
Data Integration Flows for Business Intelligence

Umeshwar Dayal
HP Labs

Palo Alto, Ca, USA

umeshwar.dayal@hp.com

Malu Castellanos
HP Labs

Palo Alto, Ca, USA

malu.castellanos@hp.com

Alkis Simitsis
HP Labs

Palo Alto, Ca, USA

alkis@hp.com

Kevin Wilkinson
HP Labs

Palo Alto, Ca, USA

kevin.wilkinson@hp.com

ABSTRACT

Business Intelligence (BI) refers to technologies, tools, and

practices for collecting, integrating, analyzing, and presenting

large volumes of information to enable better decision making.

Today’s BI architecture typically consists of a data warehouse

(or one or more data marts), which consolidates data from sev-

eral operational databases, and serves a variety of front-end

querying, reporting, and analytic tools. The back-end of the

architecture is a data integration pipeline for populating the data

warehouse by extracting data from distributed and usually hete-

rogeneous operational sources; cleansing, integrating and trans-

forming the data; and loading it into the data warehouse. Since

BI systems have been used primarily for off-line, strategic deci-

sion making, the traditional data integration pipeline is a one-

way, batch process, usually implemented by extract-transform-

load (ETL) tools. The design and implementation of the ETL

pipeline is largely a labor-intensive activity, and typically con-

sumes a large fraction of the effort in data warehousing projects.

Increasingly, as enterprises become more automated, data-

driven, and real-time, the BI architecture is evolving to support

operational decision making. This imposes additional require-

ments and tradeoffs, resulting in even more complexity in the

design of data integration flows. These include reducing the

latency so that near real-time data can be delivered to the data

warehouse, extracting information from a wider variety of data

sources, extending the rigidly serial ETL pipeline to more gen-

eral data flows, and considering alternative physical implemen-

tations. We describe the requirements for data integration flows

in this next generation of operational BI system, the limitations

of current technologies, the research challenges in meeting these

requirements, and a framework for addressing these challenges.

The goal is to facilitate the design and implementation of optim-

al flows to meet business requirements.

Keywords

Data Warehousing, Business Intelligence, ETL, Data Integra-

tion.

1. INTRODUCTION
Business Intelligence (BI) is a collection of data warehousing,

data mining, analytics, reporting and visualization technologies,

tools, and practices to collect, integrate, cleanse, and mine en-

terprise information for decision making. Today’s BI architec-

ture was designed for strategic decision making, where a small

number of expert users analyze historical data to prepare reports

or build models, and decision making cycles last weeks or

months. This architecture may be viewed as an information

supply chain (Figure 1). Data from distributed, often heteroge-

neous, sources such as online transaction processing (OLTP)

systems is periodically extracted, cleansed, integrated, trans-

formed, and loaded into a data warehouse (DW), which in turn

is queried by analytic applications [4]. (Sometimes, organiza-

tions choose to construct Data Marts, each of which contains

information on some subset of the subject areas represented in

the DW.) Traditionally, the back-end of the information supply

chain is a one-way, batch process (a data pipeline) usually im-

plemented by home-grown code or extract-transform-load

(ETL) tools, such as Informatica’s PowerCenter, DataStage, Ab

Initio, Oracle’s Warehouse Builder, and so on.

Historically, ETL design and implementation was considered a

supporting task for the data warehouse, and was largely ignored

by the research community. In fact, a seminal book on data

warehousing does not explicitly mention ETL at all, although

the concepts of extraction, transformation and loading are de-

scribed [18]. Perhaps ETL received so little attention because,

conceptually, it appeared to be a relatively simple task of data

transfer and integration [33]. Yet, it remains an expensive, la-

bor-intensive, largely manual task. In fact, in a typical data

warehouse project, ETL can consume a large fraction of the

effort (70 percent by some estimates).

The focus for ETL has been on correct functionality and ade-

quate performance; i.e., the functional mappings from data

sources to warehouse must be correct and the ETL mappings

must complete within a certain time window. However, an ETL

project that focuses just on functionality and performance

misses other business objectives that, while harder to quantify,

are important to success. As one ETL practitioner told us, “If I

wanted better performance I buy better hardware; unfortunately,

I cannot buy a more maintainable or a more reliable system.”

In addition, as enterprises become more automated, real-time,

and data-driven, the industry is evolving toward BI systems that

support online, operational decision making at all levels in the

enterprise [12, 36]. There is a growing realization that BI must

be integrated into the business operations of the enterprise to

enable the many knowledge workers engaged in business

processes to make better and timelier decisions. High quality

information must be delivered in near real-time to analytic ap-

plications that are integrated into the enterprise’s business

processes. For example, an on-line retailer would like to analyze

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists, re-

quires prior specific permission and/or a fee.

EDBT'09, March 24-26, 2009, Saint Petersburg, Russia.

Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00.

Figure 1. Traditional business intelligence architecture

a user’s real-time click stream data and up-to-the-minute inven-

tory to offer dynamically priced product bundles. A bank would

like to detect and react in real-time to fraudulent transactions. A

logistics provider would like to dynamically reconfigure ship-

ping routes in response to weather conditions.

Operational BI imposes several new requirements on the archi-

tecture, and in particular on the back-end data integration

processes. These include: handling a much larger number and

diversity of data sources and data types (unstructured and semi-

structured enterprise content, external data feeds, sensor and

other forms of streaming data), low latency requirements to

support on-line decision making, fast refresh cycles, more com-

plex analytic and reporting tools, a larger number of data mart

connections, 24x7 availability, and so on. In the evolving archi-

tecture for operational BI, ETL processes are no longer a one-

way, batch pipeline, but they become more general data flows,

where for instance events from the sources are streamed through

transformation operations towards the data warehouse, and

cleansed data may flow back to the operational databases (Fig-

ure 2).

With these increasing demands on data warehouses, ETL design

has become even more complex. Consequently, we feel it is

time to take a fresh, comprehensive look at the problem of data

integration flow design and implementation.

Our objective in this paper is to discuss research problems and a

promising framework for addressing them, not to describe solu-

tions. In Section 2, we survey the requirements we see for next

generation data integration flows, and the challenges they pose.

In Section 3, we describe a layered methodology that allows us

to capture the requirements starting at the business level, and

progressing to an optimized, executable implementation. Sec-

tion 4 describes a set of metrics for data integration flow design

and implementation, and illustrates tradeoffs among these me-

trics. Section 5 discusses problems and techniques in optimiz-

ing flows. Section 6 discusses issues in incorporating new data

types, i.e., unstructured and semi-structured data.

2. NEXT GENERATION DATA INTE-

GRATION FLOWS
This section provides an overview of important characteristics

for a next generation data integration flow. First, we describe an

example scenario that will be used throughout the paper to illu-

strate various points; this scenario is depicted in Figure 3.

Consider a hypothetical, on-line, retail enterprise and its asso-

ciated business process for accepting a customer order, fulfilling

Figure 2. Next generation business intelligence architecture

and shipping the order and booking the revenue. Such an order-

to-revenue process involves a number of steps, utilizing various

operational databases and an enterprise data warehouse. The

process begins with a customer browsing the product web site

and adding items to a shopping cart. During the session, some

click-stream events may be captured in web logs or to a data-

base.

Eventually, the customer proceeds to check-out which submits

an entry to the order database. Then the customer status is

checked to validate the order. This may involve interactions

with an external agency for a credit check or for fraud detection.

Next, the inventory database is checked to ensure the product is

in stock. At this point, the order can be fulfilled so the customer

payment is processed. This may involve additional steps (not

shown). Finally, the order is shipped and the order revenue is

added to the financial revenue database.

It is worth noting that the entire order-to-revenue process may

last anywhere from seconds to days, depending on the customer

behavior, external services, whether the items are in inventory,

the desired shipping date, etc. We also note that the ETL may

use an additional database of its own (not shown) as an interme-

diate staging area for processing. Finally, it is important to real-

ize that the data warehouse is designed to answer specific busi-

ness questions, such as the query in Figure 3. As the business

changes and more demands are placed on the warehouse, the

design of the integration flows may need to change.

ETL pipelines are responsible for extracting events and actions

from the operational databases and loading them into the enter-

prise data warehouse. Today’s enterprise data warehouses are

dominated by structured data. In the future, we expect ware-

houses to incorporate new data types for semi-structured and

unstructured data. For example, in our scenario, the click-stream

database may include customer comments or feedback (in free

text) on particular products or web-pages. Alternatively, some

customer profile details (preferences, ratings) might be more

easily stored as XML snippets rather than as relational tuples.

Also for validation, the warehouse might include biometrics of a

customer.

In current ETL solutions, the data flow is almost exclusively

one-way from operational systems to the warehouse. In the fu-

ture, we must support flows that are more general. For example,

data cleansing, e.g., address disambiguation and customer de-

duplication, is an important function of ETL. The results of data

Example BI Query: what is our revenue this quarter as a function of

customer traffic on our web site?

Figure 3. Example ETL scenario for an order-to-revenue

business process

cleansing could be pushed back into the operational systems to

improve their accuracy and reduce cleansing work. As another

example, retail web-sites often use customer scores and profiles

to make personalized offers. These profiles are computed from

the warehouse and fed back to the operational systems.

In the future, we can expect operational BI users to demand

lower latencies for time-sensitive data. For example, suppose

our web-site displays an advertisement with a discount on a

selected product. It is important to monitor the sales of that

product to evaluate the utility of the ad. A nightly refresh cycle

is too long. An effective campaign needs shorter cycles to pro-

vide fresher data, so that the campaign can be dynamically eva-

luated and adjusted. As another example, suppose we want to

offer a discount to the user. We may want to base the offer on

the user’s up-to-the-minute profile (including the actions he has

taken in this transaction), current inventory, and active market-

ing promotions, rather than on a historical customer segmenta-

tion model and last week’s inventory. Again, this requires low

latency in the ETL pipeline to capture and transport the user’s

click stream events and other information to the data warehouse

within seconds so that his profile can be updated and the best

offer computed on the fly.

Next-generation data integration flow solutions must support a

systematic methodology for the entire lifecycle of flow design,

implementation, and maintenance. In talking to practitioners, we

uncovered a plethora of unmet needs. Today’s ETL engines

provide graphical interfaces for designing ETL flows, and

scripting languages for implementing the designs. However,

they do not capture or track business requirements, which are

usually specified informally (in text documents), and practition-

ers have to translate these requirements into designs and imple-

mentations. This increases the cost of a project and results in a

design that is hard to change. It also makes it difficult to deter-

mine how well a design meets the objectives or how a design

change might affect a business objective.

The challenge is to link the business processes and objectives

with the ETL design process. A data warehouse is, in effect, an

encapsulation and abstraction of one or more business

processes. Unfortunately, that connection to an actual business

process is obscured or lost in a typical ETL project. For exam-

ple, consider Figure 3. For the sake of discussion, we assume

that the warehouse contains only booked revenue, i.e., orders

that have shipped. The state of partial orders is held in the stag-

ing area. Depending on the refresh period, the data warehouse

reflects past business activity that is days or weeks old. In addi-

tion, orders are processed at different rates so there is no guaran-

tee that two orders submitted at the same time will appear in the

warehouse at the same time. While the warehouse provides a

consistent, historical view of completed orders, it does not re-

flect a complete view of the enterprise. For instance, there is no

easy way to ask business questions such as “How many orders

are currently in the state Check-Customer-Status?” Of course,

that information is in the ETL staging area, but it’s not in a form

that is readily available to business managers or analysts. The

goal should be to make ETL more cognizant of end-to-end busi-

ness processes so as to enable a real-time dynamic view of an

enterprise.

In addition to functional correctness (does the ETL pipeline

correctly populate the data warehouse so the desired business

views can be computed?), the design has to satisfy a number of

other quality objectives. These include performance, reliability,

maintainability, freshness, scalability, availability, flexibility,

robustness, affordability, auditability, and traceability. In this

paper, we refer to these collectively as QoX (to generalize terms

such as Quality of Service, Quality of Data, Quality of Informa-

tion, and so on). Practitioners have to produce ETL solutions

that make tradeoffs among these QoX objectives to satisfy busi-

ness objectives. The challenge is to capture the objectives for-

mally, and to translate these into quality metrics that can then be

used to evaluate design tradeoffs and create optimized imple-

mentations.

At the physical level, the next generation of data integration

flow solutions should consider a larger number of implementa-

tion alternatives than they do today. Currently, the design choic-

es are limited by the choice of implementation tool. Thus, for

example, the decision to do an ETL design (where the transfor-

mations are performed in the staging area) versus an ELT design

(where the data is loaded into the warehouse and the transforma-

tions are implemented using SQL operations in the data ware-

house) is made very early in the project. In future, we expect to

see more hybrids of these styles adopted as database engines

become more scalable and parallel.

Other implementation choices have to be made. One is batch

versus stream. Today’s BI solutions typically run periodic batch

ETL flows. However, to provide fresher data to the warehouse,

it may be necessary to stream data from the sources as soon as

they are updated. A second choice is pull versus push. In to-

day’s BI architecture, all data to be used for analysis and query-

ing has first to be pushed to (i.e., consolidated in) the data ware-

house. In the pull approach, the data integration flows are ex-

ecuted “on demand” when the data warehouse is queried. This is

analogous to the federated database approach in which all data

is left at the sources and queries are directed to the sources to

extract and integrate data. (This approach has been the subject

of intense research for two decades [e.g., 10, 14].) While this

approach can increase data freshness, and may be the only via-

ble approach to dealing with some external data sources, adopt-

ing it in the BI context would require that all the data cleansing

and transformation steps needed for reporting and analysis

would have to be done at query processing time. Clearly, there

are tradeoffs to be made. Additional alternatives include data

partitioning, parallel processing, and so on.

Currently, to evaluate all such design alternatives, ETL practi-

tioners use their personal judgment, or, at best, ad-hoc metho-

dologies. Next generation solutions should adopt a systematic

approach to design that balances the design tradeoffs against the

project objectives.

3. LAYERED METHODOLOGY FOR THE

DATA INTEGRATION FLOW LIFE-

CYCLE
Every data integration project is unique. However, at a high

level, each follows a four-phase pattern common to many types

of services engagements. The services lifecycle begins with a

pursuit phase which evaluates the feasibility of a project, i.e.

determining the objectives, risks, costs, and benefits and ulti-

mately making the go or no-go decision. Then comes a design

phase which, given the project objectives and constraints, results

in a detailed project plan that includes logical and physical

models. The deployment (or implementation) phase then takes

those models and produces executable artifacts, e.g., test suites,

code for Ab Initio, DataState, Informatica or any other ETL

tool. The final phase, management, executes the code, monitors

performance and updates the models as necessary over the re-

maining lifetime of the project. Research on common informa-

tion models for services engagements is highly relevant [21, 37].

In our view, next-generation data integration projects would

benefit from a layered methodology for the lifecycle, which

proceeds in successive, stepwise refinements from high-level

business requirements, through several levels of more detailed

specifications, down to execution models (Figure 4). Where

possible, formal languages are used for the specifications and

these specifications are influenced by key quality metrics. Spe-

cific optimizations are considered at each level of specification.

The first step of the methodology is the gathering of require-

ments and objectives. This is accomplished through interviews,

examination of documents, and analysis of systems and data.

The outcome of this step is the identification of business infor-

mation objects, specifications and objectives for the project

including the identification at this stage of key QoX metrics.

In our sample scenario of Figure 3, the information objects

might include orders, products, customers, stores, suppliers and

the associated relationships among these objects. The business

specifications might include customer arrivals rates, order rates,

product hierarchies, and so on. The specifications would also

include the intended use cases for the data warehouse, e.g.,

types of reports or types of ad-hoc queries. Most important is

that the specifications include the business processes that oper-

ate on the information objects. The objectives would include

some QoX metrics and where possible, an initial attempt to

quantify them. For example, maintainability might be specified

Figure 4. Layered, comprehensive approach for the integra-

tion flow lifecycle

as an important design goal with impact on the management

phase of the project. But, it would be difficult to quantify. How-

ever, the required freshness of data might be known at this

point. Some availability and performance metrics might be

known, and so on.

A research challenge at this level is the expression of the busi-

ness information objects and processes in terms of a formal

model. This will establish a correspondence between business

views at the business process level and operational views at the

logical and physical level. One possibility for this formal model

is to leverage languages developed for business processes [15,

38]. This might enable the use of design tools built around these

languages.

The requirements gathering step synthesizes information from

many disparate sources. Consequently, it is important that the

resulting business specifications include provenance informa-

tion. Since these specifications are ultimately used to derive the

implementation, the provenance information is needed to track

back a project detail to its ultimate source. Ideally, the prove-

nance information would include some quality or accuracy

measure, e.g., to identify the most authoritative source in the

case of conflicting information.

Given this business level model, the next step is creation of a

conceptual model. The conceptual model describes the data

flows at a high level, the sources, the targets and the required

mappings between them. It also describes dependencies and

constraints among the flows. In our example scenario, there

might be four flows, one for each of the operational databases

that feed the warehouse. We note that existing ETL engines

provide little or no support for the conceptual level. In a typical

ETL project, the conceptual model would be expressed infor-

mally with using spreadsheets or annotated diagrams.

Conceptual modeling formalisms have been proposed [22, 34].

This enables the expression of dependencies among flows and

certain types of optimizations. Certain flow-based optimizations

are achievable based on the conceptual model. Flows with no

intersection in their sources and targets could be run in parallel.

Flows with common sources might be considered for joint ex-

traction.

Given a conceptual model, the next step is to generate a high-

level logical model based on expanding the conceptual model to

include specific transformations for the mappings. Typically, a

logical model is expressed as a graph of algebraic operators with

tuple (data) flow between operators. Some algebraic optimiza-

tions are best accomplished using this high-level logical model,

such as optimizations that are independent of the physical im-

plementation. The generation of the logical model should also

take into account QoX metrics, and tradeoffs among them. For

example, fast recoverability might require the inclusion of addi-

tional flows to establish landing tables that can be used to restart

a flow. Given the initial high-level, logical model, cost-based

techniques such as those in [27] can be used to produce a more

detailed logical model matched to the physical implementation.

Finally, a physical model is generated, and this includes execut-

able code. The physical model is dependent on the specific im-

plementation technology chosen for implementing the data inte-

gration flows, e.g., custom scripts and ETL engine. Thus, a

physical model for Informatica would differ from one for Da-

taStage given the different capabilities of these ETL engines. As

with the higher levels, the generation of the physical model and

the optimization of the model are driven by the QoX metrics.

Some work has been done on automatic generation of ETL from

conceptual or logical models, but only for a subset of ETL trans-

formations that correspond to schema matching and mapping

[13]. A semi-automatic method based on Semantic Web ontolo-

gies was described in [30]. However, a systematic approach

that is based on QoX tradeoffs and successive refinement from

the business level through to the physical implementation level

is still lacking.

4. QoX METRICS AND TRADEOFFS
The software engineering community has proposed a set of

measures for evaluating the quality of software designs. These

could be adapted to evaluating the quality of data integration

flow designs [35]. Exploiting the fact that such flows can be

conveniently represented as graphs, these metrics are either

simple graph properties (e.g., size of the graph, length of the

longest path) or somewhat more complex quantities that require

richer semantics and deeper understanding of the flow. Some

examples of the latter are: Modularity or cohesion (of a module

or transformation) refers to the extent to which a module or

transformation performs exactly one job; Coupling (of a module

or transformation) represents the number of inter-relationships

between different modules or transformations; Complexity (of a

module or transformation) refers to the number of inter-

relationships among the components of a module or transforma-

tion. However, these metrics are rather abstract, and we decided

to interview practitioners who specialize in ETL design and

implementation to learn what they consider important.

We learnt that ETL designers have to deal with a host of quality

objectives, which we refer to as QoX. While most of these

qualities have been discussed in the software engineering litera-

ture, their definition and usage vary according to the specific

domain. Below, we adapt these descriptions to the context of

integration flows.

− Reliability. The probability that the ETL process will per-

form its intended operation during a specified time period

under given conditions. Any reason for not performing the

intended operation is considered to be a failure.

− Maintainability. The ability of an ETL process to be oper-

ated at the design cost and in accordance with service level

agreements.

− Freshness. The ability of the system to provide the desired

latency in updating the data warehouse. (Note that different

data objects may have different freshness requirements.)

− Recoverability. The ability to restore an ETL process to the

point at which a failure occurred within a specified time

window.

− Scalability. The ability of an ETL process to handle higher

volumes of data.

− Availability. The probability that the ETL process is opera-

tional during a specific time period, i.e., that the allocated

physical resources of the system (e.g., processors, memory,

external storage) will be available when needed. From the

end user perspective, availability refers to the ability of the

ETL process to provide the required data in the data ware-

house within specified time and accuracy constraints.

− Flexibility. The ability to accommodate previously un-

known, new or changing requirements.

− Robustness. The ability of an ETL process to continue op-

erating well or with minimal harm, despite abnormalities

(sometimes unpredictable abnormalities) in input, calcula-

tions, functionality, and so on, which stress the design as-

sumptions.

− Affordability. The ability to maintain or scale the cost of an

ETL process appropriately.

− Consistency. The extent to which the data populating the

data warehouse is correct (i.e., satisfies integrity con-

straints) and complete.

− Traceability. The ability of an ETL process to track the li-

neage (provenance) of data and data changes.

− Auditability. The ability of an ETL process to protect data

privacy and security, and to provide data and business rule

transparency (usually for legal compliance purposes).

These descriptions are still quite informal and ETL practitioners

today have to manually incorporate them into their designs in an

ad hoc manner, based on their own experience and skills. One

important challenge for future research is to define these metrics

precisely and understand how to measure them. Some of the

metrics are quantitative (for instance, reliability may be defined

in terms of MTBF, the mean time between failures; recovera-

bility may be measured in terms of MTTR, mean time to repair;

freshness may be measured in time units; affordability may be

measured in cost). Other metrics (for instance, maintainability,

flexibility) may be more difficult to quantify.

The metrics may come into play at different levels of the me-

thodology we described in Section 3. For example, freshness

and reliability can be evaluated at the physical level, while their

implication at the conceptual or logical levels is not clear. On

the other hand, maintainability and robustness can drive concep-

tual and logical modeling. Scalability and performance span the

conceptual, logical, and physical levels.

A major challenge is to identify the interrelationships and de-

pendencies among the metrics that lead to tradeoffs for alterna-

tive optimizations of data integration flows. For example, a

design may sacrifice performance for maintainability. Also,

partitioning and parallelization increase freshness, but hurt

maintainability and robustness.

As a more complex example, consider tradeoffs among perfor-

mance, freshness, reliability, auditability, recoverability, and

cost. Consider an ETL flow based on Figure 3. Assume that we

want to populate the data warehouse table DW_ORDERS with

data coming from the source table S_ORDERS. Assume also

that we need to consider only orders that have been shipped and

placed in three states AZ, CA, and NV. Then, we want to group

and aggregate the data by state and by day. Finally, before the

loading of the DW_ORDERS, we have to replace the produc-

tion keys with surrogate keys. This ETL flow is depicted in

Figure 5a.

Let us examine different design alternatives, assuming that we

can afford to use three machines to execute the ETL flow. The

obvious objective is to improve performance, but also we need

to ensure recoverability and maintainability. For improving

performance, a choice is to introduce parallelism. Without loss

of generality, we consider that the volumes of orders placed in

each state are similar. Then, we can create three different ETL

flows, each responsible for processing one state’s data. A possi-

ble design is depicted in Figure 5b. For recoverability of an ETL

flow, a popular technique is to enrich the flow with a number of

recovery points such as backup tables, landing tables, or files.

When a failure occurs, the process continues from the latest

recovery point, instead of starting again from scratch. For the

original ETL flow, the points (1) and (2) are candidate places to

add recovery points. However, for the parallel case, there are six

candidate recovery points, two for each flow. Here, there is a

clear tradeoff between performance and recoverability.

On the other hand, the use of recovery points hurts freshness.

For avoiding that, a solution is to ensure robustness (hence re-

ducing the need for recovery) by means of redundancy. Instead

of using the three machines for parallel processing of subsets of

the source data, we use them for three parallel, redundant execu-

tions of the original flow (as in Figure 5c). Thus, even if a fail-

ure occurs in a flow, a voter placed at the end of the three

branches can decide which copy to trust.

Now suppose that maintainability is also a QoX objective. Typi-

cal metrics that characterize the maintainability of a flow are its

size, modularity, and complexity. Clearly, the maintainability of

the flow depicted in Figure 5a is better than that of the flow

depicted in Figure 5b. That is because the latter flow has larger

size (more nodes), lower modularity (each conceptual task, e.g.,

surrogate keys assignment, is performed more than once), and

greater complexity.

A systematic approach to design based on QoX tradeoffs bene-

fits both the flow designer and the administrator. An interesting

challenge is to devise a method for enabling comparison and

a. single sequential flow

b. parallel flows

c. redundant flows

Figure 5. Examples of QoX tradeoffs

trade-offs of the different metrics. We adopt the NFR-

Framework for making explicit the relationship between quality

requirements and design decisions [7]. This framework distin-

guishes two types of requirements: functional (FR) and non-

functional (NFR). The FR state specific functionalities of the

system – intuitively, what the system must do; e.g., “The ETL

process populates the Data Warehouse.” The NFR are attributes

a system must have – intuitively, how the system must accom-

plish the what; e.g., “The ETL process populates the Data

Warehouse fast.” Here, we focus on the NFR, and we discrimi-

nate two classes of metrics: the qualitative vs. the quantitative.

The former contains “high level” QoX metrics that can be seen

as soft-goals; e.g., “The ETL process should be reliable.” The

latter contains “low-level” metrics that are functional parameters

of the system; e.g., time window, execution time, recoverability

time, arrival time, number of failures, latency of data updates,

memory, space, CPU utilization uptime, throughput, number of

processors, and so on. For example, the notion of “reliable”

used in the above example can be clarified as: “the mean time

between failures (MTBF) should be greater than X hours”.

Another example could be “the uptime should be more than Y

hours.”

A soft-goal interdependency graph is used to support the syste-

matic modeling of the design [7]. Figure 6 shows an inter-

dependency graph for an integration flow design that should be

reliable, maintainable, and efficient. These three NFR are soft-

goals expressed in the form of type[topic]. As these high-level

requirements may denote different concepts to different people,

their meanings should be defined. This is realized through a

soft-goal refinement process, where soft-sub-goals are based

either on topic (e.g., ETL System {Software,Hardware}) or

on type (e.g., Performance {Time Performance, Space Per-

formance}). The soft-goal interdependency graph shows the

relationships among the soft-goals and the quantitative meas-

ures. Hence, Figure 6 illustrates that the degree of parallelism

contributes extremely positively (++) to the fulfillment of the

reliability[software] soft-goal, since it can be seen as a form of

redundancy, which is a popular method for decreasing the prob-

ability of a failure. In contrast, parallelism affects negatively (-)

Figure 6. Example soft-goal interdependency graph

the reliability of hardware (more devices increase the probabili-

ty of failure), extremely negatively (--) the modularity (each

specific module of the system performs more than one task), but

extremely positively (++) the time performance (the processes

are executed faster). Similarly, the number of recovery points

affects soft-goals differently.

However, if we analyze further the degree of parallelism and

check how a design alternative such as partitioning, would af-

fect the design, the result may be quite different. As we dis-

cussed in the example of Figure 5, if we partition the data into

groups containing smaller but different volumes of data, that

would be extremely good for time performance, but it does not

really improve the reliability (since, if one of the parallel

branches fails, then the final result would not be correct). If we

choose a copy-partition, in which there are redundant parallel

flows, then this would be extremely positive for the reliability of

the system, but it would hurt time performance.

To summarize, an optimal design involves some degree of sub-

jectivity, but it should satisfy the business objectives. The QoX

metrics framework and techniques like the soft-goal interdepen-

dency graph may help toward the understanding and visualiza-

tion of the design requirements. Simple measurements that

quantify the positive or negative relationships among the soft-

goals can give an intuitive perception of the design alternatives.

We believe this is a fruitful area of research.

5. QoX-DRIVEN OPTIMIZATION
The layered approach to ETL design that was introduced in

Figure 4 presents opportunities for optimization at each succes-

sive level of specification.

Suppose we are able to express the conceptual model in some

formal language. Then, we can imagine an automated or semi-

automated process that takes the conceptual model, along with

supplementary information, such as the possible operators, and

generates a logical model that specifies transformations for the

flows. There may be several alternative translations from con-

ceptual model to logical model, which can lead to different de-

signs. The translation from the logical model to the physical

model enables additional types of optimizations. The logical

model, being expressed as a graph of operators, lends itself to

algebraic optimization. Flow restructuring optimizations may

also be applied at this level. The language of the physical model

enables code optimizations that are dependent on the specific

implementation technology in use (e.g., ETL engine, SQL code,

and so on). However, we may also employ flow and algebraic

optimizations at this level.

Simple operations:

filter

join

union

sort

group by

diff

function application

Check operations:

key violation

null values

unique values

DW operations:

SuperKey assignment

SCD-1/2/3

row (de-)normalize

pivoting

Flow operations:

splitter

duplicator

merger

Scripting operations:

execute SQL script

execute Java/C++ script

System opera-

tions:

socket reader

socket writer

file reader

file writer

stream lookup

Transfer opera-

tions:

(de-)compress

encrypt/decrypt

file transfer

Table 1. Representative ETL operations [3]

We believe that optimizations at all design levels should be

driven by QoX metrics. These metrics, in effect, prune the

search space of all possible designs, much like cost-estimates

are used to bound the search space in cost-based query optimi-

zation.

5.1 Optimization Techniques and Challenges
The optimization of integration flows can exploit three classes

of technique: algebraic rewriting, flow restructuring, and adap-

tation to real-time environments.

Algebraic rewriting. Since a data integration flow is expressed

as a graph of operators, techniques analogous to database query

optimization can be used. As in query optimization, flow opti-

mization consists of selecting the execution order of the opera-

tions constituting the flow; and selecting the implementation

method for each of these operations (e.g., join algorithms).

However, there are significant differences between optimizing

integration flows and optimizing SQL queries, which render the

former problem challenging. First, integration flows use a richer

set of operators than the traditional relational operators. These

include schema transformation routines (e.g., pivot/unpivot),

data cleansing routines (e.g., de-duplication), transfer routines

(e.g., ftp transfer), calls to external procedures (e.g., dll’s), sys-

tem calls, and so on. Table 1 presents a few representative oper-

ations supported by current ETL tools. Second, flows involve

constraints on execution order, and in that sense, flow optimiza-

tion is more akin to transaction or program optimization than

query optimization. Third, a typical data integration design may

consist of several flows. There are opportunities for sharing

computations among these flows. This is analogous to the prob-

lem of multi-query optimization [8, 26, 28], with the caveat

again that we have to deal with a richer set of operations and the

execution ordering constraints. Fourth, database query optimiza-

tion so far has been focused on performance (total query execu-

tion cost or response time), not on the more general QoX tra-

deoffs.

Despite the significance of optimization, so far the problem has

not been extensively considered in the research literature on

ETL. The existing studies mainly focus on a black-box optimi-

zation approach at the logical level, and concern the order with

which the activities are placed in the flow [29]. More general

rewriting that takes into account the semantics of the flow oper-

ations has not yet been addressed. A major inhibitor to progress

here is the lack of a formal language at the logical level (ana-

logous to the relational algebra).

Commercial ETL tools provide little support for optimization.

One technique that seems to give some promising results on the

execution of a part of an ETL flow is the PushDown optimiza-

tion supported by Informatica’s PowerCenter [16, 17]. Push-

Down is based on a two-pass processing. During the first pass, it

starts from a source data store and checks if the subsequent

transformations can be expressed in pure SQL. Then, it groups

these transformations together with equivalent SQL expressions

and executes the result in the source DBMS; this is similar to

the approach taken in federated database systems. During the

second pass, it executes the same procedure starting from the

target data stores: the transformations that are placed at the end

of the flow and can be expressed in pure SQL, are replaced by

equivalent SQL expressions and the result is executed in the

target DBMS (i.e., the data warehouse); this is similar to the

ELT approach. The remaining transformations are executed in

the data integration server; i.e., the ETL engine. If an operator

that cannot be expressed in SQL is placed either early or late in

the flow, this technique doesn’t work. Furthermore, it applies to

only part of the flow. The challenge of optimizing the entire

flow remains.

Flow restructuring. Data integration flows are similar to busi-

ness processes and can be expressed in process modeling lan-

guages (such as BPEL, process algebras, or process logics).

Consequently, process optimization techniques such as paralle-

lization, collapsing of long sequential chains), elimination of

conditional branching nodes, etc., can be applied to flow opti-

mization.

Two parallelization techniques, pipelining and partitioning, can

be considered. For relatively small data volumes, the integration

process can be divided into three pipelined sub-processes for

extraction, transformation, and loading [33]. Most ETL tools

work that way; however, pipeline can be delayed by blocking

operations. As far as we are aware, no general solutions have

been provided so far for avoiding blocking. For larger data

volumes, partitioning is usually beneficial, and ETL tools sup-

port round robin, hash based, key range, pass-through, random,

and follow-the-database partitioning. However, partitioning

comes with the cost of merging the parallel flows.

Thus, there are some interesting research problems in flow re-

structuring: (a) how to automatically restructure an integration

flow for pipelining and/or partitioning; (b) how to deal with

blocking operations; (c) what are good candidate points for par-

titioning; (d) which parts of a flow should be parallelized; (e)

what are good points for performing split or merge operations;

and (f) how to automatically determine an appropriate partition-

ing technique.

Additional promising flow optimization techniques include a

combination of SQL and MapReduce functions for distributed

computation of large-scale cleansing transformations, sort oper-

ations, and the like [9]. This approach also seems to be promis-

ing for the integration of unstructured data as well, since Ma-

pReduce functions can be defined for text analysis, search, etc.

Some preliminary ideas on optimizing integration operations

implemented as SQL user-defined functions are reported in [5].

Adaptation to real-time environments. Although the requirement

for freshness (low latency) does not impact the conceptual level

of integration flows, at the physical level several challenges

emerge. The three generic phases of an integration process,

extract, transform, and load, have to deal with streaming data.

The enhancements needed to the extraction phase are not

straightforward. The operational systems are tuned for transac-

tion processing and cannot support the additional load of exter-

nal applications pulling data from their databases at unknown

times and in an ad hoc manner. Apart from the additional over-

head, this requires having appropriate access privileges on the

source data stores. Additionally, when the integration tool is

allowed to interfere with the source systems, the source admin-

istrators have the obligation for propagating changes of their

systems to the integration tool attached to their systems. For

near real-time integration, extraction techniques include the use

of messages, queues, web services, change data capture (CDC),

and extraction in micro-batches.

In the transformation phase, the operations have to handle

streaming data efficiently. There has been a lot of research on

streaming select-project-join-aggregate queries. However, since

integration flows involve a richer class of operators, a fresh look

at this problem is needed. As a first step toward this task, the

MeshJoin operator solves the problem of joining a data stream

with a persistent relation. This is the core operation in transfor-

mations like the assignment of surrogate keys, the identification

of the newly inserted/deleted/updated tuples, lookup operations,

and so on [25].

Conceptually, loading seems to be the simplest phase of integra-

tion. In practice, however, this task is far from trivial. In gener-

al, DBMS engines are optimized for answering queries efficient-

ly, not for enabling efficient loading of data, especially the con-

struction of indexes and materialized views. Most commercial

RDBMSs do provide external utilities for bulk loading (e.g.

Oracle’s sqlldr, Neoview’s Transporter). In the near real-time

context, these approaches have to become resilient to the heavy

bursts that characterize streaming data. Commercially, Teradata

supports trickle loads. An example of a research effort in this

direction is the RiTE approach, which considers real-time load-

ing using micro-batches [24].

5.2 Implementation Styles
In addition to the optimizations described above, at the physical

level, there are also the different implementation styles we men-

tioned in Section 2. While most data warehousing projects use

ETL tools, some practitioners argue that ETL can be replaced

by ELT (Extract-Load-Transform) or ETLT (Extract-

Transform-Load-Transform). In the ELT style, after the extrac-

tion phase, data is loaded directly into the data warehouse server

and all the transformations are executed there. In the ETLT

case, the idea is to split the transformation phase into two

groups of transformations, the first to be executed immediately

after the extraction, and the second to be executed after a load-

ing phase. The main argument for these alternatives is that the

data warehouse servers are usually scalable, highly parallel

machines and in principle could be better at optimizing trans-

formations. The popularity of data warehouse appliances, which

are very fast at loading and performing initial transformations,

especially those that scan entire tables, has also contributed to

this trend. However, there are still many challenges in optimiz-

ing ELT flows, particularly since cleansing transformations can

involve very complex SQL, including user-defined functions,

which are not currently handled well by DBMS engines.

Another set of implementation choices is around the traditional

push designs versus pull designs. In the pull design, data is left

in the source data stores, and when a specific application needs

some data, it is extracted from the sources and transformed on

the fly. This approach resembles the traditional federated ap-

proach, and in the BI context we refer to it as on-demand ETL

(or more generally, on-demand integration flows). In this case, it

is advisable to maintain the source data as clean as possible, in

order to avoid cleansing procedures on the fly, for performance

reasons and for avoiding the cleansing of the same data more

than once.

Between the two extremes of pull and push designs, another

design alternatives suggests populating the data warehouse only

with a subset of data that are needed for applications with ex-

treme response time requirements and for which freshness is not

critical. Other data may be cached in the form of materialized

views placed in the data staging area. These views enable tra-

deoffs between freshness and performance (and also benefit

other QoX metrics since they provide recovery and lineage

tracking points).

Tuning each of these alternatives is a challenge by itself. How-

ever, we believe the main challenge is to consider all of these

implementation alternatives in order to do QoX-driven end-to-

end optimization of data integration flows.

6. INTEGRATING ADDITIONAL DATA

TYPES
The focus of data warehousing, and in particular of ETL, so far

has been on structured data extracted from OLTP databases.

Increasingly, enterprises have come to realize that for business

intelligence purposes they need also to extract information from

their unstructured and semi-structured data sources as well. By

some accounts, over 80% of an enterprise’s information assets

are unstructured, mainly in the form of text documents (e.g.,

contracts, warranties, forms, medical reports, insurance claims,

policies, reports, and customer support cases) and other data

types such as images, video, audio, and other different forms of

spatial and temporal data. For illustration purposes, consider our

example from Figure 3. To construct an accurate user profile, it

may be important to consider not just the transactional data in

the various operational databases involved in the order-to-

revenue process, but also to look at the content of web pages the

user has browsed, his reviews or blog postings, and any con-

tracts he may have with the enterprise. In general, unstructured

data provides valuable contextual information for more in-

formed operational decision making.

Recently, there have been efforts to incorporate unstructured or

semi-structured data into data warehouses. For instance, [23]

describe research on spatial and temporal data warehousing. The

core idea underlying DW2.0 is the integration of structured and

unstructured data [20].

Figure 7. Information extraction pipeline for unstruc-

tured data

To incorporate unstructured data into the BI architecture of Fig-

ure 2, it is not sufficient to merely store the data in the ware-

house. Rather, it is important to extract useful information from

the unstructured data and turn it into structured data that can be

stored, accessed and analyzed along with other structured data.

However, this is not an easy task. Take, for example, the text in

customer reviews, which are written in an ad-hoc manner. The

lack of structure makes it hard to find the product and the fea-

tures referred to in the review, and especially which features the

customer likes and which he doesn’t like.

Numerous information extraction techniques have been devel-

oped that try to learn models for the retrieval of relevant entities,

relationships, facts, events, and so on, from text data [2]. Some

of the most popular techniques are based on rule learning [31]

and Hidden Markov Models [11]. Analogous techniques have

been developed for extracting information from multimedia data

such as text in video frames [1].

Figure 7 shows the typical pipeline for information extraction

from text data sources, where the goal is to extract relevant data

from a collection of documents; e.g., contract number, customer,

and expiration date from contracts. Whatever the information

extraction algorithm used, the source data always needs to be

pre-processed to get rid of noise, transform it to the representa-

tion required by the method, etc. In addition, the output also

needs to be post-processed to gather the structured data in the

form of attribute-value pairs, which can then be transformed and

loaded into the data warehouse. In the case of text, this pipeline

of tasks corresponds to what has recently been named textual-

ETL [19]. The pipeline involves numerous operations that are

abstracted into high level modules in the figure. The extracted

data from the unstructured sources often relates to data in struc-

tured sources so it is staged into a landing area and is then

loaded into the data warehouse, where the information from

both structured and unstructured sources is consolidated (e.g.,

contract data is related to customer data) for use by BI applica-

tions.

The challenge in textual-ETL consists in identifying how to

abstract all the above tasks into operators that can be used to

design, optimize and execute these flows in the same way as for

structured data.

a. separate ETL pipelines

b. integrated pipeline

Figure 8. Data integration pipelines for structured and

unstructured data

Using a uniform approach for ETL of structured and unstruc-

tured data makes it possible to use the same data warehouse

infrastructure. In addition, by incorporating unstructured data

into the same framework, QoX-driven optimization is enabled.

In fact, the same QoX metrics apply to unstructured data as

well, although some of them may become more relevant in this

context. For example, accuracy becomes critical for unstruc-

tured data given that the information is extracted (and turned

into structured data) through learned extraction models that are

hardly ever 100% accurate. Also, since information extraction

algorithms are usually slow, tradeoffs between accuracy and

performance may be important.

In addition, there are other design alternatives to be considered.

Should there be separate pipes for the structured and unstruc-

tured data in the integration flows or only one? Having separate

pipes (as shown in Figure 8a) is conceptually simpler to design.

However, having a single pipe with two separate extraction

stages but a single integrated transformation-load stage (as

shown in Figure 8b) creates better opportunities for end-to-end

optimization by bringing unstructured data into the same quali-

ty-driven design and optimization environment that has been

described in previous sections.

7. CONCLUSION
Data integration flows are the back-end of a typical BI architec-

ture. Today, the design and implementation of these flows is a

labor-intensive activity, consuming a large fraction of the effort

in data warehousing projects. We believe this is because the

current generation of ETL tools provides little support for sys-

tematically capturing business requirements and translating

these into optimized designs that meet the correctness and quali-

ty requirements. The next generation of BI solutions will impose

even more challenging requirements (near real-time execution,

integration of structured and unstructured data, and more flexi-

ble flow of data between the operational applications and ana-

lytic applications), resulting in even more complexity in integra-

tion flow design. Hence, it is important to create automated or

semi-automated techniques that will help practitioners to deal

with this complexity.

In this paper, we have outlined the requirements we see for next

generation data integration flows and the research challenges in

meeting them. We have presented a layered methodology for

starting with a business model of the enterprise and progressive-

ly refining the model to create conceptual, logical, and physical

designs. We have introduced a suite of quality metrics we refer

to collectively as QoX. We have described a framework that

enables design tradeoffs to meet different quality requirements,

and discussed various techniques for producing optimized de-

signs. Finally, we have discussed the integration of additional

data types. Only recently has the research community started to

address these challenges, but many research problems remain.

8. REFERENCES
[1] M. Anthimopoulos, B. Gatos, I. Pratikakis. Multiresolution

text detection in video frames. In VISAPP (2), pp. 161-166,

2007.

[2] M.Berry, M.Castellanos (Eds). Survey of Text Mining II:

Clustering, Classification and Retrieval. Springer Verlag,

2008.

[3] M. Castellanos, A. Simitsis, K. Wilkinson, U.Dayal. Au-

tomating the Loading of Business Process Warehouses. In

EDBT, 2009.

[4] S. Chaudhuri, U. Dayal, V. Ganti. Database Technology

for Decision Support Systems. In IEEE Computer 34(12),

pp. 48-55, December 2001.

[5] Q. Chen, M. Hsu. Data Continuous SQL Process Model. In

CoopIS, pp. 175-192, 2008.

[6] S. Chen, L. Bao, P. Chen. OptBPEL: A Tool for Perfor-

mance Optimization of BPEL Process. In Software Com-

position, pp. 141-148, 2008.

[7] L. Chung, B.A. Nixon, E. Yu, J. Mylopoulos. Non-

Functional Requirements in Software Engineering. Kluwer

Academic Publishing, 1999.

[8] N.N. Dalvi, S.K. Sanghai, P. Roy, S. Sudarshan. Pipelining

in Multi-Query Optimization. In PODS, 2001.

[9] J. Dean, S. Ghemawat. MapReduce. Simplified Data

Processing on Large Clusters. In Sixth Symposium on Op-

erating System Design and Implementation, 2004.

[10] A. Elmagarmid, M. Rusinkiewicz, A. Sheth. Management

of Heterogeneous and Autonomous Database Systems.

Morgan Kaufmann, 1999.

[11] Freitag, A. McCallum. Information Extraction with HMM

Structures Learned by Stochastic Optimization. In National

Conference on Artificial Intelligence, 2000.

[12] P. Gillin. BI @ the Speed of Business. Computer World

Technology Briefings. December 2007. Available at:

http://resources.computerworld.com/sas_imw/registration.p

hp?item=12&tab=1.

[13] L.M. Haas, M.A. Hernández, H. Ho, L. Popa, M. Roth.

Clio grows up: from research prototype to industrial tool.

In SIGMOD, pp. 805-810, 2005.

[14] A.Y.Halevy, A. Rajaraman, J.J. Ordille. Database Integra-

tion: The Teenage Years. In VLDB, pp, 9-16, 2006.

[15] R. Hull. Artifact-Centric Business Process Models: Brief

Survey of Research Results and Challenges. In ODBASE

Conference, pp. 1152-1163, 2008.

[16] Informatica. Pushdown Optimization. Available at:

http://www.informatica.com/INFA_Resources/ds_pushdow

n_optimization_6675.pdf

[17] Informatica. How to Achieve Flexible, Cost-effective Sca-

lability and Performance through Pushdown Processing.

White paper, November 2007.

[18] W.H. Inmon. Building the Data Warehouse. John Wiley,

1993.

[19] W. H. Inmon, A. Nesavich. Tapping into Unstructured

Data: Integrating Unstructured Data and Textual Analytics

into Business Intelligence. Morgan Kaufmann, 2007.

[20] W.H. Inmon, D. Strauss, G. Neuschloss. DW 2.0. The Ar-

chitecture for the Next Generation of Data Warehousing.

Morgan Kaufmann, 2008.

[21] H.A. Kuno, K. Yuasa, K. Govindarajan, K. Smathers, B.

Burg, P. Carau, K. Wilkinson. Governing the Contract Li-

fecycle: A Framework for Sequential Configuration of

Loosely-Coupled Systems. In DNIS, pp. 264-279, 2005.

[22] S. Luján-Mora, P. Vassiliadis, J. Trujillo. Data Mapping

Diagrams for Data Warehouse Design with UML. In ER,

pp. 191-204, 2004.

[23] E. Malinowski, E. Zimanyi. Advanced Data Warehouse

Design. From Conventional to Spatial and Temporal Ap-

plications. Springer, 2009.

[24] C. Thomsen, T.B. Pedersen, W. Lehner. RiTE: Providing

On-Demand Data for Right-Time Data Warehousing. In

ICDE, pp. 456-465, 2008.

[25] N. Polyzotis, S. Skiadopoulos, P. Vassiliadis, A. Simitsis,

N.-E. Frantzell. Supporting Streaming Updates in an Ac-

tive Data Warehouse. In ICDE, pp. 476-485, 2007.

[26] P. Roy, S. Seshadri, S. Sudarshan, S. Bhobe. Efficient and

Extensible Algorithms for Multi Query Optimization. In

SIGMOD, pp. 249-260, 2000.

[27] T.K. Sellis, A. Simitsis. ETL Workflows: From Formal

Specification to Optimization. In ADBIS, pp. 1-11, 2007.

[28] T.K. Sellis. Multiple-Query Optimization. In ACM Trans.

Database Syst. 13(1), pp. 23-52, 1988.

[29] A. Simitsis, P. Vassiliadis, T.K. Sellis. Optimizing ETL

Processes in Data Warehouses. In ICDE, 2005.

[30] D. Skoutas, A. Simitsis. Designing ETL Processes Using

Semantic Web Technologies. In DOLAP, pp. 67-74, 2006.

[31] S. Soderland: Learning Information Extraction Rules for

Semi-Structured and Free Text. In Machine Learning 34(1-

3), pp. 233-272, 1999.

[32] V. Tziovara, P. Vassiliadis, A. Simitsis. Deciding the Phys-

ical Implementation of ETL Workflows. In DOLAP, pp.

49-56, 2007.

[33] P. Vassiliadis, A. Simitsis. Near Real Time ETL. In Sprin-

ger Annals of Information Systems, Vol. 3, pp. 19-29,

2008.

[34] P. Vassiliadis, A. Simitsis, S. Skiadopoulos. Conceptual

modeling for ETL processes. In DOLAP, pp. 14-21, 2002.

[35] P. Vassiliadis, A. Simitsis, M. Terrovitis, S. Skiadopoulos.

Blueprints and Measures for ETL Workflows. In ER, pp.

385-400, 2005.

[36] C. White. The Next Generation of Business Intelligence:

Operational BI. DM Review Magazine, May 2005

[37] K. Wilkinson, H.A. Kuno, K. Govindarajan, K. Yuasa, K.

Smathers, J. Nanda, U. Dayal. Enabling Outsourced Ser-

vice Providers to Think Globally While Acting Locally. In

EDBT, pp. 1106-1109, 2006.

[38] WS-BPEL Version 2.0, Oasis. Available at:

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

