
Data Integration in Mashups

Giusy Di Lorenzo
Dipartimento di Informatica e

Sistemistica
University of Naples Federico

II, Via Claudio, 21, 80125
Napoli, Italy

giusy.dilorenzo@unina.it

Hakim Hacid
∗

Alcatel-Lucent Bell Labs
France

Centre de Villarceaux, 91620
Nozay

hakim.hacid@alcatel-
lucent.com

Hye-young Paik,
Boualem Benatallah

CSE, UNSW
Sydney, NSW 2052, Australia
hpaik@cse.unsw.edu.au
boualem@cse.unsw.edu.au

ABSTRACT
Mashup is a new application development approach that al-
lows users to aggregate multiple services to create a service
for a new purpose. Even if the Mashup approach opens
new and broader opportunities for data/service consumers,
the development process still requires the users to know not
only how to write code using programming languages, but
also how to use the different Web APIs from all services.
In order to solve this problem, there is increasing effort put
into developing tools which are designed to support users
with little programming knowledge in Mashup applications
development. The objective of this study is to analyze the
richnesses and weaknesses of the Mashup tools with respect
to the data integration aspect.

1. INTRODUCTION
One of the goals of the Web 2.0 is to make it easy to create,
use, describe, share, and reuse resources on the Web. To
achieve that, technologies have flourished around this con-
cept (e.g., blogs, social networks). The capabilities of Web
2.0 are further enhanced by many service providers who ex-
pose their applications in two ways: one is to expose appli-
cation functionalities via Web APIs such as Google Map1,
Amazon.com, or Youtube2, the other is to expose data feeds
such as RSS and ATOM. This opened up new and excit-
ing possibilities for service consumers and providers as it
enabled the notion of using these services3 as “ingredients”
that can be mixed-and-matched to create new applications.

To achieve this goal, and maybe to anticipate future needs in
Web 2.0, a new framework, called Mashup, is surfacing [12,

∗This work has been mainly done when the author was a
Research Associate at UNSW.
1http://maps.google.com/
2http://youtube.com
3These services can be a data service, such as news, or a
process/operation service such as placing an order to Ama-
zon.com.

6, 21, 4]. Mashup is an application development approach
that allows users to aggregate multiple services, each serv-
ing its own purpose, to create a service that serves a new
purpose. Unlike Web services composition where the focus
is on the composition of business services only, the Mashup
framework goes further in that it allows more functionali-
ties and can compose heterogeneous resources such as data
services, business services, etc. Applications built using the
Mashup technique are referred to as Mashups or Mashup
applications. Their recent proliferation demonstrates that
there is high level of interest in the Mashup framework [5,
14, 28, 18, 19]. It also shows that the needs for integrating
these rich data and service sources are rapidly increasing.
The Mashup approach opens new and broad opportunities
for data/services consumers. However, the development in-
vestment is still considerable. In fact, a Mashup user needs
to know, in addition to how to write code using program-
ming languages (e.g., Java Script, XML/HTML), how to
use the different Web APIs4. In order to solve this problem,
there is an increasing effort put into developing tools which
are designed to support the users with little programming
knowledge in Mashup applications development.

The objective of this study is to analyze the richnesses and
weaknesses of the Mashup tools. Thus, we identify the be-
haviors and characteristics of general Mashup applications
and analyze the tools with respect to the data integration
aspect. We believe that this kind of study is important to
drive future contributions in this emerging area where a lot
of research and application fields, such as databases, user
machine interaction, etc. can meet. Other studies, focusing
on other aspects like process integration, interface integra-
tion [11] complement the work presented here to understand
other aspects of Mashups.

The remainder of this paper is organised as follows: Sec-
tion 2 introduces the different levels of Mashups. Section 3
discusses the dimensions of analysis, and describes different
Mashup tools according to the considered dimensions5. We
finish by a discussion and a conclusion in Section 4, summa-
rizing our study and highlighting some future directions.

4A lot of APIs are available on the Web:
http://www.programmableweb.com/apis/directory/
5We have selected these tools not because they are the best
or the worst tools, but we have tried to consider as much
representative tools as possible.

2. DESCRIPTION OF MASHUP LEVELS
One of the most important characteristics of the Web is cer-
tainly its heterogeneity. This heterogeneity can be seen on
data, processes, and even user interfaces. Conceptually, a
Mashup application is a Web application that combines in-
formation and services from multiple sources on the Web.
Generally, web applications are developed using the Model-
View-Controller pattern (MVC)[25], which allows the sep-
aration of core business model from the presentation and
control logic which use the business model. In the MVC
pattern, the model represents the data on which the appli-
cation operates and the business rules used to manipulate
the data. The model is independent of the view and the
controller. It passively supplies its services and data to the
other layers of the application. The view represents the out-
put of the application. It specifies how the data, accessed
through the model, is presented to the user. Also, it has to
maintain its presentation when the model changes. Finally,
the controller represents the interface between the model
and the view. In fact, it translates interactions with the
view into actions to be performed on the model.

A Mashup application includes all the three components of
the MVC pattern. In fact, according to Maximilien et al.
[23], the three major components of a Mashup application
are (1) data level, (2) process level, and (3) presentation
level. Moreover, each data source needs to be first analyzed
and modeled in order to perform the required actions of
retrieval and pre-processing. For the completeness of the
study, we first describe those levels. We will then focus our
analysis specifically on the data level.

1. Data Level : this level mainly concerns the data medi-
ation and integration. Challenges at this level involve
accessing and integrating data residing in multiple and
heterogeneous sources such as web data and enter-
prise data[17]. Generally, these resources are accessible
through REST[15] or SOAP6 web services, HTTP pro-
tocol and XML RPC. Regarding the data mediation,
the basic problem comes from structural and semantics
diversities of the schema to be merged[17][7]. Finally,
data sources can be either structured for which a well
defined data model is available (e.g., XML-based docu-
ment, RSS/ATOM feed), or unstructured (e.g., audio,
email text, office documents). In the latter case, the
unstructured data needs to be pre-processed in order
to extract their meaning and create structured data.
So, this level consists of all possible data manipulations
(conversion, filtering, format transformation, combina-
tion, etc.) needed to integrate different data sources.
Each manipulation could be done by analyzing both
syntax and semantics requirements.

2. Process Level : the integration at the process level has
been studied specially in the workflow and service ori-
ented composition areas [13][3]. At the process level,
the choreography between the involved applications is
defined. The integration is done at the application
layer and the composed process is developed by com-
bining activities, generally exposed through APIs. The

6Simple Object Access Protocol,
http://www.w3.org/TR/soap/

composition is then described using either program-
ming languages such as Java, or dedicated workflow
languages such as WS-BPEL [3]. In the Mashups con-
text, those languages are not enough for modeling ap-
plications since, for instance, they do not provide the
connection to different remote resources, e.g., REST
resources, and do not handle the interaction with the
client browsers. These limitations make it difficult to
directly use these technologies for Mashups. Thus,
they need to be adapted in order to model and de-
scribe interactive and asynchronous processes. Cur-
rently, languages like Bite[10] or Swashup[23] have been
proposed to describe the interaction and the composi-
tion model for Mashups.

3. Presentation Level : every application needs an inter-
face to interact with the users, and a Mashup applica-
tion is not an exception. Presentation Level (or User
Interface) in Mashup applications is used to elicit user
information as well as to display intermittent and fi-
nal process information to the user. The technologies
used to display the result to the user can be as simple
as an HTML page, or a more complex web page devel-
oped with Ajax, Java Script, etc. The languages for
integrating UI components and visualising the front-
ends support server-side or client-side Mashups[1][2].
In a server-side Mashup, the integration of data and
services is made on the server. The server acts as a
proxy between the Mashup application and other ser-
vices involved in the application. On the other hand,
a client-side Mashup integrates data and services on
the client. For example, in a client-side Mashup, an
Ajax application will do the required composition and
parse it into a client’s web browser. Currently, the in-
tegration at the presentation level in Mashups is done
manually. That is, a developer needs to combine the
user interface of the wished components using either
server-side or client-side technologies. This area is an
emerging area and a lot of efforts are made in this di-
rection [11][29]. From the Mashup point of view, there
is still a lot of work to be done.

In the next section, we introduce the dimensions used in our
analysis. As mentioned before, we focus on the data level
in Mashups. Other studies focusing on different aspects like
presentation level (e.g.,[11]) are necessary and complement
our study.

3. ANALYSIS DIMENSIONS
To understand why some automatic support is needed to cre-
ate Mashups, we give the following example. Suppose that a
user wants to implement a News Mashup that lets her select
news on a news service like CNN International and display
both the list of the news and a map that highlights the lo-
cations associated with the news; she typically needs to do
a lot of programming which involves fetching and integrat-
ing heterogeneous data. In fact, the user needs to know not
only how to write the code but also (i) to understand the
available API services in order to invoke them and fetch the
data output; (ii) to implement screen scraping techniques
for the services that do not provide APIs, and (iii) to know
the data structure of the input and output of each service
in order to implement a data mediation solution.

The Mashup tools provide facilities to help the user solve
some of the above mentioned problems. The analysis pro-
vided in this section aims at studying how the tools (see
Section 3.1 for the list of concerned tools) address the data
mediation problems discussed in the previous section. We
will be asking questions such as: How the tools handle data?
What kind of processing is performed on the data? What is
the output of Mashups? Which operators are provided for
data transformation and for creating the data flow? What
are the types of data supported by the available operators?
etc.

3.1 Analyzed Tools
Currently a number of Mashup tools exist. We have selected
only the following tools for three main reasons: (i) these
tools were the most popular ones when this analysis was
performed (judging from discussions on forums, blogs, etc.),
(ii) some other tools have not been reported because of their
unavailability at certain stages of the study preventing us
to experiment and report results according to our analysis.
Finally, (iii) this limitation is motivated by the fact that our
objective is not to analyze all the tools but to give a view on
the current state of these tools and understand their general
approach to data integration.

1. Damia[5, 27] is a Mashup tool provided by IBM. It
allows the users to assemble data feeds from Internet
and enterprise data sources. This tool focuses on data
feed aggregation and transformation in enterprise envi-
ronments. Additional tools or technologies like QED-
Wiki7 and feed readers, that consume Atom and RSS,
can be used at the presentation layer for the data feed
provided by Damia.

2. Yahoo pipes8 is a web-based tool provided by Yahoo.
The users can build mashup applications by aggregat-
ing and manipulating data from web feeds, web pages,
and other services. A pipe is composed of one or more
modules, each one performing a single task like retriev-
ing feeds from a web source, filter, sort or merge feeds.
The output from pipes can be either accessed by a
client via a unique URL as RSS or JSON, or visualised
on the Yahoo Map.

3. Popfly9 is a web-based Mashup application by Mi-
crosoft. It allows the users to create a Mashup com-
bining data and media sources. The Mashup is built
by connecting blocks. Each block is associated to a
service like “Flicker”10 and exposes one or more func-
tionalities. Popfly is much more about data visual-
ization than data manipulation as we will see later,
so the “mashed” data can be only visualized using the
provided visualization tool.

4. Google Mashup Editor(GME)11 is a Mashup devel-
opment, deployment and distribution environment by
Google. The Mashup can be created using technolo-
gies like HTML, Java Script, CSS along with the GME

7http://services.alphaworks.ibm.com/qedwiki/
8http://pipes.yahoo.com/pipes/
9http : //www.popfly.net/

10www.flickr.com/
11http://code.google.com/gme/index.html

XML tags and Java Script API that further allows a
user to customize the presentation of the Mashup out-
put.

5. Exhibit [18] is a framework for creating web pages con-
taining dynamic and rich visualizations of structured
data. Generally, it is used in combination with Babel12

It allows the users to assemble the data obtained by
different format such as RDF/XML, N3, Bibtex. Ex-
hibit visualises the mashup output on HTML pages,
but it also lets the user access the data by explicitly
exporting it to various formats including RDF/XML
and Exhibit JSON.

6. Apatar13 is a Mashup data integration tool that helps
users integrate desktop data with the web. Users in-
stall a visual job designer application to create integra-
tion schemas called DataMaps. Apatar, like DAMIA,
mainly aims to aggregate and manipulate data that
can be reused from other applications, so additional
tools that consume the Apatar output formats can be
used as the presentation layer.

7. MashMaker [14] is a web-based tool by Intel for editing,
querying and manipulating web data. MashMaker is
different from the other tools in that it works directly
on web pages. In fact, MashMaker allows users to
create a mashup by browsing and combining different
web pages. The final goal of this tool is to suggest to
the user some enhancements (mashups or widgets), if
available, for the visited web pages.

For the analysis, we chose eight dimensions covering various
aspects of the data level concerns. Due to space limitations,
we only discuss some of the above tools for each dimension
for illustration purposes. A summary of the complete analy-
sis is given in Table 1 and a detailed description is available
in [22]. The eight dimensions are described in the following.

3.2 Data Formats and Access
In a Mashup application, a user can integrate data described
in different formats. For example, web feed format is used
to publish frequently updated content such as blog entries,
news and so on; tabular format is suitable for describing
table-based data models such as csv files or spreadsheets;
markup-based format (e.g., HTML and XML) is, of course,
commonly used to publish data; multimedia content such as
video, audio and images are becoming increasingly preva-
lent. These types of data can be available to the user from
different data sources. The most common data sources can
be traditional database systems, local files that are available
in the owner’s file system, web pages, web services and web
applications. To facilitate Web data retrieval, providers of-
ten expose their content through web APIs. APIs can be
also seen as a useful means for data and application me-
diation. Here we consider the role of APIs from the data
integration point of view in the sense that they offer specific
types and formats of data. It should be noted that an API
can offer several formats of data, e.g., csv, xml, etc.

12http://simile.mit.edu/babel/
13www.apatar.com/

Table 1: Summary of the considered dimensions. (+) means the dimension (i.e. functionality) is provided, (-) means

the dimension is not provided. These marks do not imply any ”positive” or ”negative” information about the tools

except the presence or the absence of the considered dimension.

D
a
m

ia

Y
a
h

o
o

P
ip

e
s

M
S

P
o
p

fl
y

G
M

E

E
x
h
ib

it

A
p
a
ta

r

M
a
sh

M
a
k
e
r

Data Formats/Access

Protocola P2 P2 P2 ,P3 P2 P2 P1, P2 P1

Data Formatb D1, D2 D1, D2, D3, D4, D1, D2, D9, D2, D3, D4 D1, D4, D6 D1, D2, D6 D5

D7, D8 D5, D6, D8, D9 D10 D7, D8, D9 D7, D9

Database c
DB1, DB2

d - - - - DB3, DB4, -
DB5

Internal Data Model
XML-based + + - + - - +

Object-based - - + - + + -

Data Mapping

Manual + - + - - + +

Semi-Automatic - + - - - - -
Automatice - - + + + - -

Data Refresh

Pull strategy + + + + + + +

Push strategy - - - - - - -
Global pull interval - + + + + + +

Local pull interval + - - - - - -
Interval Setting + - - - - - -

Mashup’s Output
Machine oriented + + - - + + -
Human oriented - + + + + - +

Extensibility
Components + + + + + + +

Data - - - - - - +

Sharing

Total + + + + - + +

Partial - + - - - + -
No thing + + + + - + +

Read only + + + + - + +

Read/Write - - - + - - -
All users + + + + - + +

Groups - - - + - - -
Particular user + + + + - + +

aP1 = HTTP; P2 = REST; P3 = SOAP
bD1 = XML; D2 = RSS; D3 = ATOM; D4 = JSON; D5 = HTML; D6 = CSV; D7 = XLS; D8 = RDF; D9 = Image; D10 = Video
cDB1 = Microsoft Access; DB2 = DB2; DB3 = MySQL; DB4 = Oracle; DB6 =PostreSQL
dThese data sources are supported only if DAMIA is used in combination with Mashup Hub
eThis is considered true if the source data has the same data model as the internal data model.

Murugesan [24] defines an API as an interface provided by an
application that lets users interact with or respond to data
or service requests from other programs, applications, or web
sites. Thus, APIs facilitate the integration between several
applications by allowing data retrieval and data exchange
between applications. APIs help the developers access and
consume resources without focusing on their internal orga-
nization. Simple and well-known examples of APIs include
Open DataBase Connectivity (ODBC) and Java DataBase
Connectivity (JDBC). On the Web, providers like Microsoft,
Google, eBay, and Yahoo offer web APIs for retrieving con-
tent from their web sites. Such APIs generally use standard
protocols such as REST/SOAP web services, AJAX (Asyn-
chronous Javascript + XML) or XML RPC. APIs can also
be used to access resources which are not URL addressable
such as private or enterprise data [20]. However, some com-
mon data sources do not expose their contents through APIs.
So, other techniques as screen scraping are needed to extract

information.

3.3 Internal Data Model
As stated before, the objective of a Mashup application is
to combine different resources, data in our case, to produce
a new application. These resources come generally from dif-
ferent sources, are in different formats, and vehicle different
semantics. To support this, each Mashup tool uses an inter-
nal data model. An internal data model is a single global
schema that represents a unified view of the data [7]. A
Mashup tool’s internal data model can be either (i) Graph-
based or (ii) Object-based.

In a Graph-based model, the graph refers to the model based
on XML and those consumed as they are (i.e., XML). This
can include pure XML, RDF, RSS, etc. Most of the Mashup
applications use a Graph-based model as an internal data
model. This is certainly motivated by the fact that most of

today’s data available on the web are in this format and also,
most of the Mashup tools are available via the Web. That
is, all the data that are used by the Mashup tools, in this
category, transform the input data into an XML representa-
tion before processing it. For example, Damia translates the
data into tuples of sequences of XML data [5]. In an Object-
based model, the internal data is in the form of objects (in
the classical sense of the object-oriented programming). An
object is an instance of a class which defines the features of
an element, including the element’s characteristics (its at-
tributes, fields or properties) and the element’s behaviors
(methods). It should be noted that in this case, there is no
explicit transformation, performed by the tool, like in the
case of the graph-based model, but the programmer needs
to define the structure of the object according to her data.

To illustrate the differences in the internal data models, let
us consider the example of Figure 1 which shows an extract
of a spreadsheet (or csv) file containing information about
the national parks in the world14.

title link description pubDate

Grand Canyon National
Park www.grand.canyon.national - park.com / Grand Canyon

National Park... 19/03/2008

Big Bend National Park http:// www.big.bend.national - park.com / Big Bend National
Park... 19/03/2008

Gulf Islands National
Seashore http:// www.hikercentral.com /parks/ guis / Gulf Islands National

Seashore...... 19/03/2008

Figure 1: National Parks Data Source

The illustrated data in Figure 1 is given as an input to two
different tools, namely Damia and Popfly and the obtained
result is shown in Figure 2. Figure 2(a) shows the transla-
tion operated by Damia on the input data. That is, each
row in the csv file is transformed to an XML representa-
tion contained in the element < damia : entry >. Each
entry is composed of some elements containing general in-
formation regarding the data source such as file name (i.e.,
< default : id >), last updating (i.e., < default : update >)
and by the < default : content > element in which the na-
tional parks information is stored. Figure 2(b) shows how
the data could be represented using an object-based nota-
tion is the case of Popfly.

3.4 Data Mapping
To instantiate an internal data model from an external data
source, the Mashup tools must provide strategies to specify
the correspondences between their internal data model and
the desired data sources. This is achieved by means of data
mapping. Data mapping is the process needed to identify
the correspondences between the elements of the source data
model and the internal data model [26]. Generally speaking,
a data mapping can be: (i) manual, where all the correspon-
dences between the internal data model and the source data
model are manually specified, one by one, by the application
designer. In this case, the tool should then provide some fa-
cilities for the user to design the transformation. (ii) semi-
automatic, where the system exploits some meta-data (e.g.,
fields names and types) to propose some possible mapping
configurations. However, the user needs to confirm these al-
ternatives and, usually, correct some of them. At this stage,

14Some elements are omitted for readability matters

DAMIA - National Parks Internal Data Model Popfly - National Parks Internal Data Model

NationalPark

title:Type = title
link: Type=url
description: Type= description
pubDate :Type = string

toString ():return String

class

Gran _Canyon : NationalPark

title = Grand Canyon National Park
link= www.grand.canyon.national - park.com /
description = Grand Canyon National Park ...
pubDate = 19/03/2008

Object

Figure 2: Representation of the National Park csv
file in DAMIA and Popfly

only Yahoo Pipe supports the semi-automatic mapping, of-
fering some hints for the user about possible mappings. (iii)
automatic, where all the correspondences between the two
data models are automatically generated, without user in-
tervention [26]. This is a challenging issue in the data inte-
gration area. Since the Mashup area is in its “early stage”,
this type of mapping is not supported by any Mashup tool.
It should be noted that the mapping process may require an
intermediary step, i.e., a wrapping step, in order to trans-
form the source format to the internal format, e.g., from csv
to XML. It is also interesting to point out that the map-
ping in the currently available Mashup tools is only done at
schema level, while no semantic information is being consid-
ered so far. For instance, Semantic Web languages such as
RDF15 and OWL16 can be exploited to manage the seman-
tic part. However, this will need more investigation since
it will introduce other complications due especially to the
targeted users.

3.5 Data Flow Operators
Data flow operators allow performing operations either on
the structure of the data (similar to the data definition lan-
guage/operators in the relational model), or on the data
(content) itself (similar to the data manipulation language/
operator in the relational model).

More concretely, data flow operators support: (i) restruc-
turing of the schema of the incoming data, e.g., adding new
elements, adding new attributes to elements; (ii) elaborat-
ing on a data set such as extracting a particular piece of
information, combining specific elements that meet a given
condition, change the value of some elements; (iii) building
a new data set from other data sets such as merging, join-
ing or aggregating data (similar to the concept of views in
databases).

The implementation of the data flow operators depends strongly
on the main objective of the tool, i.e., integration or visual-

15http://www.w3.org/RDF/
16http://www.w3.org/TR/owl-features/

ization. Some operators, e.g., Union, are implemented in dif-
ferent tools, e.g., Damia and MashMaker, but the attached
interpretation is also different, e.g., a materialized union of
two data sets in Damia and a virtual union of two Web pages
in MashMaker (virtual in the sense that the schemas associ-
ated to the source pages are not altered with the new page).
The main data integration oriented operators, implemented
in several tools are the following: Union, Join, Filter, and
Sort. We give hereafter a general description of these oper-
ators. A more detailed discussion of all the operators of all
the considered tools is given in [22].

Table 2: Main and common operators
Operator Description
Union Combines two data sets in one containing

all the data from the participating sets.
Join Combines different data sets according to

a condition.
Filter Selects a specific subset (entities and at-

tributes) from an original subset.
Sort Presents the selected data in a specific or-

der.

3.6 Data Refresh
In some cases, e.g., stock market, data is generated and up-
dated continuously. Various strategic decisions, especially
in enterprises, are generally taken according to the last sta-
tus/values of the data. It is then important that a system
propagates the updates of the data sources to the concerned
user(s). There are two strategies dealing with the status of
the data in the source, depending on the objective of the
user: pull strategy and push strategy [8]. (i) Pull Strategy :
this strategy is based on frequent and repetitive requests
from the client. The pulling frequency is set to be lower
than the average update frequency of the data in the source
itself. The freshness of the data depends on the pulling fre-
quency, i.e., the higher the pulling frequency, the fresher the
data and vice-versa. One of the main disadvantages of a
high refresh frequency is that unnecessary requests may be
generated to the server. (ii) Push Strategy : in this case, the
client does not send requests but needs to register to the
server. The registration is necessary to specify/identify the
data of interest. Consequently, the server broadcasts data
to the client when a change occurs on the server side. The
main disadvantage of this model is that the client can be
busy performing other tasks when the information is sent
which implies a delay in its processing.

Another important parameter to point out here is the way
the tools manage the pull interval. We can define two pos-
sible strategies to handle this issue: a global strategy and a
local strategy. For the Global strategy, the pull interval is
set for the whole application. This supposes that the data
sources have the same updating interval. That is, the data
sources are requested at the same time interval, correspond-
ing to the one of the Mashup tool. As a result, the user
keeps better track of some sources (the ones having low re-
fresh interval compared to the defined one) than the others
(the ones having high refresh interval compared to the de-
fined one). In the Local strategy, each data source is affected
by its own refresh interval. This pull interval is supposed to
correspond to the one of the data source refresh itself. As a

result, a better trace is kept of each data source. From the
tool’s point of view, only Damia allows the users to define
the pull interval and to handle it with the Local strategy. In
fact, to set the pull interval, each source component has the
Refresh Interval parameter. After the time has exceeded,
the data from the specified URL is reloaded.

3.7 Mashup Output
We consider the output as a dimension in this study since
a user might be interested in exporting her Mashup (the
data flow) result in another format in order to reuse it or to
process it with another particular application (e.g., spread-
sheet) for further processing instead of visualizing it. That
is, we can distinguish two main output categories: Human
oriented output and application oriented output. In the Hu-
man oriented output, the output is targeted for human in-
terpretation, e.g., a visualization on a map, on an HTML
page, etc. That is, for this category, the output can be con-
sidered as the “final product” of the whole process. For the
processing oriented output, the output is mainly targeted for
machine processing. This is interesting in the case where
the considered data needs to be further processed for, e.g.,
knowledge extraction. It should be noted that this category
can, at some stage, include the first category, e.g., an RSS
output can be at the same time visualized on an HTML
page and also can be used by other applications for other
processing tasks.

3.8 Extensibility
Extensibility defines the ability of the tool to support addi-
tional, generally user defined, functionalities. There can be
two possible ways to define and use these functionalities. A
functionality can be either (i) embedded inside the tool, i.e.,
the corresponding code of that functionality is added to the
tool using a specific programming language, or (ii) exter-
nal, i.e., invoking the corresponding service containing such
function. Extensibility depends mainly on the architecture
and the spirit of the tool. In some cases, the extension can
be done by embedding the code of the desired functionality
in the tool (e.g., Popfly); in other cases, services are invoked
like REST services, SOAP, etc. (e.g., Pipes). In addition,
this feature is managed differently by the different tools. In
fact, in one case, the added function/service is shared with
the whole community that uses the tool (e.g., Popfly). In
the other case, the extension is visible only for the specific
user (e.g., Pipes).

3.9 Sharing
Mashups are based on the emerging technologies of the Web
2.0 in which people can create, annotate, and share infor-
mation in an easy way. Enabling security and privacy for
information sharing in this huge network is certainly a big
challenge. This task is made more difficult especially since
the targeted public with the Web 2.0 is, or supposed to be, a
general public and not expert in computing or security. This
dimension defines the modality that the tool offers to enable
resources sharing by guaranteeing privacy and security in the
created Mashup applications. This is a challenging area in
the current Mashup and a lot of work remains to be done.
This dimension includes the following three indicators: 1)
What is shared in the Mashup?, 2) How is this shared?
and 3)Who are the users with whom this (the shared re-

source(s)) is shared with? For the What, the shared re-
source can be total, partial, or nothing. The shared resource
can be given different wrights such as read only (user can
read all entries but cannot write any entry), read/write (user
can read and write all entries in the data), no access (user
cannot read or write any entries). The Who as for it can
be All people, Group, or particular User. Notice that
for each member, different sharing policies (what and how)
can be specified and applied.

For example, GME and Yahoo Pipes allow implementing
sharing policies. In GME, the sharing policy can be: (1)
total, i.e., read access to source code, data and output. (2)
Partial, i.e., read access to source code. (3) Nothing, where
the Mashup is not shared. When a Mashup is shared in
GME, for the data used to build the application, the designer
can decide to share it with a group or with all users by
specifying Read/Write policies. In Yahoo Pipes, if a private
element is used (Private string or Private text input) the
code of the shared Mashup is available as well as the Mashup
output but it is not possible to visualize the intermediate
outputs.

4. DISCUSSION AND CONCLUSION
In this section, we make a general discussion on the tools by
considering their advantages and disadvantages. We aim, at
the same time, to try to give the possible points to consider
for further improvements.

Mashup tools are mainly designed to handle Web data. This
can be seen as an advantage, but an inconvenience at the
same time. In fact, it is an advantage since it offers access
and management of some data available only on the Web,
e.g., RSS feeds. To access these Web data, the tools support
the two most used protocols for exposing APIs, i.e., REST
and SOAP protocol. This is a consequence of the success,
utility and the popularity of these protocols. A disadvantage
is that data available on desktops can not be accessed and
used the same way. This is a considerable disadvantage since
the users bring a lot of data onto their desktops for cleaning,
manipulation, etc. There is a lot of work done to help the
user put and manage data on the web [16], but since this
is not completely adopted, supporting local data on a user’s
desktop should be considered.

The majority of the tools have an internal data model based
on XML. This design choice is motivated by the fact that
the data available on the web is mainly exposed in an XML
format. Also, the communication protocols for the data
exchanging over the network use generally XML messages.
The other dominant internal data model in Mashup tools is
object based. This data model is much more flexible to use,
even if more programming is required to implement opera-
tions on it, especially for programmers. This diversity can
explain their targeted/origin community. In fact, XML is
much more for databases community where as object is for
applications and development community.

To manage data, the tools make available only a small set
of operators for data integration and manipulation. The
set of provided operators is usually designed based on the
main goal of the tool. For example, if the tool is visualiza-
tion oriented, only few operators for data elaboration such

as filtering and sorting are available. In addition, the of-
fered operators are not easy to use, at least from a naive
user point of view. Also, the tools do not offer powerful
expressiveness since they allow expressing only simple oper-
ations, e.g., simple joins, and cannot be used to express more
complicated queries such as joins with conditions, division,
etc. This means that, from the expressiveness point of view,
these tools are far from reaching the database languages,
i.e., integration languages, such as SQL.

None of the analyzed tools implement a Push strategy for
the data refreshing, the reason is that the majority of the
currently available APIs are REST based. The style of
the REST protocol requires all communication between the
browser and the server to be initiated by the client and no
support is offered to maintain the state of the connection [9].
All the analyzed tools use a Pull strategy for data freshness
handling. This can be motivated also by the fact that the
tools providers wish to control (or prevent) the overloading
of their servers. In addition, they implement a Global strat-
egy for the pull interval setting. This strategy however does
not allow developing applications in which processed data
are characterized by a high refresh frequency, since it is not
possible to explicitly specify the refresh rate for each source.

One of the main goals of the Web 2.0 technologies is the
creation, the reuse, the annotation and the sharing of web
resources in an easy way. Based on these ideas, the Mashup
tools are all extensible in the sense that new operators, and
in some cases data schema, can be developed and invoked
or/and plugged inside the tools. However, at this stage,
the majority of tools do not support the reuse of the cre-
ated Mashups. This feature could allow developing complex
applications by integrating the results of different Mashups
(also built with different Mashup tools). Some tools start to
consider this issue such as Potluck[19]17 which can use the
Exhibit output. However, this is a limited cooperation be-
tween tools. This is a very important point especially that
the tools have a lot of limitations and a user can’t express
his wishes using only one tool.

The current development of Mashup tools is mainly focused
on offering features to access, manage and present data. Less
consideration has instead been given to the issue of data
sharing and security so far. The security criterion needs
to be taken into account inside the tools since communi-
cation problems could make a Mashup perform too many
requests to source data servers, causing overload for those
servers. At this time, only Intel Maskmaker takes into ac-
count this problem applying some performance restrictions
on the Mashup application[14].

Also, all the analyzed tools are server side applications,
meaning that both the created Mashup and the data in-
volved in it are hosted on a server owned by the tool provider.
Therefore, the tool provider has the total control on the
Mashup and, if a user wants to build an application con-
taining that Mashup, the dependability attributes of that
application cannot be properly evaluated. In addition, from
the performance point of view, no tools provide information
regarding the analysis of the performances and, in particu-

17This tool is not discussed further in this paper.

lar, information regarding the evaluation of scalability. That
information is needed to know the capability of a system to
handle a growing amount of data and the user requests.

Finally, all the tools are supposed to target “non-expert”
users, but a programming knowledge is usually required.
Some tools require considerable programming effort since
the whole process needs to be implemented manually us-
ing instructions expressed in programming language such as
Java Script. Others necessitate medium programming ef-
fort given that only some functionalities need to be coded in
an explicit way using a programming language; a graphical
interface is offered to the user to express most of opera-
tions. At this time, there is no tool that requires low or no
programming effort by the user to build a Mashup, which is
necessary to claim that the tools are targeted for end-users.

5. REFERENCES
[1] Mashup Styles, Part 1: Server-Side Mashups,

http://java.sun.com/ developer/
technicalArticles/J2EE/mashup 1/.

[2] Mashup Styles, Part 2: Client-Side Mashups,
http://java.sun.com/ developer/
technicalArticles/J2EE/mashup 2/.

[3] OASIS: Web Services Business Process Execution
Language Version 2.0. (2007), http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.html.

[4] S. Abiteboul, O. Greenshpan, and T. Milo. Modeling
the mashup space. In WIDM, pages 87–94, 2008.

[5] M. Altinel, P. Brown, S. Cline, R. Kartha, E. Louie,
V. Markl, L. Mau, Y.-H. Ng, D. Simmen, and
A. Singh. Damia: a data mashup fabric for intranet
applications. In VLDB ’07, pages 1370–1373. VLDB
Endowment, 2007.

[6] S. Amer-Yahia and A. Y. Halevy. What does web 2.0
have to do with databases? In VLDB, page 1443, 2007.

[7] C. Batini, M. Lenzerini, and S. B. Navathe. A
comparative analysis of methodologies for database
schema integration. ACM Comput. Surv.,
18(4):323–364, 1986.

[8] M. Bhide, P. Deolasee, A. Katkar, A. Panchbudhe,
K. Ramamritham, and P. Shenoy. Adaptive push-pull:
Disseminating dynamic web data. IEEE Transactions
on Computers, 51(6):652–668, 2002.

[9] E. Bozdag, A. Mesbah, and A. van Deursen. A
comparison of push and pull techniques for ajax. In
S. uang and M. D. Penta, editors, Proceedings of the
9th IEEE WSE, pages 15–22, 2007.

[10] F. Curbera, M. J. Duftler, R. Khalaf, and D. Lovell.
Bite: Workflow composition for the web. In ICSOC,
pages 94–106, 2007.

[11] F. Daniel, J. Yu, B. Benatallah, F. Casati, M. Matera,
and R. Saint-Paul. Understanding ui integration: A
survey of problems, technologies, and opportunities.
IEEE Internet Computing, 11(3):59–66, 2007.

[12] C. Duda, G. Frey, D. Kossmann, and C. Zhou.
Ajaxsearch: crawling, indexing and searching web 2.0
applications. PVLDB, 1(2):1440–1443, 2008.

[13] S. Dustdar and W. Schreiner. A survey on web
services composition. International Journal of Web
and Grid Services, 1(1):1–30, August 2005.

[14] R. Ennals and M. N. Garofalakis. Mashmaker:

mashups for the masses. In SIGMOD, pages
1116–1118, 2007.

[15] R. T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis,
University of California, Irvine, 2000.

[16] R. Geambasu, C. Cheung, A. Moshchuk, S. D.
Gribble, and H. M. Levy. Organizing and sharing
distributed personal web-service data. In WWW,
pages 755–764, 2008.

[17] A. Halevy. Why your data won’t mix. Queue,
3(8):50–58, 2005.

[18] D. F. Huynh, D. R. Karger, and R. C. Miller. Exhibit:
lightweight structured data publishing. In WWW ’07,
pages 737–746, New York, NY, USA, 2007. ACM.

[19] D. F. Huynh, R. C. Miller, and D. R. Karger. Potluck:
Data mash-up tool for casual users. In ISWC/ASWC,
pages 239–252, 2007.

[20] A. Jhingran. Enterprise information mashups:
integrating information, simply. In VLDB ’06, pages
3–4. VLDB Endowment, 2006.

[21] S. Kinsella, A. Budura, G. Skobeltsyn, S. Michel,
J. G. Breslin, and K. Aberer. From web 1.0 to web 2.0
and back -: how did your grandma use to tag? In
WIDM, pages 79–86, 2008.

[22] G. D. Lorenzo, H. Hacid, H. young Paik, and
B. Benatallah. Mashups for data integration: An
analysis. Technical Report UNSW-CSE-TR-0810,
2008.

[23] E. M. Maximilien, H. Wilkinson, N. Desai, and S. Tai.
A domain-specific language for web apis and services
mashups. In ICSOC ’07, pages 13–26, Berlin,
Heidelberg, 2007. Springer-Verlag.

[24] S. Murugesan. Understanding web 2.0. IT
Professional, 9(4):34–41, July-Aug. 2007.

[25] W. Pree. Design patterns for object-oriented software
development. ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA, 1995.

[26] E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. The VLDB Journal,
10(4):334–350, 2001.

[27] D. E. Simmen, M. Altinel, V. Markl,
S. Padmanabhan, and A. Singh. Damia: data mashups
for intranet applications. In SIGMOD ’08, pages
1171–1182, New York, NY, USA, 2008. ACM.

[28] J. Wong and J. Hong. Marmite: end-user
programming for the web. In CHI ’06, pages
1541–1546, New York, NY, USA, 2006. ACM.

[29] J. Yu, B. Benatallah, R. Saint-Paul, F. Casati,
F. Daniel, and M. Matera. A framework for rapid
integration of presentation components. In WWW ’07,
pages 923–932, New York, NY, USA, 2007. ACM.

