the connection of these techniques with
recently proposed locally repairable codes such as self-repairing codes.

1 Introduction

The ability to store securely and reliably the vast amount of data that is con-
tinuously being created by both individuals and institutions is a cornerstone of
our digital society. A study sponsored by the information storage company EMC
estimated that the world’s data would have reached 1.8 zettabytes of data to be
stored by the end of 2011.3

The massive volume of data involved means that it would be extremely expen-
sive, if not impossible, to build a single piece of hardware with enough storage as
well as I/O capabilities to meet the needs of most organizations and businesses.
A practical alternative is to scale out (or horizontally): resources from multiple
interconnected storage nodes are pooled together, and more such nodes can be
organically added as and when the demand for storage resources grows. We call
these systems Networked Distributed Storage Systems (NDSS). NDSS come in
many flavors such as data centers and peer-to-peer (P2P) storage/backup sys-
tems, which have their unique characteristics, but also share several common

3 http://www.emc.com/about/news/press/2011/20110628-01.htm



properties. Given the system scale, failure of a significant subset of the con-
stituent nodes, as well as other network components, is a norm rather than the
exception. To enable a highly available overall service, it is thus essential to
both tolerate short-term outages of some nodes and to provide resilience against
permanent failures of individual components. Fault-tolerance is achieved using
redundancy while long-term resilience relies on replenishment of lost redundancy
over time. To that end, erasure codes have become popular to achieve system
resilience while incurring low storage overhead. Recent years have accordingly
witnessed the design of erasure codes tailor made to meet distributed storage
system needs, more specifically, a lot of work has been done to improve the
storage system’s repairability. This line of work has been surveyed in [4, 6].

This article focuses on a different aspect of erasure code design. A relatively
unexplored problem in the literature is, how does the erasure coded data come
into being to start with?

In a replication based NDSS, when a new object needs to be stored, the first
node receiving the same can forward it to another node to replicate the data,
and so on. Such a pipelined approach allows quick data insertion and replication
in the system, the load of data insertion is distributed among multiple nodes,
and a single node is not overloaded with the task.

In contrast, in an erasure coding based NDSS, traditionally, one node has the
burden to first encode the new object (after obtaining it if necessary), and then
distribute the encoded pieces to other storage nodes. The computational and
communication resources of this node thus become a bottleneck. In this paper
we summarize some recent results delving into two distinct scenarios, where
distributing the load to create erasure coded data improves the throughput of
populating the NDSS with erasure coded data.

Note that in the following, we use the term ‘source’ to mean whichever node
has a full copy of the data. It could be a gateway node that receives the data
from an end-user who ‘owns’ and uploads the same to the NDSS, or it could be
an NDSS node where the data is created locally by some application.

Migration to archival. If the data is originally stored in the system in replicated
format, but subsequently needs to be migrated into erasure coding based archive,
then existing replicas of the data can be exploited to distribute the load of the
erasure coding process. This scenario is typical since newly arrived objects are
often stored as replicas, which ensures efficient reads and fault tolerance while the
objects are being frequently manipulated. When accesses to the objects become
rarer, they are archived using erasure coding, and the replicas are discarded.

Data insertion. When new data is being inserted into the system, if such a data
is to be stored in NDSS directly in erasure coded format, then the computational
resources of the storage nodes can be utilized to reduce the amount of redundant
data that the source needs to itself create and inject individually to the different
storage nodes.

For these two distinct scenarios - migration to archival and data insertion
- we have devised (so far unrelated) mechanisms [7–9] to improve the system’s



throughput. Before summarizing these approaches, we next provide a brief back-
ground of erasure codes for NDSS.

2 Background on Erasure Coding for Distributed Storage

We can formally define the erasure encoding process as follows. Let the vector
o = (o1, . . . , ok) denote a data object of k × q bits, that is, each symbol oi,
i = 1, . . . , k is a string of q bits. Operations are typically performed using finite
field arithmetic, that is, the two bits {0, 1} are seen as forming the finite field F2

of two elements, while oi, i = 1, . . . , k then belong to the binary extension field
F2q containing 2q elements. The encoding of the object o is performed using
an (n × k) generator matrix G such that G · oT = cT , in order to obtain an
n-dimensional codeword c = (c1, . . . , cn) of size n× q bits.

When the generator matrix G has the form G = [Ik, G
′]T where Ik is the

identity matrix and G′ is a k ×m matrix, m = n− k, the codeword c becomes
c = [o,p] where o is the original object, and p is a parity vector containingm×q
parity bits. The code is then said to be systematic, in which case the k parts of
the original object remain unaltered after the coding process. The data can then
still be reconstructed without requiring a decoding process by accessing these
systematic pieces.

If any arbitrary k of the cis can be used to reconstruct the original information
o = (o1, . . . , ok), then the code is said to be maximum distance separable (MDS).
For any given choice of n and k, an MDS code provides the best fault-tolerance
for up to n− k arbitrary failures.

Systematic MDS codes have thus traditionally been preferred in storage sys-
tems, given the practical advantages they provide.

Other system considerations may however prompt for non-MDS and/or non-
systematic codes as well. For instance, dependencies within small subsets of
codewords may allow for better and faster repairs [5] - which is desirable for
long-term resilience of the system, even if it marginally deteriorates the system’s
tolerance of the number of simultaneous faults. In fact, in the recent years,
repairable erasure codes have been vigorously researched [4,6], and it continues
to be an open-end and popular topic of study. Likewise, non-systematic codes
may provide a basic level of confidentiality [3] of the stored content since an
adversary with access to any one (or very small number of) storage node(s) will
not be able to see the content.

3 Migration from Replication to Erasure Coded Archive

Often, when new data is introduced in a storage system, it is replicated (3-
way replication is a popular approach) for fault-tolerance. Furthermore, such a
replication strategy can be leveraged to support higher throughput of data access
when different applications are trying to read the same data simultaneously, or
by migrating computing tasks to a relatively less loaded subset of the replicas
instead of moving the data around. Data is often accessed and manipulated



(a) Traditional archiving (e.g. as done in HDFS-RAID [2]).

(b) Decentralized encoding.

Fig. 1. An example of migration of replicated data into an erasure coded archive. The
squares represent storage nodes and the arrows across boxes denote data (labels indicate
the actual amount) transferred over the network. We can see how (a) requires a total
of five network transfers while (b) needs only four network transfers. The “X” symbol
denotes the replicas that are discarded once the archival finishes, and the symbol ⊗
denotes an encoding operation.

frequently when it has been acquired recently, but over time, once the need to
access it decreases, it is desirable to reduce the storage overhead by replacing
the replicas and instead archive the data using erasure coding [2]. We propose
to effectuate this migration via a decentralized encoding process, which, as we
will see later, provides significant performance boosts.

3.1 Motivating Examples

We will use Figure 1 for an illustration of an abstracted toy example of migration
of a replicated system into an erasure coded archival. Suppose that we have a
data object comprising of three parts (o1, o2, o3), and the parts oi are stored
at three different nodes each (i.e., using a 3-way replication). Traditionally, one
node (the coding node) would require (o1, o2, o3) to be collocated, based on which
it can compute some parity coefficients (p1, p2, p3), keeping p1 for itself and then
distributing p2 and p3. This will require a total of five network transfers including
the communication cost of downloading the three original parts to start with.
Alternatively, one of the nodes which already stores o2 could download o1 and
o3, from which it can compute the parity p2, and then distributes p2 to one of



the nodes which stored o1 (respectively o3), each of which could compute parity
pieces p1 and p3 respectively using p2 and o1 (respectively o3). This process
where the existing replicas are exploited costs only four network transfers. In
both cases, the codeword (c1, . . . , c6) = (o1, o2, o3, p1, p2, p3) has been computed
and distributed over six different nodes. The remaining pieces of the original
data can be garbage collected subsequently. Also note that if each storage node
had a communication bottleneck, such that it could only upload or download
one piece in an unit time, then the centralized approach would have required
five time units for data transfer, in addition to the computation time. If p2 is
pipelined to o3 via o1 (not shown in the figure) then the decentralized approach
would take three time units for data transfer, in addition to the computation
time at the three different nodes, some of which happens in parallel.

The above toy example illustrates that there is a potential benefit both in
terms of reduced network traffic, and possibly also in terms of the time taken
to carry out a single encoding, by decentralizing the process and leveraging on
existing replicas. The example however does not reveal what the parity pieces
pis are, and what specific computations need to be carried out. In fact, as we will
see next, different strategies can be devised, depending on how many replicas
are present in the system when the migration to erasure coded archive starts,
what is the original placement of these replicas, how is the encoding process
distributed and what are the properties of the resulting codeword.

We will next give two explicit toy examples, to illustrate two types of de-
centralized encoding. The first one ends up in a non-systematic codeword, while
the second yields a systematic codeword. The first one assumes that each piece
of the object and its replica(s) are initially placed in different nodes. The latter
assumes that some of these pieces are cleverly collocated, in order to achieve
further savings in communication. Subsequently, we will elaborate on a more
general theory of decentralized coding, along with some early results.

Example 1. Suppose that an object o = (o1, o2, o3, o4), oi ∈ F2q , of k = 4 blocks
is stored over n = 8 nodes using two replicas of o, which are initially scattered
as follows:

N1 : o1, N2 : o2, N3 : o3, N4 : o4,
N5 : o1, N6 : o2, N7 : o3, N8 : o4.

Clearly, such a setup can guarantee fault-tolerance against only a single arbitrary
failure, though some combinations of multiple failures may also be tolerated, if
one copy of each piece survives in the system. Consider that it needs to be
archived using a codeword c = (c1, . . . , c8). In this example, the resulting era-
sure coded data coincidentally has the same storage overhead as the original
replication scheme (though this is not necessary, as we will see latter when we
generalize the ideas), but will have significantly higher fault tolerance.

Unlike in Figure 1 where one node distributes its data to two other storage
nodes, in this example, since more nodes are involved, the coding process is done
in a pipelined manner, namely node 1 forwards o1ψ1, i.e. some multiple of o1,
to node 2, which computes a linear combination of the received data with o2,
and forwards it again to node 3, and so on. More generally, node i encodes the



data it gets from the previous node together with the data it already has and
forwards it to the next node. We denote the data forwarded from node i to its
successor, node j, by xi,j , which is defined as follows:

x1,2 = o1ψ1,

x2,3 = x1,2 + o2ψ2 = o1ψ1 + o2ψ2,

x3,4 = x2,3 + o3ψ3 = o1ψ1 + o2ψ2 + o3ψ3,

x4,5 = x3,4 + o4ψ4 = o1ψ1 + o2ψ2 + o3ψ3 + o4ψ4,

x5,6 = x4,5 + o1ψ5 = o1(ψ1 + ψ5) + o2ψ2 + o3ψ3 + o4ψ4,

x6,7 = x5,6 + o2ψ6 = o1(ψ1 + ψ5) + o2(ψ2 + ψ6) + o3ψ3 + o4ψ4,

x7,8 = x6,7 + o3ψ7 = o1(ψ1 + ψ5) + o2(ψ2 + ψ6) + o3(ψ3 + ψ7) + o4ψ4,

where ψj ∈ F2q , j = 1, . . . , 7, are some predetermined values. After the nodes
have distributed their stored data, they are left to generate an element of the final
codeword ci by encoding the received data together with the locally available
data as follows:

c1 = o1ξ1,

c2 = x1,2 + o2ξ2 = o1ψ1 + o2ξ2,

c3 = x2,3 + o3ξ3 = o1ψ1 + o2ψ2 + o3ξ3,

c4 = x3,4 + o4ξ4 = o1ψ1 + o2ψ2 + o3ψ3 + o4ξ4,

c5 = x4,5 + o1ξ5 = o1(ψ1 + ξ5) + o2ψ2 + o3ψ3 + o4ψ4,

c6 = x5,6 + o2ξ6 = o1(ψ1 + ψ5) + o2(ψ2 + ξ6) + o3ψ3 + o4ψ4,

c7 = x6,7 + o3ξ7 = o1(ψ1 + ψ5) + o2(ψ2 + ψ6) + o3(ψ3 + ξ7) + o4ψ4,

c8 = x7,8 + o4ξ8 = o1(ψ1 + ψ5) + o2(ψ2 + ψ6) + o3(ψ3 + ψ7) + o4(ψ4 + ξ8),

where ξj ∈ F2q , j = 1, . . . , 8, are also predetermined values.
Note that the coding process can be implemented in a pipelined manner, and

both phases can be executed simultaneously: as soon as node i receives the first
few bytes of xi−1,i it can start generating the first bytes of ci, and concurrently
forward xi,i+1 to node i+ 1.

The end result is a non-systematic codeword (c1, . . . , c8) that has a high fault
tolerance. By selecting values of ψi and ξi that do not introduce linear depen-
dencies within the codeword, the original object o can be reconstructed from any
combination of four codeword symbols except the combination {c1, c2, c5, c6} [8].
In this specific case the symbols c1, c2, c5 and c6 are linearly dependent (this can
be checked using symbolic computations) since:

c1
[
(ψ1ξ6ξ

−1
2 + ψ5 + ξ5)ξ

−1
1

]
+ c2

[
ξ6ξ

−1
2

]
+ c5 + c6 = 0,

recalling that 2 ≡ 0 in F2q . Then, this (8,4) code has
(
8
4

)
− 1 = 69 possible

4-subsets of codeword symbols that suffice to reconstruct the original object o.
It represents a negligible degradation with respect to the fault tolerance of an
MDS code, where

(
8
4

)
= 70 such possible 4-subsets exist.



Example 2. The second example is that of a systematic (10,6) erasure code,
which provides m = 10 − 6 = 4 blocks of redundancy (parity blocks). Consider
a data object o = (o1, o2, . . . , o6) to be stored with a replica placement policy
that stores r = 3 replicas of o, that is, three replicas of every oi, i = 1, . . . , 6
(for a total of 18 data blocks). We assume that one of the replicas of o is stored
in k = 6 different nodes, which will finally constitute the systematic part of the
codeword, c1 = o1, . . . , ck = ok. Of the (r − 1)k = 12 remaining replica pieces
left, we select a subset of ℓ of them to be stored in the m = 4 coding nodes
that will carry out the decentralized encoding process. The assignment of these
ℓ replicas is as follows:

N1 = {o1, o2, o3} ; N2 = {o4, o5, o6} ; N3 = {o1, o2} ; N4 = {o3, o4} ,

where Nj denotes the set of blocks stored in node j. Note that only ℓ = 10 out of
the available (r−1)k = 12 blocks are replicated in the m coding nodes, while the
remaining two can be flexibly stored in other nodes, e.g., to balance the amount
of data stored per node. Such a collocation of multiple pieces reduces the amount
of fault-tolerance enjoyed by the data while it is stored using replication.4 Note
also that no node stores any repeated block, since this would further reduce fault
tolerance.

To describe the decentralized encoding process we use an iterative encoding
process of ν = 7 steps, in which every ψi, ξj ∈ F2q are predetermined values that
define the actual code instance. During step 1, node 1 which has N1 generates

x1 = o1ψ1 + o2ψ2 + o3ψ3

and sends it to node 2, which uses N2 and x1 to compute

x2 = o4ψ4 + o5ψ5 + o6ψ6 + x1ψ7

during step 2. After two more steps, we get:

x3 = o1ψ8 + o2ψ9 + x2ψ10

x4 = o3ψ11 + o4ψ12 + x3ψ13,

and node 4 forwards x4 to node 1, since ν = 7 > m = 4, which creates

x5 = o1ψ14 + o2ψ15 + o3ψ16 + x4ψ17

before sending x5 to node 2. For the last two iterations, both node 2 and node
3 use respectively N2, x1 and x5, and N3, x2 and x3 together, to compute

x6 = o4ψ18 + o5ψ19 + o6ψ20 + x1ψ21 + x5ψ22

x7 = o1ψ23 + o2ψ24 + x2ψ25 + x6ψ26.

4 By carrying out erasure coding of subset of pieces from different objects, one may
be able to alleviate this problem of initial fault-tolerance, while still using precisely
the same scheme.



After this phase, node 1 to 4 are locally storing:

N1 = {o1, o2, o3, x4}
N2 = {o4, o5, o6, x1, x5}
N3 = {o1, o2, x2, x6}
N4 = {o3, o4, x3, x7}

from which they compute the final m parity blocks:

p1 = o1ξ1 + o2ξ2 + o3ξ3 + x4ξ4

p2 = o4ξ5 + o5ξ6 + o6ξ7 + x1ξ8 + x5ξ9

p3 = o1ξ10 + o2ξ11 + x2ξ12 + x6ξ13

p4 = o3ξ14 + o4ξ15 + x3ξ16 + x7ξ17.

As in Example 1, all values ψi, ξi ∈ F2q are also predetermined to optimize
fault-tolerance.

The final codeword is c = [o,p] = (o1, . . . , o6, p1, . . . , p4). There is a total
of ν blocks transmitted during the encoding process (those forwarded during
the iterative phase). In this example, ν = 7, and the encoding process requires
two block transmissions less than the classic encoding process, which requires
n− 1 = 9 blocks, thus achieving a 22% reduction of the traffic.

We will next elaborate the general theory of each of the two variations of the
decentralized codes, along with summary of some results.

3.2 Generating a non-systematic erasure code

Example 1 is a particular case of RapidRAID codes [8] for k = 4 and n =
8. We next present a general definition of RapidRAID codes [8] for any pair
(n, k) of parameters, where n ≤ 2k. We start by stating the requirements that
RapidRAID imposes on how data must be stored:

– When n < 2k, two of the originally stored replicas should be overlapped
between n storage nodes: a replica of o should be placed in nodes 1 to k,
and a second replica of o in nodes from n− k to n.

– The final n redundancy blocks forming c have to be generated (and finally
stored) in nodes that were already storing a replica of the original data.

We then formally define the temporal redundant block that each node i in
the pipelined chain sends to its successor as:

xi,i+1 = xi−1,i +
∑

oj∈node i

ojψi, 1 < i < n− 1, (1)

with x0,1 = 0, while the final redundant block ci generated/stored in each node
i is:

ci = xi−1,i +
∑

oj∈node i

ojξi, 1 < i < n, (2)

where ψi, ξi ∈ F2q are static predetermined values specifically chosen to guaran-
tee maximum fault tolerance.



3.3 Generating a systematic erasure code

We will next assume that only m = n− k nodes will participate in the encoding
process (k nodes are storing the systematic pieces), as illustrated in Example
2. However, the proposed strategy also requires a carefully chosen collocation
of several distinct replica pieces within the same node that participates in the
decentralized encoding process.

Then, a total of ℓ different block replicas are allocated (collocated) among
the m coding nodes, i.e., the content of the set Nj for each node j. For the sake
of simplicity, we assume that the ℓ replicas are deterministically assigned in a
sequential manner as illustrated in Example 2, trying to even out the number of
blocks assigned to each node. A formal description of this allocation is provided
in Algorithm 1.

Algorithm 1 Replica placement policy.
1: i ← 1
2: for j = 1, . . . ,m do
3: α ← ⌊ℓ/m⌋
4: if j ≤ (ℓ mod m) then
5: α ← α+ 1
6: end if
7: Nj = {ol : l = (j mod k), j = i, . . . , i+ α}
8: i ← i+ α
9: end for

This assignment policy imposes some restrictions on the location of the dif-
ferent replicated blocks (block collocation), which might require changes on the
random assignment policy commonly used in NDSS. Furthermore, collocating
block replicas in a same node reduces the fault tolerance of replicated data. This
problem can be of special importance for the extreme case when ℓ = (r − 1)k
(all replicas are stored within only m nodes), although for small values of ℓ the
assignment policy provides some flexibility on where to assign the (r−1)k−ℓ re-
maining replicas. However, as we will show in Section 3.5, small ℓ values increase
the chances of introducing linear dependencies during the distributed encoding
process, reducing the resiliency of the encoded data. In this last case the negative
effects of a small ℓ value can be counterbalanced by adopting larger ν values.
There is then a trade-off between the values ℓ and ν, and the fault tolerance of
the replicated and encoded data.

Remark 1. In the case of ℓ = k, there is no replica assignment policy and a
random placement can be used.

Given the replica assignment policy, the decentralized encoding process is
split into two different phases: the iterative encoding and the local encoding.

The iterative encoding consists of ν sequential encoding steps, where at each
step, each node generates and forwards a temporary redundant block. For each



step i, where i = 1, . . . , ν, node j = (i modm) which stores the set of blocks
Nj = {z1, z2, . . . } locally computes a temporary block xi ∈ F2q as follows:

xi = z1ψ1 + z2ψ2 + · · ·+ z|Nj |ψ|Nj |, (3)

where ψi ∈ F2q are predetermined values. Once xi is computed, node j sends
xi to the next node l = (i+ 1 modm), which stores locally the new temporary
block: Nl = Nl ∪ {xi}, after which, node l computes xi+1 as defined in (3) and
forwards it to the next node. The iterative process is similarly repeated a total
of ν times.

After this iterative encoding phase, each node i = 1, . . . ,m executes a local
encoding process where the stored blocks Ni (including the temporary blocks
generated during the iterative encoding phase) are combined to generate the
final parity block pi (for predetermined values of ξi ∈ F2q ) as follows:

pi = z1ξ1 + z2ξ2 + · · ·+ z|Ni|ξ|Ni|. (4)

Finally, we describe the overall distributed encoding algorithm (including
the iterative encoding and the local encoding) in Algorithm 2. Note that val-
ues ψl and ξl (lines 7 and 17) are picked at random. In a sufficiently large field
(e.g., when q = 16) this random choice will not introduce additional dependen-
cies (w.h.p.) other than the ones introduced by the iterative encoding process
itself [1].

Algorithm 2 Decentralized redundancy generation.

1: l ← 1
2: j ← 1
3: x ← 0
4: for i = 1, . . . , ν do I Generation of the ν temporary blocks.
5: x ← 0
6: for z ∈ Nj do I Coding operation as described in (3).
7: x ← x+ ψl · z
8: l ← l + 1
9: end for
10: j ← (i+ 1) mod m
11: Nj ← Nj ∪ {x} I Each union (∪) represents a block transfer.
12: end for
13: l ← 1
14: for i = 1, . . . ,m do I Generation of the final m parity blocks.
15: pi ← 0
16: for x ∈ Ni do I Coding operation as described in (4).
17: pi ← pi + ξl · x
18: l ← l + 1
19: end for
20: end for



3.4 General Distributed Encoding Framework

Both distributed encoding schemes follow the same approach: a set of n nodes,
labelled from node 1 to node n, store an original configuration of data pieces.
Then one node starts the encoding process by transmitting to the next node
(next according to the labeling) a linear combination of the pieces it stores. The
second node then keeps what it receives, what it owns, and sends a combination
of both to the next node, and this is iterated until a codeword is computed.

– In the first case, the first node starts the process, which is repeated until
reaching the nth node. The original configuration assumes, if n = 2k, that
node 1 to node k each stores one piece of the data object, as does every node,
from node k + 1 to node n. If n < 2k, the two copies of the original object
are initially overlapped. This results in a non-systematic codeword.

– In the second case, to ensure that the codeword will be systematic, node 1 to
node k store the k pieces of the original object, while nodes k+1 to n store
different configurations of the same. The iterative encoding only involves
the n − k latter nodes, which compute the parity coefficients. As a result,
one round of this process (going from node k + 1 to node n) is typically
not enough to ensure a good fault tolerance, and thus the encoding often
necessitates several rounds.

3.5 Results

Encoding Times Analysis. One of the main advantages of distributing the erasure
code redundancy generation across several nodes is that the required encoding
times can be potentially reduced, providing more efficient ways of archiving repli-
cated data. In this section we report performance results of an implementation of
a (16,11)-RapidRAID [8] code (Section 3.2) which achieves significantly shorter
encoding times in a testbed of 50 HP ThinClient computers, as compared to
an efficient implementation of a (16,11) classical Cauchy Reed-Solomon erasure
code.

Note however that the encoding speedup of RapidRAID is obtained at the
expense of involving a total of n = 16 nodes in the encoding process, instead
of the single node involved in classic encoding process. Thus, it is important to
measure the encoding throughput of a classic erasure code involving the same
number of nodes, i.e., when n = 16 classic encoding process are executed in
parallel. Besides that, in practical scenarios storage nodes might be executing
other tasks concurrently along with data archival processes, which might cause
some nodes to experience overload or network congestions, which in turn might
affect the coding times. Hence measuring the encoding times of both strategies
(decentralized encoding vs. classic encoding) when some of the n nodes or net-
works are overloaded is another interesting aspect to study. In the experiments
reported next, such bottlenecks are emulated in our testbed by reducing the net-
work bandwidth of some nodes from 1GBps to 500MBps, and adding to these
nodes a 100ms network latency (with a deviation of up to ±10ms).
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(b) Encoding 16 objects concurrently.

Fig. 2. Average time required to encode 16 concurrent objects using a (16,11) Cauchy
Reed-Solomon code and a (16,11) RapidRaid code implemented using 8-bit finite-field
operations. Nodes have 500Mbps connections with a latency of 100ms±10ms. Error
bars depict the standard deviation value.

In Figure 2 we depict the encoding times of the (16,11) RapidRAID im-
plementation (RR8) and the (16,11) Cauchy Reed Solomon Code (CEC). In
Figure 2a we show the encoding times for a single data object and different
number of congested nodes. In this case a single data object is encoded in a to-
tally idle system. We see how when there are no congested nodes the RapidRAID
implementations have of the order of 90% shorter coding times as compared to
the classic erasure code implementation. Distributing the network and comput-
ing load of the encoding process across 16 different nodes reduces the encoding
time significantly. In Figure 2b we depict the per-object encoding times ob-
tained by executing 16 concurrent classic encoding processes and 16 concurrent
RapidRAID encoding processes on a group of 16 nodes. According to further
experiments on EC2 (not reported here, but details can be found in [8]), the two
RapidRAID implementations achieve a reduction of the overall coding time by
up to 20% when there are no congested nodes.

We further observe from Figure 2 that the coding times of RapidRAID codes
have a quasi-linear behavior when the number of congested nodes increases.
However, in the case of classic erasure codes, we observe that even a single
congested node has major impact on the coding times. In general, these results
show how RapidRAID codes significantly boost the performance of the encoding
process over congested networks.

Fault Tolerance Analysis. As was illustrated in Example 1, RapidRAID codes
offer a high fault tolerance. Some numerical analysis in [8] show how for short
codes RapidRAID are MDS codes when k ≥ n− 3, and that for practical values



of k out of this range RapidRAID codes offer a fault tolerance comparable to
that of MDS codes. One of the reasons for this high fault tolerance is that the
encoding process is distributed across a large number of storage nodes (across
n nodes), which due to the random nature of the encoding process, reduces
the chances of introducing linear dependencies within the codeword symbols.
However, in the case of the systematic erasure code presented in Section 3.3,
the encoding process is distributed across a smaller set m = n − k nodes, and
then the chances to introduce linear dependencies within the codeword symbols
increase.
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(b) Results for (10,6) code.

Fig. 3. Fault tolerance achieved by our decentralized erasure coding process as a func-
tion of the number of encoding steps, ν, and the number of co-located block replicas,
ℓ. The fault tolerance π is expressed as the proportion of k-subsets of the codeword c
that do not contain linear dependencies. When this value is one, the code is MDS and
has maximum fault tolerance.

In this latter case it is then important to evaluate the fault tolerance of
the obtained code for different code parameters. We divide the fault tolerance
analysis in two experiments, one aiming at evaluating the effects of the number
of encoding steps ν, and another one at the effects of the collocated replicas ℓ.

In Figure 3a we show the fault tolerance π of the code (proportion of linearly
independent k-subsets) as a function of the number of steps ν. For each of the
three different codes we depict the effects of ν for three different values of ℓ. We
can see how the proportion of linearly independent k-subsets increases as more
encoding iterations are executed. Achieving the maximum fault tolerance (when
the fraction of linearly independent k-subsets is one) requires less iterations for
high replica collocation values ℓ.

Similarly, in Figure 3b, we display the fault tolerance as a function of the
number of blocks stored within the m coding nodes ℓ. For each code we also
present the results for three different values of ν, which aim at showing the
fault tolerance (i) when only a few coding nodes execute the iterative encoding



process, (ii) when all coding nodes execute it exactly once, and (iii) when some
coding nodes execute it more than once. In general we can see how increasing
the number of initially collocated replicas ℓ increases the fault tolerance of the
code. However, for small values of ν there are cases where increasing ℓ might
slightly reduce the fault tolerance. Finally, we want to note that in those cases
where ν ≤ m (only a few coding nodes execute the iterative encoding), the
code produced by the decentralized coding can never achieve maximum fault
tolerance. To achieve maximum fault tolerance, all the m coding nodes need to
execute at least one coding step.

Network Traffic Analysis. Finally, we report the network traffic required to en-
code a specific data object with the novel decentralized erasure codes presented
in Sections 3.2 and 3.3. Recall that in classic erasure codes the single encoding
node downloads k data fragments, encodes them, and finally uploads m− 1 par-
ity blocks (where m = n − k). Each encoding process requires then a total of
n − 1 block transmissions. This is the same amount of transmissions required
by RapidRAID codes (Section 3.3) where the n nodes involved in the encoding
process transfer a total of n − 1 temporal blocks among them. However, in the
case of the non-systematic code presented in Section 3.2, the number of block
transmissions is exactly one less than the number of encoding steps ν, i.e., ν−1.

To evaluate this encoding traffic in Figure 4 we depict a comparison between
a classic coding process, denoted by RS, and a decentralized systematic erasure
code that achieves the MDS property (maximum fault tolerance), denoted by
DE. In both cases we measure the encoding traffic required by both codes when
ℓ = k and ℓ = 2k, and in the case of DE, using the minimum value of ν required
to achieve the MDS property. We show the comparison for three different code
parameters. For the (6,3) code there are traffic savings only when the m = 3
coding nodes originally stored all the (r−1)k replicas. In this case the decentral-
ized coding saves one block transfer. In the case of the (10,6) the decentralized
coding process always requires less network traffic, even for low replica colloca-
tion levels, and these traffic savings are amplified for the (14,10) code. In this
last case the savings range from a 24% in the case of the low replica collocation
(ℓ = k), up to 56% for high collocation values (ℓ = 2k).

4 Encoding Data During the Insertion Process

In the previous section we presented two distributed erasure codes that allow
to efficiently archive an object o that is originally replicated. In this section
we will present a technique to directly store the object o in an encoded format
without first (temporarily) creating replicas at all. For instance, if multimedia
content is being stored it may as well be stored directly in erasure coded format,
unlike data that is used for analytics, and is archived only after the processing
is completed.

First we will introduce the concept of locally repairable codes, and then we
will show how such codes can be exploited to encode data on-the-fly while being
introduced in the system in order to improve data insertion throughput.
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4.1 Locally Repairable Erasure Codes

In classic erasure codes described in Section 2, the generation of each codeword
symbol ci ∈ c requires the access to the whole original data vector o. When
a storage node fails, repairing one missing codeword symbol ci ∈ c requires
to access k different codeword symbols and reconstruct o, which entails a high
I/O cost (accessing k different storage disks across the network). In contrast,
locally repairable erasure codes allow to repair particular codeword symbols ci
by retrieving only d symbols, for small values of d, d < k, which can be as
small as d = 2 [5]. Reducing the number of nodes needed to carry our a repair
simplifies the repair mechanism, requires less I/O operations, and reduces the
repair traffic with respect to classical erasure codes for a wide range of failure
patterns, and can also speed-up the repair process.

Example 3. Let us present a simple locally repairable erasure code, specifically
a (7,3)-code with the following generator matrix:

GT =

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

 .

This code takes an object o = (o1, o2, o3), oi ∈ F2q , and generates a codeword c =
(c1, . . . , c7) that contains the three original symbols (i.e., systematic symbols)
plus all their possible xor combinations:

c1 = o1; c4 = o1 + o2; c7 = o1 + o2 + o3;
c2 = o2; c5 = o1 + o3;
c3 = o3; c6 = o2 + o3.



It is easy to see that it is possible to reconstruct the original object by download-
ing a minimum of k = 3 redundant fragments, e.g., c5, c6 and c7, although not all
k-subsets hold that property –i.e., it is a non-MDS code. Additionally, each re-
dundant fragment can be generated by xoring two other redundant fragments in
three different ways:

c1 = c2 + c4; c2 = c5 + o7; c4 = c3 + c7; c6 = c1 + c7; c7 = c3 + c4;
c1 = c3 + c5; c3 = c4 + c7; c4 = c5 + c6; c6 = c2 + c3;
c1 = c6 + c7; c3 = c1 + o5; c5 = c1 + c3; c6 = c4 + c5;
c2 = c1 + c4; c3 = c2 + c6; c5 = c2 + c7; c7 = c1 + c6;
c2 = c3 + o6; c4 = c1 + c2; c5 = c4 + c6; c7 = c2 + c5.

We can represent the locally repairable property in terms of seven different
repair groups R = {r1, . . . , r7}, where:

r1 = {c1, c2, c4}; r2 = {c1, c3, c5}; r3 = {c1, c6, c7}; r4 = {c2, c3, c6};
r5 = {c2, c5, c7}; r6 = {c3, c4, c7}; r7 = {c4, c5, c6}.

Each codeword symbol ci ∈ rj can be repaired/generated by summing the
other symbols in rj , ci =

∑
ck∈rj\{ci} ck.

Locally Repairable Code. We can generically define a locally repairable code as an
undirected bipartite graph G = (C∪R,E), where the set of vertices U represents
the set with all the codeword symbols C = {ci : ci ∈ c}, the set of vertices R
represented all the repair groups R = {ri, . . . , rr}, and ci ∈ rj ⇐⇒ (ci, rj) ∈ E.
Then, for any ci ∈ rj , the locally repairable property guarantees that

ci =
∑

ck∈rj\{ci}

ψkck,

for predetermined ψk values, ψk ∈ F2q .

4.2 In-Network Redundancy Generation

As noted in the introduction, pipelining can be trivially used to create replication
based redundancy. To do so, a source node sends the data to be stored to a
first storage node, which stores it and simultaneously forwards it to a second
storage node, and so on. However, as discussed in Section 2, erasure coding
schemes do not allow to generate data redundancy of newly inserted data “on-
the-fly”, and often this process is carried out off-line in a batch process [2]. In
this section we show how locally repairable codes are potentially amenable to be
used in the on-line redundancy generation of newly inserted data. We will refer
to this redundancy generation approach as an in-network redundancy generation
process.



(a) Bipartite graph of the lo-
cally repairable code.

(b) Purging R to obtain the
redundancy generation graph.

(c) Redundancy gen-
eration graph.

Fig. 5. In-network redundancy generation using the (7,3)-code from Example 3.

Example 4. Let us consider the same (7,3) locally repairable code described in
Example 3. In Figure 5c we show an in-network redundancy generation example
for this code. The source node receives an object o = (o1, o2, o3) and uploads
each of these fragments to nodes from 1 to 3, which respectively store c1 = o1,
c2 = o2 and c3 = o3. Then, nodes 1 and 2 send their respective fragments, c1
and c2, to node 4, which computes and stores c4 = c1+ c2. The rest of the nodes
compute the fragments c6 = c2 + c3, c5 = c4 + c6 and c7 = c3 + c4 in a similar
manner.

Note that the creation of c5 and c7 depends on the previous generation of
c4 and c6. Although at a first glance it might seem that symbols c5 and c7
can be created only some time in the future after the generation of c4 and c6,
practical implementations can overcome this restriction by allowing nodes 4 and
6 to start forwarding the first generated bytes of c4 and c6 to nodes 5 and 7 in a
streamlined way, similarly to the pipelined copy used in replication. By doing it,
blocks c4 to c7 can be generated quasi-simultaneously once nodes 1 to 3 received
their blocks from the source node. However, in those situations where data from
the source is being generated/received while it is being inserted, fragments o1
to o3 will be sequentially uploaded, delaying the generation of symbols c4 to c7,
and thus, lengthening the overall redundancy generation process.

This example allow us to show how the local repairability groups can be
exploited to generate the in-network redundancy generation tree depicted in
Figure 5c. However, obtaining such a tree for any arbitrary locally repairable
code is not trivial. One possible way to obtain it is to consider the bipartite
graph representation of the (7,3) locally repairable code, which we depict in
Figure 5a. This graph contains all the codeword symbols ci in the left-hand side
of the graph, and all the repair groups ri in the right-hand side of the graph.
Then, since the original object o contains k = 3 symbols, the source node has
to mandatorily upload three symbols to three different nodes (left-hand side
vertices). The rest of the n− k codeword symbols will be generated using n− k
different repair groups. It means that we can purge all except n−k repair groups



from the right-hand side of the graph. In our example, in Figure 5b we show how
we remove |R| − (n− k) repair groups from the bipartite graph, which gives us
the basic topology of the in-network redundancy generation tree from Figure 5c.
Although in this case any combination of |R| − (n − k) repair groups can be
removed to obtain a valid redundancy generation tree, determining the repair
groups to remove can be more complicated in asymmetric and unbalanced locally
repairable codes, where the number of symbols per repair group is not constant,
and not all symbols appear in the same number of repair groups. More details
on these issues can be found in [7].

4.3 Insertion Times

Inserting a data object o = (o1, . . . , ok), oi ∈ F2q , using an in-network redun-
dancy generation process requires two different steps: (i) a source node initially
generates and uploads k different codewords symbols to k different nodes, and
(ii) these k nodes forward the symbols to the remaining n−k nodes in a stream-
lined manner, allowing them to generate the remaining n−k codeword symbols.
Then, the overall time T required to encode and store an object o is bounded by
T ≥ TS + Tnet, where TS is the time the source needs to upload k symbols, and
Tnet is the time the in-network redundancy generation needs to generate the rest
of the n − k symbols. It is important to note that, neglecting encoding times,
TS is proportional to the amount of data uploaded by the source, which is q× k
bits, and Tnet is proportional to the maximum number of successors a node in
the in-network redundancy generation tree has, which is two for the nodes 2, 3
and 4 in the example depicted in Figure 5c. Then, in general, if this maximum
number of successors is smaller than n− k, the overall insertion time T will be
shorter than the insertion time of a classic erasure encoding process.

This simplistic analysis shows that an in-network redundancy generation can
indeed increase the storage throughput of the classic erasure code insertion. How-
ever, this throughput can be further exacerbated when the source node and the
set of storage nodes have additional (mismatched) temporal constraints on re-
sources availability. For example, in datacenters storage nodes might be used for
computation processes which require efficient access to local disks. Since inserting
encoded data consumes large amounts of local disk I/O, system administrators
might want to avoid to store while nodes are executing I/O intensive tasks –
e.g., Mapreduce tasks.

To model this temporal constraints we will use the binary variable a(i, t) ∈
{0, 1}, which represents whether or not node i is available for sending/receiving
data during time step t where each time step is of a duration of τ seconds. If we
assume that the time step duration τ is equal to the time required to send/receive
a symbol ci ∈ F2q , then, when all nodes are available, the source node can insert
one full object o per time step. However, when some of the n nodes are not
available, the source will have to wait until these nodes become available again,
reducing the insertion throughput. To overcome this problem, the source node
can group different objects (o1,o2, ...) and store them altogether using the same
in-network redundancy generation tree. By doing so the source will be able



Fig. 6. The source S inserts two objects o1 (depicted with continuous arrows) and o2

(depicted with dashed arrows) in three time steps. At each time step there is one node
that is not available for sending/receiving data.

to start inserting symbols from o2 while it is still waiting for completing the
insertion of o1.

Example 4. Assume that a source node aims at storing two objects o1 and o2

using the in-network redundancy tree depicted in Figure 5c. Due to temporal
constraints, node 3 is unavailable at t = 1, node 1 is unavailable at t = 2, and
node 2 is unavailable at t = 3, as depicted in Figure 6. Under these circumstances,
during t = 1 the source can send the symbols c1 and c2 of o1 (depicted with
continuous line arrows) to nodes 1 and 2, and then trigger the generation of
c4. However, c5, c6 and c7 cannot be generated because they depend on c3,
whose corresponding node is unavailable. During t = 2, the source can then
send the missing symbol c3 of o1, and finally trigger the generation of c5, c6 and
c7. However, during this very same step, the source can also start sending the
symbol c2 of o2 (depicted with dashed line arrows). All remaining symbols of o2

can be finally generated during the third time step t = 3.
This example shows a specific in-network redundancy generation scheduling

that allows to insert two different objects in there time steps. In this case the
in-network redundancy generation tree is the same for the three steps, however,
in some cases it might also be possible to increase the insertion throughput by
using different redundancy generation trees at each time step. Unfortunately, due
to the vast scheduling possibilities that arise when nodes have temporal avail-
ability constraints, determining an optimal schedule given an arbitrary locally
repairable code becomes a complex problem [7], even when the node availabilities
a(i, t) are known beforehand.

Instead of finding an optimal in-network redundancy generation schedule,
different heuristics can be used to maximize the insertion throughput. In partic-
ular, we identify two questions that an heuristic scheduling algorithm can answer
at each time step t: (i) Which set of nodes must the source send data to? (ii)
Which repair groups are used to generate in-network redundancy? For the first
question we propose two different answers:



1. Random (Rnd): The source selects k nodes at random.
2. Minimum Data (Min): The source selects the k nodes that had received

less codeword symbols.

And for the second question:

1. Minimum Data (Dta): The scheduling algorithm tries to generate in-
network redundancy in those nodes that had received less codeword symbols.

2. Maximum Flow (Flw): The scheduling algorithm tries to generate in-
network redundancy in those nodes closer to the root of the redundancy
generation tree, trying to maximize the redundancy generation flow.

Combining these four different approaches we can obtain four different redun-
dancy generation scheduling algorithms, namely RndFlw, RndDta, MinFlw and
MinDta. In the next section we will compare the insertion throughput of each
of these.

4.4 Evaluation

In this section we evaluate the insertion performance of an in-network redun-
dancy generation algorithm and we compare it with the naive erasure coding in-
sertion process. The erasure code used in both the cases is the locally repairable
code described in Example 3.

The reported results are obtained using a discrete-time simulator, where
node availabilities a(i, t) are modeled using real availability traces collected from
a Google data center 5. These traces contain the normalized I/O load of more
than 12,000 servers monitored for a period of one month. Specifically, we consider
that a server is available to upload/download data when its I/O load is under
the p-percentile load. We consider three different percentiles, p = 0.25, 0.5, 0.75,
giving us three different node availability constraints.

In Figure 7a we show the increment of the data insertion throughput achieved
by the in-network redundancy generation process. This increment is higher when
nodes have high availability, and thus it is more likely that all the nodes in a
repair group are available.

In Figure 7b we show the increment on the required network traffic of the
in-network redundancy generation strategy. The total traffic required for in-
network redundancy generation can be up to 50% higher than what is needed
by the classic insertion process. The network traffic increment is higher for high
node availabilities, since the opportunities to use the local repairability property
increase since generating a symbol using in-network redundancy requires twice
as much traffic as generating it from the source.

This increase in traffic is approximately the same or even less than the boost
in storage throughput, even for low availability scenarios. Thus the in-network
redundancy generation scales well by achieving a better utilization of the avail-
able ephemeral network resources than the classical storage process.

5 Publicly available at: http://code.google.com/p/googleclusterdata/
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Fig. 7. Performance of the in-network redundancy generation compared to the classic
erasure encoding data insertion process.



Finally, in Figure 7c we show the reduction of data uploaded by the source.
In the classic insertion approach the source needs to upload 7/3 ≃ 2.33 times the
size of the actual data to be stored; 4/7 ≃ 57% of this data is redundant. The
in-network redundancy generation process allows to reduce the amount of data
uploaded by the source. In this figure we can see how in the best case (RndFlw
policy) our approach reduces the source’s load by 40% (out of a possible 57%),
yielding an 40-60% increment on the overall insertion throughput.

5 Conclusions

Storage technologies have continuously been undergoing a transformation for
decades. While erasure coding techniques have long been explored in the context
of large-scale systems (among other kind of storage environments), the explo-
sive growth of storage needs in recent years has accelerated the research on and
adoption of storage centric erasure codes. The issue of repairability of erasure
codes [4,6] has particularly been a key avenue of investigation in the last years.
While repairability remains an open issue under study, the vast amount of exist-
ing literature makes it a relatively mature topic. We believe that erasure codes
can be tailor-made to achieve other desirable properties. In particular, in this
paper we summarize some of our early results on how to optimize the throughput
of creating erasure coded data, either from existing replicas within an NDSS, or
when data is freshly being introduced in the NDSS. This line of work is in its
nascence, and the current works are a first few steps in what we hope will be a
new direction of research on storage codes.
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