
INTRODUCTION Open Access

Data integration in the era of omics: current and
future challenges
David Gomez-Cabrero1*, Imad Abugessaisa1, Dieter Maier2, Andrew Teschendorff3, Matthias Merkenschlager4,
Andreas Gisel5, Esteban Ballestar6, Erik Bongcam-Rudloff7, Ana Conesa8, Jesper Tegnér1

From High-Throughput Omics and Data Integration Workshop
Barcelona, Spain. 13-15 February 2013

Abstract

To integrate heterogeneous and large omics data constitutes not only a conceptual challenge but a practical
hurdle in the daily analysis of omics data. With the rise of novel omics technologies and through large-scale
consortia projects, biological systems are being further investigated at an unprecedented scale generating
heterogeneous and often large data sets. These data-sets encourage researchers to develop novel data integration
methodologies. In this introduction we review the definition and characterize current efforts on data integration in
the life sciences. We have used a web-survey to assess current research projects on data-integration to tap into the
views, needs and challenges as currently perceived by parts of the research community.

Introduction
Data integration is now a very commonly used notion in

life sciences research. As of 2006 there were 1,062 papers

explicitly mentioning “data integration” in their abstract

or title, whereas this number has more than doubled in

2013 (2,365). However, there is still no unified definition

of data integration, nor taxonomy for data-integration

methodologies despite some recent efforts on this topic

[1-5]. In February 2013, the FP7 STATegra project

(http://stategra.eu/) and the COST Action SeqAhead

(http://seqahead.eu/), two EU-funded initiatives on the

bioinformatics of high-throughput data, organized in the

city of Barcelona the “Workshop of Omics and Data Inte-

gration”, with the aim of reviewing current technologies

on omics data production and the available methods for

their integrative analysis. The workshop consisted of con-

tributed talks, sessions for open discussion and we

included an on-line survey to investigate the current opi-

nions of the research community on this topic. Three

major conclusions were extracted from the Barcelona

workshop. First, there is a clear need for revisiting the

concepts of data integration and stating available

resources in this field; second, it was advantageous to

extend our survey to a broader audience of scientists in

life sciences, and third the commitment of organizers to

publish the discussed topics, contributions and outcome

of the public survey in a relevant journal is an important

driver to spearhead further discussion in the community.

In this supplement we discuss these three conclusions in

some detail. In this introductory article we review current

definitions of data integration and describes it formally as

the combination of two challenges: data discovery and

data exploitation [5]. We briefly list major public efforts

in creating resources (datasets, methods and workshops)

for data integration. We also present the results of the

extended community survey, which took place between

February and March 2013 and on the basis of the survey

we extract a couple of conclusions which warrant further

elaboration in the community. Finally we introduce the

contributions of the papers collected in this supplement

within the context of the discussed data integration

topics and stated community needs.

Challenges of data integration in life sciences

Research in life sciences has the generic goal to identify

the components that make up a living system (G1) and

to understand the interactions among them that result in

the (dys)functioning of the system (G2). Collection of
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biological data is therefore a method to catalogue the ele-

ments of life, but the understanding of a system requires

the integration of these data under mathematical and

relational models that can describe mechanistically the

relationships between their components. We can illus-

trate the state of affairs on data integration in life science

research using a simple example taken from metabolic

modeling. Let us consider the glycolysis pathway (GLY),

which consists of the conversion of glucose into pyruvate

to release energy (see Figure 1 and [7]). In the study of

GLY, G1 is considered “to be known” as there are a

detailed set of genes, proteins and metabolites already

described; however we are not yet certain that this list

contains all involved elements, for example the list does

not incorporate the epigenetic marks that may be asso-

ciated to the regulation of GLY. When we consider G2,

Figure 1 again depicts the current knowledge of the sys-

tem and may erroneously imply that the system - defined

as a set of interactions - is fully known. However, path-

way elements and relations may be missing (see for

instance the recent work on synthetic non-oxidative gly-

colysis [7]) and this representation does not allow us to

determine completeness. Once more, the figure does not

depict all the regulatory mechanisms involved or the

rates of the reactions. This brings us to the first question

of: “What are the available data that can be used to fully

characterize the GLY metabolic pathway?”

The present situation is very fortunate since over the

last decades several different types of data were gener-

ated and huge efforts were dedicated to create database

repositories for different data-types where investigators

were encouraged to deposit and share datasets asso-

ciated with scientific publications. The benefits of this

are twofold: on the one hand it enables or support

researchers in reproducing and validating the analysis of

other labs, and on the other hand it allows researchers

to analyze data in novel ways and/or with different

methodologies that were not originally considered by

the team who generated the data. To illustrate this we

investigated the availability of GLY-related datasets in

Gene Expression Omnibus (GEO [8,9]) as an example of

a major gene expression data repository and we readily

made two observations. There exist a small number of

datasets pertaining to the direct investigation of the

GLY pathway, but the majority of microarray and NGS

datasets contain information about the GLY pathway at

the mRNA level. Moreover, it is possible to complement

such information with enzyme kinetics data from data-

bases such as BRENDA [10]. These observations bring

us to the next questions. Once relevant data sources

have been identified, “How do we integrate all (or part

of) the available datasets in order to improve our defini-

tion of the GLY system?” and “How do we re-use all this

information when designing new and novel experiments?”

All the above questions and challenges intuitively

define the notion of “data integration“.

Data integration challenges

The term data integration refers to the situation where,

for a given system, multiple sources (and possible types) of

data are available and we want to study them integratively

to improve knowledge discovery. In the GLY example

Figure 1 Glycolysis. Description of the ten reactions and their associated enzymes of the metabolic pathway (reproduced from http://en.
wikipedia.org/wiki/File:Glycolysis2.svg).
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system we could have two datasets describing the system,

one containing information about gene expression at the

mRNA level and the other describing the CpG DNA

methylation profile. In several studies [11,12] where gene

expression and DNA methylation data were available, the

genome-wide relationships between DNA methylation and

gene expression have been investigated in order to infer

generic rules to questions such as: “Does DNA methylation

regulation occurs at CpG islands and/or shores?”, or “How

does DNA methylation in promoters/gene-bodies/enhan-

cers regulate gene expression?” [13]. These kinds of ana-

lyses have advanced our understanding of gene regulation

by providing “generic rules yet with several exceptions”

that associate epigenetic modifications with transcription

[11,12]. For instance, as a general rule CpG methylation in

promoters in mammals was found to be anti-correlated

with gene expression, while CpG methylation in gene

bodies in mammals was positively correlated; yet these

generic rules are observed as a trend, but are not necessa-

rily true for all genes and/or for all biological situations.

To understand the challenges of data integration it is

first required to define the term. The term “data integra-

tion“ first appeared from the need to access different data-

bases with overlapping content to provide “a redundancy

free representation of information from a collection of data

sources with overlapping content” [14] which describes a

need that appeared when the first databases were designed

[15] and it was required to connect several of them: “inte-

gration of multiple information systems aims at combining

selected systems so that they form a unified new whole and

give users the illusion of interacting with one single infor-

mation system”. The aims of database integration were

to make data more comprehensively available, and to

increase the value of existing data by allowing previously

difficult queries to be made upon it. Data mining (as a

step in Knowledge Discovery in Databases [16,17]) is a

major beneficiary from database integration. However this

definition considers only access to data, and not exploita-

tion of data, hence this definition of data integration is not

fully applicable to life sciences research.

We define data integration as the use of multiple

sources of information (or data) to provide a better under-

standing of a system/situation/association/etc; hence data

integration, as defined here, is an action performed on a

daily basis by most individuals, and a critical element in

research.

Data integration in the life sciences becomes a more

complex challenge considering the current “data explo-

sion”. This “added” challenge has been already been duly

recognized; for instance in 2010 the National Research

Council of the National Academies in US organized a

workshop to “explore alternative visions for achieving

large-scale data integration in fields of importance to the

federal government” [5]. The workshop’s aims and main

results were reported in [5]; at the beginning of the docu-

ment two main challenges associated with data integration

were defined: data discovery and data exploitation. We

followed the same structure in the present review and

the next sub-sections briefly detail these challenges in the

life sciences.

Data discovery

Data source discovery is defined as the identification of

relevant data sources. Discovery of publicly available bio-

logical data sources is easy (“just google it” albeit with

some exceptions, e.g. neuroscience [18]), whereas disco-

vering the “appropriate data” is a more complicated task.

One problem is the diversity of existing data types and

formats, each one compliant to a different standard,

which results in data heterogeneity and what has been

called a “loose federation of bio-nations” [2]. The publica-

tion of specialized web databases has flourished in the

last decade due to the relative ease of creation and main-

tenance and the reputation that it brings to the develo-

pers [2]. While specialized platforms may answer specific

needs of the research community they may also intro-

duce biases that affect data analysis. Two examples of

this problem are the pathways and miRNA databases.

The early 2000s witnessed the beginning of the genera-

tion of many pathway databases and their number has

been increasing ever since, but has stabilized in the 2010s

[2,4]. By 2013, Pathguide [19] reported a list of 547 biolo-

gical pathways and molecular interaction related

resources. These resources are not simply complemen-

tary, but often define similar signaling and metabolic

pathways with different boundaries and components.

This different specification is not irrelevant as many gen-

ome analysis methods are based on pathways and are

therefore affected by how these are defined (see for

instance [20] in this supplement). A second example

relates to the storage of miRNA information [21]; this

field has observed the development of generic purpose

databases (e.g. miRBase and miRNAmap), many specia-

lized databases (e.g. miRWalk, mirDB and Tarbase

among others), and even standards for miRNA annota-

tion [22]. In order to cope with this heterogeneity addi-

tional resources were developed such as catalogs of all

available resources (e.g. Pathguide in pathways) and

novel and larger databases developed in a joint effort

between the developers of many older miRNA databases

(see for instance RNAcentral [22]). We foresee two possi-

ble future scenarios: in the first one developers of novel

data-type resources, learning from previous experiences,

will join efforts to consolidate data and create standards

at earlier stages; in the second one we will accept redun-

dant overlaps and solve them with data integration and

knowledge management approaches.

The rise of database resources certainly helps but does

not solve entirely the problem of easy access to relevant
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data. An example is the Gene Expression Ombinus (GEO

[8,9]); GEO (similarly to ArrayExpress [23]) is a data

repository for microarray and NGS data that requires the

data producers to submit data following the Minimum

Information About a Microarray Experiment (MIAME)

guidelines [24]. MIAME was originally designed to pro-

vide standards for microarray data sharing to ensure that

“data can be easily interpreted and that results from its

analysis can be independently verified” [24]; GEO

requires that both raw and normalized data be available,

samples are annotated (including experimental design)

and laboratory and data processing protocols are

described. Enforcing MIAME allowed many researchers

to reexplore datasets from novel perspectives and “more

and more research is now built on the analysis of data

that were not collected by the researchers themselves, and

many of the extant data have not been utilized to their

full potential“ [5]. However, annotation of experimental

data in GEO still makes little use of controlled vocabul-

aries (e.g ontologies), which is necessary for automated

retrieval of relevant datasets for specific large-scale stu-

dies. Therefore finding datasets for a specific condition is

possible, but using all samples associated to that condi-

tion without previous manual curation is still unfeasible.

We consider that the integration of Laboratory Informa-

tion Management systems (LIMS) and/or Experiment

Management Systems (see in this supplement [25]) in lab-

life operations of omics data, and its standardization (such

as the use of ontology-derived nomenclatures) and use in

submission to public data repositories will smooth the

path towards efficient data discovery and sharing.

Data exploitation

Data exploitation refers to the effective use of collective

information to obtain new insights [5]. We can classify

data exploitation according to the type of data used

(similar or heterogeneous data types) or the information

considered (all data points from all studies or summary

results of individual studies, i.e. meta-analysis [26,27]).

However, no classification will fully characterize contem-

porary research as researchers are blurring the bound-

aries by developing hybrid methodologies to optimize

data analysis outcomes. We next develop some examples

in current research.

If we consider datasets of similar data types, meta-

analysis (that is, combining summary information from

independent studies [26,27]) is a widely used statistical

tool, as in many recent GWAS studies [28]. Importantly,

we consider meta-analysis as a sub-type of data integra-

tion methodologies.

Data integration of heterogeneous data types is cur-

rently an active field of research where biostatisticians

are constantly proposing hybrid approaches to improve

data utilization and scientific discovery. Concepts such as

the classification of data as “similar” or “heterogeneous”

are still sometimes an open question [29] which clearly

depends on the specific context. Hamid and collaborators

define data as similar if they are from the “same underly-

ing source“ (e.g. all gene expression) and as heteroge-

neous if at least two fundamentally different data sources

are involved (e.g. SNP and gene expression). Nevertheless

other aspects such as technology may make integration

complex, for example, when integrating RNA-seq and

microarray based mRNA profiling. Following these defi-

nitions, and considering exploitation of datasets with het-

erogeneous data types involved (either across studies or

within studies) then tools such as Co-Inertia Analysis

[30,31], Generalized Singular Value Decomposition [32]

and Integrative Bi-Clustering [33] among others are rele-

vant. A comparison between these three methodologies

in the integrative analysis of mRNA and protein abun-

dance from a study of Plasmodium falciparum is included

in this supplement [34]. In this supplement, Reverter

et al. [35] propose a kernel PCA methodology that first

selects the appropriate kernel for each data type and sec-

ond combines the kernels from the different data types

for a given statistical task.

Moreover, data exploitation in biological research

involves not only actual datasets but also previous

knowledge (sometimes referred to as Biological Domain

Data [29]) which is captured in knowledge databases

such as Gene Ontology [36] or the many biological

pathway databases such as KEGG [37], or Reactome

[38]. Gene Set Enrichment Analysis (GSEA, [39,40]) is a

popular approach for integrating previous biological

knowledge in the analysis of transcriptomics, which has

been extended to other domains such as genomics and

proteomics (e.g. [41] in this supplement) and the analy-

sis of genomic regions (GREAT, [42]). Interestingly

novel methods are still appearing that incorporate the

biological domain knowledge also in the analysis of het-

erogeneous datasets. This supplement reviews the math-

ematical background of different methodologies that

improve the integration of high-throughput transcrip-

tomics and metabolomics data by incorporating prior

knowledge in the form of gene sets and pathways [43].

Brief overview of current approaches to data integration

Data integration is both a challenge and an opportunity

and most certainly an increasing reality in genome

research. Scientists have acknowledged that biological sys-

tems cannot be understood by the analysis of single-type

datasets as the regulation of the system certainly occurs at

many levels (see [29,44] and in this supplement [45]).

Therefore projects have appeared aiming to investigate

biological systems at several levels and create large hetero-

geneous data-sets. In several cases, such efforts ended in

the design of novel methodologies to analyze the data.

Furthermore workshops and conferences focused on the
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topic are starting to proliferate. These three aspects are

detailed below.

Data sources

The Human Genome Project [46,47] is probably the

most well known biological project before 2000, but

during the beginning of 21st century numerous other

even more data-intense biological projects have been

granted research funding. We aim to describe briefly a

few of the most relevant projects, and prioritizing those

where the resulting datasets are (or will be) publicly

available. Other projects of interest not discussed here

include the suite of Phantom Projects [48], TRANSFAC

database [49] or the previously described GEO.

1000 Genomes Project [50,51] aims to identify those

generic genetic variants that have frequencies of at least

1% in the human population by sequencing many indivi-

duals with the novel NGS technologies. The project pre-

sented a technical challenge of how to store and manage

not just the 1000 resulting genomes but the raw and pro-

cessed data associated with them. The 1000 Genome Pro-

ject is not as such a data integration driven project but

certainly provides useful information on the identification

of conserved regions and in GWAS studies.

Encyclopedia of DNA Elements Project (ENCODE,

[52-54]): considering that the genomes of several models

organisms were nearly completed, ENCODE (Homo

Sapiens), modENCODE (C. elegans and D. melanogaster

[44]), and mouseENCODE (Mus musculus [55,56]) pro-

jects were launched with the common goal of identifying

all functional elements within the genome, including

“protein-coding genes, non-protein-coding genes, transcrip-

tional regulatory elements, and sequences that mediate

chromosome structure and dynamics” among them. These

projects represent truly integration-based approaches

which aim to characterize for a set of “animal models and/

or tissues and/or cell lines” the profile of mRNA expres-

sion (e.g. RNA-seq, CAGE), histone marks and transcrip-

tion factor binding profiling (ChIP-seq), DNA methylation

(RRBS), chromatin conformation (e.g. ChIA-PET, 5C) and

the location of active regulatory regions (DNAse-seq)

among others. In September of 2012 the ENCODE con-

sortium launched a synchronized publication effort with

the preliminary analysis of the data.

The Cancer Genome Atlas Project (TGCA): TGCA’s

major aim is to generate insights into the heterogeneity of

different cancer subtypes by creating a map of molecular

alterations for every type of cancer at multiple levels [57].

For instance the endometrial carcinoma has been charac-

terized by mRNA, miRNA, protein, DNA methylation,

copy number alterations and somatic chromosomal aber-

rations [58].

Immunological Genome Project (ImmGen [59]) aims to

characterize the mouse immunological system. ImmGen

used microarrays to profile the mRNA of most immune

cell types under carefully standardized conditions. Interest-

ingly, ImmGen identified the project as a combined effort

between immunologists and computational biologists, and

is intended as a public resource. Not surprisingly, ImmGen

has become a key resource in numerous investigations of

the murine and human immune system research (e.g. [60]).

Method development

Most of the previous data-intensive projects required the

development of novel methodologies to analyze the data.

Within ENCODE there has been a considerable effort to

identify the relationship between combinations of histone

marks and the activity state of DNA elements; Dynamic

Bayesian Networks [61] have been used to classify inter-

vals of the genome of K562 into specific classes (e.g. Pro-

tein Coding Transcription Start Sites) and more recently

self-organizing maps [62] have been used for a similar

purpose. Network analysis have also been addressed at

ENCODE by the investigation of DNase-seq data, which

allows the identification of active regulatory DNA ele-

ments, and its integration with Position Weight Matrixes

to generate regulatory networks for each ENCODE cell-

type [63,64]. To visualize networks circular plots were

generated with Circos [65].

Immgen is the data-intensive project where the most

advanced network inference methodology has been

applied. In [66] authors developed Ontogenet to identify

Transcription Factors (TF) acting as differentiation stage-

specific regulators of mouse hematopoiesis. The metho-

dology first identified 81 coarse- and 334 fine-grained

expression modules, and secondly associates a set of TFs

(among a pool of 580 candidates) to each one of these

modules by defining the expression level of a module as

the weighted linear combination of the associated regula-

tory TFs; the assignment uses a methodology similar to

the Elastic Net [67] or Lasso, but adds penalty functions

during the reconstruction of the network that prioritizes

similarity (at the TF-module association stage) between

cell lines that are closer in the lineage tree.

There is also a relevant need for the development of

methodologies aiming to integrate omics and clinical

data, both as network-based approaches [68,69] and as

both network and data-driven approaches [70]. Overall,

previous examples are just the tip of the iceberg of what

has been developed, and we expect many more novel

developments in the near future.

Conferences, workshop and projects

Scientific meetings on data integration have proliferated in

the last decade either as specialized stand-alone confer-

ences or as part of a larger congress. To our knowledge

the first International Workshop on Data Integration in

the Life Sciences (DILS) took place in Germany in 2004,
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and last year, 2013, it was in Montreal; the Workshop

aims “to foster discussion, exchange, and innovation in

research and development in the areas of data integration

and data management for the life sciences”. This confer-

ence, which has a strong computational background [3],

has consolidated as a major meeting point in data integra-

tion research. Also conferences such as the International

Conference on Systems Biology has established workshops

on integration-related topics such as metadata or data

visualization (ICSB2013). The International Work-Confer-

ence on Bioinformatics and Biomedical Engineering of

2014 (IWBBIO2014) contains a special session devoted to

“integration of data, methods and tools in biosciences”.

Recent one-time events of interest are the session on Data

Integration hosted at BioMedBridges in 2013; the Statisti-

cal Data Integration Challenges in Computational Biology:

Regulatory Networks and Personalized Medicine Work-

shop organized at BIRS [71]; the Workshop in Genomic

Data Integration 2013 [72] located at Imperial College,

The Next NGS Challenge Conference: Data Analysis and

Integration (Valencia, May 2013) and the High-throughput

Omics and Data Integration Workshop in February 2013

from which this supplement originated.

Canvassing the research community - a survey on data

integration

From February to March 2013 we launched a web inquiry

(see Additional file 1), that continued the survey initiated

during the Omics and Data Integration Workshop, where

we investigated major data-integration challenges for

the research community in the field of life sciences. The

results of this analysis are presented in this section.

Survey: dissemination and biases

By conducting a massive emailing effort among many

institutions, the individuals that completed the survey

(n = 125) more than doubled the number of registra-

tions in relation to the workshop. Still, most participants

were from Europe (80.8%) followed by US (5.6%), mostly

from the academic sector (78.4%) and with major exper-

tise in RNA-seq analysis (punctuation: 3/5) Complete

DNA Sequencing (punctuation: 2.74/5). We obtained a

proper balance between senior (37.6%) and junior

(35.2%) researchers, and since the survey was answered

by a limited number of individuals (125) we did not

consider further stratification. Overall, we acknowledge

that the present survey may not represent the views of

the entire research community but it does highlight

relevant questions and provides initial insights into the

opinion of researchers dealing with data integration

issues.

Survey: main results

An objective of the STATegra project (and also relevant

to the wider scientific community) is to identify current

and upcoming needs w.r.t data-analysis thus accelerating

the development of novel integrative approaches. To

investigate this, we included in the survey a question (4)

to identify the major interests in single data types (see

Additional file 1) for which individuals were able to

select more than one answer. The following aspects of

NGS data types caught the largest interest among the

responders to the survey: RNA-seq (66.1%) and com-

plete DNA-sequencing (36.3%). The second place was

for clinical data (37.9%) followed by proteomics (35.5%).

Most individuals were interested in the integrated analy-

sis of multiple data types (72.8%) and this result was

independent of participation in the Workshop in Omics

Data Integration (Table 1) but significantly correlated

with the researcher’s expertise (p-value < 0.01).

We next asked which integration schemes for two or

more datasets were considered most relevant (Figure 2a

upper matrix). We observed that the regulation of gene

expression is a major goal and the integration of RNA-seq

with all other data-types attracts great attention. Notably

integration of clinical data was stated as very important,

and this is relevant since this result does not particularly

associate with the expertise and interests shown in Supp

Table 1 in Additional file 2, but we believe reflects the

continuous growth of translational research even in groups

devoted to basic science. Integration of proteomics and

RNA-seq was considered of high interest, together with a

cluster formed by histone marks, transcription factor bind-

ing and CpG DNA methylation. We also investigated if

these same integration priorities were maintained when

thinking of clinical environments (Figure 2a, lower

matrix). Clinical data and RNA-seq was the most fre-

quently selected combination, also Clinical Data was

highly associated to exome sequencing, complete DNA

sequencing followed by metabolomics, proteomics and

CpG DNA methylation. Not surprisingly co-morbidities

was selected also as a very interesting data type for this

setting.

Finally we observed that integration of same-type data-

sets was also highlighted (Figure 2b). Once more RNA-seq

(14.4% basic science; 5.6% clinical environment) and clini-

cal data (4.0%; 5.6%) were considered relevant (Figure 2c).

Notably, only integration of several RNA-seq datasets is as

highly prioritized as the integration of heterogeneous data

types. Results were similar if the analysis was performed

after stratification by individuals that “participated or did

not participate” in the Workshop (results not shown).

Present tools in omics research After stating the interest

of the research community in data integration we surveyed

their opinion in the availability of appropriate analysis

tools. We designed a set of questions where “5” was asso-

ciated to complete agreement, and “1” to complete dis-

agreement. When considering the analysis of single data

types there was an overall consensus (average score =

4.01) on the availability of proper tools, it was considered
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that most software was mainly available for researchers

with a programming background (3.45). There was no

clear consensus on the availability of user-friendly tools

(2.72) but there was on the necessity of developing novel

analysis tools in the field (4.55). The average opinion when

asked about methods for integrative analysis of multiple

data types was slightly different as there was no clear con-

sensus on the availability of proper tools (2.57). Other

aspects such as exclusivity of tools for programmers

(3.84), existence of user-friendly software (2.21), and need

of new analysis tools (4.72) had similar scores.

Future tools in omics research When asked about what

should be the major focus in the future the only and

almost complete consensus was in the need of developing

novel tools in explorative data analysis (4.45), causal dis-

covery tools (4.50), knowledge-bases (4.29) and tools for

making public data available and properly organized

(4.51). A major requirement was the development of tools

first as user-friendly software (4.60) and secondly as Open-

Source software such as Bioconductor packages (4.16).

Funding and research participants were asked where

funding agencies would be required to invest in order to

Table 1 Scientific interest(s) of survey participants.

ALL Workshop participant Not a participant

Progress in experimental data production methods/technology 25.60% 22.03% 28.79%

Single data-type analysis methods. 29.60% 37.29% 22.73%

Multiple data-type integrated analysis 72.80% 76.27% 69.70%

Biomarker discovery 35.20% 28.81% 40.91%

Understanding of biological mechanisms 56.80% 50.85% 62.12%

Decision support for clinical care 25.60% 16.95% 33.33%

This table summarizes Question 3 results (Select the developments you are more interested in). Survey participants were allowed to select more than one answer.

The percentages of selected questions are shown for all participations and after stratification by their participation in the workshop

Figure 2 Relevance of integration schemes. (a) Each matrix location (i,j) shows the percentage of survey participants that selected as relevant
the integration of data type i and data type j in basic (upper matrix) and clinical (lower matrix) research. (b) shows the percentage of
participants that selected as relevant the integration of the same data type for the data types included in the list.
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support the coming future of omics integrative analysis.

Three questions with a 1 (least interesting) to 4 (most

interesting) answer options were provided. Three fund-

ing goals were indicated as most relevant: large publicly

available data-sets (2.35), large data-sets from cohorts of

selected diseases (2.15) and new tools for data analysis

(1.99). Still many participants indicated that other fund-

ing priorities were required such as education, a more

focused tool development proposal on tools for integra-

tion with clinical data, data curation, and “unification

and standardization of all available omics data bases”.

Data standardization Not included in the questionnaire

design but mentioned by many responders in questions

16 (Describe what you think is the most pressing/urgent/

important research problem w.r.t data-integration) and

17 (Any comment you would like to add?) was that data

standardization is still an open issue. Standardization

requirements were identified as two different but linked

topics: the need to defined standard formats for every

data type - which has been partially successfully managed

by the several normalization efforts (e.g. MIAME), and

the standardization of metadata. We acknowledge that,

despite the enormous effort involved in providing anno-

tated data repositories, the metadata included in many of

them is still not sufficiently consistent or comprehensive

enough to support large data approaches. The editorial

team agrees that resources must be committed to the

developing and continuous support of public data reposi-

tories, while focusing not only in the challenges of storing

the massive data files but also for more efficient annota-

tion of the data involved. We believe that this goal will be

facilitated by journal policies requesting and controlling

submission not only of data but also standardized meta-

data prior to publication.

Open challenges and discussion

Data integration in the life sciences is not a new challenge,

but it is a recurring one that has only recently been

unfolded as a major challenge in part driven by technology

development producing increasing amounts and type of

data. However it is become increasingly clear that to be

able to integrate across different types of is not only an

opportunity but also a competitive advantage within the

biological research community. While the availability of

genomics data is reasonably well provided for by publicly

accessible and well-maintained data repositories (with the

relevant exception of clinical data), there is a need for

improved (and novel) annotation standards and require-

ments in data repositories to enable better integration and

reuse of publically available data.

The data exploitation aspect of data integration is

probably the one that requires most attention, as it

involves (1) the use of prior knowledge - and its efficient

storage, (2) the development of statistical methods to

analyze heterogeneous data sets and (3) the creation of

data explorative tools that incorporate both useful sum-

mary statistics and new visualization tools.

We investigated in a survey with 125 responders what

the most urgent questions of the research community are

regarding data integration. Two relevant observations

stand out: first, the need for user-friendly tools targeting

integration of heterogeneous datasets; and secondly the

relevance of translational medicine, as shown by the inter-

est of incorporating clinical data in most integrative omic

studies.

One aspect that we have not discussed in this editorial

is that efficient data integration in life sciences may

require the creation of novel research profiles. Most

bioinformaticians engaged in the analysis of genomics

data are either “trained computer scientists or statisticians

devoted to biology”, or “trained biologists that were

required to learn the basics of programming in order to

dig deeper into their data”. While both are necessary and

have pushed the field forward, it is increasingly recog-

nized that the growth of computational biology requires

the reformulation of the teaching system and the appear-

ance of new wider syllabuses that cover all aspects of this

interdisciplinary research filed in equivalent detail [73]).

This is a major challenge, to raise a new generation of

computer savvy researchers with a good understanding

of the biology thus enabling development and application

of relevant methods for intergration.

A second aspect we have not discussed is the impact of

BIGdata analytics in the life sciences. The term BIGdata

intuitively describes a situation present in many research

fields: the amount of data generated by instruments is

exploding, and in many cases doubling over short periods

of time. Biology is not an exception: “since 2008, genomics

data is outpacing Moore’s Law by a factor of 4” [74]. This

situation results in the requirement for developing scalable

infrastructures able to manage these quantities of data

while making it available for efficient access and indexing.

But more interestingly, big data have provided new ways

to exploit data in many disciplines, such as economics (see

Data Economy), business (as in Amazon or Google, [75]),

high-energy physics [76] and even biology [77]. The main

summary of BIGdata analysis is that even minor changes

or low-level associations may be uncovered by the use of

(very) large numbers of data points; therefore it remains to

be seen how big data concepts will further reshape data

integration in the life sciences.

A final aspect is that data integration is also seen as a com-

mercial product and well-established companies (such as

Ingenuity or Biomax) are competing with novel companies

(such as Anaxomics or LifeMap) in a rapidly advancing field

where the commercial edge is constantly being updated.

What is evident is that the era we are living in is

nothing else than a paradise for integrative data analysis.

Gomez-Cabrero et al. BMC Systems Biology 2014, 8(Suppl 2):I1

http://www.biomedcentral.com/1752-0509/8/S2/I1

Page 8 of 10



Additional material

Additional file 1: Survey details: The needs & future in Omics & Data

Integration.

Additional file 2: Supplementary Table 1. Interests (Question 4) and
knowledge (Question 7) of participants on different research areas.

Competing interests

No conflict of interest.

Acknowledgements

We would like to sincerely thank PhD Gordon Ball and PhD Ali Mortazavi for
the constructive review of the manuscript. The supplement originated
thanks to a Workshop co-organised by EU FP7 306000 STATegra and
SeqAhead COST Action BM1006. The contribution of DGC, IA, DM, MM, EB,
AC and JT was supported by EU FP7 306000 STATegra. The contribution of
DGC was also supported by BILS (http://www.bils.se). The contribution of
AG, EB and AC was supported by EU COST Action BM1006: SeqAhead. The
contribution of AG and EB-R was supported by EU FP7 289452 ALLBIO. The
contribution of JT was also supported by Stockholm County Council, and
the Swedish Research Council. The contribution of IA was also supported by
Åke Wibergs Stiftelsen medicine research Diarienr: 719593091 (http://ake-
wiberg.se/).

Declarations

This article has been published as part of BMC Systems Biology Volume 8
Supplement 2, 2014: Selected articles from the High-Throughput Omics and
Data Integration Workshop. The full contents of the supplement are available
online at http://www.biomedcentral.com/bmcsystbiol/supplements/8/S2.

Authors’ details
1Unit of Computational Medicine, Center for Molecular Medicine,
Department of Medicine, Karolinska Institute and Karolinska University
Hospital, Stockholm, Sweden. 2Biomax Informatics AG, Munich, Germany.
3Statistical Cancer Genomics, UCL Cancer Institute; Centre for Mathematics
and Physics in the Life Sciences and Experimental Biology, University College
London, London WC1E 6BT, UK. 4Lymphocyte Development Group, MRC
Clinical Sciences Centre, Imperial College London, London W12 0NN, UK.
5Istituto di Tecnologie Biomediche (CNR), Unità Organizzativa di Bari, Via
Amendola 122/D, 70126 Bari, Italy. 6Chromatin and Disease Group, Cancer
Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research
Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain. 7Department
of Animal Breeding and Genetics, SLU Global Bioinformatics Centre, Swedish
University of Agricultural Sciences, Uppsala, Sweden. 8Computational
Genomics Program, Centro de Investigaciones Príncipe Felipe, Valencia,
Spain.

Published: 13 March 2014

References

1. Bairoch A, Cohen-Boulakia S, Froidevaux C: Review of the selected

proceedings of the Fifth International Workshop on Data Integration in

the Life Sciences 2008. BMC bioinformatics 2008, 9(Suppl 8):S1,
doi:10.1186/1471-2105-9-S8-S1.

2. Goble C, Stevens R: State of the nation in data integration for

bioinformatics. Journal of biomedical informatics 2008, 41(5):687-93,
doi:10.1016/j.jbi.2008.01.008.

3. Philippi S: Data and knowledge integration in the life sciences. Briefings

in bioinformatics 2008, 9(6):451, doi:10.1093/bib/bbn046.
4. Stein L: Creating a bioinformatics nation A web-services model will allow

biological data to be fully exploited . Nature 2002, 000:119-120.
5. Weidman S, Arrison T: Steps Toward Large-Scale Data Integration in the

Sciences: Summary of a Workshop. National Research Council of the

National Academies 2010.
6. Berg JM, Tymoczko JL, Stryer L: Biochemistry. 7 edition. W.H. Freeman &

Company; 2010, (24 Dec 2010).

7. Bogorad IW, Liao JC: Synthetic non-oxidative glycolysis enables complete

carbon conservation. Nature 2013, 502(7473):693-7, doi:10.1038/
nature12575.

8. Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene

expression and hybridization array data repository. Nucleic acids research

2002, 30(1):207-10.
9. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M,

Soboleva A: NCBI GEO: archive for functional genomics data sets–

update. Nucleic acids research 2013, 41(Database issue):D991-5,
doi:10.1093/nar/gks1193.

10. Schomburg I, Chang A, Placzek S, Söhngen C, Rother M, Lang M,
Schomburg D: BRENDA in 2013: integrated reactions, kinetic data,

enzyme function data, improved disease classification: new options and

contents in BRENDA. Nucleic acids research. 2013, , 41 Database issue:

D764-72, doi:10.1093/nar/gks1049.
11. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A,

Lander ES: Genome-scale DNA methylation maps of pluripotent and

differentiated cells. Nature 2008, 454(August):766-771, doi:10.1038/
nature07107.

12. Rakyan VK, Down Ta, Balding DJ, Beck S: Epigenome-wide association

studies for common human diseases. Nature reviews Genetics 2011, July,
doi:10.1038/nrg3000.

13. Jones Pa: Functions of DNA methylation: islands, start sites, gene bodies

and beyond. Nature Reviews Genetics 2012, May, doi:10.1038/nrg3230.

14. Ulf Leser, Felix Naumann: 2007, I-XIII, 1-464.
15. Patrick Ziegler, Dittrich RKlaus: “Three decades of data integration-All

problems solved?”. University of Zurich 2004.
16. Fayyad U, Piatetsky-shapiro G, Smyth P: From Data Mining to Knowledge

Discovery in Databases. AI Magazine 1996, 37-54.
17. Abugessaisa I: Knowledge discovery in road accidents database

integration of visual and automatic data mining methods. The

International Journal of Public Information Systems, ISSN 1653-4360. 2008,
1:59-85.

18. Akil H, Martone ME, Van Essen DC: Challenges and opportunities in

mining neuroscience data. Science (New York, N.Y.) 2011, 331(6018):708-12,
doi:10.1126/science.1199305.

19. Pathguide [pathguide.org]. .
20. Ponzoni I, Nueda MJ, Tarazona S, Götz S, Montaner D, Dussaut JS, Dopazo J,

Conesa A: Pathway network inference from gene expression data. BMC

Syst Biol 2014, 8(Suppl 2):S7.
21. Pritchard CC, Cheng HH, Tewari M: MicroRNA profiling: approaches and

considerations. Nature reviews. Genetics 2012, 13(5):358-69, doi:10.1038/
nrg3198.

22. Bateman A, Agrawal S, Birney E, Bateman A, Agrawal S, Birney E, Stadler PF:
RNAcentral?: A vision for an international database of RNA sequences

RNAcentral?: A vision for an international database of RNA sequences.

2011, doi:10.1261/rna.2750811.22.
23. Rustici G, Kolesnikov N, Brandizi M, Burdett T, Dylag M, Emam I, Sarkans U:

ArrayExpress update–trends in database growth and links to data

analysis tools. Nucleic acids research 2013, 41(Database issue):D987-90,
doi:10.1093/nar/gks1174.

24. Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C,
Vingron M: Minimum information about a microarray experiment

(MIAME)-toward standards for microarray data. Nature genetics 2001,
29(4):365-71, doi:10.1038/ng1201-365.

25. Hernández R, Boix-Chova N, Gómez-Cabrero D, Tegner J, Abugessaisa I,
Conesa A: STATegra EMS: an experiment management system for

complex next-generation omics experiments. BMC Syst Biol 2014,
8(Suppl 2):S9.

26. Van Houwelingen HC, Arends LR, Stijnen T: TUTORIAL IN BIOSTATISTICS

Advanced methods in meta-analysis?: multivariate approach and meta-

regression 2002, 624(June 2001):589-624, doi:10.1002/sim.1040.
27. Normand ST: TUTORIAL IN BIOSTATISTICS META-ANALYSIS?: FORMULATING,

EVALUATING, COMBINING, AND REPORTING 1999, 359(January 1998):321-359.
28. Evangelou E, Ioannidis JPa: Meta-analysis methods for genome-wide

association studies and beyond. Nature reviews. Genetics 2013,
14(6):379-89, doi:10.1038/nrg3472.

29. Hamid JS, Hu P, Roslin NM, Ling V, Greenwood CMT, Beyene J: Data
integration in genetics and genomics: methods and challenges. Human

genomics and proteomics?: HGP 2009, 2009, doi:10.4061/2009/869093.

Gomez-Cabrero et al. BMC Systems Biology 2014, 8(Suppl 2):I1

http://www.biomedcentral.com/1752-0509/8/S2/I1

Page 9 of 10

http://www.biomedcentral.com/content/supplementary/1752-0509-8-S2-I1-S1.PDF
http://www.biomedcentral.com/content/supplementary/1752-0509-8-S2-I1-S2.docx
http://www.bils.se
http://ake-wiberg.se/
http://ake-wiberg.se/
http://www.biomedcentral.com/bmcsystbiol/supplements/8/S2
http://www.ncbi.nlm.nih.gov/pubmed/18358788?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18358788?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18980960?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24077099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24077099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11752295?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11752295?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23193258?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23193258?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18600261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18600261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24565276?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22510765?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22510765?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23193272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23193272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11726920?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11726920?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24565376?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24565376?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23657481?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23657481?dopt=Abstract


30. Dolédec S, D C: Co-inertia analysis: an alternative method for studying

species-environment relationships. Freshwater Biology 1994, , (31): 277-294.
31. Fagan A, Culhane AC, Higgins DG: A multivariate analysis approach to the

integration of proteomic and gene expression data. Proteomics 2007,
7(13):2162-71, doi:10.1002/pmic.200600898.

32. Alter O, Brown PO, Botstein D: Generalized singular value decomposition

for comparative analysis of genome-scale expression data sets of two

different organisms. Proceedings of the National Academy of Sciences of the

United States of America 2003, 100(6):3351-6, doi:10.1073/pnas.0530258100.
33. Kaiser S: Biclustering: Methods, Software and Application. PhD thesis

Ludwig-Maximilians-University Munich, Department of Statistics; 2011.
34. Tomescu O, Mattanovich D, Thallinger GG: Integrative omics analysis. A

study based on Plasmodium falciparum mRNA and protein data. BMC

Syst Biol 2014, 8(Suppl 2):S4.
35. Reverter F, Vegas E, Oller JM: Kernel-PCA data integration with enhanced

interpretability. BMC Syst Biol 2014, 8(Suppl 2):S6.
36. Gene Ontology Consortium O, Ashburner M, Ball CA, Blake JA, Botstein D,

Sherlock G: Gene Ontology?: tool for the unification of biology. Nature

Genetics 2000, 25(1):25-29, doi:10.1038/75556.Gene.
37. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M: The KEGG resource

for deciphering the genome. Nucleic acids research 2004, 32(Database
issue):D277-80, doi:10.1093/nar/gkh063.

38. Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, D’Eustachio P: The
Reactome pathway knowledgebase. Nucleic acids research 2014, 42(1):
D472-7.

39. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL: Gene set

enrichment analysis?: A knowledge-based approach for interpreting

genome-wide. 2005.
40. Efron B, Tibshirani R: On testing the significance of sets of genes. The

Annals of Applied Statistics 2007, 1(1):107-129, doi:10.1214/07-AOAS101.
41. Schmidt A, Forne I, Imhof A: Bioinformatic analysis of proteomics data.

BMC Syst Biol 2014, 8(Suppl 2):S3.
42. McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, Bejerano G:

GREAT improves functional interpretation of cis-regulatory regions.

Nature biotechnology 2010, 28(5):495-501, doi:10.1038/nbt.1630.
43. Reshetova P, Smilde AK, van Kampen AHC, Westerhuis JA: Use of prior

knowledge for the analysis of high-throughput transcriptomics and

metabolomics data. BMC Syst Biol 2014, 8(Suppl 2):S2.
44. Celniker SE, Dillon LAL, Gerstein MB, Gunsalus KC, Henikoff S, Karpen GH,

Waterston RH: FEATURE Unlocking the secrets of the genome. 2009,
459(June):927-930.

45. Conesa A, Mortazavi A: The common ground of genomics and systems

biology. BMC Syst Biol 2014, 8(Suppl 2):S1.
46. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J,

FitzHugh W: Initial sequencing and analysis of the human genome.

Nature 2001, 409(6822):860-921, doi:10.1038/35057062.
47. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Holt Ra: The

sequence of the human genome. Science (New York, N.Y. 2001,
291(5507):1304-51, doi:10.1126/science.1058040.

48. Suzuki H, Forrest ARR, van Nimwegen E, Daub CO, Balwierz PJ, Irvine KM,
de Hoon MJL: The transcriptional network that controls growth arrest

and differentiation in a human myeloid leukemia cell line. Nature

genetics 2009, 41(5):553-62, doi:10.1038/ng.375.
49. Wingender E, Dietze P, Karas H, Knuppel R: TRANSFAC: a database on

transcription factors and their DNA binding sites. Nucleic Acids Res 1996,
24:238-241.

50. Gonçalo R, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs Ra,
McVean Ga: A map of human genome variation from population-scale

sequencing. Nature 2010, 467(7319):1061-73, doi:10.1038/nature09534.
51. Goncalo R, Auton A, Brooks LD, M. a, Durbin RM, Handsaker RE, McVean Ga:

An integrated map of genetic variation from 1,092 human genomes.

Nature 2012, 491(7422):56-65, doi:10.1038/nature11632.
52. Ecker JR, Bickmore WA, Barrose I, Segal E: ENCODE explained. Nature 2012,

489:, 52-55.
53. Encode T, Consortium P: A user’s guide to the encyclopedia of DNA

elements (ENCODE). PLoS biology 2011, 9(4):e1001046. doi:10.1371/journal.
pbio.1001046.

54. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F,
Hubbard TJ: GENCODE: the reference human genome annotation for The

ENCODE Project. Genome research 2012, 22(9):1760-74, doi:10.1101/
gr.135350.111.

55. Shen Y, Yue F, Mccleary DF, Ye Z, Edsall L, Kuan S, Ren B: A map of the cis-

regulatory sequences in themouse genome. Nature 2012,
488(7409):116-120, doi:10.1038/nature11243.

56. Mouse ENCODE Consortium, Stamatoyannopoulos Ja, Snyder M, Hardison R,
Ren B, Gingeras T, Kaul R: An encyclopedia of mouse DNA elements (Mouse

ENCODE). Genome biology 2012, 13(8):418. doi:10.1186/gb-2012-13-8-418.
57. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E,

Clark Graham, Pickering Lisa, Stamp Gordon, Gore Martin, Szallasi Zoltan,
Downward Julian, Andrew Futreal P, Swanton Charles, et al: Intratumor

Heterogeneity and Branched Evolution Revealed by Multiregion

Sequencing. The New England journal of medicine 2012, 366(10):883-892.
58. The Cancer Genome Atlas Research Network: Integrated genomic

characterization of endometrial carcinoma. Nature 2013, 497(7447):67-73,
doi:10.1038/nature12113.

59. Shay T, Kang J: Immunological Genome Project and systems immunology.

Trends in immunology 2013, 34(12):602-9, doi:10.1016/j.it.2013.03.004.
60. Yosef N, Shalek AK, Gaublomme JT, Jin H, Lee Y, Awasthi A, Regev A:

Dynamic regulatory network controlling TH17 cell differentiation. Nature

2013, doi:10.1038/nature11981.
61. Hoffman MM, Buske OJ, Wang J, Weng Z, Bilmes Ja, Noble WS: Unsupervised

pattern discovery in human chromatin structure through genomic

segmentation. Nature methods 2012, 9(5):473-6, doi:10.1038/nmeth.1937.
62. Mortazavi A, Pepke S, Jansen C, Marinov GK, Ernst J, Kellis M, Wold BJ:

Integrating and mining the chromatin landscape of cell-type specificity

using self-organizing maps. Genome research 2013, 0000:2136-2148,
doi:10.1101/gr.158261.113.

63. Neph S, Stergachis AB, Reynolds A, Sandstrom R, Borenstein E,
Stamatoyannopoulos Ja: Circuitry and dynamics of human transcription factor

regulatory networks. Cell 2012a, 150(6):1274-86, doi:10.1016/j.cell.2012.04.040.
64. Neph S, Vierstra J, Stergachis AB, Reynolds AP, Haugen E, Vernot B,

Stamatoyannopoulos Ja: An expansive human regulatory lexicon

encoded in transcription factor footprints. Nature 2012b, 489(7414):83-90,
doi:10.1038/nature11212.

65. Krzywinski M, Birol I, Jones SJM, Marra Ma: Hive plots–rational approach to

visualizing networks. Briefings in bioinformatics 2012, 13(5):627-44,
doi:10.1093/bib/bbr069.

66. Jojic V, Shay T, Sylvia K, Zuk O, Sun X, Kang J, Turley S: Identification of

transcriptional regulators in the mouse immune system. Nature

immunology 2013, 14(6):633-643, doi:10.1038/ni.2587.
67. Zou H, Hastie T: Regularization and variable selection via the elastic net.

Journal of the Royal Statistical Society: Series B (Statistical Methodology) 2005,
67(2):301-320, doi:10.1111/j.1467-9868.2005.00503.

68. Vidal M, Cusick ME, Barabási A-L: Interactome networks and human

disease. Cell 2011, 144(6):986-98.
69. Park J, Lee D-S, Christakis Na, Barabási A-L, Data S: The impact of cellular

networks on disease comorbidity. Molecular systems biology 2009,
5(262):262. doi:10.1038/msb.2009.16.

70. Menche J, Sharma A, Cho MH, Mayer RJ, Rennard SI, Celli B, Miller BE,
Locantore N, Tal-Singer R, Ghosh S, Larminie C, Bradley G, Riley JH,
Agusti A, Silverman EK, Barabási A-L: A divisive shuffling approach (VIStA) for

gene expression analysis to identify subtypes in chronic obstructive pulmonary

disease.
71. Regulatory Networks and Personalized Medicine Workshop. [http://www.

birs.ca/events/2013/5-day-workshops/13w5083].
72. Workshop in Genomic Data Integration. 2013 [http://www2.imperial.ac.

uk/~gmontana/data_integration/genomic_data_integration.html].
73. Rost B: ISCB: past-present perspective for the International Society for

Computational Biology. Bioinformatics (Oxford, England) 2014, 30(1):143-5.
74. O’Driscoll A, Daugelaite J, Sleator RD: “Big data”, Hadoop and cloud

computing in genomics. Journal of biomedical informatics 2013, 46(5):774-81.
75. Mayer-Schönberger V, Cukier K: Big Data: A Revolution That Will

Transform How We Live, Work, and Think. Eamon Dolan/Houghton Mifflin

Harcourt editorial 2013.
76. Brumfiel BG: Down the Petabyte Highway. Nature 2011, 469(20):282-283.
77. Swarup V, Geschwind DH: From big data to mechanism. Nature 2013, 500:4-5.

doi:10.1186/1752-0509-8-S2-I1
Cite this article as: Gomez-Cabrero et al.: Data integration in the era of
omics: current and future challenges. BMC Systems Biology 2014
8(Suppl 2):I1.

Gomez-Cabrero et al. BMC Systems Biology 2014, 8(Suppl 2):I1

http://www.biomedcentral.com/1752-0509/8/S2/I1

Page 10 of 10

http://www.ncbi.nlm.nih.gov/pubmed/17549791?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17549791?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12631705?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12631705?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12631705?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24565165?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24565165?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24565229?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24565229?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24243840?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24243840?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24565114?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20436461?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24565064?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24565064?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24565064?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24565025?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24565025?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11237011?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19377474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19377474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8594589?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8594589?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20981092?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20981092?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23128226?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22955614?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22955987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22955987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22763441?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22763441?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22397650?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22397650?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22397650?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23636398?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23636398?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23631936?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22426492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22426492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22426492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22155641?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22155641?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23624555?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23624555?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21414488?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21414488?dopt=Abstract
http://www.birs.ca/events/2013/5-day-workshops/13w5083
http://www.birs.ca/events/2013/5-day-workshops/13w5083
http://www2.imperial.ac.uk/~gmontana/data_integration/genomic_data_integration.html
http://www2.imperial.ac.uk/~gmontana/data_integration/genomic_data_integration.html
http://www.ncbi.nlm.nih.gov/pubmed/23872175?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23872175?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21248814?dopt=Abstract

	Abstract
	Introduction
	Challenges of data integration in life sciences
	Data integration challenges
	Brief overview of current approaches to data integration
	Data sources
	Method development
	Conferences, workshop and projects
	Canvassing the research community - a survey on data integration
	Survey: main results

	Open challenges and discussion

	Competing interests
	Acknowledgements
	Declarations
	Authors’ details
	References

