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A main goal of Precision Medicine is that of incorporating and integrating the vast

corpora on different databases about the molecular and environmental origins of disease,

into analytic frameworks, allowing the development of individualized, context-dependent

diagnostics, and therapeutic approaches. In this regard, artificial intelligence andmachine

learning approaches can be used to build analytical models of complex disease aimed at

prediction of personalized health conditions and outcomes. Such models must handle

the wide heterogeneity of individuals in both their genetic predisposition and their social

and environmental determinants. Computational approaches to medicine need to be

able to efficiently manage, visualize and integrate, large datasets combining structure,

and unstructured formats. This needs to be done while constrained by different levels

of confidentiality, ideally doing so within a unified analytical architecture. Efficient data

integration and management is key to the successful application of computational

intelligence approaches to medicine. A number of challenges arise in the design of

successful designs to medical data analytics under currently demanding conditions of

performance in personalized medicine, while also subject to time, computational power,

and bioethical constraints. Here, we will review some of these constraints and discuss

possible avenues to overcome current challenges.

Keywords: precision medicine, machine learning, data integration, meta-data mining, computational intelligence

1. INTRODUCTION

Contemporary biomedical research and medical practices are increasingly turning into data-
intensive fields, for which computational intelligence approaches, such as those based on artificial
intelligence and machine learning (AI/ML) methods are becoming the norm. Due to the
specific nature of these fields, the integration and management of the ever-growing volumes of
heterogeneous data involved, often presents a number of challenges. These challenges become even
more relevant in the light of the importance that AI/ML are gaining, establishing themselves at the
core of the state-of-the-art in biomedical research and clinical medicine (1–3), as well as public
health and healthcare policy (4–6).

From the standpoint of biomedical research, a number of large, data-intensive collaborative
projects, such as the International Hap Map project (7, 8), The Cancer Genome Atlas (TCGA)
(9–12), the 1000 Genomes (1000G) study (13–16), the GTEX consortium (17–19), and the Human
Cell Atlas (HCA) (20, 21), and others are establishing novel frameworks for the molecular study
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of health and disease. Such frameworks are firmly supported
by robust database management and integration strategies that
are allowing them to develop into central tools for basic and
translational biomedical research.

Relevant as genomics and high throughput molecular studies
are for biomedicine, there are other relevant players in the
medical data arena. Among the more important in the present
context are large scale clinical and phenotypic studies. Large
clinical cohorts creating data-intensive outputs are of course not
new, but the extent of their outreach and the complexity of
the resulting data sets are growing exponentially fast. Starting
from large scale clinical surveys, such as the Framingham Heart
study (22, 23), the Wellcome Trust Case Control Consortium
(24) and moving unto efforts like the UK Biobank that combines
large scale clinic and phenotypic data with ultra-high-throughput
genomic testing (25–28) that for the last 15 years has been
generating massive data corpora used for their own means but
also encouraging and feeding other data-intensive analytical
efforts from genetic disease association (29) to brain imaging
(30) to psychology (31) and social determinants of health (32),
to name just a few instances. It goes without saying that the
impact that these projects have reached on the basic and clinical
settings, but also in the epidemiology and public health areas has
been enormous.

In the context of AI/ML, however, the focus is shifting
into translating the astronomical amounts of data generated
ultimately into products and policies able to impact both the
patients’ and the general public health. This has been, for
instance, one of the central goals of the U.S. initiative in
Personalized Medicine (33, 34). That is, how to develop analytic
strategies—many of them founded on automated learning,
essential, given the size of complexities of current health-related
data corpora—to pass from large scale, heterogeneous data to
useful (even actionable) medical information (35).

Aside from large scale, even multi-national efforts—such as
the ones in the consortia just discussed—, another area of
intensive interest regarding data-mining in medicine has been
the development of analytical strategies to effectively mine the
ever growing body of Electronic Health Records (EHR), that has
been perceived as a largely forgone and under-utilized data source
(6, 36–39).

One main challenge in knowledge discovery from EHRs
is that electronic medical records are highly heterogeneous
data sources with a complex array of quantitative, qualitative,
and transactional data. Disparate data types include ICD
codes (mainly used for pricing and charging hospital
procedures), biochemical and lab tests, clinical (text-based)
notes, historical archives of medical interventions, therapies
and even pharmaceutical deliveries. These data sources are
often captured by dozens of individuals (sometimes with
biased criteria) for each instance. Hence EHR data is quite
difficult to analyze, in particular if one is looking (as is often the
case if AI/ML techniques are being considered) multi-patient
institutional and even multi-centric levels.

In brief, EHRs were not developed to be used as a resource for
automated learning so they are not designed with data structures
in mind. Since EHRs are first and foremost adapted for clinical

and hospital logistics, data modeling and learning will often
face challenges related to structural heterogeneity from their
early stages, either by adapting existing EHR strategies or by
re-designing them (40–44).

In the quest for more efficient healthcare interventions, based
on information-optimized clinical practice and policy, AI/ML
will certainly play a key role in going from amedicine approach—
based mainly in the skills of the well-trained clinician—
to one based also in detailed (often automated) analysis
of the individualized interplay of molecular interactions and
physiological traits with environmental and even social elements,
thus, delivering the promise of personalized medicine (1, 2, 45,
46). The development of this analytic approach to personalized
medicine (often termed Precision Medicine) involves a number of
theoretical frameworks from systems biology to computational
biology, biomedical informatics, and computational medicine.
This is so, since health and healthcare are multi-dimensional
in nature, hence, their study must consider information at the
genetic, molecular, clinical and population levels. Health and
healthcare analytics, however, must also evaluate and assess how
to cope with the complexity and natural biases of the plethora of
medical-related databases in which said molecular, clinical, and
epidemiological data resides. This, again, points out to the need
of customized, scalable computational and analytical tools for
pattern discovery and hypothesis generation and testing. AI/ML
is turning into a cornerstone of personalized medicine (6, 47–49).

In order to present a panoramic view on how these and other
challenges may be overcome toward an optimized application of
machine learning and artificial intelligence to analyze biomedical
and health-related data in a Precision Medicine context, the rest
of this work will proceed as follows: The next section (The role of
data in training good AI/ML models) will establish the necessity
to have proper data as input to machine learning and AI models
useful in Precision Medicine. We will discuss how having very
large data corpora (a.k.a Big Data) is great, but often carries with
it the so-called curse of dimensionality and the need to perform
feature selection, i.e., to select relevant pieces of information
among very large and complex databases. We will also elaborate
on the challenges created by diverse and heterogeneous data
types and sources, bringing problems, such as class imbalance
(study groups of sometimes extremely disparate sizes, that are
problematic to analyze for many machine learning algorithms).

The following section (Precision medicine: transforming
biomedical evidence with data analytics) will outline how the
tenets of computational intelligence and machine learning may
be used to advance medicine turning it (even more) into a full-
evidence based science. We will see that in order to impact
biomedical research, clinical practice and public policy, AI/ML
approaches could be helpful to extend our capacities to generate
biomedical knowledge, contribute to knowledge dissemination,
translate personalized medicine into clinical practice and even
empowering the patients. In order to develop, large scale data
analytics in medicine should be able to become translational, i.e.,
moving faster from research environments to clinical settings
to ultimately benefit the patients. Then, we will move on in
the next section, to discuss the main challenges involved in
the use of computational learning toward Precision Medicine.
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FIGURE 1 | A workflow for data integration for AI/ML modeling in precision medicine. 1 A wide variety of data sources with diverse features exists. Hence, different

approaches to data collection and pre-processing are needed 2 . 3 Integrating such diverse and heterogeneous data is one of the grand challenges to the

successful application of AI/ML approaches to Precision Medicine. Overcoming such challenges will bring important improvements to Precision Medicine 4 .

These include processing heterogeneous and unstructured data,
working on collaborative and cloud-based resources, developing
standards for data sharing and collaboration, implementing
software solutions to support large scale data analytics under the
biomedical and clinical diverse data ecosystems.

Section 5 will deal with one of the main challenges involved in
the quest to effectively implement AI/ML in Precision Medicine:
Data Integration. Biomedical and clinical knowledge deals with
a plethora of phenomena, ranging from the molecular to the
socio-political. Currently, we have technologies to massively
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measure or infer data from most of these domains. How
to make sense of these different dimensions to turn them
into a coherent, intelligible body of knowledge useful for the
researchers, but more importantly, for practising clinicians, the
healthcare providers and the patients is an extremely challenging
endeavor. Interestingly, a source of information that is becoming
key for AI/ML approaches in Precision Medicine is metadata.
Metadata, i.e., auxiliary data sources often used to define other
data types. Having one’s genome sequence is of little use if we
do not have a proper annotation file; and knowledge of the
zip code or educational level of a patient may provide actual
clues for their personalized treatment. Since many data types are
actually pre-processed prior to the analysis, it is also relevant to
know how has the data been treated prior to its current form.
Information of this kind is also considered metadata. Metadata
is, hence, becoming more and more relevant. Managing such
large amounts of personal data (what can be more personal for
us than our healthcare data?), however, does not come without
a price. Ethical and legal considerations pose no small problem
if one is to provide fair and minimally invasive use of the data,
especially if it is of a sensible or private nature. Some of these
issues are discussed in section 6. Section 7 is devoted to present
the Data Management Plan, a document that will be extremely
useful to set the guidelines of any data-intensive project being
a research protocol, a clinical trail or a healthcare management
design. Finally, in section 8, we present some Conclusions
and Perspectives.

2. THE ROLE OF DATA IN TRAINING GOOD
AI/ML MODELS

The current development of highly sophisticated and often quite
effective AI/ML and the accompanying proliferation of large scale
data sources in the biomedical setting, has raised the expectations
regarding the many potential benefits that can be derived from
the marriage of good methods + good data. However, in order for
these large amounts of data to be useful in producing goodAI/ML
models, size is not the only thing that matters, a question that is
often overlooked (50, 51).

Clinical and biomedical data comes in a wide variety of
sizes, forms, and formats; it is often complex, heterogeneous,
poorly annotated, and often unstructured. Now, each of these
issues: size, variety, formatting, complexity, heterogeneity, bad
annotation, and lack of structure, pose a challenge to effective

AI/ML modeling (see Figure 1 section 1 ) (52).
Regarding size, for instance, even when we often deal with

big data—usually considered an advantage—, it is common
that these data sources suffer from the so-called curse of
dimensionality (CoD), a situation in which the number of
variables or features is much larger than the number of
experimental samples or realizations. CoD is particularly evident
in the case of genomic and transcriptomic analyses for which
the number of genes or transcripts is in the order of tens
of thousands whereas the number of samples is rarely larger
than a few hundreds or a few thousands at most. Even more

complex is the scenario when one is measuring, for instance,
chemical modifications, such as DNA methylation; the current
experimental protocols allow for the simultaneous measures of
five thousand hundred or more methylation probes (52).

CoD leads to the p >> n problem in machine learning
(53): increased data dimensionality may cause AI/ML methods
to suffer from overfitting. Overfitting, in turn, implies that the
methods are highly accurate on training data while showing
low performance on generalization or handling unseen data.
Potentially good methods will fail to deliver in real life
applications. One approach to deal with the CoD is performing
data dimensionality reduction prior to training the ML methods.
The most common means of data dimensionality reduction
are feature extraction in which data is projected from a high
dimensional space to a lower dimensional space and feature
selection that reduces dimensions by identifying a relevant or
informative subset of the original set of features (54).

Feature extraction methods, such as principal component
analysis (PCA) and other methods based on eigenvalue
decompositions, non-negative matrix factorization (NNF), t-
distributed stochastic neighbor embedding (t-SNE) and others,
allow for easier data visualization, exploration, and compression,
as well as latent factor profiling. On the other hand, feature
selection methods consists in one or more of the following
strategies: data filtering (DF), data wrapping (DW), and data
embedding (DE). The purpose the former (DF) is to select a
subset of relevant features in a model independent fashion an
include methodological approaches, such as ANOVA, Pearson’s
correlation, information theoretical measures, such as entropy
and mutual information, constrained regressions, and maximal
relevance minimal redundancy (mRMR) methods. DWmethods
look for the best combination of features trained by a particular
predictive model and include the recursive feature elimination
(RFE), jackstraw and the Boruta-Random Forests (BRF). DE are
a combination of DF and DW that works by performing feature
selection while building a predictive model, perhaps the best
known example of DE method is the least absolute shrinkage and
selection operator (LASSO) and its extensions, such as the elastic
net algorithm (52).

Data variety/diversity and data heterogeneity also result
problematic for the implementation of AI/ML modeling
in Precision Medicine. Heterogeneity emerges from many
situations, such as substantially different types of variables
(or different coding) in the various data sets (think of
EHRs from different hospitals), mismatched distributions or
scaling including disparate dynamic ranges (say we have
combined expression data from microarrays and RNASeq
technologies), diverse data modalities (continuous signals,
counts, intervals, categories, pathways, etc., derived from
molecular and imaging experiments) and formats (say European

versus American reporting standards) (Figure 1 section 2 ).
Integrating heterogeneous data types may be done naively, by
just concatenating features from disparate data sources, but this
reduce the number of working to the use of decision tree (DT)—
like models that suffer from overfitting. An alternative would
be to use penalized regression (e.g., elastic nets) with several
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regularization strategies, though thismay in turn bring challenges
regarding interpretability of results (51, 52). Better results may
be obtained by resorting to block-scaling (55) or multiple kernel
learning methods (56).

Due to the complexity intrinsically associated to biomedical
and clinical data, but also due to difficulties in subject/sample
procuration and in data acquisition (data generating/sampling
technologies may fail) it is common to have problematic
circumstances, such as missing data (from instances not
measured or measured defectively), class imbalance (widely
different sample sizes in different feature groups) and even rarity
(an extreme form of class imbalance) (57). There are several
learning strategies to cope with missing data and class imbalance,
ranging from the so-called listwise deletion (i.e., completely
deleting the problematic sample from the study), imputation
(i.e., inferring the missing value from expectation methods from
the sample-wise profiles or even from feature-wise profiles)
suing methods, such as k-nearest neighbor replacement, full
conditional specification, stochastic gradient boosted trees, and
other ensemble regression frameworks (52).

Class imbalance is another problematic-yet-pervasive
situation in large scale data analytics (LSDA) of biomedical
and clinical data. This fact becomes quite relevant since the
most machine learning methods, such as support vector
machines, random forests, and artificial neural networks
assume balanced class distributions. Hence, these classifiers
tend to overestimate patterns from the majority class, and
underestimate those features characteristic of the minority class
or classes. To overcome this limitation a class of ML approaches
termed class imbalance learning (CIL) methods have been
developed. CIL algorithms can be based on data sampling (e.g.,
random undersampling, bootstrap sampling, etc.); on algorithm
modifications incorporating the inherent biases or skewness
in the learning steps (e.g., weightedSVM, weigthedELM) or in
ensemble learning in which several ML methods are applied and
the results are consensed or averaged (52, 58).

Furthermore, even if most of these problematic issues may
be solved, at least partially, with the analytic approaches just
discussed, two relevant issues remain. First, real life datasets often
have not one, but several (even all) of these challenging features.
The ML methods useful to tackle some of these limitations may
have poor performance due to others. Leveraging alternatives by
evaluating the pros and cons may not be trivial. Second, every
one of the methods for LSDA in imperfect/real-life datasets has
its own set of assumptions and limitations. AI/ML researchers
in biomedicine should be very aware of this and very cautious
when combining methods and taking conclusions. However, as
we will see in the next section, advancing biomedical and clinical
research by using AI/ML approaches often worth all the efforts.

3. PRECISION MEDICINE:
TRANSFORMING BIOMEDICAL EVIDENCE
WITH DATA ANALYTICS

Since the later years of the 20th century, following the pioneering
work by Cochrane, Eddy, and others (59–62) efforts have been

directed toward building a systematic approach to medical
and public health decisions, one founded not on anechdotic
or individual expertise, but rather in the light of a full
inspection of the existing clinical and biomedical research. This
approach, called Evidence-Based Medicine (EBM) (63) aimed
at the comprehensive use of all the accumulated scientific and
clinical evidence to develop health related interventions and
policy. At that time EBM was founded on anecdotal clinical
experience, published case reports, meta-analyses and systematic
reviews, and randomized controlled trials (64, 65). No high-
throughput molecular or individual disaggregated information
was considered at the time; even the already existing large-
scale epidemiological data was not exploited fully due to data
availability constraints (66, 67).

Even if the EBM paradigm has been superseded for various
reasons, perhaps its main relevance resided in bringing to
attention the fact that, as a rule, healthcare-related decisions
should be supported by objective, stringent evidence rather
than being left to the subjective opinion of some individual
professional, expert as they may be. With the advent of larger,
well-curated data corpora and more powerful ways to analyze
the data and transforming it into useful information, EBM ideals
have been embraced and incorporated into what has been called
Precision Medicine (68–71).

Aside from the spectacular changes in information
technologies in recent times, another main booster of this
transformation was the genomic revolution driven by the human
genome project (HGP) (72–74). The promises of the HGP,—
many of them still undelivered (75)—pointed out to data-based
biomedicine (particularly the identification of genetic variants
behind the diseased phenotypes), as a key player to identify
targets and customize pharmacological and other therapeutic
interventions leading to a dramatic improvement of population
and individual health (76, 77).

In view of this emerging paradigm, what is the role that
AI/ML may play in its establishment as the standard approach
in biomedical research, clinical practice and public policy?
It has been argued (2, 6, 78) that there are at least four
development avenues in which LSDA may impact healthcare:
(i) LSDA may enlarge the capacity to generate new biomedical
knowledge, (ii) LSDA may provide a support for healthcare-
related knowledge dissemination, (iii) LSDA can become a tool
for translating personalized medicine initiatives into clinical
practice (for instance, by integrating molecular and EHR data
on a single framework), and (iv) LSDA supplemented with
simplified user interfaces can become a vehicle for empowering
of the patients, helping them play a more active role in their own
healthcare decision making.

In order to deliver such benefits, LSDA needs to be able to
address questions, such as how to deal with highly unstructured
heterogeneous data (say from EHRs) via high-performance
computational techniques for quantitative analytics, but also for
data mining, literature mining, and natural language processing
algorithms over integrated pipelines. Particularly challenging are
the scenarios related to clinical practice since they would be
ideally processing such enormous amounts of unstructured data
in cuasi-real time, if LSDA is intended to be beneficial for the
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individual patient (79, 80). In the following sections, we will
discuss some of the opportunities and limitations of applying
AI/ML (often in the form of LSDA) in health-related settings.

3.1. Personalized Medicine: From Data
Lakes to Patient Beds
LSDA and AI/ML may also play a role in supporting the clinical
practitioners to keep up-to-date with the current scientific
literature in their fields, an issue that has been struggling
attending physicians for a while. In brief, if a medical doctor
wants to treat their patients with the current best available
therapeutic options, difficulties arise in trying to define what is
currently considered better. As is known, the available scientific
literature regarding a single medical speciality has been already
overwhelming. The situation becomes much worse when one
is dealing with multi-morbid patients since clinical guidelines
and algorithms are often aimed at the single condition scenario
(81–85).

Embracing the computational learning paradigm, the
clinician may be armed with a new set of tools allowing
for suggestions/surveys supported by real-time patient data
analytics integrating, both the complexity of the patient’s genetic
background, environmental conditions, and the corresponding
comorbidities with the current literature standards of care
(Figure 1 section 3 ) (6, 33, 46, 86–88).

Aside from standard biomedical and clinical data, LSDA
allows to further integrate occupational, social, physiological,
and even behavioral information of the individual patient
(available in social network, wearable devices, and other cloud-
based resources) (89–92) to enhance the clinical profiles. To
reach this point, however, there are important conundrums
to be solved. In particular, novel computing and analytical
frameworks should be designed to find patients’ similarities
and differences, but also to discover patterns highlighting their
connections and discrepancies with the aim of calculating, for
instance, personalized disease risk profiles, akin to polygenic
risk scores, but under a much more general view—engulfing
all the already discussed data types—allowing for individualized
proactive medicine (93–95).

Hence, by integrating phenotype and disease-history based
approaches, LSDA aims to advance personalized disease
prediction, improve healthcare management and even contribute
to an overall positive impact to individual wellness (Figure 1
section 4 ) (96–100). In doing so, AI/ML approaches are
collaborating to a shift in the emphasis of clinical medicine from
a disease-centered view to a patient-based practice (101, 102),
a paradigm that has been long known since Hippocratic times
and has been resumed a hundred years ago by the Spanish
endocrinologist Gregorio Marañón who stated that there are no
diseases but patients.

The panorama we have just discussed seem to be quite
promising, indeed AI/ML and LSDA have already brought
relevant advances toward Personalized Medicine (34, 70, 103).
However, a consensus has not been reached as to how to integrate
the large scale data of EHR, themany heterogeneous databases on
molecular, phenotypical and environmental information derived

from large scale experimental, clinical and epidemiologic studies
and the individual-wise data gathered from disparate sources,
such as social networks and wearable devices to develop a
personalized approach to medicine? (46, 48, 104–106).

4. CHALLENGES TO COMPUTATIONAL
LEARNING IN PRECISION MEDICINE

Of the many challenges posed to AI/ML by ever-growing health
and biomedicine data sources, one of them is paradoxically
related to what is often perceived as its main driving force. Having
large amounts of data is obviously beneficial for computational
learning algorithms, the more data you have, the more robust
your classifiers, regressions, and mining strategies will be.
However, as the tendencies move toward Precision Medicine,
we can see how some major sources of primary biomedical
information, such as genomics (in particular next generation
sequencing) and imaging are becoming progressively cheaper
(107–109), hence allowing their widespread use, nevertheless the
computational costs of processing and analyzing the data are, for
obvious reasons, growing fast (110–114).

Hence, aside from the already discussed challenges of
database structural heterogeneity and data type integration,
a number of major limitations for the development of
AI/ML in biomedicine belong to the computer systems
domain (115). Those challenges are, for instance, in the
development of consolidation, characterization, validation, and
processing standards for the data; creating ontologies and
knowledge relationships for entities, such as genes, drugs,
diseases, symptoms, patients, and treatments, as well as their
corresponding entity-relationship schemes (116–119).

Along these lines, recent advances in AI, in particular those
directed to Natural Language Processing (NLP) have been
incorporating tools of semantic web analysis, such as conceptual
relational networks (120, 121), semantic-syntactic classification
(122), and similarity mapping (123). The problem, again, is
a matter of throughput: effective implementation (training,
in particular) of such NLP tools is only enabled if one has
extremely large data corpora being accessed on a concurrent
fashion (124). The vast majority of hospitals, research labs and
even pharmaceutical development facilities do not currently
have access to the storage and computational power resources
needed to perform these analyses. The current alternative to local
processing is, of course, cloud computing (125–127). However, as
we will see in the next subsection, performing LSDA in medical
and biomedical data in the cloud is not a problem-free solution.

4.1. Precision Medicine, Machine Learning
and Cloud Computing
The use of cloud computing in the analysis of clinical, biomedical
and healthcare data has many advantages: (i) it helps to
solve the issue of processing large amounts of data in real
time (128, 129), (ii) may provide scalable, cost-efficient data
analytics solutions (130). Cloud computing, however, brings
some technical difficulties, such as the ones related to high-
throughput data transfer infrastructures, distributed computer
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power over very large non-parallelizable tasks and perhaps
the main challenge (that we will discuss more in depth in
a forthcoming section) which lies in adapting the current
distributed storage and processing paradigms in big data, while
simultaneously allowing for full confidentiality of the data (since
some of it may be highly sensible in nature) (131).

However, a number of cloud computing resources are
becoming a standard for several omic studies, as it can be
exemplified by Basespace a cloud-based sequencing analysis
environment by Illumina, by the EasyGenomics platform of
the Beijing Genomics Institute (BGI) and by European-based
Embassy clouds as part of the Elixir Collaboration, by the
NGScloud2 over Amazon Web Services (AWS) or by Galaxy-
Kubernetes integrated workflows to name but a few instances
(132–139).

It is worth noticing that standard cloud computing
designs using distributed systems, grid computing, parallel
programming, and virtualization on top of multi-layered
environments (134, 140) are becoming adopted in LSDA in
precision medicine due to their applications in the development
of robust and secure distributed analysis (132). Indeed, as
we already mentioned, cloud computing in LSDA may be
implemented under several paradigms, such as: Platform as a
Service (PAAS) (141–143), Infrastructure as a Service (IAAS)
(144, 145), and Software as a Service (SAAS) (35, 146, 147).

These different standards for cloud computing have their
particular pros and cons when applied to LSDA in Precision
Medicine; for instance PAAS designs are suited for in-house
software development or to integrate already designed libraries
that can be implemented either by the user or by the cloud
provider. Here we can mention healthcare, biomedicine, and
bioinformatics services by providers, such as Google App
Engine, Microsoft Azure MapReduce Hadoop, and others. In
contrast, IAAS providers commonly offer high performance
computing and massive storage facilities (sometimes calledHPC-
farms or data centers) including only the minimum operating
system/computing environment requirements: this is often the
case of general plans offered by companies, such as AmazonWeb
Services, HP Cloud, Rackspace, and Joyent (148–151).

Of these different paradigms, SAAS results as the more
complete, as well as the more costly and less flexible. In
SAAS the user is able to perform LSDA via pre-established
(sometimes customized) applications sitting on a remote
cloud infrastructure. This provides almost immediate access
and usability with minimum installation and customization
requirements from the user. However, due to these very reasons,
the user has less control over the specifics of both, the computing
environment and the actual algorithms used to perform analysis.
The risk is that some of the more sophisticated methods will
develop into black boxes. A somewhat intermediate solution is
what can be called Code-as-a-service that is, SAAS with full access
to the code (often only by specific requirement of the user).
This is the case of the Cloud BioLinux service (152). The Cloud
BioLinux suite has a set of pre-installed services, like a Galaxy
server (153), access to the BioPerl programming language (154),
BLAST (155), R/Bioconductor (156), Glimmer (157), ClustalW

(158), and other general purpose (mostly bioinformatic-related)
libraries/packages/environments (35, 159, 160).

Aside from molecular biology and genomics oriented
applications, SAAS has also been developed in areas, such as
medical diagnostics. In this regard, one can mention DXplain,
one of the earliest developed decision support systems available.
DXplain that was created by scientists, physicians, and software
engineers at Massachusetts General Hospital http://www.mghlcs.
org/projects/dxplain. DXplain may be used as a search engine
(akin to a searchable eBook) providing the concise yet detailed
description of more than 2,600 medical conditions, indexed
by their main signs and symptoms, as well as their etiology,
pathology, and prognosis. More relevant to this discussion is
the use of DXplain as a case analytics tool, processing a set of
clinical findings (signs, symptoms, laboratory data) as an input
to a computational intelligence engine that computes a ranked
list of diagnoses related to the given clinical manifestations.
Furthermore, DXplain provides supports its suggestions with
evidence sources, suggests what further clinical information
would be useful to collect for the conditions under consideration,
and displays a list of relevant clinical manifestations (161,
162). IBM’s Watson Health constitutes another example of a
(commercial) SAAS system aimed to support clinical decision
making by the use of computational intelligence methods
www.ibm.com/watson-health/ (163). However, many researchers
and clinicians have become skeptical of the tool due to initial
over-promises from the company (164). Many other diagnostic
support applications have been developed, most of them aimed
at commercial use such is the case of ISABEL https://www.
isabelhealthcare.com/ (165, 166) and others. However, due to
commercial restrictions, their AI/ML assessment and their use in
LSDA has been rather restricted (167, 168).

In the end, each health/biomedical/clinical research team
will have to make a choice between these different levels
of cloud services depending on its availability of technical
staff (computational biologists, data scientists, statisticians,
bioinformaticians, software engineers, and so on), the computer
literacy and involvement of the biomedical researchers and the
clinicians, the scope and extension of the projects and other
constraints, including financial issues, local infrastructure, and
confidentiality matters (169–173).

It is also needed to take into account that some LSDA
applications in health and biomedicine demand usually high
computing resources. One alternative that is gaining relevance
recently is the design of hybrid servers combining traditional
CPUs with Graphical Processing Units (GPUs). The use of
GPUs on cloud-based environments is indeed favored, given
their massively parallel architechture (MPA). MPA results
advantageous not only for actual computations, but also for
input/output (I/O) operations (174). An important fraction
of GPU-based applications in computational biology and
biomedicine are implemented under (175–177). However, it
remains a challenging endeavor to develop and implement
parallelization algorithms, efficient enough to make sense of
heterogeneous data sources, such as the ones coming from omic
technologies, from EHRs, population surveys (127, 178).
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Aside from the already mentioned cloud-based solutions,
most research and clinical institutions will need to build some
local infrastructure and algorithmics suited for their particular
needs. In the search for semi-automation and reproducibility,
some relevant general tasks are better managed by resorting
to specialized software and algorithmic suites developed with
building workflows and pipelines in mind. We will present some
of the more widely used of such suites or packages for LSDA
useful in Precision Medicine in the following subsection.

4.2. Software Resources for Computational
Medicine
Whether implementing local, cloud-computing, or hybrid
solutions, choices need to be made regarding appropriate
algorithms and software for data pre-processing, processing, and
analytics. A number of general purpose approaches have been
developed, such is the case of the suite of R-based algorithms
and programs in the Bioconductor repositories (156), the
pipeline management tools, such as Snakemake (179, 180)
and Taverna (181) or the cloud-based development suites
Helastic (182) and BioNimbus (183).

For sequence analytics, a central player for quite some
time has been the genome analysis toolkit (GATK) by the
Broad Institute (184, 185). The GATK suite has been developed
for LSDA of genome sequencing data mainly focused on
high-accuracy variant discovery and genotyping useful in the
clinical and biomedical research environments (186). Other
computational omic analysis tools useful in the context
of Precision Medicine include dRanger for the automatic
identification of somatic rearrangements in Cancer (187),
Athlates for the determination of HLA immuno-genotypes
from exome sequencing data (188), the Trinity suite for De
Novo RNA-Seq analysis (189), the Hail library for scalable
(bio-bank scale) genomic data exploration (190), and the GWAS
analysis suite Plink (191), to name but a handful instances.

More broadly applicable suites have been also developed,
such as GenePattern (192, 193), the running/development
platform Galaxy (153, 194, 195). Biological function databases
like Gene Ontology (196, 197) and its generalizations (198,
199), the MONA (multi-level ontology analyses) programs (200),
and other medium-to-high level analysis tools, such as the
network analysis suite Cytoscape (201) or the structural
biology libraries BioDAS (202) to mention but a handful of the
many available options.

Aside from genomics and purely molecular/omic studies,
other computational tools have been developed and widely
used in the biomedical and clinical settings. Such is the
case of CellProfiler for image analysis and processing
(203) that has been proved to be quite useful for machine
learning applications (204, 205). Automating data throughput
in biomedical and clinical applications may also be useful even
for relatively low demand tasks under certain circumstances; for
example, automated RT-PCR data processing as implemented in
ARPA (Automated RT-PCR analysis) turned out to be crucial
for testing efforts during the COVID-19 pandemic (206). AI/ML

modeling based on facilitated access data may indeed become a
key tool to tackle with current and future pandemics (207).

Moving on to clinical applications, some of the most popular
computational tools for managing clinical data (particularly with
clinical trials in view) are OpenClinica (208), the Integrated
Data Repository Toolkit IDRT (209) and the VISTA trials
suite (210), and the comorbidity risk assessment tool comoR
(211). Tools for the management of high-throughput day-to-
day clinical records commercial and academic/open source have
flourished in recent times. Some of themore widely adopted open
source software solutions are OpenEMR (212), OpenMRS (213),
WorldVistA (214). Some of these tools are actually enabling
capacities to allow for the implementation of data mining and
computational learning on their databases (54), however, as
previously discussed, caution must be taken when using EHR
data for automated discovery since a number of potential biases
and confounders may arise (215, 216).

There are also some R-packages useful to manage EHR
data. Such is the case of EHR: an Electronic Health Record
and Data Processing and Analysis Tool https://cran.r-project.
org/web/packages/EHR/index.html (217, 218), as well as rEHR
https://github.com/rOpenHealth/rEHR (219).

Other software solutions from the R ecosystem useful
in the LSDA applications in the clinical practice include
babsim.hospital, a hospital resource planner and simulator
https://cran.r-project.org/web/packages/babsim.hospital/index.
html (220); bp a blood pressure analytics tool https://cran.r-
project.org/web/packages/bp/index.html; and card a toolkit to
evaluate the autonomic regulation of cardiovascular physiology
via integrating electrocardiography, circadian rhythms, and the
clinical risk of autonomic dysfunction on cardiovascular health
data https://cran.r-project.org/web/packages/card/index.html
(221).

Other software packages include radtools a set of utilities
to extract and analyze medical image metadata https://cran.r-
project.org/src/contrib/Archive/radtools/ (222); psrwe a library
useful to incorporate real-world evidence (RWE) into regulatory
and health care decision making https://cran.r-project.org/web/
packages/psrwe/index.html (223, 224); clinDataReview
https://cran.r-project.org/web/packages/clinDataReview/index.
html an environment to support exploratory analysis of data
in clinical trial settings, patientProfilesVis a tool to
create patient profile visualizations for exploration, diagnostic
or monitoring purposes during a clinical trial https://cran.r-
project.org/web/packages/patientProfilesVis/index.html; and
even healthyR a full suite to review common administrative
hospital data. Although this latter application does not seem to
be related to LSDA in Precision Medicine, it is not uncommon
the application of AI/MLmethods to administrative data to infer,
for instance, social determinants of health.

5. DATA INTEGRATION: CURRENT
CHALLENGES

Computational limitations in LSDA for Precision Medicine are
gradually being overcome. Deeper challenges, however, arise
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when we consider the question of how to develop coherent
ways to make sense of the data, that is how to build models
and analytical frameworks that allow biomedical scientists and
clinicians to use all these currently available data types and
resources in the best possible way as diagnostic and prognostic
tools (225). In the context of genomics (and other omics)
in biomedicine, important international efforts along these
lines have been developed, such is the case of the ELIXIR-
EXCELERATE collaboration (136), the STATegra project (226,
227), the SeqAhead consortium (228), and others (229, 230).

It must be stressed that most of the efforts of these—extremely
relevant—endeavors are directed toward the integration of
information on themolecular side of the spectrum of biomedical
related data. Data integration at this level provides mathematical
and relational models able to give a mechanistic description of
the interplay between the molecular components of the cells
(225, 231). This is of course fundamental to understand the
rise of cellular and tissular phenotypes from its biochemical
origins, but may result insufficient to account for the rise of
disease in organs, individuals, and even populations. Recent
advances have been done to extend these efforts to encompass
LSDA on biological databases incorporating individual EHR
data (232), as well as social and environmental information
[the so-called social determinants of health (233)]; perhaps even
incorporating constraints representing healthcare policy within
a precision medicine framework (93, 234). Advances in AI will
surely play a central role in the development of such integrated
frameworks (235).

In this context, data integration allows the use of multiple data
sources with several different (eve disparate) pieces of evidence
to build (hopefully) interpretable models of the systems under
study (236). Since these broad array of data sources may have
quite different structures, levels of granularity and, in the case of
quantitative measurements, different distributions and dynamic
ranges, data integration is indeed a demanding endeavor, briefly
subsumed in the question how can we put together these data
sources to improve knowledge discovery? (237). Hence, being
able to perform complex queries, build heterogeneous models
and develop hierarchically nested data retrieval operations on
multiple databases are core goals for data integration strategies
useful for AI/ML models in Precision Medicine (235, 238–241).

LSDA in Precision Medicine is driven by two major sets
of goals. On the one hand, we aim to develop high level
intuition (HLE) from inductive analyses, via statistical learning
and causal inference techniques. HLE may serve to sketch
guidelines for current and future experimental and clinical
research (242). On the other hand, AI/ML approaches may be
useful for automated reasoning (AR), i.e., the non-supervised
or semisupervised extraction of non-trivial patterns in dynamic
databases (243–245).

5.1. The Need for Guidelines and
Standardization to Support Precision
Medicine
Machine learning and artificial intelligence approaches able
to live up to these envisioned objectives will depend on the

underlying data resources to a great extent. We will need,
not only high throughput carefully curated databases, but also
inter-operable data strategies. By creating integrated/integrable
databases related to Precision Medicine we will enhance our data
discovery and data exploitation capabilities, refine our algorithms
for statistical assessment of data-driven discovery and improve
our data standardization. Regarding data standards, there have
been some advancements from the early days of the MIAME
requirements (246, 247) for genomic data formats, now updated
for next generation sequencing data (248) and even for single
cell RNASeq experiments (249); to some more recent efforts for
meta-data standardization (250, 251).

Focused efforts toward data standardization with AI/ML
approaches in mind have been recently advanced. For instance,
a multi-institutional group has recently compiled a document
establishing guidelines on Minimum information about clinical
artificial intelligence modeling by means of the MI-CLAIM
checklist (252). MI-CLAIM has been developed as a tool
to make reporting of AI/ML algorithms in medicine more
transparent. This approach looks to solve issues related to
interpretability, opaque documentation and scope of AI/ML
methods in medicine. It consists of six parts: (i) Study design, (ii)
Separation of data into partitions for model training and testing,
(iii) Optimization and final model selection, (iv) Performance
evaluation, (v) Model examination and (vi) Reproducible
pipeline. Central to this standard is the MI-CLAIM checklist
[Table 1 in (252)].

Aside from methods, standards need to be developed for
all different aspects involved in biomedical data analytics
and computational intelligence. From the patients/subjects
to the clinical and analytical research, to academic and
industrial approaches and back to the patients and clinicians.
The National Patient-Centered Clinical Research Network
(PCORNET) initiative https://pcornet.org/ of the US has
been developed as a national resource where health data,
research expertise, and patient insights are available to deliver
fast, trustworthy answers that advance health outcomes (253).
PCORNET was designed as a distributed data research
network (DRN) built to facilitate multi-site observational and
interventional research across the diverse (existent-at-the -time
and future) clinical data research networks and other relevant
players in the health data ecosystem.

By standardizing procedures, formats and approaches
PCORNET looks up to deliver greater sample size and power
of the studies, the ability to analyze the effects of the differences
in practice and assessing heterogeneity in treatments and
populations. It included the creation of a Data Standards
Security and Network Infrastructure (DSSNI) task force aimed to
identify the minimal data standards and technical specifications
for data to be effectively shared and disseminated effectively.
These actions will be directed to optimize the evaluation and
improving quality assessment of the research projects and to
maximize their concurrent impact (254). Other task forces
within PCORNET are devoted to issues, such as Governance,
Data privacy, Ethics, and regulation, Health system interactions,
Patient and consumer engagement, Patient-generated outcomes,
Clinical trials, Rare diseases, Biorepositories, and Obesity. These
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task forces (and other that are being added as they develop) are
supervised by PCORNET’s Project Management Office operating
under a network-like structure rather than as a traditional
hierarchical organization. The development and functioning
of the approach are subject to continuous assessment and
evaluation via the Foundational Data Quality model founded on
the premises of optimal data curation (255).

A related initiative put forward by the National Center for
Biomedical Computing of the US is the I2B2 (Informatics
for Integrating Biology and the Bedside) https://www.i2b2.
org/index.html. I2B2 was developed with the aim of enabling
effective collaboration for precision medicine, through the sharing,
integration, standardization, and analysis of heterogeneous
data from healthcare and research; through engagement and
mobilization of a life sciences-focused open-source, open-data
community.. I2B2 was created as part of the NIH roadmap
to advance precision medicine to provide the community of
clinical investigators with a toolbox to integrate medical records,
clinical data, and genomic technologies all at once (256). One
of the foundations of I2B2’s approach to data interoperability is
data-model harmonization based on ontological representations,
particularly those facilitating the involvement of subjects/patients
and clinicians aside from biomedical researchers (257). The
extent of influence of these actions is designed to further improve
the way subjects are enrolled and followed-up in research study
protocols, clinical trials and observational cohorts (258).

Ontologies are useful to provide a conceptual framework. In
the case of automated and semi-automated data mining methods
in biomedicine it is desirable to have a standardized language,
easily translated into machine-readable text. This is precisely
the aim of the Biological Expression Language (BEL). BEL is
presented as a language for representing scientific findings in the
life sciences in a computable form. BEL is designed to represent
scientific findings by capturing causal and correlative relationships
in context, where context can include information about the
biological and experimental system in which the relationships were
observed, the supporting publications cited and the process of
curation https://bel.bio/. The elementary elements of BEL are
known as BEL-assertions that are built as intermediate steps
connecting natural language (as presented in say, academic
writing or medical records) into machine-readable expressions.
Such expression will then be computable with applications in
tasks, such as logical modeling in database learning, systems
biology verification studies or next generation EBM to name a
few (259–261). Implementing language standards, such as BEL
may prove beneficial, since it has been shown, for instance,
that different approaches to process clinical notes using natural
language analytics substantially affects the performance of
predictive models in intensive care settings (262).

The biomedical data ecosystem is turning so complex that
new standards are needed even to define what we call evidence.
The large amounts of seemingly anecdotal data that are being
produced nowadays have brought to attention issues like the so-
called real world evidence (RWE). RWE refers to data regarding
the use, or the potential benefits or risks, of a drug derived
from sources other than randomized clinical trials (263). Large
sampling spaces are behind RWE move from anecdotal to

referential. However, not all the real world information should
be treated as RWE. In this regard, there is a growing need
for methods to assess when are these data sources rigorous
and trustworthy enough as to be useful as a guideline or to
be considered actual evidence. These issues result particularly
relevant toward the definition of clinical pipelines in digital
therapeutics (loosely defined as evidence based therapeutics
basedon software applications to prevent, manage or treat a
disease or medical condition) (264), often related with data
obtained from wearables and other subject-based sources.

Data standardization is becoming central not only in the
medical research, and personalized clinical practice settings. It
has been recently discussed how clinical trial data sharing is
essential for reproducibility of the findings, for visibility of the
results, to improve subsequent trails or advanced clinical trial
stages, to perform digital comparisons of effectiveness (which are
much faster and cheaper than their traditional counterparts); but
also to speed results reporting, to enable continuous learning and
even to support the emergence of startups or enterprise ventures,
among other issues (265). In order for shared data to be optimally
usable, there is an obvious need for standardization.

Data is, of course, not the only issue that needs to be assessed
and validated toward the widespread implementation of AI/ML
approaches in Precision Medicine. Eaneff and coworkers have
recently argued for the need of algorithmic stewardship for AI/ML
technologies in the medical setting. In this regard, an algorithmic
steward would be a person or group within a healthcare
or biomedical research institution responsible for tasks, such
as creating and maintaining an algorithmic inventory of the
methods used in the institution, monitoring ongoing clinical use
and performance of such computational tools, evaluating the
safety efficacy and fairness of the methods and so on (266).

Data and methods constitute the most visible items within
the biomedical analytics ecosystem; metadata, is however,
progressively gaining a more relevant role for AI/ML in Precision
Medicine, as it contains, in many cases, hints for the automated
labeling or classification (even if approximate) tasks that will be
further improved by the use of computational intelligence and
statistical learning approaches (87, 267). We will further discuss
this issue in the next subsection.

5.2. An Ocean of Metadata
Metadata has become a central player in contemporary LSDA
endeavors in many fields, including biomedicine; particularly
relevant for AI/ML approaches. For this reason, aiming for
high quality, well-formatted and standardized metadata has
become quite relevant (268). Indeed, a number of biomedical
data analysis teams and consortia are encouraging the use of
standardized metadata guidelines, exemplified, for instance by
a checklist of relevant issues to consider when building and
publishing companion metadata (250, 269, 270); since such
metadata could be instrumental to implement data analytics, as
well as AI/ML toward a precision medicine approach (267, 271).

Metadata may result also quite useful to enhance the
statistical analysis, probabilistic models and training of learning
machines. Using metadata to generate best priors may improve
the outcomes of query optimization by resampling and
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bootstrapping (272–274), regularization of sparse datasets (275),
as well as auxiliary source for multi-variate Bayesian analysis
(200, 276, 277), multi-dimensional analyses on datasets with
disparate dynamic ranges (278–281) among other instances
(282–286).

Integrating multiple data and metadata sources takes even
further the need to design, develop, and implement analysis
algorithms able to handle heterogeneous data in the presence
of noise accumulation, spurious correlations and incidental
endogeneity, keeping a balance between statistical accuracy,
computational efficiency, and interpretability (287–289).

LSDA approaches must be developed having in mind the
presence of spurious correlations among unrelated covariates,
challenging statistical inference by creating false positive findings
(290). Incidental endogeneity occurs when a number of unrelated
covariates become correlated via random correlations of their
residual noises. A statistical approach to overcome some of these
issues is the development of novel regularization methodologies
(291–293) but also the use of outside cross-validation via
independence screening tests (294, 295) that may be precluded
by data unavailability from independent sources.

Taking these issues into account may require new models
to implement metadata reporting standards (296, 297).
Standardizing the way metadata is reported and retrieved in
the biomedical and clinical settings will result critical for the
development of generalistic machine learning approaches that
make full use of these uniform data structures (298–300). It
has been recently discussed that ignoring or bypassing such
standards may jeopardize full research projects (301–303).

6. ETHICAL AND LEGAL CHALLENGES
FOR COMPUTATIONAL MEDICINE

Aside from the methodologic and logistic issues already
discussed, integrating data sources aiming at LSDA in the context
of Precison Medicine also brings out concerns related to the
ethical and legal problems that may arise, for instance related to
privacy and confidentiality. Regarding the purely technological
aspects of this problem, most of the members of the community
of data analyst in healthcare and biomedicine are actually
confident that these can be solved with security and encryption
approaches already used to protect personal financial data (6,
46, 304). Aside from privacy concerns, managing sensitive data
implies having several layers of access to the data. This is so
since some sensitive personal data may be extremely useful
for population level studies needed to develop personalized
medicine. However, even if it is unlikely that full disclosure of
sensitive biomedical and clinical information is needed, there
is a fraction—that need to be determined and agreed-upon
in advance—of potentially sensitive information that results
fundamental for the development of personalized medicine, not
just for the individual in particular but also population and
sub-population-wise (305).

Then a conundrum arises as how to accommodate smooth
clinical and biomedical data widespread with efficient privacy
practices. The goal here is to implement stringent rules that

maximize data yield while preserving anonymity and data
protection. Data specialists have proposed several strategies to
accomplish this goal. Currently one of the most favored is
centered in mining designs based on the so-called minimally-
invasive queries (MIQs) designed ex-profeso to preclude (and
in due case disclose/document) any abuse of sensitive data
(306). In some sense MIQ approaches mimic and extend the
practices that have been long held by the international health
insurance community while dealing with privacy in the EHRs
via guidelines, such as the Health Insurance Portability and
Accountability Act (HIPPA). Aside from its enormous legal
and bioethical consequences, HIPPA adoption induced the
development of data protocols in biomedical informatics that
will result useful—even if as a starting point—for the LSDA
under the Precision Medicine paradigm. Full implementation
of optimized data usage/protection protocols is still underway,
however, important advances have been made (307–310).

Reaching an optimal balance between information protection
and efficient data mining outputs presents itself as a complex
endeavor: some experts from the biomedical ethics community
advocate for a careful case-by-case analysis, though admittedly
this will be too complex to be implemented in general purpose
LSDA workflows. As an alternative to this it has been suggested
that multi-level data encryption (311, 312) can be applied in such
a way that only authorized personnel will have the decoding keys
to have access of the different levels of information (313).

In order to lessen the burden of encryption, encryption
must be selective so that only personal identifiers and other
private features (that may help disclose such identifiers) should
be encrypted. Quasi-identifiers (QIDs), such as location, ethnic
profiling, age and employment information, and highly-specific
genomic data may be subject to certain low-level encryption
by following differential privacy standards (314, 315). Some
caution needs still to be taken since individual QIDs may not be
informative enough to disclose identity, but theremay bemining-
integration procedures that may be able to do so by arranging
coupled queries as it has been already discussed in the context of
large scale genomic and transcriptomic studies (316–318).

Aside from genomic sources, other data types that may be
used as potential QIDs in the context of biomedical informatics
include, for instance, photographs: it has been discussed that
from image (and imaging) data, AI approaches are able to infer
barcodes from cranial and facial morphological features, skin
pigmentation, eye color, retina patterns, iris structure, as well as
hair type and color (108, 317, 319–322).

These are but a handful examples of how biomedical and
clinical data features may turn into QIDs potentially posing
ethical dilemmas to LSDA in the context of Precision Medicine.
In this context and with the advent of powerful AI/ML
approaches, a question arises as to which queries are valid and
which ones are not from the standpoint of ethics, privacy and
confidentiality. It is expected that as AI/ML methods become
more powerful, methodological adjustments should evolve to
balance safety and non-triviality of the queries with the impact
of the analyses. This call for an organized implementation
of such features via standardized query tools compliant with
the agreed (potentially also evolving) ethical standards of the
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community (313). This translates into further challenges for the
computational tools for data mining and analysis that may be
designed with hierarchical multi-layered data structures in mind
from the start.

Protected health information (PHI) is a relevant issue in this
regard since it potentially allow for individual identification.
Developing methods to effectively de-identify sensible data, such
as the one included in free-text clinical notes may become part
of the solution to the ethical challenges of high throughput data
mining in the clinical and biomedical settings. With this in mind,
Norgeot and collaborators developed a customizable open source
de-identification software called Philter (323). Philter https://
github.com/BCHSI/philter-ucsf has shown to outperform well-
known methods, such as the ones in the Physionet https://www.
PhysioNet.org/physiotools/deid/ and Scrubber https://scrubber.
nlm.nih.gov/files/ suites. Subject de-identification in clinical
notes and similar documents since such corpora often contain
detailed information about the state of individual patients, the
evolution of their disease conditions, specific theraputics and
outcomes. That kind of information that will result key for the
development of Precision Medicine, but at the same time may
pose privacy challenges unless effective de-identified.

In view of the advances in AI/ML and the ethical challenges
that come as a consequence of these advances, design changes
are needed not only in the analytics. Research protocols,
clinical trials and documented medical procedures, for
instance, must be revised since the personal decision to
share or not personal healthcare information or participating
in large scale biomedical research cohorts may change at
the light of AI/ML advances. Hence, informed consent
procedures may need to be adapted. This implies reframing
the current paradigm for the protection of individual privacy
and adopting ways to educate patients/participants on how
the data collected may affect them and the what extent
their data can or cannot be protected, contextualising
this in terms of the potential benefits for them and for
others (317).

It has been discussed that re-educating about the way they
view their own data also implies increasing their involvement
with how their data may be used to affect them and others.
Indeed, one of the central tenets of Personalized Medicine
is making healthcare, personal. In this regard, it is worth
discussing the role that data portabilitywill play in individual and
collective decisions (324, 325). Integrating data analytics, privacy
protection and data portability is, in brief, one of the current open
problems in computational medicine and medical informatics
(326–328).

Given all the twists and subtleties just discussed in
the context of LSDA for Precision Medicine, it has been
considered advantageous to document in all detail (or as
comprehensively as possible given the particular context) how
data is gathered, archived, processed, analyzed, disseminated,
and used in each research study, clinical trial, or large-scale
clinical follow-up. Guidelines have been currently advised as
how to elaborate such a document termed a data management
plan (DMP). We will briefly discuss on these matters in the
next section.

7. THE IMPORTANCE OF A GOOD DATA
MANAGEMENT PLAN

In view of all the complexities associated with projects managing
and analyzing large amounts of potentially sensitive data,
writing down a comprehensive document with all the associated
information, a data management plan document is considered
advantageous (329–332). The purpose of the DMP is to establish
guidelines about how the data will be treated during the course
of the project and even what will happen after the project
is finished. The DMP considers what will be done with the
data from its collection, throughout the organization, pre-
processing, and analysis stages. It considers data quality controls,
database preservation, and documentation techniques used, as
well as usage restrictions and conditions for the further use,
dissemination and sharing, embargoes, and limitations.

The DMP document has been established to be compliant
with the legal requirements for all involved institutions and
funding agencies. It should specify what types of data are to be
collected, the recommended (sometimes preferred, sometimes
mandatory) formats to handle and preserve the data. It
results relevant to mention the software requirements and
computational resources used to store, process, analyze, and
visualize the data. The expected volume and structure of the
databases, as well as its sources, traceability and metadata
information (329). The DMP must also mention the intended
data preservation strategies, database organization (e.g., naming
conventions, dictionaries, reports’ systems, etc.), identification
and de-identification procedures. It is also advisable to establish
guidelines for database curators—in some cases, even for
auditors—(for instance regarding data integrity, quality controls
and data standardization). All these entries of the DMP must be
compliant with normative and organizational principles detailed
in the so-called Project Data Policy (PDP) section of the DMP.
The PDP may include information on legal, administrative and
even ethical restrictions to be considered when managing the
data. In some cases, this has to make it extensive to associated
software and metadata (331).

The data dissemination policy section of the DMP states how,
when and whom will have access to the data and under what
circumstances. It is recommended that a subsection assigning
personal roles and responsibilities of the associated personnel
is included to ensure good data governance. The DMP is, in
brief a dynamic instrument that plays a normative role, but
also serves as a registered account on the whole data workflows
and procedures throughout the project. Hence, a good DMP
contributes to a secure and smooth functioning of the whole
LSDA project (333, 334).

8. CONCLUSIONS AND PERSPECTIVES

Artificial Intelligence and Machine Learning (AI/ML)
approaches have proven to be extremely relevant tools for
the large scale analysis of biomedical and clinical data; central
for the development of Personalized Medicine. Useful as they
are, implementing AI/ML methods in the highly demanding
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medical applications, it is not an easy endeavor. A number of
caveats, shortcomings and subtle points have to be taken into
account (and in many cases, circumvented) in order to provide
appropriate solutions for the individual and public health care to
fully benefit from these emerging paradigms.

In this work, we have discussed about some of the central
challenges, problems, and drawbacks found in the applications
of the methods and designs of large scale data analytics within
clinical and biomedical environments, in particular under a
Precision Medicine perspective.

Some relevant points can be briefly summarized as follows:

• Precision Medicine has been recently presented as an
emergent paradigm to approach healthcare in a more
predictive, preventative, personalized, participatory way
(sometimes also called P4 Medicine). Precision Medicine has
strong ties with data intensive approaches, as well as with
machine learning and artificial intelligence.

• To deliver the promise of Precision Medicine, computational
learning approaches are to be nurtured by well-curated and
nifty integrated data ecosystems.

• Data resources in the biomedical research, clinical and
healthcare environments are becoming extremely large, and
are complex, unstructured and heterogeneous, hence difficult
to deal with individually, even more so to be integrated into a
coherent framework.

• The universe of diverse data sources needs to be collected, pre-
processed, processed, modeled, and integrated to construct
such coherent frameworks useful for Precision Medicine (see
Figure 1). This is much easier said than done.

• In order for machine learningmodels to give good results their
input needs to be good data. Transforming existing data into
optimized forms for AI/ML is essential.

• If medicine is to become personalized, we must embrace
diversity, heterogeneity, biases, class imbalance, and other
intrinsic features of individuals. There is a need to develop
methodologies to rigorously operate under these constraints.

• To develop, implement, optimize, and improve on these
methods, a number of challenges needs to be overcome. These

include technical limitations, computational aspects (both
software and hardware/infrastructure), mathematical and
modeling issues, and even ethical, legal, and policy matters.

• We have presented and discussed some of these challenges,
aiming at showing the state of the art in these different fields.

• We have introduced the need for data intensive endeavors,
from the research arena to the clinical setting and the
healthcare institution level to design and implement a data
management plan to consider the issues that may arise and
planning ahead for their solution.

We are convinced that the development and implementation
of tailor-made (or at least well-customized) approaches, in
terms of robust statistical and computational algorithms,
supported by optimized frameworks for data acquisition, storage,
management, and analytics, but also by well-integrated software
solutions and guided by solid ethical policies compliant with
a deep respect for privacy, confidentiality, and individuality; is
an ambitious but attainable goal. Hence, by combining state of
the art computational learning methods and techniques with the
best data acquisition and management practices the promise of
AI/ML in Personalized Medicine may be delivered.
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