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“To attain knowledge, add things everyday. To attain wisdom, remove things every day.”

Lao Tzu



Summary

Data integration is a broad area encompassing techniques to merge data between data

sources. Although there are plenty of efficient and effective methods focusing on data

integration over homogeneous data, where instances share the same schema and range

of values, their applications over heterogeneous data are less clear. This thesis considers

data integration within the environment of the Semantic Web. More particularly, we

propose a novel architecture for instance matching that takes into account the particu-

larities of this heterogeneous and distributed setting. Instead of assuming that instances

share the same schema, the proposed method operates even when there is no overlap

between schemas, apart from a key label that matching instances must share. Moreover,

we have considered the distributed nature of the Semantic Web to propose a new archi-

tecture for general data integration, which operates on-the-fly and in a pay-as-you-go

fashion. We show that our view and the view of the traditional data integration school

each only partially address the problem, but together complement each other. We have

observed that this unified view gives a better insight into their relative importance and

how data integration methods can benefit from their combination. The results achieved

in this work are particularly interesting for the Semantic Web and Data Integration

communities.



Samenvatting

Data-integratie is een breed gebied dat technieken omvat voor het samenvoegen van

data uit verschillende gegevensbronnen. Alhoewel er genoeg efficinte en effectieve meth-

odes zijn die zich richten op data-integratie voor homogene data, waar instanties het-

zelfde schema en bereik van waardes delen, is hun toepassing op heterogene data minder

voor de hand liggend. Deze thesis beschouwt data-integratie binnen de context van

het Semantic-Web. In het bijzonder introduceren wij een nieuwe architectuur voor

instantie-matching die rekening houdt met de bijzonderheden van deze heterogene en

gedistribueerde setting. In plaats van aan te nemen dat instanties hetzelfde schema

delen werkt de voorgestelde methode zelfs als er geen overlap is tussen de schemas met

uitzondering van een identificerend label dat matchende instanties delen. Bovendien

hebben we de gedistribueerde aard van het Semantic-Web in beschouwing genomen om

een architectuur voor te stellen voor algemene data-integratie dat on-the-fly werkt vol-

gens het pay-as-you-go principe. We laten zien dat onze visie en die van de traditionele

data-integratie school beide slechts een deel van het probleem afdekken, maar gezamen-

lijk elkaar complementeren. We hebben waargenomen dat deze genificeerde visie een

beter inzicht geeft in hun relatieve belang en hoe data-integratie kan profiteren van hun

combinatie. De resultaten die in dit werk zijn bereikt zijn bijzonder interessant voor de

Semantic-Web en Data-Integratie gemeenschappen.
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Chapter 1

Introduction

Data integration is the problem of combining data from different sources. It has been

extensively studied by the database community for the last 30 years [1–3]. Currently,

data integration becomes particularly important in the world of the Semantic Web [4],

which aims at converting the dominating unstructured web of documents into a more

structured web of data. The benefits of constructing a web of data could be immense, as

it would allow applications to share and reuse data in an intricate decentralized network.

Fig. 1.1 shows an example of such network in the Linked Open Data Project (LOD) [5],

the most concrete realization of the Semantic Web.

Particularly, datasets in the web of data are connected by interlinking their individual

instances and schemas, in a process usually referred to as instance matching [1, 2, 6, 7]

and schema matching [8–12]; respectively. Differently from the database context, where

datasets are homogeneous, in the web of data context datasets are heterogeneous [13],

meaning that their instances and schemas largely vary. This intrinsic characteristic of

heterogeneous data poses new problems, causing existing instance matching approaches

to perform less well than expected. In addition, the decentralized nature of the web of

data brings new challenges. For instance, in most of the cases data are only available

via querying a remote data endpoint. Consequently, previous assumptions that data

can be downloaded and processed locally no longer apply. Summing up, the nature of

the heterogeneous data and the distributed architecture of the web of data are crucial

aspects to be understood and considered in any instance matching approach focusing on

operating over this setting.

Mostly, this thesis presents the results of our research, in which we propose a set of novel

methods to improve state-of-art of instance matching over the web of data.

1
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Chapter 1. Introduction 3

1.1 A Brief Overview of Instance Matching

In this section, we informally introduce the instance matching problem and its challenges.

1.1.1 What is instance matching?

Instance matching is the problem of finding two or more distinct instance representations

that refer to the same real world entity. For example, consider two representations of the

city of Paris, one extracted from DBPedia.org1 and the other one from Geonames.org2.

Paris Dbpedia.org:

dbpedia:Paris rdfs:label ’Paris ’

dbpedia:Paris dbpedia:populationTotal 2211297

dbpedia:Paris dbpedia:area 1.054e+08

Paris Geonames.org:

geonames :2988507 geo:name ’Paris ’

geonames :2988507 geo:lat ’48.853’

geonames :2988507 geo:long ’2.349’

They both represent the city of Paris, but they use complete different schemas to describe

different attributes of Paris. Instance matching allows a computer system to recognized

that these two representations, in fact, refer to the same thing in the real world.

1.1.2 How does it work?

Generally, instance matching is applied over two distinct datasets containing thousands

to millions of instances. The process of instance matching is usually divided in two steps:

a candidate selection step and a matching refinement step. The candidate selection step

aims to select from the entire target collection a few possible candidate matches for a

source instance. The matching refinement step aims to find among the candidates those

instances that are the same as a source instance. Basically, instances are considered

the same if they share the same values on their attributes. This process requires their

schemas to be previously aligned via schema matching.

1http://www.dbpedia.org
2http://www.geonames.org
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1.1.3 Why is it challenging to do instance matching on Linked Data?

Data on Linked Data are heterogeneous, meaning that their schemas largely vary. In

some cases, two instances only have an attribute that label an instance in common (e.g.

rdfs:label). Usually, the value of this attribute is not enough to determine whether

they match or not; consequently, more information in the data have to be considered

in the process. An immediate issue due to the data heterogeneity is to determine the

similarity between instances when their schemas do not align or overlap. This problem

has received much less attention in the heterogeneous settings than in the homogeneous

settings so far.

Another issue is that Linked Data cloud is a distributed environment, meaning that data

are scattered in different datasets via internet. In some cases, these datasets are available

only via querying a data endpoint. As these endpoints pose query limits and timeouts,

an additional challenge is to do instance matching considering these constraints. To the

best of our knowledge, we are the first to propose a fully automated instance matching

solution in this context.

In this thesis, we elaborate on these issues, and we propose our solution.

1.2 Thesis Scope and Outline

1.2.1 Towards Self-Linking Linked Data

In Chapter 2, we describe an architecture for data integration over a distributed net-

work of heterogeneous data, the Linked Data. The aim of this position chapter is to

motivate the subsequent chapters. Mainly, the work done in this thesis are components

of a visionary data integration architecture proposed in Chapter 2.

1.2.2 SERIMI: Class-based Matching for Instance Matching Across

Heterogeneous Datasets

In Chapter 3, we introduce a novel method of instance matching, namely class-based

matching. It is used to refined candidate matches obtained from a previous candidate

selection step (discussed in the Chapter 4). Class-based matching is designed to work

when there is no data or schema overlap between the source instance and target candidate

matches. Basically, considering that source instances belong to a class of interest, class-

based matching exploits the assumption that correct matches should also belong to a

class (i.e. share some attribute/values in common). However, it does not assume that the
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class semantics is explicitly given so that a direct matching at the class level is possible

between the source (e.g. Drugs) and target (e.g. Medication). Then, by comparing the

candidates, class-based matching can leverage a class of target candidates that are more

likely to be the positive matches to the source instances. During this process, there

is no comparison between source and target but only data from the target is used for

matching. The main research question in Chapter 3 can be defined as follows:

How can we obtain correct matches for a set of source instances when there is little

overlap between the source and target schemas?

1.2.3 Efficient and Effective On-the-fly Candidate Selection over Sparql

Endpoints

In Chapter 4, we tackle the problem of candidate selection over the web of data. To

do so, we cast the problem of candidate selection as querying over remote SPARQL

endpoints for possible candidate matches for a given instance. The biggest obstacle is

to create queries that can be effective in retrieving all and only the correct matches for

a source instance, and that can also be time efficient. Consequently, the main research

question in Chapter 4 can be defined as follows:

How can we obtain candidate matches for a set of source instance in an effective and

time efficiency way, by querying a target remote endpoint?

In addition, as the source and target instances have a heterogeneous schema, instance-

based queries are considered in this task, which are queries that use a local attribute of

an instance of data, as opposed to an attribute that occurs in a global schema. To build

these queries, we not only consider instances attributes but also class-related information

learned on-the-fly from candidates obtained at query time, which are treated as training

examples. Targeting both precision and recall requires dealing with a large number of

candidate queries. To improve efficiency, we propose a heuristic-based search optimiza-

tion framework that aims to select and execute a small number of queries considering

quality of the results and run-time of the queries.

1.2.4 Learning Edit-Distance Based String Transformation Rules From

Examples

In Chapter 5, we present a string transformation algorithm. The task of transforming a

string from a source form into a target form is relevant for many information processing

tasks. Particularly, we designed a string transformation algorithm to be applied in
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the candidate selection process. It can be used to transform the attribute values in the

source format to the target format (e.g.Michael Jackson→ Jackson Michael). In this

way, exact queries can be constructed, which only retrieve candidates with an attribute

value equal to a query attribute value. Exact queries are more precise and consequently

more time efficient than queries that compare string values based on their similarity.

Consequently, the integration of this algorithm in the candidate selection step could

potentially improve the efficiency of the process.

We observed that our string transformation algorithm is quite generic and can be applied

to a broader range of string transformation tasks than the one that initially motivated

its development. Consequently, in Chapter 5, the string transformation algorithm is

presented as a generic and task independent algorithm.

In Chapter 5, we are particularly interested in learning string transformation rules from

a limited set of example transformations. Then, these learned rules can be used to

transform a large amount of unseen strings that are similar to the original strings used

as examples. Therefore, the main research question in Chapter 5 can be defined as

follows:

How can we learn string transformation rules from a limited set of examples that can

correctly transform a large amount of unseen strings similar to the examples?

1.2.5 Exercises on Knowledge Based Acceleration

Chapter 6 is not directly connected to the previous chapters. In that chapter, we

describe the retrieval models used and the results obtained in the Knowledge Base Ac-

celeration track in TREC 2012 (TREC-KBA). The TREC-KBA focuses on a single task:

to filter a time-ordered corpus for documents that are highly relevant to a predefined

list of Wikipedia entities. A successful KBA system must do more than matching an

entity to the correct documents in the corpus: it must also distinguish centrally relevant

documents that are worth citing in the entity’s Wikipedia article.

Basically, we focus our attention on establishing matches between an entity and its

related news documents, which is a challenging task. To do so, we exploited the web of

data, enriching the original given entity descriptions with additional information that

could help to identify the correct matches in this large stream corpus. In addition, we

tried to model document centrality using an annotated set of examples. Overall, we

obtained good results in this challenge, ranking among the top three best score systems.

The results indicate that using the web of data to enrich the entity descriptions is a good

strategy. Also, this helps to demonstrate the benefits of using structured information
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sources in this task, such as Linked Data. The main research question investigated in

Chapter 6 can be defined as follows:

How to use structured resources related to the entity to estimate centrality and relevance

of news documents?

1.2.6 Conclusions

In the final Chapter 7, we describe the contributions of this thesis by addressing the

main research questions of each chapter, and summarizing the findings. Also we discuss

future research directions.





Chapter 2

Towards a self-linking Linked

Data

2.1 Introduction

The vision of the Semantic Web [4], undoubtedly powerful, promises a structured web of

data that would greatly improve the access to data by humans and machines. Currently,

initiatives such as the Linked Open Data project [5] have published and interlinked hun-

dreds of structured datasets following Semantic Web standards (e.g. RDF1, OWL2).

The set of these interlinked datasets forms a web of data called Linked Data. Two

datasets are interlinked by connecting their objects through semantic links called RDF

links. Theoretically, data users (humans and machines) can easily navigate from one

dataset to another through these links, potentially exploring the entire Linked Data

Cloud [14][15][16][17]. Unfortunately, in practice, the establishment of these RDF links

has shown to be a non-trivial task [18][19][20][21]. So far, this issue is one of the fac-

tors [22][23] that has considerably limited the development of a global-scale interlinked

dataspace, the Semantic Web.

Tummarello et al. [24] have discussed the interlinking issue, proposing a centralized data

integration architecture to solve the poor interlinking in the Linked Data. However,

this issue has not been resolved, even though we are already three years later. As a

resolution, this thesis argues in favor of a decentralized data integration architecture

for the Linked Data that can coexist with their centralized architecture. Additionally,

we propose concrete components to be added to the Linked Data to make this vision a

welcome reality.

1http://www.w3.org/RDF/
2http://webont.org/owl/1.1/

9
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Mainly, RDF links are established by connecting two data objects that refer to the same

world entity using the semantic predicate owl:sameas3. This data integration process

is known as instance matching or schema matching, depending whether the process is

applied at instance or schema level, respectively. Instance and schema matching have

been studied extensively by the database community for the last 30 years. However, the

heterogeneous and decentralized nature of the Linked Data pose additional challenges

for data integration in this setting, where assumptions embodied in the existing methods

no longer apply.

We argue that adopting existing data integration paradigms to the scenario of Linked

Data considerably limits the interlinking of its datasets, especially regarding new datasets

to be added to the cloud. Current methods require the data to be available locally, typ-

ical of a centralized and off-line dataspace; while, in the Linked Data, data are decen-

tralized and scattered among many servers, in some cases only accessible via Semantic

Web protocols, such as the SPARQL protocol 4. This decentralized architecture requires

that we develop ways of thinking about integration that are as rigorous as the existing

paradigm, but different. They should incorporate characteristics that exist only in the

Linked Data and are relevant for building the interlinks. To a large extent, it requires

that we change our philosophy about data integration, in the full sense of the term.

We envision a more organic interpretation of the Linked Data architecture where each

dataset in the cloud behaves as an independent organism having as one of its functions

the ability of self-linking to other datasets in the cloud. The analogy of a dataset in the

Linked Data would be a cell in a living organism. Analogous to cell signaling in a living

cell (a communication mechanism that governs basic cellular activities and coordinates

cell actions), a communication mechanism could orchestrate dataset interlinking, which

would happen independent from human intervention. Notice that although a living

cell behaves independently, intra-cellular structures guide cell behavior. Analogously,

we propose here structures that should be part of a dataset in the Linked Data to

guide its self-interlink behavior. Ideally, we would propose that a dataset should be

automatically interlinked as soon as it is published (becomes “alive” in cloud), without

human intervention. The ideas proposed here will play a crucial role to make this vision

a reality. Fig. 2.1 shows the structures that we will introduce.

The envisioned architecture can boost interlinking in the Linked Data, greatly contribut-

ing to speed-up the vision of a Semantic Web. In this thesis, we describe the components

of this architecture, and present a prototype tool as a proof of concept. We have evalu-

ated this new paradigm on reference benchmarks in the field [25], and the results show

3We ignore that other RDF predicates can also act as RDF links (e.g. db:livesin).
4http://www.w3.org/TR/rdf-sparql-query/
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Figure 2.1: Overview of the structures of in self-linking Linked Data.

that this architecture is feasible and more time efficient than the traditional data integra-

tion methods in certain conditions. Concluding, it indicates that a self-linking behavior

can be part of the Linked Data environment.

2.2 A General Architecture

Here we address our research questions: How can we boost the interlinking between

datasets in the Linked Data?

2.2.1 Building a Self-Linking Linked Data

We argue that to create a truly linked data, datasets should be capable to self-link as soon

as they are published. For that, the Linked Data architecture must include components

to allow this to happen. In the foundation of these components lies a different data

integration paradigm that we discuss next.

As we mentioned in the introduction, there is a predominant school of data integration

that proposes an off-line approach for the problem. As a principle, the source and target
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data to be integrated must be available locally so the data can be processed and links

established. To use this method, datasets in the Linked Data have to be downloaded

to a central server (or cluster) so that the interlinking can computed. Many authors

[26] have successfully applied this paradigm on the Linked Data; however, they paid the

price of having to allocate a large amount of computer resources and human labor to

accomplish this task. More importantly, this strategy cannot be used for all datasets in

the cloud, given that many are not available for download. Also, adding new data and

modifying existing data will become increasingly more expensive.

Part of the problem with existing data integration paradigms lies in the fact that the

Linked Data was designed to be accessed via querying a remote SPARQL endpoint or

via dereferencing URIs; while, traditional data integration methods require all data to

be fully available locally, to be indexed and processed [27][28][29][28]. Although data

can be obtained by querying a remote endpoint, to download large datasets through this

method is inefficient and quite often reaches timeouts imposed by the remote endpoints.

Apart from that, dataset sizes largely vary on the Linked Data, consequently to interlink

a small source dataset to large target dataset requires only part of the target data. In

these cases, an efficient selection of the necessary target data was not considered as an

important issue so far because it is assumed that the data is available for local processing,

which is not always true in the Linked Data scenario.

For these reasons, we argue that the Linked Data requires a different paradigm of data

integration that must operate directly over the SPARQL endpoint in an on-the-fly and

pay-as-you-go fashion. We propose a set of principles to support this vision.

2.2.2 Interlinking as a Query Problem

We argue that interlinking can be done directly by querying the source and target

endpoints, instead of fully downloading it and processing it locally. This has been

underestimated or neglected so far.

From now on, we will mostly focus on the interlinking at instance level; however, the

architecture that we propose here can be used for schema integration as well. We pose

the problem of interlinking by querying Linked Data. Finding a target instance that

matches a source instance should translate into issuing a SPARQL query in the target

endpoint, selecting the target instance with attributes similar to the source instance

[30, 31]. These matching queries contain a query pattern that identifies the source

instances and can potentially retrieve candidate matches to these source instances.
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Approaching the problem in this fashion, we benefit that the data have been already

processed in each endpoint, avoiding the pre-processing (e.g., indexing, data cleaning)

necessary in the traditional scenario. Consequently, accessing the data via query end-

points saves human labor and computer resources; more importantly, it removes the

pre-processing step from the process, facilitating the implementation of a self-linking

mechanism in the Linked Data.

Basically, at instance level, two data objects are considered the same if they share

common attributes of data. Mainly, instance matching requires two data objects to be

directly compared, in a process called direct matching. Instances are interlinked when

their similarities are above a threshold. By analyzing the data, studies [1] showed that

the attributes to be compared, the similarity functions and threshold can be determined,

automatically, in an unsupervised fashion.

As the number of data objects may be large, to speed up the process of comparisons,

most of the matching approaches split the problem of instance matching in two steps:

candidate selection and match refinement. The candidate selection step uses a low cost

method for fast retrieval of possible candidate matches for the source instances; the

subsequent match refinement step uses more elaborate methods for detecting among the

candidates the correct target matches for the source instances. The two step process

reduces the number of comparisons necessary to find the matches, which initially would

require S × T comparisons, where S and T are the number of instances in the source

and target datasets, respectively.

In the architecture that we propose, candidate selection is done by querying the SPARQL

endpoint. Once the candidates are selected, they are treated as the target dataset and

the query refinement can be done using any of the data integration methods available

in the literature. However, as this method evolves, the candidates obtained during the

candidate selection step can be so precise that the refinement step will be unnecessary.

The challenge is to build SPARQL queries to obtain the candidate matches, or the

correct matches in the optimistic scenario. As a requirement, these queries must be

effective in retrieving all the correct candidates but also must be executed efficiently.

In Chapter 4, we propose a SPARQL based candidate selection method, and we demon-

strated that it produces good candidate matches, with high recall and precision. Apart

from that, we have shown that this mechanism is more efficient that downloading the

entire data, when a certain condition holds, i.e., when the datasets sizes largely varies.

Fig. 2.2 illustrates the configuration of the candidate selection and match refinement

components in the Linked Data architecture.
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Figure 2.2: Interlinking Apparatus inside Linked Data Endpoints.

2.2.3 Self-linking Policies

On the top of the proposed components, data integration policies are applied to enable

the endpoint to self-maintain its RDF links. The interlinking could be triggered at four

distinct moments. It could be triggered by an explicit user command, automatically as

soon as the data is published, every time that the data is updated in the endpoint, and

when a new dataset is published in the cloud. These are basic policies that would allow

the endpoints to self-maintain its RDF links, responding to any internal or external data

update in the Linked Data. Additional policies could be defined to optimize the compu-

tation of the interlinks, for example, controlling the query load during the generation of

the candidate matches. Practically, these policies should be described in a vocabulary

to be specified and integrated in the design of the Linked Data. A standard policy, to

be defined by the community, must be used to guarantee the self-linking behavior in the

cloud.

2.2.4 SPARQL Extensions to Support Self-linking

To implement our vision transparently, the SPARQL language would have to be ex-

tended with a few primitives to support approximate string matching. Approximate

String matching primitives are fundamental during the process of candidate selection

because exact queries do not account for syntactical differences that exist between in-

stances in datasets (e.g. Michael Jackson vs. Jackson Michael). Although the current

SPARQL specification supports filters and regular expressions that can simulate approx-

imate matching queries, many of the available implementations do not support efficient

query processing techniques for queries using these operators. For this reason, we argue

that it would help to add to the current specification new language operators (e.g., like,
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ilike - ignore case version of like) that require an efficient implementation by future RDF

store implementations. Currently, some RDF stores, such as Open Link Virtuoso5, sup-

port an efficient computation of such approximate matching queries, using non-standard

notations (e.g. bif:contains6). Nevertheless, this would have to exist in the entire Linked

Data in a standard way so the proposed method can be truly functional.

We acknowledge that strategies for executing the matching queries in the federated fash-

ion should be consider as well. This subject is well studied in the literature [32][33][34],

and we assume here that the query engines are in charge to delegate the matching queries

to relevant endpoints. However, how to optimize these strategies to this problem is an

interesting research question.

2.2.5 Standardization of Interlinking Algorithms

We argue that a candidate selection and a matching refinement algorithm must be

designed as a standard, so all RDF stores would have the expected behavior imple-

mented. Most of the existing instance matching algorithms that target the Linked Data

are converging. In their foundations, they all exploit the same meta-properties of the

data (e.g. discriminative power and coverage of predicates) to determine RDF links

[35][36][37][38][39]. Currently, the state-of-art interlinking methods can be formalized

into a unique and default way of doing interlinking. This is a fundamental step to em-

bed the self-linking behavior in the datasets in the Linked Data. Of course, particular

interlinking methods focusing on more specific data (e.g. bio data, statistical data and

stream data.) would continue coexisting with the standard method.

2.3 Proof of Concept

We illustrate a real case scenario to show the benefit of a self-linking Linked Data for

an ordinary data owner.

Scenario. John has a collection of 5000 band names that he would like to know their

member’s names. He decides to make use of the Linked Data because he heard that it

contains other datasets that could be used to enrich his own data. Then, he generates

a single RDF triple for every band names. For example, example:band1 rdfs:label

"Metallica". He publishes these data using a RDF store that supports the self-linking

behavior standard. As soon as the data is published, the RDF engine starts looking

for possible target interlinks in the cloud. It finds the MusicBrainz dataset as a good

5http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
6http://docs.openlinksw.com/virtuoso/rdfsparql.html
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candidate for interlinking because all of the band names (strings) in John’s data also

occur in this dataset. Immediately, it starts to interlink John Band’s data to the Music

Brainz’s data, without John even being aware of it. A few minutes later, John queries

his RDF store to check his data, and then he notices that his data have been already

interlinked to MusicBrainz. Navigating through the just created RDF links, he goes

from his data to MusicBrainz and from MusicBrainz to DBPedia, where unexpectedly

he encounters not only information about the band member’s names but their origin,

discography, etc. Thanks to the Self-Linking Linked Data, now John can build a richer

application over his collection than the one that he had initially conceived.

Let us start with a use a subset of Linked Data datasets loaded into the Open Linking

Virtuoso server. As the band collection, we selected 5000 band names from the internet

archive, which are available for download at GitHub7. To emulate the self-linking be-

havior, we use SONDA8 as the candidate selection module and SERIMI9 as the match

refinement module, the open source implementations of Chapter 4 and Chapter 3, re-

spectively. A single command obtains the RDF links, namely,

sondaserimi -source localhost:8890/sparql -target localhost:8891/sparql

where the two URIs represent John’s data and Music Brainz data, respectively. Notice

that only two URIs where given to this method. In a full implementation of the self-

linking Linked Data, even the target URI would be discovery automatically.

To measure the quality of the interlinks produced, we sampled the data and check it

manually. We obtained an accuracy of 93%. Although this exercise does not operate

over a complete implementation of the presented concept, it shows that the vision of a

self-linking Linked Data is feasible, and it brings immediate benefits.

2.4 Future Work

Chapter 4 discuss how interlinking can be done via SPARQL endpoints. However, at

large scale, considering all the Linked Data, a few problems remain to be the addressed.

Consider for example, the problem of selecting the dataset in the cloud to be inter-

linked to. LDIF is a framework that addressed some of these problems [40]. Although

quite elaborated, the framework is still designed to be operated manually as it requires

matching rules to be supplied by the data designer. Although elements existing in these

7https://github.com/samuraraujo/internetarchive
8https://github.com/samuraraujo/Sonda
9https://github.com/samuraraujo/SERIMI-RDF-Interlinking
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approaches are necessary to build our vision, much more have to be considered. We pro-

pose that the community to develop a research agenda to identify and tackle all these

issues.

Automatic and unsupervised techniques and algorithms to produce matching rules are

available in the literature [41][38][35]. To accomplish our vision, as they share the same

principles, a research agenda should be defined aiming to converge these techniques to

a basic acceptable standard approach. Vocabularies to describe endpoint have been

already proposed [42], they could be extended to support self-linking policies.

2.5 Conclusion

The success of Linked Data depends on pragmatic designing decisions putting the self-

linking behavior at the foundation of the Linked Data ideology.

We have motivated our work with general considerations about the use of traditional

data integration techniques on building Linked Data. We have focused on a family of

interrelated problems that are centered on the notion of datasets self-linking in an on-

the-fly fashion. As a result, we have obtained a data integration architecture to boost

interlinking in the Linked Data, contributing to speed-up the realization of the vision of

the Semantic Web.





Chapter 3

SERIMI: Class-based Matching

for Instance Matching Across

Heterogeneous Datasets

State-of-the-art instance matching approaches do not perform well when

used for matching instances across heterogeneous datasets. This shortcom-

ing derives from their core operation depending on direct matching, which

involves a direct comparison of instances in the source with instances in the

target dataset. Direct matching is not suitable when the overlap between the

datasets is small. We propose a new paradigm called class-based matching

to solve this problem. Given a class of instances from the source dataset,

called the class of interest, and a set of candidate matches retrieved from

the target, class-based matching refines the candidates by filtering out those

that do not belong to the class of interest. For this refinement, only data

in the target is used, i.e., no direct comparison between source and target

is involved. Based on extensive experiments using public benchmarks, we

show our approach greatly improves the results of state-of-the-art systems,

especially on difficult matching tasks.

19
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Table 3.1: Instances represented as RDF triples.

Source Dataset

Subject Predicate/Attribute Object/Value

nyt:2223 rdfs:label ’San Francisco’
nyt:5962 rdfs:label ’Belmont’
nyt:5962 geo:lat ’37.52’
nyt:5555 rdfs:label ’San Jose’
nyt:4232 nyt:prefLabel ’Paris’
geo:525233 rdfs:label ’Belmont’
geo:525233 in:country geo:887884
geo:525233 geo:lat ’37.52’

Target Dataset

Subject Predicate/Attribute Object/Value

db:Usa owl:sameas geo:887884
db:Paris rdfs:label ’Paris’
db:Paris db:country db:France
db:Belmont France rdfs:label ’Belmont’
db:Belmont France db:country db:France
db:Belmont California rdfs:label ’Belmont’
db:Belmont California db:country db:Usa
db:San Francisco rdfs:label ’San Francisco’
db:San Francisco db:country db:Usa
db:San Francisco db:locatedIn db:California
db:San Jose California rdfs:label ’San Jose’
db:San Jose California db:locatedIn db:California
db:San Jose Costa Rica rdfs:label ’San Jose’
db:San Jose Costa Rica db:country db:Costa Rica

3.1 Introduction

A large number of datasets has been made available on the Web as a result of initiatives

such as Linking Open Data. As a general graph-structured data model, RDF1 is widely

used especially for publishing Web datasets. In RDF, an entity, also called an instance,

is represented via 〈subject, predicate, object〉 statements (called triples). Predicates and

objects capture attributes and values of an instance, respectively (terms that are used

interchangeably here). Table 3.1 shows examples of RDF triples.

Besides RDF, OWL2 is another standard language for knowledge representation, widely

used for capturing the “same-as” semantics of instances. Using owl: sameas, data

providers can make explicit that two distinct URIs actually refer to the same real world

entity. The task of establishing these same-as links is known under various names such

as entity resolution and instance matching.

1http://www.w3.org/RDF/
2http://www.w3.org/TR/owl-features/
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Semantic-driven approaches [43–45] use specific OWL semantics, such as explicit owl:

sameas statements, to allow the same-as relations to be inferred via logical reasoning.

Complementary to this, data-driven approaches derive same-as relations mainly based

on attribute values of instances [1]. While they vary with respect to the selection and

weighting of features, existing data-driven approaches are built upon the same paradigm

of direct matching, namely, two instances are considered the same when they have many

attribute values in common [30]. Hence, they produce only high quality results when

there is sufficient overlap between instance representations. Overlap may, however, be

small in heterogeneous datasets; especially, because the same instance represented in

two distinct datasets may not use the same schema.

For example, in Table 3.1, the source instance nyt:5962 and the target instances

db:Belmont_France and db:Belmont_California share the same rdfs:label value,

i.e., the string ’Belmont’ (see Fig. 3.1). However, rdfs:label is the only attribute

whose values overlap across both datasets, as the source and target graphs use rather

distinct schemas. This overlap alone is not sufficient to determine whether nyt:5962

is the same as db:Belmont_France (or db:Belmont_California). In this scenario of

instance matching across heterogeneous datasets, direct matching alone cannot be ex-

pected to deliver high quality results.

nyt:2223 

db:San_Francisco 

nyt:5962 

db:Belmont_California ‘San Francisco’ 
‘Belmont’ 

db:Belmont_France 

Direct Matching 

source instances target candidates 

Figure 3.1: Examples of instances that share a common attribute value.

Contributions. We provide a (1) detailed analysis of many datasets and matching

tasks investigated in the OAEI 2010 and 2011 [26, 46] instance matching benchmarks.

We show that tasks greatly vary in their complexity. There are difficult tasks with a

small overlap between datasets that cannot be effectively solved using state-of-the-art

direct matching approaches. Aiming at these tasks, we propose to use direct matching

in combination with (2) class-based matching (CBM).

In this chapter, we employ the following class notion: a class is set of instances where

each instance in this set must share at least one feature (vide Definition 3.3) in common

with any other instance in this set.

Based on this notion, CBM works as follows: given a class of instances from the source

dataset (e.g., nyt:2223 and nyt:5962), called the class of interest, and a set of can-

didate matches retrieved from the target via direct matching (e.g., db:San_Francisco,
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db:Belmont_France and db:Belmont_California), CBM aims to refine the set of can-

didates by filtering out those that do not match the class of interest. This matching

however does not assume that the class semantics are explicitly given so that a direct

matching at the class level is possible between the source (e.g. Nations) and target (e.g.

Countries). Instead, CBM is based on this idea: given the instances are known to form

a class (they have some features in common), their matches should also form a class in

the target dataset (matches should also have some features in common). Thus, correct

matches can be found by computing the subset of candidates in which members have the

most features in common. Because these candidates correspond to source instances (as

computed by the direct matching method), the class they form correspond to the source

instance, i.e. the instances found by CBM belong to a class, which matches the class of

interest. Note that in this process, the source and target instances are compared only

during the candidate selection step. During class-based matching, only data from the

target dataset is needed. This is the main difference to direct matching, which compares

the source and the target data.

In the example depicted in Fig. 3.1, class-based matching would select db:Belmont_

California and db:San_ Francisco as correct matches, because this subset of instances

are the most similar among the candidates: they have the predicate db:country and

value db:Usa in common, as depicted in Fig. 3.2.

db:Belmont_France 

db:San_Francisco  db:Usa db:Belmont_California 

Class-Based Matching 

matches non-matches 

db:country db:country 

Figure 3.2: Class-based matching.

We (3) evaluated this approach, called SERIMI, using data from OAEI 2010 and 2011,

two reference benchmarks in the field. These extensive experiments show that SER-

IMI yields superior results. Class-based matching achieved competitive results when

compared to direct matching; most importantly, the improvements are complementary,

achieving good performance when direct matching’s performance was bad. Thus, us-

ing only a simple combination of the two, our approach greatly improves the results

of existing systems. Considering all tasks in OAEI 2010, it increases average F1 result

of the second best by 0.21 (from 0.76 to 0.97). For 2011 data, SERIMI also greatly

improves the results of recently proposed approaches (PARIS [37] and SIFI-Hill [47]).

Compared to the best system participating in OAEI 2011, SERIMI achieved the same

performance. However, while that system leverages domain knowledge and assumes

manually engineered mappings, our approach is generic, completely automatic and does

not use training data.
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Outline. This chapter is organized as follows: In Section 3.2, we introduce some def-

initions. In Section 3.3, we provide an overview of SERIMI. In Section 3.4, we discuss

class-based matching and in Section 3.5 we propose a solution. In Section 3.6, we present

a detailed analysis of matching tasks. Also, we discuss experiments and results. In Sec-

tion 3.7, we discuss related works. Finally, we conclude in Section 3.8.

3.2 Preliminary Definitions

In this section, we present some important definitions.

Data. We use an RDF-based graph-structured model to accommodate different kinds

of structured data.

Definition 3.1 (Data Graph). The data is conceived as a set of graphs G. Let U denote

the set of Uniform Resource Identifiers (URIs) and L the set of literals, every G ∈ G is

a set of triples of the form 〈s, p, o〉, where s ∈ U (called subject), p ∈ U (predicate) and

o ∈ U ∪ L (object).

Every (set of) instance is represented as a set of triples.

Definition 3.2 (Instance Representation). It is defined as: IR(G,S) = {〈s, p, o〉 |〈s, p, o〉 ∈
G, s ∈ S}, where G is a graph and S a set of instances in G. It yields a set of triples

in which s ∈ S appears as the subject. We denote the set of objects associated with an

instance s over the predicate p in G as O(s, p,G), with O(s, p,G) = {o|〈s, p, o〉 ∈ G}.

The representation of a single instance s is IR(G, {s}).

Features. Now, we define the features of a set of instances X.

Definition 3.3 (Features). Let G be a dataset and X be a set of instances in G. The

features of X are:

• A(X) = {p|(s, p, o) ∈ IR(G,X) ∧ s ∈ X},

• D(X) = {o|(s, p, o) ∈ IR(G,X) ∧ s ∈ X ∧ o ∈ L},

• O(X) = {o|(s, p, o) ∈ IR(G,X) ∧ s ∈ X ∧ o ∈ U},

• T (X) = {(p, o)|(s, p, o) ∈ IR(G,X) ∧ s ∈ X},

• F (X) = A(X) ∪D(X) ∪O(X) ∪ T (X).
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Note A(X) is the set of predicates, D(X) the set of literals, O(X) the set of URIs, and

T (X) is the set of predicate-object pairs in the representation of X.

Considering X ={db:Belmont_California}, its features are: A(x) ={rdfs:label,
db:country}, D(x) = { ’Belmont’}, O(x) ={db:Usa}, and T (x) ={(rdfs: label, ’Bel-

mont’), (db:country, db:Usa)}. Hence, F (X) ={ rdfs:label, db:country, ’Belmont’,

db:Usa (rdfs: label, ’Belmont’), (db:country, db:Usa)}.

Note that A(x) captures the predicates, which are schema-level features instances of a

class typically have in common. However, we do not only use A(x) but the whole union

set F (X), which comprises both schema- and data-level features. This is due to our

special notion of class and the way we compute it: instances belong to a class when they

share some features - no matter schema or data-level features. In this way, both types

of features are leveraged for inferring the class instances belong to.

Class. We define a class as follows:

Definition 3.4 (Class). Let G be a dataset and X a set of instances in G, X is a class

if ∀x ∈ X : F ({x}) ∩ F (X − {x}) 6= ∅.

Intuitively, a class is set of instances, where an instance in this set has at least one

feature in common with at least one other instance in this set.

3.3 Overview of the Approach

In this section, we present an overview of SERIMI, our solution for instance matching.

S={si,…,sn},  T={ti,…,tn} 

Candidate  

Selec,on 

SERIMI 

C(S)={C(si),…,C(sn)} 
Direct 

 Matching 

Class‐Based 

 Matching 

M(S)={M(si), …, M(sn)} 

Figure 3.3: The instance matching in SERIMI.

The process of instance matching performed by SERIMI is illustrated in Fig. 3.3. SER-

IMI focuses on the problem of instance matching across heterogeneous datasets. In

particular, the inputs are conceived to be partitioned into two datasets, the source S

and target T . For every instance in s ∈ S, the goal is to find matching instances t ∈ T ,



Chapter 3. SERIMI: Class-based Matching for Instance Matching Across
Heterogeneous Datasets 25

i.e. s and t refer to the same real-world object. This matching is performed in two main

steps, candidate selection and match refinement.

Candidate Selection. For each s ∈ S, we firstly perform a low cost candidate selection

step to obtain a candidate set C(s) ⊂ T . The set of all candidate sets is denoted as

C(S) = {C(s)|s ∈ S}, and the union of all candidate instances is denoted as C = {t|s ∈
S : t ∈ C(s)}. This step reduces the number of comparisons needed to find matches

between the source and target, i.e., from a maximum of |S|×|T | comparisons to |S|×|C|.

Existing, so called, blocking techniques [48–50] can be used to quickly select candidates.

Typically, a predicate (a combination of predicates) that is useful in distinguishing in-

stances is chosen, and its values are used as blocking keys. In this setting of cross-dataset

matching, a predicate in the source is chosen (e.g. rdfs:label) and its values (e.g. ’San

Francisco’) are used to find target candidate instances that have similar values in their

predicates. Using the current example, the candidates matches for S ={nyt:2223,
nyt:5962, nyt:5555} would be C(nyt:2223) = {db:San_Francisco} , C(nyt:5962) =
{db:Belmont_California, db:Belmont_ France} and C(nyt:5555) = {db:San_Jose_
California, db:San_Jose_Costa_Rica}, these candidates were selected based on high

(lexical) similarity with the value of the rdfs:label predicate of the source instances.

To generate candidates in this work, we use simple boolean matching: we construct

boolean queries using tokens extracted from candidate labels. Standard pre-processing

is applied to lowercase the tokens and to remove stop words. These queries retrieve

candidates, which have values that share at least one token with the values of the cor-

responding source instance. This method is primarily geared towards quickly finding all

matches, i.e. high recall, but may produce many incorrect candidates. Higher precision

can be achieved using other techniques known in literature [51].

Direct Matching. After the candidates have been determined, a more refined match-

ing step is performed to find correct matches, M(s) ⊆ C(s). For this, it is applied

state-of-the-art approaches that perform more complex direct matching. Usually, in-

stead of a simple blocking key, they use a combination of weighted similarity functions

defined over several predicate values [37, 47]. Precisely, in direct matching, two given

instances s and t are considered as a match when their similarity, sim(s, t), exceeds a

threshold δ. Typically, sim(s, t) is captured by an instance matching scheme, which is a

weighted combination of similarity functions (Edit Distance, Jaccard, ect.) defined over

the predicate values of s and t [37, 47]:

sim(s, t) =
∑

p∈P
wp · sim(O(s, p, S), O(t, p, T )) > δ (3.1)
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Limitations. The above scheme assumes that s and t share predicates p based on which

they can be directly compared (e.g. rdfs:label, db:incountry). In the heterogeneous

setting, S and T may exhibit differences in their schemas. Instead of assuming p, more

generally, we can define the instance matching problem in this setting based on the

notion of comparable predicates 〈ps, pt〉. The predicate ps is a predicate in S, whose

values can be compared with those of pt, a predicate in T .

For example, the instance nyt:4232 does not share any predicate with the target in-

stances but we can assume that the predicate nyt:prefLabel (ps) is comparable to the

predicate rdfs:label (pt) because they have a similar range of values. Solutions, which

specifically target this setting of cross-datasets matching, employ automatic schema

matching or manually find the pairs of comparable predicates [35, 37, 52]. Let Pst be

the set of all comparable predicates. We define the instance matching scheme for this

setting as follows:

sim(s, t) =
∑

〈ps,pt〉∈Pst

w〈ps,pt〉sim(O(s, ps, S), O(t, pt, T )) > δ (3.2)

Since the direct overlap at the level of predicates (or values) between instances may

be too small to perform matching in the heterogeneous setting, we propose class-based

matching.

SERIMI. Class-based matching can be applied in combination with direct-matching,

on top of the candidate selection step; as illustrated in Fig. 3.3. Candidate selection

yields a set of candidates C(S), which is refined by a module that combines class-based

and direct matching to obtain M(S) = {M(s)|s ∈ S :M(s) ⊆ C(s) ∈ C(S)}.

While this work focuses on class-based matching, we are also proposing a complete in-

stance matching pipeline called SERIMI. Existing state-of-the-art solutions are adopted

for the candidate selection and direct matching components of SERIMI. Candidate sets

C(s) ∈ C(S) are determined for each instance s ∈ S using a predicate value of s as key.

The predicate is selected automatically based on the notion of coverage and discrimi-

native power of predicates, also employed by [52]. Then, for direct matching, we use

simple schema matching to compute comparable predicates Pst. The matching between

a source instance s and a target instance t is then performed using values of predicates

in Pst. As sim(s, t), we use Jaccard similarity. The main difference to existing works

lies in the selection of the threshold: for this, we use the same method that we propose

for class-based matching.
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We observe in the experiments that this simple combination of direct- and class-based

matching produces good results. In SERIMI, direct- and class-based matching compo-

nents are treated as black boxes that yield two scores considered independent. SERIMI

multiplies and normalizes these scores to obtain a value in [0,1].

3.4 Class-Based Matching

Let S be the instances from the source dataset and M∗ be the ground truth, containing

all and only correct matches in the target dataset. The candidate instances C computed

via direct matching might be not sound and not complete, i.e. there is a candidate in C

that is not inM∗ and there is a an element inM∗ that is not in C, when some s ∈ S and

corresponding elements t ∈ C only have few features that directly match. Class-based

matching aims to find those non-sound matches in C (to improve soundness / precision),

using only features of the candidate instances t ∈ C.

Particularly, CBM is built upon the observation that matching is usually performed for

a class of source instances. That is, all s ∈ S belong to a specific class3. Our idea

is that if S is a class, i.e., its instances share some features, then correct matches for

s ∈ S should also belong to a class, i.e., instances inM∗ should also share some common

features. Then, we aim to compute M∗ by finding a subset M ⊆ C, whose instances

are most similar to each other (compared to other candidate subsets). These instances

are considered class-based matches because they form a class that matches the class of

interest.

3.4.1 Formal Definition

For the sake of presentation, we formalize the basic version of our problem first: let

assume that individual datasets do not contain duplicates such that for each source

instance, the goal is to find exactly one match in the target dataset, i.e. |M | = |S| with
|M(s)| = 1, for all s ∈ S. Then, the CBM problem can be formulated as follows:

Definition 3.5 (Class-based Matching (CBM)). The solution for the class-based match-

ing problem can be computed as

M∗ ≈ argmax
M∈M

∑

t∈M Sim(t,M)

|M |
Subject to:

∀s ∈ S : |C(s) ∩M | = |M(s)| = 1

(3.3)

3Notice that when the input S captures different classes, it can be partitioned into sets of instances
representing specific classes [53].
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where M is the set containing all possible candidate subsetsM as elements, Sim(t,M) is

a function that returns the similarity between an instance t and the subset of candidates

M .

As an approximation for M∗ ∈ M, we compute a subset of candidate M containing

instances that are similar to itself, i.e. the goal is to maximize Sim(t,M) for all t ∈M .

Compared to all other possible candidate subsets, the solution is the one that is most

similar to its instances. Further, in this basic setting, it contains exactly one candidate

for every source instance.

As an example, we have as candidate subsetsM1 = {db:Belmont_California, db:San_
Francisco and db:San_Jose_California} and M2 = {db:Belmont_France, db:San_
Francisco and db:San_Jose_California} for the data in our scenario. Instances in

M1 are more similar to M1 than instances in M2 are similar to M2. In other words,

the similarity among instances in M1 is higher than the similarity among instances

in M2: the candidate db:Belmont_California shares the predicate db:country and

value db:Usa with the instance db:San_Francisco, which in turn, shares the predicate

db:locatedIn and value db:California with db:San_Jose_California. Thus, CBM

considers M1 as a better approximation of M∗ than M2.

We note that typically, instance matching approaches do not provide a theoretically

sound and complete solution. As captured above, CBM is also only an approximate

solution in that sense. The quality of this approximation taken by our approach is

studied in experiments using real-world matching tasks and datasets.

Computational Complexity. The following theorem captures the complexity of this

problem:

Theorem 3.6. CBM is an instance of the maximum edge-weighted clique problem

(MEWCP) [54], therefore CBM is NP-hard.

Proof. Each candidate t ∈ C can be mapped to a vertex in an undirected graph G. Two

vertices x, y ∈ C are connected if and only if x ∈ C(si) and y ∈ C(sj), where si 6= sj .

The weight of an edge {x, y} is given by sim(x, y). Any clique in G contains exactly one

candidate for each C(s) ∈ C(S). Then, a solution to the CBM problem is a clique in G

with maximum weight.

CBM Variations. Apart from the introduced basic setting, two other variants exist:

1-to-many class-based matching (1-to-many CBM) and unrestricted class-based matching

(UCBM). The former assumes ∀s ∈ S : |M(s)| > 0, while the latter, assumes ∀s ∈ S :

|M(s)| ≥ 0. 1-to-many CBM considers the cases where there is at least one match for
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each source instance, while UCBM considers the cases where some candidate set C(s)

may not contain a match to s ∈ S. To capture the UCBM problem, the constrain should

be removed and the term

Z =

∑
s∈S |C(s)∩M |

|C(s)|
|S| (3.4)

should be added to Eq. 3.3. Z is simply an auxiliary term introduced to deal with the

general case where |M(s)| = |C(s) ∩M | might be zero. It helps to assign a solution set

M ∈ M a higher score, when the majority of its matches M(s) has cardinality higher

than zero; hence, it avoids solution sets with many empty matches.

In the next section, we propose an approach to solve CBM and its variants, 1-to-many

CBM and UCBM.

3.5 Class-based Matching: A Solution

We will first present the main idea and then discuss extensions to this basic solution.

3.5.1 Basic Solution

Here we present our implementation of the presented CBM approach.

Class-based Matching. Given a set of instances S and the candidate sets C(S) =

{C(s1), . . . , C(sn)}, we implement class-based matching by finding the instances t from

each candidate set (i.e. t ∈ C(s) ∈ C(S)) that are similar to the candidate sets C(S).

Our method starts computing a score of similarity between t ∈ C(s) and C(S) itself,

i.e., Sim({t}, C(S)). In this process C(S) is considered the class of interest but not

the solution set M ; differently from the formal problem definition where M is both the

class of interest and a solution set. In this approach, we depart from C(S) to obtain the

solution set M and M(S).

This solution exploits the intuition that given t and any candidate set C(s) ∈ C(S), if
F ({t}) does not share any feature with F (C(s)), then t is not similar to any instance

in this candidate set. If t is not similar to any candidate set C(s) ∈ C(S), it cannot

form a class with any candidate instance; therefore, based on the class-based matching

assumption, it cannot be a correct match for s. Contrarily, a candidate t that is more

similar to other candidate sets are more likely to form a class with other candidates,

and therefore, can be a correct match. This heuristic is implemented as follows.
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The computation of Sim({t}, C(S)) obtains a score for each individual instance t ∈ C.
Then, the solution set M is composed of t ∈ M(s) ⊆ C(s), where for all t ∈ M(s),

Sim({t}, C(S)) > δ. Below, we define Sim and further we describe how we compute

the threshold δ.

Sim(t, C(S)) =
∑

C(s′)∈C(S)−

SetSim({t}, C(s′))
|C(s′)| (3.5)

where t ∈ C(s) and C(S)− = C(S) \ C(s).

First, note in Eq. 3.5, t ∈ C(s) is not compared with C(s) but the other candidate sets

C(s′). C(s) in our implementation is computed via direct matching and thus contains

candidates very similar to t. Just like the other candidate sets C(s′), these candidates

also help to capture the class of interest. However, due to their relative high similarity

to t, they have a too strong impact, compared to C(s′). Excluding it from the class

similarity computation helps to avoid this strong bias towards C(s). Secondly, note

the individual score SetSim({t}, C(s′)) is weighted by the cardinality of C(s′) such

that a C(s′) with high cardinality has a smaller impact on the aggregated similarity

measure. We do this to leverage the observation that small sets contain few but more

representative instances. They are better representations of the class of interest.

We further normalize the result of Eq. 3.5 by the maximum score among all instances

in C(s) as

Sim(t, C(s), C(S)) =
Sim(t, C(S))

MaxScore(C(s), C(S))
(3.6)

where

MaxScore(C(s), C(S)) =

MAX{Sim(t′, C(S))|t′ ∈ C} (3.7)

This yields a class-based similarity score that is in [0, 1]. This algorithm takes O(|C(S)|×
|C|) (note |S| = |C(S)|), in the worse case. Using this function, an instance t is consid-

ered as a correct match for s, if Sim(t, C(s), C(S)) is higher than a threshold δ or when

it is the top-1 result. We will refer to these two variants as the Threshold (for 1-to-many

CBM and UCBM) and the Top-1 approach (for CBM), respectively.

The Top-1 approach makes sense for those cases where datasets are duplicate-free or

one-to-one mapping between a source and a target instance can be guaranteed. In this

case, as every instance in every dataset stands for a distinct real-world entity, there exist

at most only one correct match in the target for every instance in the source (i.e. likely
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Figure 3.4: (a) Class-based similarity score for the candidate t11 is obtained by com-
paring it with C(s2) and C(s3), (b) the score for t11 and (c) the scores for all other

candidates.

the top-1). In the other cases where there are one-to-many matches, the Threshold

approach is used. Notice that the Threshold is a general approach. As we will show

empirically, it yields competitive accuracy to the Top-1 approach.

Class-based matching is illustrated in Fig. 3.4 for the instance t11, where it is compared

to the candidate sets C(s2) and C(s3), where C(S)
− = {C(s2), C(s3)}. Notice that, in

the end, Sim(t11, C(S)) compares the features of F ({t11}) to F (C(s2)) and to F (C(s3)).

This is done for all instances in C(s1) and the one with the highest score Sim is assumed

to be the correct match for s1. Notice that for C(s2), C(S)
− is defined as C(S)− =

{C(s1), C(s3)}. Alg. 1 illustrates the computation of Sim.

Similarity Function. Now, we introduce SetSim(X1, X2) to compute the similarity

between two sets of instances X1 and X2 based on their sets of features F (X1) and

F (X2):

SetSim(X1, X2) = FSSim(F (X1), F (X2)) (3.8)

where FSSim(F (X1), F (X2)) is a function capturing the similarity between F (X1) and

F (X2).

Early work such as Tversky’s [55] shows that the similarity of a pair of items depends

both on their commonalities and differences. This intuition is exploited by similarity

functions used for instance matching, which like Jaccard similarity, gives the same weight

to commonalities and differences.

We depart from the equal-weight strategy to give a greater emphasis on commonalities.

This is because the goal of class-based matching is to find whether some instances match
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Algorithm 1 SimScores(C(S)).

1: scores← ∅
2: for c(s) ∈ C(S) do
3: C(S)− ← C(S) \ C(s)
4: scorec(s) ← ∅
5: for t ∈ C(s) do
6: scoret ← 0
7: for c(s)′ ∈ C(S)− do

8: scoret ← scoret +
SetSim({t},C(s)′)

|c(s)′|
9: end for

10: scorec(s) ← scorec(s) ∪ scoret
11: end for

12: scores← scores ∪ scorec(s)
13: end for

14: maxscore← max(scores)
15: for scorec(s) ∈ scores do

16: for i in 1..|scorec(s)| do
17: scorec(s)[i]←

scorec(s)[i]

maxscore
18: end for

19: end for

20: return scores

a class, which by our definition, is the case when they share many features with that

class. For deciding whether an instance belongs to a class or not, the common features

are thus, by definition, more crucial. Not only that, the special treatment of common

features also makes sense when considering that common features are more scarce. That

is, the number of features shared by all instances in a class is typically much smaller

than features that are not.

We propose the following function to support this intuition:

FSSim(f1, f2) =

{

0 if |f1 ∩ f2| = 0

|f1 ∩ f2| − ( |f1−f2|+|f2−f1|
2|f1∪f2| ) otherwise

(3.9)

where f1 and f2 stand for F (X1) and F (X2), respectively. FSSim(f1, f2) only considers

f1 and f2 to be similar when there exist some commonalities (i.e. FSSim(f1, f2)=0 if

|f1∩f2| = 0). The first term |f1∩f2| has a much larger influence, capturing commonalities

as the number of overlaps between f1 and f2, which is always larger than 1. The second

term ( |f1−f2|+|f2−f1|
2|f1∪f2| ), capturing the differences, is always smaller than 1. In fact, given

fj and fk that have n and n−1 features in common with fi, respectively, FSSim always

returns a higher score for fj .

For example, assuming f1 = F ({db:Belmont_California}), f2 = F ({db:Belmont_France})
and f3 = F (C(nyt:5555)); then, FSSim(f1, f3) = 3.65, while FSSim(f2, f3) = 1.5.
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The scores reflect the fact that f1 has 4 features in common with f3, while f2 has only

2.

Notice that FSSim does not capture any class semantics but is a set similarity function

tailored towards the commonalities, for supporting the intuition discussed before. How-

ever, the class semantics is inferred as a result of applying this similarity computation as

performed in our approach: the instances found by CBM form a class that corresponds

to the class of interest.

The bias towards commonalities is captured by the following theorem, which does not

hold for the Jaccard function (see Appendix A):

Theorem 3.7. If |fi ∩ fj | > |fi ∩ fk| then FSSim(fi, fj) > FSSim(fi, fk).

3.5.2 Reducing the Number of Comparisons

In order to compute a score for every instance in each candidate set C(s) ∈ C(S), our
class-based matching approach requires a maximum of |C(S)| × |C| comparisons. Since

|C(S)| can be large, we propose to reduce the number of comparisons by reducing C(S)

to a minimal subset C(S)∗ such that the feature distribution of C(S)∗ differs only within

an error margin ǫ from the feature distribution of C(S). Then, C(S)∗ is used in the line

3 of Alg. 1 instead of C(S), i.e., C(S)− = C(S)∗ \ C(s). We define the feature set and

the distribution over elements in that set as follows:

Definition 3.8 (Feature Set). The feature set of C(S) is F (C(S)) =
⋃

C(s)∈C(S) F (C(s)).

Definition 3.9 (Feature Distribution). A distribution over the feature setX = F (C(S)),

denoted by Pr(X), assigns a probability p(x) to every feature x, i.e. the probability of

observing a feature x through the repeated sampling of features from X:

p(x) = Pr{X = x} =
∑

C(s)∈C(S) |{x} ∩ F (C(s))|
|F (C(S))| × |C(S)|

where

1. p(x) ≥ 0 for all x ∈ X and

2.
∑

x∈X p(x) = 1.

In the ideal case, C(S)∗ contains a much smaller amount of candidate sets compare to

C(S), i.e. |C(S)∗| << |C(S)|, while carrying the same amount of information such that

the similarity scores computed for C(S)∗ and C(S) are the same. In order to capture the
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differences in the provided information content, we use the z-test, which is a standard

method for analyzing the similarity/difference between the distribution of a sample and

the distribution of the original population:

z-test =
(µ(sample)− µ(population))

( σ(population)√
size(sample)

)

where µ(·), σ(·) and size(·) denote the mean, the standard deviation and the size, and

population = Pr(F (C(S))) and sample = Pr(F (C(S)∗)).

A brute force algorithm to solve this problem is to enumerate all possible subsets of C(S),

i.e., its power set 2|C(S)|. Then, for each set in 2|C(S)|, it picks the minimal set C(S)∗

that has a distribution equivalent to the one of C(S). In the worse case, this algorithm

takes O(2|C(S)|) verifications to find C(S)∗, which is prohibitive even for small C(S).

We note the attempt to find an optimal solution to this problem may go against our goal.

We need to find the set C(S)∗ ⊆ C(S) at very low cost so that the time spent is smaller

than the gain that can be achieved by using C(S)∗ instead of C(S). We thus use an

efficient greedy algorithm that exploits the following intuition: a sample is more similar

to its population when it contains more data from the population. Without enumerating

and evaluating each subset, it iteratively extracts and adds a subset C(s) ∈ C(S) to the

sample C(S)∗ until the z-test between Pr(F (C(S))) and Pr(F (C(S)∗))) approaches

the confidence value commonly used in the literature,4 or all C(s) ∈ C(S) is added to

C(S)∗. For faster convergence, only features that occur more than once in the data are

considered in F (C(S)).

The procedure to obtain C(S)∗ is summarized in Alg. 2. It takes O(|C(S)|), in the worse

case. In Sec. 3.6, we compare the time performance and accuracy of Alg. 1 with and

without this procedure.

3.5.3 Selecting the Threshold

As discussed, the Top-1 approach can be used when the datasets are duplicate-free. In

all other cases, a threshold selection method should be employed. Then, only instances

with similarity score above the computed threshold δ are selected as matches. State-

of-the-art methods [47, 56] are supervised, relying on training data to find the best

threshold. We propose an unsupervised method, which only uses statistics that can be

derived from the computed scores. We cast the problem of threshold selection as the

one of finding the statistical outliers among the similarity scores. In particular, we use

4which, under our assumption of normal distribution, is in [−1.96, 1.96]
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Algorithm 2 CandidateSetsReduction(C(S)).

1: C(S)∗ ← ∅
2: µ← mean(p(C(S)))
3: σ ← stdv(p(C(S)))
4: for all C(s) ∈ C(S) do
5: C(S)∗ ← C(S)∗ ∪ C(s)
6: n← |C(S)∗|
7: M ← mean(p(C(S)∗))
8: SE ← σ√

n

9: z ← (M−µ)
SE

10: if z is in the confidence interval then
11: return C(S)∗

12: end if

13: end for

14: return C(S)∗

two bags of scores, one containing only the maximum scores and the other containing

all scores.

Definition 3.10 (Bag of Scores). Given the candidates C and C(S), the bag of all

scores contains a score for every t ∈ C, i.e., Scoresall = {Sim(t, C(S)) |t ∈ C}. The

bag of maximum scores contains a score for every C(s) ∈ C(S), i.e., Scoresmax =

{MaxScore(C(s), C(S))|C(s) ∈ C(S)}.

The maximum scores constitute the starting point for threshold selection. Intuitively

speaking, two cases can be distinguished: First, (1) we have maximum scores that all

are close to 1, and differences among them are small. (2) In the second case, there are

large variations among scores. Some of them are low, approaching 0.

Note the first case corresponds to the setting where correct matches are easy to find,

i.e., at least one candidate with score close to 1 could be found for every source instance.

In this case, δ is simply defined based on the minimum score in Scoremax. In this way,

all candidates with score in Scoremax are selected. This strategy works for this “easy

setting” because due to the use of set-based similarity in class-based matching, score

differences among correct matches tend to be small while differences between correct

and incorrect ones are much larger. Thus, incorrect matches typically have scores much

lower than the minimum score in Scoremax.

In the second “harder setting”, “bad” candidates were detected, i.e., those with low

scores in Scoremax. This indicates that for some source instances, no correct candidates

exist or could be found. However, we cannot use the minimum score as before to filter

these “bad” candidates. It could be too low, or generally, not precise enough to separate

correct from incorrect matches. To find δ in this case, we propose to detect outlier
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scores. For finding outliers more precisely, we use the bag of all scores, Scoreall, instead

of Scoremax. Intuitively, candidates that have an outlier score share fewer features with

the class of interest, thus can be regarded as incorrect.

As a mechanism to implement the ideas above, we propose to use a method based on

the Chauvenet’s criterion [57], a statistical technique for outlier detection.

Definition 3.11 (Chauvenet’s Criterion). Given the

mean µ and the standard deviation σ of the scores in Scoreall, a score x ∈ Scoreall is
an outlier if Chauvenet(x) < c1, where

Chauvenet(x) = p(
µ− x
σ

)× |Scoreall|,

c1 is a confidence level5 and p(µ−x
σ ) is the probability6 of observing a data point x that

is µ−x
σ times standard deviations away from the mean.

According to the Chauvenet’s criterion, there are no outliers when σ < c2, another

confidence level that is typically set close to 0.7

Our procedure for threshold selection first extracts the maximum score of each candidate

set C(s) ∈ C(S) to form Scoremax. When there are no outliers according to the Chau-

venet’s criterion, we set the threshold as the minimum score in Scoremax. Otherwise,

we iteratively apply the Chauvenet’s criterion over Scoreall until no further outliers can

be detected: in every iteration, if outliers are found and δ is the highest score among all

outliers, we remove all scores that are smaller than δ from Scoreall; this pruned bag of

scores is then used in the next iteration. The maximum δ found in this process is used

as the threshold. Alg. 3 describes this algorithm.

For example, for the scores in Fig. 3.4, the list of maximum scores Scoremax={0.98,
0.23, 1.0} has a standard deviation much higher than the confidence level c2; therefore,

the algorithm is applicable. Considering all scores Scoreall= {0.98, 0.5, 0.33, 0.07, 0.23,
0.12, 0.22, 1.0, 0.68, 0.24 }, this algorithm would select as threshold δ = 0.68; therefore,

all instances with scores smaller than 0.68 would be rejected as a correct match. Notice

that 0.68 is much higher than 0.22, the minimal of Scoremax.

3.6 Evaluation

Our experiments are based on the OAEI 2010 and 2011 instance-matching track. We

observed that SERIMI with the proposed candidate set reduction algorithm was 20%

5Typically, it is set to 0.5 when using Chauvenet’s criterion.
6We assume a normal distribution.
7In literature, σ < 0.011 is typically used.
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Algorithm 3 ThresholdBasedSelection(C).

1: Y ← getMaxScores(C)
2: L← getAllScores(C)
3: δ ← Array
4: if Y.standardDeviation < c2 then

5: return Y.min
6: end if

7: for all x ∈ L do

8: if L.mean− x < 0 then

9: continue;
10: end if

11: if chauvenet(L, x) then
12: C ′ ← remove all scores ≤ x from C
13: δ.add(x)
14: δ.add(ThresholdBasedSelection(C ′))
15: return δ.max
16: end if

17: end for

18: return 0

faster than SERIMI without it. Also, class-based matching was useful and complemen-

tary to direct matching. For OAEI 2010, this combination increased average F1 result

of the second best by 0.21; and, for OAEI 2011 data, SERIMI improves the results

of recently proposed approaches, PARIS [37] and SIFI-Hill [47], by 0.44 and 0.09, re-

spectively. Compared to the best system participated at OAEI 2011, SERIMI achieved

the same performance. However, as opposed to that, SERIMI does not assume domain

knowledge and manually engineered mappings.

Evaluation Metrics. We used the standard F1 to measure the result accuracy (also

employed by OAEI). F1 = 2× Recall×Precision
Recall+Precision is the harmonic mean between precision

(proportion of correct matches among matches found) and recall (proportion of matches

found among all actual matches). To compute F1, the provided reference mappings were

used as the ground truth.

Data. We used all the OAEI 2010 data employed by participants, which include the

life science (LS) collection containing DBPedia, Sider, Drugbank, Dailymed, Tcm and

Diseasome and the Person-Restaurant (PR) dataset. From OAEI 2011, the datasets

used were New York Times (Nyt), DBPedia, Geonames and Freebase. Given a pair of

datasets, the task was to match instances in one dataset to instances in the other. The

source class of instances for each dataset was defined by the OAEI. Detailed information

can be found in their website 8. Table 3.2 and 3.3 show some relevant statistics related

to the datasets and matching tasks, respectively.

8http://oaei.ontologymatching.org
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Table 3.2: Number of triples in each dataset.

Dataset Triples Dataset Triples

Nyt 350.349 Person11 9.000
Freebase 3.554.824 Person12 7.270
DBPedia >10.000.000 Person21 10.800
Geonames >10.000.000 Person22 5.944

Sider 96.204 Rest1 1.130
Tcm 111.021 Rest2 7.520

Dailymed 131.068 Drugbank 507.500
Diseasome 69.545 - -

Table 3.3: Dataset pairs representing matching tasks, number of comparable pred-
icates (CP) for every task, number of correct matches (Match), number of candidate
matches obtained from candidate selection (Cand), mean (MEAN) and standard devi-

ation (STDV) of the number of candidates per instance.

Dataset Pairs CP Match Cand MEAN STDV

Nyt-DB-Corp 3 1965 3839 2.0 2.01
Nyt-DB-Geo 4 1920 9246 4.87 7.9
Nyt-DB-Per 5 4977 7937 1.61 1.02

Nyt-Freebase-Corp 2 3044 3398 1.15 0.37
Nyt-Freebase-Geo 3 1920 2234 1.19 0.43
Nyt-Freebase-Per 3 4979 5090 1.04 0.19
Nyt-Geonames 4 1789 10782 6.18 9.21
Dailymed-Sider 8 1592 1592 1.0 0.03
Diseasome-Sider 4 163 163 1.0 0.08
Drugbank-Sider 8 284 284 1.0 0.06
Sider-Dailymed 2 1634 1915 2.93 2.43
Sider-DB-Drugs 2 734 742 1.05 0.22

Sider-DB-SideEffect 2 775 960 1.25 0.56
Sider-Diseasome 4 173 192 1.2 0.57
Sider-Drugbank 8 1140 1260 1.04 0.21

Sider-Tcm 2 171 171 1.0 0.08
Person11-Person12 6 500 1501 3.23 2.28
Person21-Person22 6 400 476 5.06 3.2

Rest1-Rest2 2 112 117 1.06 0.5

Systems. All computed results were done using an Intel Core 2 Duo, 2.4 GHz, 4

GB RAM, using a FUJITSU MHZ2250BH FFS G1 248 GB hard disk. The SERIMI

implementation used in these experiments is available for download9 at GitHub. It was

implemented in Ruby. Except for SIFI and PARIS, we copied all available results as

published in the OAEI benchmarks. We used the available authors implementation10

for PARIS, and the best effort implementation in Java for SIFI-Hill (SIFI).

9https://github.com/samuraraujo/SERIMI-RDF-Interlinking
10http://webdam.inria.fr/paris/
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3.6.1 Task Analysis

The suitability of direct matching and class-based matching for a task is related to the

complexity of the matching task itself. So far, there is no method that suits all kinds

of matching tasks, because data are imperfect in this heterogeneous setting. As we will

show, the widely employed assumption that attributes between datasets largely overlaps

is not true for all matching tasks, or for all instances within a matching task. We

observed the accuracy of each matching technique largely depends on the distribution of

the predicates and values in the source and target dataset. In order to obtain a better

understanding of how these distributions affect the accuracy of a matching technique,

below we propose the use of coverage (Cov) and discriminative power (Disc) as measures

for analyzing the task complexity.

Cov(p, S,G) =
|{s|〈s, p, o〉 ∈ G ∧ s ∈ S}|

|S| (3.10)

Disc(p, S,G) =
|{o|〈s, p, o〉 ∈ G ∧ s ∈ S}|
|{t|t = 〈s, p, o〉 ∈ G ∧ s ∈ S}| (3.11)

where S is the given set of instances in the dataset G.

The coverage of a predicate p measures the number of instances in S that p occurs.

A predicate p with low coverage indicates that p occurs in a few instances; therefore,

when utilizing values of p for finding matches, we may miss some candidates. The

discriminative power measures the diversity of predicate values. A predicate p has low

discriminative power when many instances have the same values for p; therefore, using

values of p for matching, results in larger candidate sets. Consequently, datasets with

many predicates that have low coverage and low discriminative power are harder to

match.

Using these two measures, we introduce a task complexity measure TC that defines the

complexity of matching a set of instances S with T , where T =
⋃

c∈C(S) c. First, we

introduce the predicate complexity measure (PCM) that measures the complexity of

matching a set of instances X based on coverage and discriminative power of a set of

predicates P in G.

PCM(P,X,G) =

∑

a∈P Cov(a,X,G) +Disc(a,X,G)

2|P | (3.12)

The size of the candidates sets in C(S) is also an indication of complexity because sets

with more candidates may have more ambiguous candidates to filter out. Therefore, we
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define Card(S). Smaller values for Card(S) indicate that C(S) has bigger candidate

sets.

Card(S) =
|C(S)|

∑

c∈C(S) |c|
(3.13)

Finally, we introduce TC, defined as:

TC = 1− PCM(Ps, S,Gs)× PCM(Pt, T,Gt)× Card(S) (3.14)

where TC is a value in the interval [0,1], where 0 is less complex and 1 more complex.

Table 3.3 shows the characteristics of each matching task. Fig. 3.5 shows the tasks

ordered by TC. With respect to that, Nyt-Geonames is the most complex task, which

on average has around six candidate matches per instance. In this table, some tasks

are easier tasks because most of the candidate sets contain only correct matches, or one

instance per candidate set (e.g. Sider-Tcm).

Fig. 3.6 shows the coverage and discriminative power of predicates in the target datasets.

In all these datasets, there exist at least one predicate with 100% coverage (e.g. drugbank:

brandName, freebase:name). However, only in some cases, their discriminative power is

maximal (e.g. drugbank:brandName). The DBPedia, Geonames and Freebase datasets

seem to be the hardest to match, as both coverage and discriminative power of their

predicates are the lowest. In these cases, many predicates have to be used, which is

only possible when there are many corresponding predicates in the source. Contrarily,

the higher the coverage, the easier is the task because more instances can be covered

with fewer predicates (the discriminative power of source predicates is, however, irrele-

vant because only target predicate values are used for finding matches). Fig. 3.7 shows

predicates in the source datasets that are comparable to target predicates, and their

coverage. It indicates there are always some comparable predicates that can be used

(Table 3.3 explicitly shows the number of comparable predicates for every task), and

that their coverage is always maximal (except for Nyt). In summary, comparable pred-

icates exist for all the given tasks. However, direct matching is harder for some tasks

such as Nyt-Geonames and Nyt-DB-Geo as they require using several predicates due to

low coverage and discriminative power of target predicates. As the coverage is different

for different target instances in those tasks, direct matching may not achieve its full

performance due to the lack of comparable predicates at instance level.
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3.6.2 SERIMI Configurations

We evaluated 5 different configurations of SERIMI: (1) We evaluated SERIMI’s perfor-

mance without and with candidate set reduction (algorithm in Sec. 3.5.2), referred to as

S and S+SR, respectively. (2) We removed different features proposed for CBM, namely

predicates (S+SR-P), datatype properties (S+SR-D), object properties (S+SR-O) and

tuples (S+SR-T). (3) We evaluated SERIMI’s performance with the top-1 approach

(S+SR+TOP1) and the threshold approach (S+SR+TH). (4) Further, direct matching

is used (DM), which is compared with SERIMI’s performance (class-based matching)

combined with direct matching (S+SR+DM). (5) Finally, S+SR+DM+J uses Jaccard

instead of FSSim (Eq. 3.9). Except for S+SR+TOP1 and S+SR+TH, top-1 was used

instead of the threshold for matching tasks with one-to-one matching. We measured time

efficiency and result accuracy for every configuration, using all mentioned collections in

OAEI 2010 and 2011. The results are shown in Table 3.4 and Table 3.5, respectively.

Candidate Set Reduction. We observed that with candidate set reduction, SERIMI is

20% faster (average performance of S is 61s vs. 49s for S+SR). The number of candidate

sets used in class-based matching could be considerably reduced. Consequently S+SR

performed a much smaller number of comparisons. S+SR did not compromise accuracy

as average results for S and S+SR were almost the same (F1 of 0.89 vs. 0.9).

Feature Removal. We could see that the performance improvement resulting from

using less features (S+SR vs. S+SR-P, -D, -O and -T) is consistent but small in most

cases. Removing predicates (S+SR-P) has the largest impact, where performance in-

creased by 20%. This type of features represented a large part of all features used.

Hence, processing was much faster without them. Removing features, however, also had

a small but consistently negative impact on the accuracy. S+SR-P had the greatest im-

pact on efficiency as well as accuracy; without predicates, F1 is 0.88 (a 0.02 loss in F1).

In general, the results suggest that all proposed features are useful as they contributed

to higher accuracy.

Top-1 vs. Threshold. There were no significant differences in time between the top-1

and the threshold approach (S+SR+TOP1 and S+SR+TH performances were similar).

This suggests that selecting the threshold using the method in Sec. 3.5.3 requires little

effort and can be done very efficiently. In terms of accuracy, S+SR+TOP1 had better av-

erage performance (86% F1) than S+SR+TH (84% F1). More specifically, S+SR+TOP1

yielded better results for tasks with one-to-one mappings. However, S+SR+TOP1 ex-

hibited lower performance than S+SR+TH in two cases (50% F1 for Person21-Person22

and 56% F1 for Sider-Dailymed, compared to 86% and 81%, respectively), in which

one-to-many mappings were needed.
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Direct Matching vs. Class-based Matching. The DM (20s) approach was the

fastest, followed by S+SR (50s), S+SR+DM (55s) and S (61s). Class-based matching

as performed by S was expensive, requiring a much larger number of comparisons than

direct matching (DM). Using candidate set reduction (S+SR), performance could be

improved; S+SR is only 2.5 times slower than DM. Their combination (S+SR+DM)

is slightly slower than S+SR. In return, S+SR+DM achieved the best F1 performance

(93%). That is, SERIMI achieved the highest accuracy when direct and class-based

matching are combined. S+SR+DM improved upon S+SR because DM could reinforce

the similarity between instances when there was a direct overlap between the source and

target. In some cases, such as Nyt-DB-Geo, S+SR achieved much higher F1 than DM

(81% vs. 69%). The combination of the two, S+SR+DM, could leverage evidences used

by both approaches to further improve the results (82%). While this simple combination

led to better results on average, there was one exception where DM yielded better

performance (Person11-Person12), and several cases in which S+SR produced better

results (Sider-Dailymed, Sider-DB- SideEffect, Sider-DIASEASOME).

Particularly, S and S+SR performed poorly in Person11-Person12 (49% and 47%, re-

spectively) because features of the candidate instances are very similar (e.g. they all

contain phone, address and are of the type Person). Due to this, CBM produced simi-

lar scores for all candidates, which were not sufficiently distinct to separate the correct

matches from the incorrect ones. For this task, DM performed better because the over-

lap between the source and target instances is sufficiently high to identify the correct

matches.

Jaccard Similarity vs. Set-based Similarity. Observe also that the use of Jaccard

in S+SR+DM+J as set similarity decreased the average F1 from 93% to 87%. This

confirms our intuition that the commonalities are more relevant than the differences to

define similarity in our problem setting. Regarding performance, S+SR+DM+J (53s)

was slightly better than S+SR+DM (54s), in average.

Task Complexity. Fig. 3.8 shows the connection between time performances for S+SR,

S+SR+DM and DM and the number of triples in the candidate sets, which captures

the amount of data that has to be processed. Clearly, more time was needed when more

candidates and data have to be processed. Time performance for all 3 configurations

increased quite linearly with a larger amount of data. To assess the complexity from

the viewpoint of accuracy, we used the TC measure discussed before. Fig. 3.5 shows

the connection between F1 performances for S+SR, S+SR+DM and DM and TC. We

observed there was a trend between complexity and F1: F1 decreased as complexity

increased. Interestingly, we could see many cases, including Person21-Person22 and Nyt-

DB-Geo, where S+SR and DM are complementary, i.e. S+SR had a higher performance
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Figure 3.8: Time performance; tasks are ordered according to the number of triples
in the candidate sets.

when DM had a lower performance, and vice-versa. S+SR+DM was most helpful in

these cases as it could leverage the complementary nature of these two approaches to

improve the results.

Concluding, the highest accuracy is achieved by combining class-based matching with

direct matching. Further, candidate set reduction helps to improve time efficiency. In the

following experiments, we will use S+SR+DM, in combination with the top-1 approach

where there is an one-to-one mapping or the threshold approach otherwise.
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3.6.3 SERIMI vs. Alternative Approaches

We compared SERIMI with state-of-the-art approaches. We carefully selected in the

literature systems that reported the best performance in the benchmark that they par-

ticipated. Those systems represents a large number of approaches used for instance

matching.

We compared SERIMI with RIMOM and ObjectCoref2010 (OC2010) using the data and

results of OAEI 2010 [46]. To ensure the validity of this evaluation, we also included re-

cently published results for ObjectCoref [58], called ObjectCoref2012 (OC2012). Using

OAEI 2011 data and published results [26], we compared SERIMI with AgreementMaker

(AM) and Zhishi.links (Zhi). Using the same data, we also compared SERIMI with the

latest state-of-the-art approaches for instance matching, which did not participate at

OAEI: PARIS [37] and SIFI-Hill [47].

OAEI 2010. Table 3.6 shows results for OAEI 2010. Missing values in the table

indicates that the results were not published by the authors at OAEI. On average,

SERIMI largely outperformed both systems. As shown in Table 3.6, SERIMI (93%

F1) largely outperformed RIMON (72% F1) on average. SERIMI achieved considerable

performance gain for the life science collection. Here, CBM played an important role

because source and target instances often belong to different classes. In Sider-Dailymed

for instance, there were instances of the types Drug and Ingredient sharing the same

name that were incorrectly identified as candidate matches; these false positives were

rejected by SERIMI thanks to CBM.

Table 3.6: F1 performance for SERIMI, OC2010, RIMON, OC2012 over OAEI 2010
data; some results were not available for OC2010, RIMON OC2012.

Datasets SERIMI OC2010 RIMON OC2012

Sider-Dailymed 0.74 - 0.62 -
Sider-Diseasome 0.89 - 0.45 -
Sider-Drugbank 0.98 - 0.50 -

Sider-Tcm 0.99 - 0.79 -
Dailymed-Sider 1.0 0.70 0.62 -
Diseasome-Sider 0.97 0.74 - -
Drugbank-Sider 1.0 0.46 - -

Person11-Person12 0.95 1.0 1.0 1.0

Person21-Person22 0.91 0.95 0.97 0.95
Restaurant1-Rest.2 0.97 0.73 0.81 0.89

Average (OC2010) 0.97 0.76 - -
Average (RIMON) 0.93 - 0.72 -
Average (OC2012) 0.97 - - 0.95
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Table 3.7: F1 performance for OAEI 2011.

Datasets SERIMI AM Zhi SIFI PARIS

Nyt-DB-Corp 0.91 0.74 0.91 0.84 0.65
Nyt-DB-Geo 0.82 0.69 0.92 0.82 0.03
Nyt-DB-Per 0.95 0.88 0.97 0.98 0.06

Nyt-Freebase-Corp 0.92 0.80 0.87 0.80 0.82
Nyt-Freebase-Geo 0.92 0.85 0.88 0.64 0.60
Nyt-Freebase-Per 0.95 0.96 0.93 0.97 0.66
Nyt-Geonames 0.87 0.85 0.91 0.72 0.46

Average 0.91 0.82 0.91 0.82 0.47

SERIMI was outperformed by OC2010 and RIMON in the Person collection. One reason

is that this data involves artificially generated spelling mistakes. OC2010 and RIMON

employed special direct matching strategies to deal with that. More importantly, SER-

IMI could not yield better results because CBM has limited impact when all candidates

belong to the same class and the data schema is well-defined. In this scenario, all in-

stances belong to the class Person and the source and target schema completely overlap.

Thus, instances did not greatly vary in terms of class related information.

Also compared to OC2012, which only published results for the easiest matching tasks,

SERIMI achieved better average performance (97% F1).

OAEI 2011 As shown in Table 3.7, SERIMI had the same average performance as Zhi.

In particular, Zhi performed better in tasks involving the location datasets (DB-Geo

and GeoNAMES) because as opposed to SERIMI, it made use of domain knowledge

and location-specific similarity functions. SERIMI largely outperformed SIFI (91% vs.

82%). SIFI had slightly better performance than SERIMI for Nyt-DB-Per and Nyt-

Freebase-Per. With these tasks, SIFI was able to obtain more fine-tuned thresholds,

which led to better results. As opposed to SIFI, which relies on training data for this

threshold tuning, SERIMI is completely unsupervised. For SIFI, we used 10% of the

OAEI ground truth as positive examples, and 10% of wrong alignments in the candidate

sets as negative examples. PARIS obtained average performance of 47% F1, which was

considerably worse than SERIMI. PARIS used both schema- and data-level features

for matching. However, it only employed exact matching, i.e. it considers instances

as matches when their features exactly match. In PARIS’s authors experiments, good

results could be achieved because exact matching was sufficient for the tasks involved.

With the tasks studied here, exact matching led to very low performance.

Overall, the results show that SERIMI achieved the best accuracy results. Further, there

is room for improvement as SERIMI so far neither uses training data nor exploits domain

knowledge. Training data, for instance, could be exploited to fine tune the threshold (as

implemented by SIFI).
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3.7 Related Work

Instance matching across datasets involves the use of similarity functions, thresholds and

comparable attributes. They are captured by a matching scheme. While the majority

of approaches use a flat representation of instances based on attribute values, other

features might be applied. We will discuss existing approaches along these dimensions

of features, similarity functions and matching schemes.

Matching Features. Instance features are derived from flat attributes, structure

information (e.g. relations between RDF resources) [3, 59, 60] or semantic informa-

tion extracted from ontologies. ObjectCoref [35] for instance, exploits the semantics

of OWL properties such as owl:InverseFunctionalProperty and owl:FunctionalProperty.

Also, the combination of instance-level and schema-level features have been explored by

PARIS [37], which jointly solve the problem of instance and schema matching.

SERIMI targets the heterogeneous scenario, where no structure, semantic or schema

information is available in the worst case. It is based on a simple flat representation,

where instances are captured as a set of attribute values. This representation is employed

for single instances as well as for class of instances, which are needed for CBM.

Similarity Functions. The choice of similarity functions depends on the nature of the

features. For strings, character-based (e.g. Jaro, Q-grams), token-based (e.g. SoftTF-

IDF, Jaccard) and document-based functions (e.g. cosine similarity) were used [61].

In addition to using syntactic information, special similarity functions have also been

proposed to exploit different kinds of (lexical) semantic relatedness [62, 63].

Also along this dimension, we pursued a simple approach where only tokens are em-

ployed. However, for our new problem of CBM, which involves comparing sets of in-

stances, we propose a set-based similarity function that take the token overlaps between

sets into account.

Matching Schemes. With approaches relying on a flat representation of instances,

i.e., attribute values, the employed schemes contain the similarity functions, thresh-

olds and comparable attributes. Comparable attributes are either computed via au-

tomatic schema matching or assumed to be manually defined by experts [45]. Then,

techniques with different degrees of supervision are employed for learning the scheme.

Knofuss+GA[64] is an unsupervised approach that employs a genetic algorithm for learn-

ing. SIFI [47], AdaBoost [39] and OPTrees [56] represent supervised approaches that

learn the schemes from a given set of examples. Others approaches such as Zhishi.links

[45], RIMON [65] and Song et. al [52] assume matching schemes that for the most part,
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were manually engineered, i.e., the similarity functions and thresholds were defined man-

ually. They focus on the problem of learning the best comparable attributes.

The above solutions focus on direct matching. As oppose to that, class-based matching

does not rely on a complex scheme. It uses a special similarity function we specifically

design for this matching task. The problem of finding the threshold is cast as the one

of detecting outliers, for which we propose an unsupervised solution.

Overall, our solution can be characterized as an unsupervised, simple, yet effective solu-

tion, which employs a novel class-oriented similarity function, matching technique and

threshold selection method to exploit the space of class-related features never studied

before.

There are other systems tackling the same problem. For instance, Linda [66] is an entity

matching system for web scale that was evaluated over a small subset of the datasets

that we consider here. The reported results have a lower accuracy compared to the

systems used here.

3.8 Conclusion

In this work, we propose an unsupervised instance matching approach that combines

direct-based matching with a novel class-based matching technique to infer Sameas rela-

tion over heterogeneous data. We evaluated our method using two public benchmarks:

OAEI 2010 and 2011. The results show that we achieved good and competitive results

compared to representative systems focused on instance matching over heterogeneous

data.



Chapter 4

Efficient and Effective On-the-fly

Candidate Selection over Sparql

Endpoints

Instance matching is the problem of finding instances that refer to the same

real-word entity. This task is a crucial step towards Web data integration.

It is challenging due to the heterogeneous nature of Web data that often is

only accessible through remote data endpoints. In this work, we drop the

assumption that data is available in advance, and cast instance matching

as the problem of answering queries over remote endpoints. In particular,

we propose instance-specific matching schemes that for every instance use

several queries to retrieve the various heterogeneous candidate matches on-

the-fly in a pay-as-you-go fashion. As the number of these candidate selection

queries might be large and the cost of executing them over remote endpoints

is high, we propose a heuristic-based search optimization framework that is

used to prune non-optimal queries. We show that compared to two baselines,

the proposed solution not only yields higher quality results but also better

runtime performance.
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4.1 Introduction

Interlinking datasets is a crucial step towards Web data integration. A prominent initia-

tive towards this goal is the Linking Open Data project (Linked Data),1 which integrates

publicly available datasets by establishing “same-as” links between their instances that

represent the same real-world entity. Effectively establishing these links is a challenging

task due to data heterogeneity. Especially in this Web of data scenario, instances are

not only different at the data level (variations in names, values etc.) but also, are de-

scribed using schemas that largely vary. The following example illustrates this, showing

two pairs of instances representing the same entity from two datasets that are described

using different schema attributes:

SIDER dataset:

<sider :12312 > <label > "Morphine"

<sider :12312 > <type > <sider:Drug >

<sider :43434 > <title > "Eosinophilic Pneumonia"

<sider :43434 > <type > <sider:Drug >

DRUGBANK dataset:

<drugbank:DB00295 > <drugname > "Morphine Sulphate"

<drugbank:DB00295 > <synonym > "Morphine"

<drugbank:DB00295 > <type > <drugbank:Drug >

<drugbank:DB00295 > <affectedOrganism > "Mammals"

<drugbank:DB00001 > <drugname > "Morphine"

<drugbank:DB00001 > <type > <drugbank:Ingredient >

<drugbank:DB00494 > <drugname > "Eosinophilic Pneumonia"

<drugbank:DB00494 > <type > <drugbank:Drug >

<drugbank:DB00494 > <affectedOrganism > "Mammals"

This linking problem has been studied widely under various labels, such as entity reso-

lution, linking discovery, record linkage and instance matching [6, 31, 58, 67, 68]. It is

typically solved in two steps, namely to find candidate matches first using a relatively

simple but quick matching technique, called candidate selection (also referred to as block-

ing in the offline scenario) [2, 27, 48], and followed by a refinement step using a more

advanced but also more expensive technique, the actual instance matching. Different

techniques for learning instance matching schemes exist that capture weighted combi-

nations of similarity attributes, measures and thresholds to be used for computing and

selecting the resulting matches [38, 69]. A candidate selection scheme is typically more

simple, e.g. uses equal weights for attributes and binary similarity that indicates true or

false (instead of a degree of similarity). Since instance matching in this scenario has to

be performed across heterogeneous schemas, it actually also involves schema matching

[70] to find some attributes from one source dataset are similar to some others in the

target datasets such that their values can be compared and used to find matches.

1http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData


Chapter 4. Efficient and Effective On-the-fly Candidate Selection over Sparql
Endpoints 55

Given label and drugname are found to be a pair of comparable attributes, a candidate

selection scheme for the example is 〈label, drugname〉. For example, for the given source

instance 12312 with “Morphine” as label, this scheme can be employed to find in the

target dataset that DB00295 is a possible candidate, because its drugname also contains

the key value “Morphine”. However, using this as a general scheme for all instances is

problematic in this heterogeneous case: for example, the same scheme does not apply

to the instance 43434 because it does not have a label attribute. Solving this requires

learning several schemes and executing them against all instances in multiple runs.

For this example, the other scheme needed would be 〈title, drugname〉. In this work,

we propose instance-specific schemes to address candidate selection over heterogeneous

datasets, which are not applied to all but a particular instance.

A challenging aspect in Linked Data integration is the distributed nature of data access,

usually through SPARQL endpoints [71–74]. Existing candidate selection and instance

matching techniques tailored to the offline scenario assume that data is available locally

(and can be indexed for efficient processing). In the Linked Data setting, this requires

downloading complete datasets from endpoints and also, periodically crawling data up-

dates to perform incremental data integration. In many cases however, a copy of the

entire dataset is not available for download, and, the data is only accessible by query-

ing a SPARQL endpoint. While SPARQL queries can be used to selectively retrieve

some data, retrieving the entire dataset often hits time limits imposed by the endpoint

providers [75, 76]. Further, the target data to be interlinked may represent only a small

fraction of the entire target dataset. Downloading the whole dataset in these cases is

rather inefficient.

Instead of offline data integration, we propose to study the problem of on-the-fly candi-

date selection over SPARQL endpoints. We cast the problem of candidate selection as

querying over remote SPARQL endpoints for possible candidate matches for a given in-

stance. For example, candidates for 12312 can be retrieved using the following SPARQL2

queries over the Drugbank data endpoint:

select ?s where {?s ?p "Morphine "}

select ?s where {?s ?p "Morphine"@en}

select ?s where {?s <drugname > "Morphine "}

select ?s where {?s <synonym > "Morphine "}

As the number of candidate queries might be large and the cost of executing them

over remote endpoints may be high, the problem tackled in this work is to find instance-

specific schemes (i.e. queries) that not only deliver high quality candidates, but also, can

be executed efficiently. For example, although all queries above can retrieve candidates

2We use a simplified SPARQL syntax for the sake of presentation.
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for 12312, the first query may run faster than the others, while the last two queries are

more selective and may be more precise. For a large number of instances, the choice of

the most efficient query makes a big different in the quality of the candidates selected

and the overall execution time. The list of issues regarding the trade-off between quality

and efficiency is broad and will be discussed throughout this chapter.

Our research advances the state-of-the-art by (1) considering schemes that are instance-

specific, (2) conceiving on-the-fly candidate selection as a querying problem, (3) and

optimizing schemes not only for effectiveness but also efficiency.

Contributions. To this end, we provide the following contributions. (1) We show

how on-the-fly candidate selection can be solved by learning queries for every instance

to establish an instance-specific candidate selection scheme. As queries, we not only

consider attributes but also class-related information learned on-the-fly from data ob-

tained at query time that is treated as training examples. (2) Targeting both precision

and recall requires dealing with a large number of candidate queries. To improve effi-

ciency, we propose a heuristic-based search optimization framework that aims to select

and execute only a small number of queries discovered to be not only more quality-

but also time-optimal. (3) We evaluated the proposed approach, called Sonda, using

the Ontology Alignment Evaluation Initiative (OAEI) 2010 and 2011 instance matching

benchmarks. We adapted existing works to this on-the-fly setting to obtain non-trivial

baselines to compare with Sonda. Compared to these baselines, Sonda took 11 minutes

and achieved an F1 measure of 85% on average, while the best baseline, S-based required

14 minutes for an F1 measure of 73%. Also, we used Sonda, as the candidate selection

strategy, in combination with an instance matcher, SERIMI [25], to refine candidates.

Using Sonda, the results of this matcher greatly improved, which we attribute to the

improved accuracy in the first stage of the instance matching pipeline. The final matches

produced by Sonda in combination with this matcher were about 10% better in terms

of F1, compared against the best results reported by the benchmark.

Outline. This chapter is organized as follows: we present the problem in Sec. 4.2. In

Sec. 4.3, we elaborate on the technique for building candidate selection queries. The

refinement and optimal execution of these queries to retrieve candidates are discussed

in Sec. 4.4. Sec. 4.5 presents the experimental results, followed by related work and

conclusions in Sec. 4.6 and 4.7, respectively.
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4.2 Overview

We focus on RDF and other types of data that can be modeled as graphs. Let G denote

the set of all data graphs. Then, every dataset is conceived as a graph G ∈ G comprising

a set of triples:

Definition 4.1 (Data Model). A dataset is a graph G formed by a set of triples (s, p, o)

where s ∈ U (called subject), p ∈ U (predicate) and o ∈ U ∪ L (object), and U and L

denote the sets of Uniform Resource Identifiers (URIs) and literals, respectively. Each

literal l ∈ L is conceived as a bag of tokens, l = {t1, . . . , ti, . . . , tn}, drawn from a

vocabulary V , i.e. ti ∈ V .

With respect to this model, instances are resources, i.e. URIs, that appear at the subject

position of triples. An instance representation can be obtained from the data graph as

follows:

Definition 4.2 (Instance Representation). The instance representation is a function

I : U ×G→ G, which given an instance s ∈ U and a graph G ∈ G, maps s to a set of

triples in which it appears as the subject, i.e. I(s,G) = {(s, p, o)|(s, p, o) ∈ G}.

We also use P (s,G) = {p|(s, p, o) ∈ G} and O(s, p,G) = {o|(s, p, o) ∈ G} to denote

the set of predicates associated with an instance s, also called attributes, and the set of

objects associated with s via p, called attribute values, respectively.

4.2.1 Problem - Find Candidate Matches

Instance matching is the problem of finding different instance representations that refer

to the same real-world entity:

Definition 4.3 (Instance Matching). Given a set of source instances S, a set of target

instances T , and all (s, t) in S × T , instance matching is the problem of finding all

pairs of instances (s, t) such that sim(s, t) > α, where sim(s, t) is a similarity function,

sim : U×U → R+, which for the given instances s, t ∈ U , returns a number representing

a degree of similarity between s and t.

Typically, sim(s, t) is captured by an instance matching scheme that is actually a

weighted combination of similarity functions defined over the instances’ attribute val-

ues, i.e. sim(s, t) =
∑

p∈P (s,GS)∩P (t,GT )wp · sim(O(s, p,GS), O(t, p,GT )) > α, where

GS is the source dataset containing s and GT the target dataset containing t. When

the overall similarity sim(s, t) exceeds the threshold α, the instances s and t form a

match. Then, whether this match computed by the algorithm is indeed correct or
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not, i.e. refer to the same real-world entity or not, is verified by the ground truth.

In the heterogeneous setting, the datasets GS and GT may exhibit differences in their

schemas such that instead of using the same attribute p that is both in GS and GT ,

pairs of comparable attributes 〈pS , pT 〉 have to be found. Let PST be the set of all

comparable pairs of attributes in GS and GT . Then, the extended scheme sim(s, t) =
∑

〈pS ,pT 〉∈PST
w〈pS ,pT 〉 · sim(O(s, pS , GS), O(t, pT , GT )) > α can be defined for this set-

ting to capture that the values of the source attribute pS shall be compared with those

of the target attribute pT . Accordingly, instance matching entails the main sub prob-

lems of (A) finding pairs of comparable attributes PST (schema matching) as well as

(B) choosing and (C) weighting them, and determining the (D) similarity functions (e.g.

Edit Distance, Jaccard) and (E) the threshold α.

To avoid the |S| × |T | instance comparisons required for this task, solving the instance

matching problem is often preceded by a candidate selection step, which entails a subset

of the sub problems mentioned above. Given an instance s ∈ S, candidate selection is

the problem of quickly selecting a reduced set T ′ ⊂ T of possible candidates matches for

s:

Definition 4.4 (Candidate Selection). Given an instance s ∈ S, the target instances T ,
candidate selection is the problem of finding T ′ ⊂ T such that ∀t ∈ T ′, simb(s, t) = true,

where the similarity function here is defined as simb : L×L→ {true, false}, i.e. it returns
true if the given values are similar, or false otherwise.

Analogous to instance matching, simb(s, t) here is actually evaluated using a single

scheme, called the candidate selection scheme, which is a conjunction of similarity func-

tions, i.e. simb(s, t) =
∧

〈pS ,pT 〉∈PST
simb(O(s, pS , GS), O(t, pT , GT )). In this context,

〈pS , pT 〉 is has also been referred to as blocking key, or blocking key pair in a setting

with heterogeneous datasets. Note the difference to instance matching is that here, a

relaxed notion of similarity is used. Instead of a degree of similarity, we only need to

know if instances are similar or not. This eliminates the sub problem of finding the

threshold. Also, the similarity function is assumed to be defined manually and all at-

tributes are of equal importance such that finding weights is no longer a problem. As a

result, candidate selection targets only two of the five main sub problems above, namely

(A) finding comparable attribute pairs and (B) choosing the most selective ones to be

included in the scheme.

This chapter deals with the candidate selection problem over remote endpoints. In partic-

ular, we focus on the on-the-fly pay-as-you-go setting where we are interested in finding

candidate matches for all instances I in Gs, or a subset S of I, where both the tasks of

learning how to determine candidate matches, i.e. the scheme, and retrieving them, have
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to be performed online (over remote endpoints). Without loss of generality, we assume

that the instances in Gs can be grouped into sets of source instances S that belong to

the same class of interest Z, i.e. ∀(s ∈ S).(s, rdf:type, Z) ∈ GS , where rdf:type is an

attribute predefined in RDF representing that Z is a class of s. A possible goal is to find

target matches T ′ in GT for source instances S in GS that belong to the class Drug, i.e.

∀(s ∈ S).(s, rdf:type, Drug) ∈ GS . We do so because class information expressed as

RDF properties (e.g. rdf:type) can be used to produce more selective queries. Those

queries result in better quality candidate selection. However, class information is not

necessary for the method to work. As we will show, dropping this assumption results in

only a small loss of quality.

4.2.2 Existing Solutions

State-of-the-art instance matching / candidate selection methods are based on supervised

learning, leveraging training data to evaluate the errors and refine the learned candidate

schemes. Optimal schemes found are those which maximize the coverage of positive

examples while avoiding negative examples [56]. However, the required training data

has to be preprocessed off-line.

In this work, we focus on solutions for on-the-fly candidate selection over possibly remote

endpoints, for which the availability of instance-level training data cannot be assumed.

A previously proposed unsupervised approach [38], called S-based, assumes precomputed

schema mappings such that the comparable attribute pairs are known. Then, it chooses

them based on their coverage and discriminability, two metrics derived directly from the

data reflecting the number of instances a given attribute can be applied to and how well

it distinguishes them. An alternative method to that, referred to as S-agnostic, has been

proposed in [77] as a schema-agnostic unsupervised approach to candidate selection. It

does not use attributes for matching but treats instances simply as bags of value tokens.

Instances sharing the same token (in any attribute) are placed in one candidate set, i.e.

the similarity function is based on value token overlap. This approach does not require

any effort for learning the scheme and is particularly suited when there is a lack of

schema overlap such that only few or no comparable attributes exist. We will discuss

how S-agnostic and S-based can be adapted for on-the-fly candidate selection and used

as non-trivial baselines.

4.2.3 Sonda

The primary distinguishing feature of Sonda lies in the granularity of the learned scheme.

Instead of using a single scheme for all instances, Sonda optimizes a scheme for every
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Figure 4.1: The process of learning queries and executing them.

individual instance. More precisely, candidate selection is formulated as a querying

problem where for every instance, the learned scheme is a set of candidate selection

queries.

Further, an aspect neglected so far is time efficiency. Previous work on finding the

scheme as discussed above focuses on the quality of matches. We consider time as an

additional optimization objective such that optimal schemes (queries in Sonda) are those

that yield high quality candidates and can be executed efficiently. Moreover, not only

the execution but also the learning of schemes should be time efficient.

The overall process of learning and executing queries is illustrated in Fig. 4.1. The inputs

include a set of instances from the source dataset. Selecting candidates from the target

dataset consists of four main tasks. Firstly, (1) comparable attributes are determined

(2) and then iteratively for every source instance, queries are constructed using the

comparable attributes and information in the instance representation. (3) The efficient

and effective queries are selected and executed to retrieve candidates. The selection of

queries is performed through heuristic-based search optimization [78], which for every

instance, decides which queries to be used for execution and when to move on to the

next iteration (next instance). (4) During this iterative process, the retrieved candidates

are treated as additional information (i.e. training example) for learning queries more

refined than those that could be derived from comparable attributes in step 2.
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4.3 Learning Queries

We use star-shaped conjunctive queries that constitute a fragment of the Basic Graph

Pattern (BGP) feature of SPARQL [79].

Definition 4.5 (Query, Query Component). A star-shaped query Q(x) is a conjunction

of query predicates defined as Q(x) = (x).(x, p1, o1)∧ . . .∧ (x, pn, on) where x is the only

(free) variable and all pi and oi are constants, for 1 ≤ i ≤ n. A query component is a

query with one predicate, i.e. (x).(x, p, o).

Intuitively, such a query can be conceived as triple patterns which together form a

star-shaped pattern around the variable node x. Bindings to x are instances. In the

definition above, we do not consider the unbound variable x on the object position

because candidate instances are subject instances that contain a specific literal value as

a predicate value. For example, the following query retrieves all instances of the type

Drug that have ”Eosinophilic Pneumonia” as drugname:

(x).(x, drugname,Eosinophilic Pneumonia) ∧ (x, type,Drug).

Equivalently in SPARQL, this query can be written as follows:

SELECT ?x WHERE {?x <drugname > "Eosinophilic Pneumonia" .

?x type Drug .}

We note that besides exact value matching, which in this case returns instances of the

type Drug, with attribute drugname equal to ”Eosinophilic Pneumonia”, most data

endpoints also support fuzzy matching. Using SPARQL endpoints, we consider using

query types EXACT, as well as EXACT LANG, LIKE, AND and OR, as follows:

EXACT: SELECT ?s

WHERE {?s label ‘‘Eosinophilic Pneumonia ’’ }

EXACT_LANG: SELECT ?s

WHERE {?s label ‘‘Eosinophilic Pneumonia ’’@en }

LIKE: SELECT ?s WHERE {?s label ?o FILTER

regex (?o,‘‘Eosinophilic Pneumonia ’’) }

AND: SELECT ?s WHERE {?s label ?o FILTER

regex (?o,‘‘Eosinophilic ’’)&& regex (?o,‘‘Pneumonia ’’)}

OR: SELECT ?s WHERE {?s label ?o FILTER

regex (?o,‘‘Eosinophilic ’’)|| regex (?o,‘‘Pneumonia ’’)}

The EXACT LANG query returns instances that match exactly on label value, with

the additional constraint that the label value should be annotated with tag @en to
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indicate that the value is in English. The second LIKE query retrieves instances with

a label value containing the string ”Eosinophilic Pneumonia”. Results for the third

AND (fourth OR) query have a value containing the string ”Eosinophilic” and (or) the

string ”Pneumonia”. Note that these query types represent different similarity functions.

While EXACT corresponds to exact value matching, OR corresponds to value token

overlap. The latter is used to implement the S-based and S-agnostic baselines. These

queries implement the function simb(·, ·) as required by candidate selection, i.e. return

results that match. They are however not designed for instance matching, which requires

further filtering based on a degree of similarity.

We learn queries that consist of a small but fixed number of components. Multiple

queries may be used per instance, to achieve high recall - they avoid missing positive

matches when they do exist. To achieve high precision, only the results of the “best”

queries are taken into account. In particular, we focus on queries that are composed of

at most one attribute component and one class component. The attribute component

is a keyword query based on a discriminative key that is used to select candidates (e.g.

(x).(x, drugname, “Eosinophilic Pneumonia”)), while the class component is a query

that selects a class of instances (e.g. (x).(x, type,Drug)). When combined, the attribute

component selects candidates that share a similar key to the source instance and the class

component prune those candidates that do not belong to the class of interest. Attribute

components are learned from the set of comparable attributes that were obtained prior

to the iterative selection process while class components are learned from positive and

negative matches that are obtained during the process.

We now describe the main steps involved in building queries.

4.3.1 Finding Comparable Key Pairs

Finding comparable key pairs requires finding discriminative attributes in the source

and the target, PS and PT , and constructing pairs of comparable attributes, PST . To

generate PS and PT , we use the approach proposed by Song. et al. [38], which selects

attributes based on their discriminative power and coverage.

Instead of assuming the data to be available offline, we apply this approach over a

sample of data obtained by querying the source and target endpoints. Sampling is

crucial because retrieving all source and target data needed for learning is expensive.

To obtain the source data sample, we randomly select X% (1% in the experiment)

from the given set of source instances S, i.e. S′ ⊂ S, and retrieve their representations,
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I(S′) =
⋃

s∈S′ I(s,GS), from the source endpoint. Then, we apply Song et al.’s approach

over the triples in I(S′) to obtain the keys PS .

To obtain the target keys PT , we sample from the target dataset. Note the source data

sample captures only data related to the given source instances S′ ⊂ S. Likewise, we

propose to select a sample from the target that is related to S′. In particular, we select

all target instances that match attribute value of some instances in S′. For this, we

use queries of the form (x).(x, p, oS) to retrieve data from the target endpoint, where x

and p are variables and oS is a value in a triple (sS , pS , oS) ∈ I(S′). For example, for

oS = “Eosinophilic Pneumonia”, the query SELECT ?s WHERE {?s ?p “Eosinophilic

Pneumonia”} would be used to obtain target instances3. We construct queries for all

values in S′, obtain the union of their results, and then apply Song et al.’s approach

over the resulting sample to obtain PT .

Finally, we obtain PST by applying an instance-based schema matching technique [70]

over PS and PT . We observed in the experiments that using this “focused” sampling

based on S′ ⊂ S provides sufficient information to find PST , even using a small sample

of 1%, resulting in good time performance.

4.3.2 Constructing Attribute Components

Next, we use information in the instance representation of source instance s and the

computed comparable attributes PST to construct a discriminative query called attribute

component, which finds matching instances in the target. The attribute components

for s are directly derived from attributes in the pairs PST , the attributes P (s,GS)

belonging to the source dataset, and their values. For every pS ∈ P (s,GS), we find in

PST the attribute pT that is comparable to pS . If exists, we construct the component

(x).(x, pT , oS), where x is a variable, pT and oS are constants, and oS ∈ O(s, pS , GS).

Alg. 4 describes this procedure.

As an example, we have the source attributes PS = {label, title}, which match all

the attributes in PT = {drugname, synonym} such that PST = {〈label, drugname〉,
〈label, synonym〉, 〈title, drugname〉, 〈title, synonym〉}. For the instance 12312, we have
two attributes, P (12312, Sider) = {label, type}. The attributes comparable to label

are the attributes drugname and synonym, and the value of the attribute label is

“Morphine”; thus as attribute components, we have (x).(x, drugname, “Morphine”)

and (x).(x, synonym, “Morphine”).

3We use OR queries in the experiment.
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Algorithm 4 AttributeComponentQueries(S, GS , GT ).

PS ← FindSourceDiscriminatePredicates(S, GS)
PT ← FindTargetDiscriminatePredicates(S, GS , GT )
PST ← Align(PS , PT )
QS ← ∅
for all s ∈ S do

Qs ← ∅
for all < pS , pT >∈ PST ∧ pS ∈ P (s,Gs) do
for all oS ∈ O(s, pS , GS) do
Qs ← Qs ∪ (x).(x, pT , oS)

end for

end for

QS ← QS ∪Qs

end for

return QS

Without loss of generality and mainly for presentation purpose, we assume in this chapter

|O(s, pS , GS)| = 1. Then, the maximal number of attribute components that is formed

for s, hence the space complexity of the procedure above, is bounded by |PST |×|M |×|S|,
where M is the set of all query types (e.g., EXACT, OR). The number of queries for an

instance s is equal to |PST | × |M | if ∀〈pS , pT 〉 ∈ PST , pS ∈ P (s,GS).

4.3.3 Learning Class Components

Given the class of interest Z, a class component is used in addition to an attribute

component to prune candidates that do not belong to Z. It is of the form (x).(x, pT , oT )

where x is the only variable and pT and oT are constants derived from attributes and

values in the target dataset. For instance, the class component (x).(x, type,Drug) se-

lects instances of type Drug. Combining this class component to an attribute query,

e.g. (x).(x, drugname, “Morphine”).(x, type,Drug), would retrieve instances of the type

Drug with drugname “Morphine”. Class components might be constructed using at-

tributes other than type, e.g. (x).(x, affectedOrganism, “Mammals”) selects the “class”

of all those instances that have an attribute affectedOrganism with the value “Mam-

mals”.

While attribute components are constructed prior to the actual candidate selection pro-

cess, class components are learned during the process. This is because we infer the latter

after a few sets of candidates have been retrieved, i.e. at a specific iteration i, we treat

the candidate sets generated during all iterations previous to i as training data. This is

the Query Refinement step illustrated in Fig. 4.1.
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More precisely, an instance matcher is used to determine positive and negative matches

among these candidates, which then serve as training examples. From these positive

and negative examples, the best class components are computed, which are attribute

value pairs that occur in all positive matches but in no negative ones. That is, class

components (x).(x, pT , oT ) are constructed if ∀r ∈ µ(x), r ∈ ∆+ and r 6∈ ∆−, where ∆+

and ∆− are the two sets of positive and negative matches, respectively, and µ(x) denotes

the result bindings obtained for x when executing the class component as a query. For

example, for ∆+ = {DB00295, DB00494} and ∆− = {DB00001}, a class component

constructed is the query (x).(x, type,Drug) because, both DB00295 and DB00494 are

results of that query while DB00001 is not.

Given the finite sets ∆+ and ∆−, to build class components, we obtain the set of

attribute value pairs Λ+ = {(pT , oT )|(x, pT , oT ) ∈ I(x,GT ) ∧ x ∈ ∆+} and Λ− =

{(pT , oT )|(x, pT , oT ) ∈ I(x,GT ) ∧ x ∈ ∆−}. Then, we compute the difference Λ =

Λ+ − Λ− to capture target attribute value pairs that occur in the positive matches but

in no negative ones. Finally, we use a greedy set-cover based algorithm [80] to select

the minimum set Λm ∈ 2Λ that covers all positive matches in ∆+. Each (pT , oT ) ∈ Λm

represents a class component (x).(x, pT , oT ).

To compute Λm, the attributes values pairs in Λ are ordered by their decreasing frequency

in the positive matches in ∆+. Then, the first element in this sorted list is removed from

Λ, added to Λm and the positive matches that it covers are removed from ∆+. This

process is repeated continuously until ∆+ = ∅ or all elements in Λ are added to Λm.

Particularly, we only consider elements in Λ that occur in more than one positive match,

which avoids generating a class component that occurs only for very little percentage

of instances. In practice, this reduces Λ to a smaller set of attribute values (a few

dozens); consequently, allowing Λm to be computed quite efficiently. This computation

is bound to O(|Λ| × |∆+|) because we need to pass through all ∆+ matches to compute

the frequency of each element in Λ.

The worst case number of class components is |Λm| = |Λ|. However, the number of actual

components that cover all examples is usually much smaller, i.e. |Λm| ≪ |Λ|, limiting the

number of queries that have to be issued. In the current example, this algorithm would

select for Λm only one out of the seven attribute pairs in Λ, i.e., Λm = {(type,Drug)}.

4.4 Executing Optimal Queries

Using the method described in the previous section, a set of queries Qs is learned for each

instance s ∈ S. The maximum number of queries in Qs corresponds to all combinations
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of attribute components, class components and query types, i.e. |Qs| = (|PST |×|M |)·|Λ|.
In this section, from the total search space of |QS | queries, which contains one set Qs

for every s ∈ S, we propose to find and, whenever possible, execute only those that

are optimal, Q∗
s ⊆ Qs, for every s ∈ S. We consider a query as optimal4, q∗s ∈ Q∗

s,

if it retrieves only correct matches for s (quality-optimal), and also yields the fastest

execution time compared to the other queries q ∈ Qs (time-optimal). Note that the

quality criterion here only captures precision, as q∗s is not required to retrieve all correct

matches. We focus on precision-oriented queries, while recall is accounted for by the use

of several queries in Q∗
s (discussed later).

Clearly, this notion of optimality implies that an optimal query can only be determined

after all queries in Qs are evaluated and their results are inspected for correctness and

execution time. This is expensive in the on-the-fly setting, and the actual purpose of

the optimization proposed here is in fact to avoid executing and evaluating all queries.

To this end, we propose the use of estimates instead of the actual observed quantity for

time and correctness for selecting optimal queries.

In this section, we firstly discuss how to compute these estimates, then elaborate on how

they can be used to determine optimal queries for a given instance s, and finally, present

the whole iterative process that finds and executes queries for all instances s ∈ S.

4.4.1 Estimating Metrics for Query Optimality

For every s ∈ S, we propose to obtain estimates for the performance, i.e. cardinality and

execution time, of the queries Qs using the performance of similar queries previously

evaluated for some other instances in S. We introduce the notion of query pattern to

capture similar queries:

Definition 4.6 (Query Pattern). A query pattern of a query q is defined as C(q) =

(type, cc, p), where type is the query type (EXACT, OR etc.), cc is its class component

and p is the attribute of its attribute component.

Intuitively, a query pattern captures elements of a query that do not vary for some in-

stances. For example, the query pattern for the query q = (x).(x, drugname, “Morphine”)

is C(q) = (EXACT, null, drugname). Based on this notion, we consider queries as sim-

ilar when they share the same pattern. Based on similar queries, estimates for a given

query can obtained as follows:

4Optimal here is not use in the theoretical sense but simply to denote maximality w.r.t. our objectives
of precision and time; and later defined as maximality w.r.t. our heuristics.
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Definition 4.7 (Estimated Execution Time). Given the time of q, T ime(q), and a set

of previously evaluated queries Q and ∀x ∈ Q,C(x) = C(q), the estimated execution

time of q is T ime(q) =
∑

x∈Q T ime(x)

|Q| .

Definition 4.8 (Estimated Cardinality). Given the cardinality of q, Card(q), and a set

of previously evaluated queries Q and ∀x ∈ Q,C(x) = C(q), the estimated cardinality

of q is Card(q) =
∑

x∈Q Card(x)

|Q| .

In order to assess the time aspect of optimality introduced above, we simply use the

estimated time. Further, since there might be not one but a set of optimal queries Q∗
s,

minimizing the number of queries needed for an instance s is another mean to improve

the time efficiency of the overall process. To optimize for the quality aspect of optimality,

we propose the use of estimated cardinality as a heuristic to reflect the correctness of

query results, because queries that retrieve less instances include less incorrect matches.

This aggressive heuristic geared towards precision is designed to support our precision-

oriented quality definition. Putting these together results in the following optimization

problem that has three goals, namely evaluating (1) a minimum number of queries for

every instance, which according to estimations, have (2) fastest total execution time and

(3) lowest total cardinality:

Definition 4.9 (Optimization Goal). Let S be the set of all instances and Qs be the

set of queries evaluated for s ∈ S, and Card(q) and T ime(q) the estimated cardinality

and execution time of q, respectively, then the optimization goals are

(1) min
∑

s∈S
|Qs|, (2) min

∑

q∈Qs

T ime(q), (3) min
∑

q∈Qs

Card(q)

subject to
∑

s∈S |Qs| > 0 and
∑

q∈Qs
Card(q) > 0.

4.4.2 Optimal Queries for One Instance

Given one instance s and the queries Qs, we aim to achieve the optimization goals

above by selecting fast queries with low cardinality to execute, while skipping other

queries. Note that achieving these goals does not guarantee that the executed queries

are strictly optimal w.r.t. both time and quality as introduced before. The proposed

optimization goals account for the fact that since these two aspects are not always

complementary, queries that strictly satisfy both may not exist, i.e. there might be no

queries that are both the fastest and have lowest cardinality. The goals (2+3) can be

reached simply by minimizing the total time and cardinality of all the executed queries.

In the following, we use “optimal” simply to express that queries are optimal w.r.t. these

relaxed optimization goals.
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To identify fast queries with low cardinality, we use the estimates above as heuristics to

induce an ordering of queries:

Definition 4.10 (Time-Based Heuristic). Given two queries qi, qj ∈ Qs, qi is more

time-optimal than qj if T ime(qi) < Time(qj).

Definition 4.11 (Cardinality-Based Heuristic). Given two queries qi, qj ∈ Qs, qi is more

cardinality-optimal than qj if Card(qi) < Card(qj).

Now it is straightforward to verify that by executing queries according to either of these

two induced orders, we optimize either w.r.t. goal (2) or goal (3). Since these goals

are not complementary, we choose in the experiment to use time for ordering queries to

optimize towards goal (3) first, i.e. execute the fastest queries first. To tackle goals (1+2),

we skip queries in this time-ordered list that are redundant to or have a higher cardinality

than the previous query, using the cardinality-based heuristic and the following one:

Definition 4.12 (Redundancy-based Heuristic). Given the ordered list of queries Qs,

a query qi ∈ Qs should be evaluated only if its results do not overlap with the ones of

the preceding query qi−1 ∈ Qs, i.e. when µ(qi−1) ∩ µ(qi) = ∅ ∧ µ(qi−1) 6= ∅ ∧ µ(qi) 6= ∅ .

Note that our quality metric is precision-oriented while for increasing recall, we employ

several queries. However, increasing recall is only possible by adding queries that retrieve

results not already captured by the queries in the current set. The intuition behind this

heuristic is to focus only on queries that produce new results. If the results of qi and

qi−1 overlap, then either of the two is redundant. However, implementing this heuristic

actually requires evaluating both queries to identify if their result overlap, while the aim

is to skip the second one.

Learning to Skip Queries. We propose the use of a simple generative classifier [81, 82]

to achieve this skipping. We use a Naive Bayes classifier [83] for this in the experiment

(Alg. 5, 7 and 8). This classifier learns to predict if a query qi should be evaluated or

not. According to the proposed heuristics, this should be done when qi and its previous

query qi−1 satisfy the condition Card(qi−1) > Card(qi) ∨ qi−1 ∩ qi = ∅ (Alg. 7, lines

7-8). This condition is treated as a class label, whereas training data points are derived

from the pairs of consecutive queries (qj−1, qj), which have been executed in previous

runs. The features of these data points include the query patterns C(qj−1) and C(qj),

indicating the types of queries (qj−1, qj) belong too. As a result, at prediction time (Alg.

8, line 3), the classifier yields true for a given data point formed by qi−1 and qi when this

condition was satisfied for a representative number of evaluated query pairs that exhibit

the same pattern, i.e. when C(qi−1) = C(qj−1) ∧ C(qi) = C(qj) for a large number of

previous pairs (qj−1, qj).
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Candidate Selection Procedure for One Instance. Putting these together, the

process for finding and executing optimal queries for an instance s is as follows. First,

we sort all queries Qs according to their estimated time. Then, we partition the queries

into subsets Qs(pt) ⊆ Qs, each comprising queries that have the same attribute p in their

attribute component, but we preserve Qs. We execute the queries in Qs according to

the sorting order and skip some redundant queries during this execution. This process

is repeated until reaching a termination condition, i.e. when the query q∗s ∈ Qs(pt) with

the lowest possible observed cardinality has been reached, i.e. observed card(qs) = 1,

or when all queries qs ∈ Qs have been evaluated (Alg. 7 and Alg. 8, line 3) Note that

as we use cardinality as a heuristic for quality, q+s can be seen as the most quality-

optimal query. While many more queries might be executed during the process, results

are only taken into account for this most quality-optimal query. The result for each

such q+s ∈ Qs(pt) are finally aggregated over all the subsets Qs(pt) ⊆ Qs to obtain

the candidate set for s (Alg. 6, 7, and 8, lines 7, 12, 8; respectively). In summary,

while this process does not guarantee that only optimal queries are executed, it helps

to prioritize (time-)optimal queries during the execution and to terminate early when

the most quality-optimal queries q+s have been found. Note we use q+s instead of q∗s to

make clear that q+s is only quality-optimal w.r.t. our heuristics, and also, due to possible

conflict between time and quality, it cannot be guaranteed to be time-optimal.

Precision vs. Recall We use a precision-oriented quality measure and a corresponding

heuristic that prefers low cardinality queries to achieve this. Low cardinality queries

retrieve fewer instances, hence include fewer incorrect matches but also, might fail to

produce some correct matches. However, as we use not one but several queries for every

instance, correct matches missed by one query are often accounted for by the other

queries. Aiming at higher recall, we prioritize queries that complement each other. This

is supported by the redundancy-based heuristic, as well as the grouping of queries in

the complementary sets Qs(pt) ⊆ Qs discussed above. This grouping results in sets of

queries with different attribute components, which select different sets of candidates,

hence increasing the coverage of possible candidates.

4.4.3 Optimization Process for All Instances

As discussed previously, computing the metrics to estimate optimality as well as learning

to skip queries required information from “some” previous runs. Here, we describe

the iterative process in detail, where each iteration is concerned with processing one

particular instance, and previous runs refer to the previous iterations that have been

performed for different instances.
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Algorithm 5 CandidateSelection(S, GS , GT , β, n).

1: QS ← AttributeComponentQueries(S, GS , GT )
2: Γ← NaiveBayesClassifier.new()
3: (TS , QS , S)← SortingPhase(S, QS , β)
4: (∆+,∆−) ← matcher(TS)
5: K ← ClassComponentsQueries(∆+,∆−)
6: QS ← UpdateQueries(QS , K)
7: (T, S)← LearningPhase(S, QS , Γ, n)
8: TS ← TS ∪ T
9: TS ← TS∪ PredictingPhase(S, QS , Γ)

10: return TS

Sor$ng Phase  Learning Phase  Predic$ng Phase 
Input instances 

Queries 

Candidates 

Figure 4.2: All queries are evaluated in the Sorting phase (black and dashed circles
stand for optimal and “unnecessary” queries, respectively), while fewer queries are
evaluated in the Learning and Predicting phases (white circles denote unevaluated

queries).

The overall procedure is presented Alg. 5, which has three distinct phases applied to

different subsets of source instances, namely Sorting, Learning and Predicting phases.

Fig. 4.2 illustrates these three phases as well as the overall process. Clearly, these phases

differ in the number of queries evaluated for each instance because in the beginning, the

optimization is not effective as information necessary for estimation and learning have

to be acquired first.

Sorting. This phase covers β% of the instances (1% in the experiment, denoted by B in

Alg. 6). During this phase, all queries are evaluated to obtain the time and cardinality

estimations. That is, for every s covered in this phase, queries are randomly selected and

executed, and no skipping of queries is possible. At the end of this phase, the time-order

of the queries is determined.

Learning. During both the Learning (see Alg. 7) and Predicting phases, for every

instance s and every Qs(pt) ⊆ Qs, queries are executed according to the determined

time-order until the termination condition is reached, i.e. until q∗s with the lowest possible

observed cardinality has been reached, i.e. observed card(q) = 1, or when all queries in

Qs have been evaluated. Information collected previously as well as during this phase is

exploited to learn the classifier for skipping queries as discussed in the previous section.
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Algorithm 6 SortingPhase(S, QS , β).

1: B ← sample(β, S)
2: for all s ∈ B do

3: for all qi ∈ Qs ∈ QS do

4: eval(qi)
5: end for

6: S ← S − s
7: for all Qs(pt) ⊆ Qs do

8: Ts ← Ts ∪ µ(q+s ∈ Qs(pt))
9: end for

10: end for

11: QS ← SortByTimeEstimation(QS)
12: return Ts, QS , S

The learning is performed until convergence, i.e. until the prediction becomes more stable

as more and more data is exploited during the process (Alg. 6, line 9). In particular,

we test the prediction quality to stop this process when prediction errors do not change

for n instances (3 in the experiment).

Algorithm 7 LearningPhase(S, QS , Γ,n).

1: for all s ∈ S do

2: for all qi ∈ Qs ∈ QS do

3: if ∃q ∈ Qs(pt) ∧ qi ∈ Qs(pt) ∧ Card(q) = 1 then

4: next
5: end if

6: eval(qi)
7: Y ← Card(qi−1) > Card(qi) ∨ qi−1 ∩ qi = ∅
8: Γ.addExample(datapoint, Y )
9: S ← S − s

10: stop if Γ.converge(n)
11: end for

12: for all Qs(pt) ⊆ Qs do

13: Ts ← Ts ∪ µ(q+s ∈ Qs(pt))
14: end for

15: end for

16: return Ts, S

As an additional step, queries are updated with class components before the Learning

phase (Alg. 5, lines 4-6). To obtain the examples ∆+ and ∆−, the candidates obtained

so far serve as input to an instance matcher that outputs the examples. Then, using ∆+

and ∆−, the class components are learned, as discussed in Section 3.3, and the queries

are updated accordingly.

Predicting. Finally, the classifier learned in the previous phase is used to skip queries

in this phase (see Alg. 8), i.e. given qi−1 and qi, it executes qi when the classifier yields

true for the pair (qi−1, qi).
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Algorithm 8 PredictingPhase(S, QS , Γ).

1: for all s ∈ S do

2: for all qi ∈ Qs ∈ QS do

3: if (∃q ∈ Qs(pt) ∧ qi ∈ Qs(pt) ∧ Card(q) = 1) ∨ Γ.predict(datapoint) = false
then

4: next
5: end if

6: eval(qi)
7: end for

8: for all Qs(pt) ⊆ Qs do

9: Ts ← Ts ∪ µ(q+s ∈ Qs(pt))
10: end for

11: end for

12: return Ts

4.5 Evaluation

Currently, there exist no solutions that can be directly applied to our on-the-fly inte-

gration problem. To compare Sonda, we designed two best-effort non-trivial baselines.

They are based on S-based and S-agnostic, two recent candidate selection approaches

we have adapted to the on-the-fly setting. Although we will refer to those baselines

as S-based and S-agnostic, improvements reported in this chapter do not refer to the

original systems (which cannot be directly compared to Sonda) but the baselines.

Summarizing the experiments discussed in detail below, Sonda took 11 minutes (37m,

with real Web endpoints) and achieved an average effectiveness of 85%, measured by

F1. The best baseline, S-based, took 14m (82m, Web endpoints) and achieved 73% F1.

To consider the effect of candidate selection on instance matching, we run SERIMI on

top of Sonda’s candidates and compared the results with those reported for the OAEI

benchmark. As an average over all datasets, the best system was Sonda+SERIMI,

and it resulted in 13% F1 improvement over SERIMI, indicating that Sonda effectively

preserved the correct candidates and also reduced ambiguity (incorrect candidates),

helping the matcher to achieve higher quality results.

Datasets. We relied on the datasets and ground truth published by OAEI [84]. We used

the life science (LS) collection (which includes Sider, Drugbank, Dailymed TCM, and

Diseasome) and the Person-Restaurant (PR) from the 2010 collection and all datasets

from the 2011 collection. The matching tasks are cross-dataset tasks, which always

involve a pair of datasets. One is the source while the other is treated as the target.

Metrics. For assessing candidate selection results, we employed standard metrics,

namely Reduction Ratio (RR), Pair-wise Completeness (PC) and F1. Basically, high

RR means that the candidate selection algorithm helps to focus on a smaller number of
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candidates, while high PC means that it preserves more of the correct candidates. More

precisely, RR captures the reduction in the number of all possible candidate pairs that

have to be considered for matching. A normalized version of RR can be used, when the

number of all possible candidate pairs is large [38]. We also use normalization, where

instead of considering the reduction in the number of candidate pairs, we consider the

reduction in the number of candidates. Besides these metrics, we also count the average

number of queries evaluated per instance as well as the time needed. For assessing the

instance matching results, we used the standard metrics Precision, Recall and F1.

Systems. Our system Sonda and the results of this experiments are available for down-

load5 at GitHub. It was implemented in Ruby and the queries were implemented as

SPARQL queries issued over remote SPARQL endpoints. For the OAEI datasets, we

could find a SPARQL endpoint6 on the Web, which serves DBpedia (the largest out of

all given datasets). This endpoint runs the OpenLink Virtuoso Universal Server version

06.04.3132 on Linux, using 4 server processes. For all other datasets, we employed the

OpenLink Virtuoso Universal Server Version 6.1.5.3127 as a SPARQL endpoint, and

run it on a server in our controlled environment with Intel Core 2 Duo, 2.4 GHz, 4 GB

RAM, using a FUJITSUMHZ2250BH FFS G1 248 GB hard disk. We load these datasets

into Virtuoso, creating the default S-P-O index and an inverted index as supported by

Virtuoso that was used to support LIKE, AND and OR queries.

We used two configurations. In the Web configuration, the DBpedia endpoint on the

Web is used while in the controlled one, all datasets are managed using our controlled

endpoint. The presented values are averages over five runs. For performance reasons,

remote data endpoints stop processing according to a manually set query timeout. The

one we used supports a query limit. A query limit of 100 for instance indicates that

the endpoint should stop processing after 100 number of results have been retrieved. To

evaluate the effect of class components, we considered two versions of Sonda, namely

without (Sonda-A) and with class components (Sonda-C).

For comparison, we modified the S-agnostic [50] and S-based [38] approaches by trans-

lating their schemes to queries that are processed against endpoints. S-agnostic’s scheme

consists of all value tokens while S-based uses values of discriminative attributes. Ac-

cordingly, OR queries are created to consider all value tokens used by S-agnostic. These

queries are executed sequentially and their results are aggregated to produce the can-

didate set. As discussed, our approach and S-based use discriminative and comparable

attributes for candidate selection. To achieve this in the on-the-fly setting, we use the

sampling procedure presented in Section 3.1 for both approaches. S-based applies an

5https://github.com/samuraraujo/Sonda
6http://dbpedia.org/sparql
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additional similarity function to further prune incorrect candidates retrieved from these

queries. For comparison purposes, we apply this strategy to all approaches, using the

same similarity function.

In summary, S-agnostic uses only value tokens while S-based additionally, employs at-

tributes (focusing on discriminative ones). Sonda-A extends S-based, considering 4

more query types and furthermore, implements the heuristic-based search optimization.

Sonda-C extends Sonda-A with class components.
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4.5.1 Candidate Selection Results

Table 1 shows an overview of the results. Compared to the baseline approaches over all

18 matching tasks, Sonda-A and Sonda-C could improve F1 score in 16 and 17 of the

tasks, respectively. Average F1 values for Sonda-A, Sonda-C, S-based and S-agnostic

are 80% and 85%, 73% and 64%, respectively. This translates into a 14% improvement

that Sonda-C could achieve over the best baseline, S-based. Average time performance

of Sonda-A, Sonda-C, S-based and S-agnostic are 10m, 11m, 14m and 16m, respectively.

Thus, Sonda-A and Sonda-C were 34% and 22% faster than the fastest baseline, S-based,

respectively. Since higher quality results often require more processing time, we also look

at time performance results in the light of result quality. In particular, we look at the

matching tasks for which the results quality were comparable among the systems (when

differences in PC and F1 were < 5%). For these tasks, Sonda-A and Sonda-C were over

45% faster than the fastest baseline, S-agnostic.

Task Complexity. Differences in F1 values obtained for different tasks indicate their

varying levels of complexity. Sonda-A and Sonda-C consistently outperformed the base-

lines over all tasks (with one exception, task 16, where results were comparable).

Large improvements could be achieved for tasks 4-8, especially the two tasks that in-

volved DBpedia. These tasks involve large datasets and thus, capture a larger amount

of possible candidates that have to be considered for every instance. Sonda was more

effective in dealing with this ambiguity. In particular, it was more effective both in

finding the correct candidates and reducing the number of candidates as indicated by

average PC and RR, respectively. Higher PC could be achieved because more query

types were considered, thus incorporating a larger space of candidates. This however,

does not come at the expense of RR. While S-based and S-agnostic use all their query

results as candidates, Sonda selectively chooses the best queries and utilizes only their

results as the candidate set.

There are 4 problematic tasks where F1 values were < 0.7 (tasks 5, 9, 11 and 13).

Particularly difficult was task 9, which involves Geo Names. This dataset contains many

instances with the same labels with only few additional information to disambiguate

them. The strategies used by OAEI matching systems to deal with this task is to

manually encode and exploit geo- and location-specific knowledge in the form of rules

(which were not used by our systems). Task 11 involves an artificial dataset where

syntax mistakes were added to produce string level ambiguity. Sonda’s PC values (58.47

and 59.32, respectively) were lower than those achieved by the baselines. Here we can

clearly see the strategy of aggregating all queries results works well, while the heuristics
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used by Sonda’s to choose only the best ones may compromise PC. However, it has a

positive effect on RR, resulting in higher F1 also for this task.

Attribute Components. On average, systems using attribute components, Sonda-

C, Sonda-A and S-based, are more effective than S-agnostic, which dismisses attribute

information and used value tokens only. In terms of F1, their values are 85%, 81% and

73%, respectively, compared to 64%.

Class Components. The effect of the class component can be seen in differences

between Sonda-C and Sonda-A. The former achieved a higher RR higher and comparable

PC, thus indicating the class component has the positive effect of reducing the number of

incorrect candidates. Especially for tasks 4 and 5 that involve DBpedia, improvements in

RR were large (from 47.6 to 87.63 and 22.76 to 62.52, respectively). The class component

has a stronger effect here because this dataset simply captures more candidate results,

thus there is potentially also a higher number of incorrect results that could be pruned.

Processing Cost. As captured by Table 1, overall processing cost can be decomposed

into learning and execution times. While learning is essential to produce the queries

capturing different candidates, execution is needed to retrieve them. Thus, both steps

are crucial for result quality. However, while the baselines execute all the learned queries,

Sonda does not. This has a large impact on performance as we can see that learning

is relatively cheap, which makes up only 7% of total time, on average. Due to the

sampling we performed, the number of queries needed to retrieve data during learning

is substantially smaller. Although Sonda-A and Sonda-C were 4.7x and 3.8x slower

than S-agnostic during learning, the fastest approach that simply maps value tokens

to queries, they were 41% and 36% faster than S-agnostic when considering the whole

process. Thus, the results show that although Sonda invested more time to learn the

queries (which are needed to achieve the better results), the optimization could reduce

the time in executing the queries. While we focus the discussion on times achieved for

the controlled configuration because values were more stable, Table 1 also shows the

differences between the controlled and Web configurations. Compared to its controlled

version, Sonda-A, Sonda-C, S-based and S-agnostic were 3.6x, 3.3x, 5.8x and 1.9x slower,

respectively. This suggests that delays caused by the external DBpedia endpoint have

the largest negative impact on S-based. Accordingly, the performance improvement

Sonda could achieve over S-based is larger in the Web setting. S-agnostic yields best

time performance here because as opposed to the other systems, it does not require

learning and thus, does not have retrieve data samples from the Web endpoints.

Number of Queries. This connection between cost and quality can be more clearly

seen in the number of queries and F1. Sonda-C, Sonda-A, S-based and S-agnostic consid-

ered (during learning) on average 31, 20, 4 and 5 queries, which translates to F1 values
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of 85%, 81%, 73% and 64%, respectively. In all cases, Sonda achieves a considerable

reduction in the number of queries evaluated per instance (during execution). In some

cases (e.g. tasks 10, 14 and 18), it performed close to one query per instance.
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Figure 4.5: Percentages of query types executed by Sonda-A per task.

Number of Results. Also, quality (F1) is related to the number of results retrieved

by the queries. Fig. 4.3 and Fig. 4.4 show the effect of query limit on Sonda-A, S-

agnostic and S-based. Four query limits were used: 10, 30, 50, 100 elements. We can

see that only F1 values for S-based improved consistently with increasing query limit,

while execution times for both S-based and S-agnostic were higher with increasing query

limit. This effect on time however, could not be observed for Sonda-A because due to

the optimization, a small value for query limit sometimes resulted in a greater number of

queries that have to be executed. We observed that while PC consistently improved with

increasing limit (more results are incorporated), RR sometimes got worse with increase

limit (because more results also include more negative matches). Thus, increasing query

limit has a mixed impact on F1, while for the baselines, it unambiguously resulted in

higher processing cost.

Query Types. Fig. 4.5 shows for each task the percentage of query types executed to

find the optimal candidate set. It illustrates that to produce non-empty candidate sets,

all query types were considered useful by Sonda-A.

4.5.2 Instance Matching Results

To produce final instance matches for the OAEI matching tasks, we refined the candi-

dates produced by Sonda using SERIMI 7 (Sonda+SERIMI). Table 2 shows the OAEI

2010 results for Sonda+SERIMI, SERIMI (without Sonda) and the other systems, RI-

MON [65] and ObjectCoref [86]. When considering only datasets supported by Ob-

jectCoref, we can see that ObjectCoref was second best (see Average-ObjectCoref),

while over the datasets used by Rimon, SERIMI was second best (see Average-Rimon).

Sonda+SERIMI was best over all three combinations of datasets. As an average,

Sonda+SERIMI resulted in 13% average improvement over SERIMI. Thus, these results

7The SERIMI’ version considered on this experiment is the one published at [85]
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Table 4.2: Sonda+SERIMI compared to other OAEI 2010 published results.

Task Sonda+SERIMI SERIMI ObjectCoref Rimon

Sider-Dailymed 0.63 0.66 - 0.62

Sider-Diseasome 0.91 0.87 - 0.45

Sider-Drugbank 0.95 0.97 - 0.50

Sider-TCM 0.99 0.97 - 0.79

Dailymed-Sider 1.0 0.67 0.70 0.62

Drugbank-Sider 1.0 0.48 0.46 -

Diseasome-Sider 0.97 0.87 0.74 -

Person11-Person12 0.97 1.00 0.99 1.00

Person21-Person22 0.43 0.46 0.95 0.97

Restaurant1-Rest.2 0.98 0.77 0.88 0.81

Average-All 0.88 (+13%) 0.77 - -

Average-ObjectCoref 0.89 (+12%) 0.71 0.79 -

Average-Rimon 0.86 (+9%) 0.80 - 0.71

suggest that Sonda was effective in preserving correct matches and reducing ambiguities

(incorrect matches). This facilitates the instance matching task, enabling SERIMI to

produce higher quality results.

4.5.3 Utility of the Approach

Finally, in this section, we investigate when it is more efficient to query all instances

from the remote endpoint and to perform candidate selection locally instead of executing

instance-specific queries against the remote endpoint. This is the case when:

∑

s∈S

∑

qs∈Qs

T ime(qs) <
∑

qt∈QT

T ime(qt) (4.1)

where Qs is a set of instance-specific queries for source instance s ∈ S and QT is a set

of queries that retrieve all instances in the target dataset. If we consider tS and tT as

estimated average time of the queries in Qs and QT , respectively; then Eq. 4.1 can be

approximated by:

|S| × |Qs| × tS < |QT | × tT (4.2)

The most straightforward query that retrieves the entire content of an endpoint is the

SPARQL query “select * where {?s ?p ?o}”. In this case, |QT | = 1, and consequently, the

inequality in Eq. 4.2 would depend entirely on the time tT . For a relatively small dataset

with a few thousand triples, this query can be reasonably fast. For large datasets, it

timeouts, because in practice endpoints impose a limit on the time spent on processing a
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query (or number of triples that can be retrieved by a query). Instead, the query “select

* where {?s ?p ?o} limit X offset Y” can be considered, where X represents the number

of instances retrieved and Y = X × i where i = [0, |T |
X ]. In this case, |QT | = |T |

X .

To obtain some numbers for Eq. 4.2 using real-world data, we selected the NYTimes

dataset from the OAEI benchmark, as an example. It contains 350.000 triples in total,

which was loaded using the same system configuration discussed before. We considered

one attribute component and 5 query types; consequently, |Qs| = 5. We obtained

tS = 0.02s for these 5 query types. Assuming a limit of 1000 (i.e., |QT | = 350.000
1000 = 350),

we obtained tT = 2.65s. With these values, Eq. 4.2 can be reduced to |S| < 9.275, i.e.,

for this example, our method is more efficient than the alternative method of retrieving

all instances, when S contains less than 9.275 instances.

We note this is the case for all source datasets in the OAEI benchmark, i.e. they have

no more than 5000 instances. Moreover, most of the target datasets in this benchmark

contains millions of triples. It is clear that it is not efficient to download millions of

triples when only a few thousand of them might be relevant for the integration task.

These results suggest that in real-world datasets and integration tasks, downloading all

data is not always needed. Our on-the-fly matching solution that selects only necessary

candidates helps to improve performance, especially when the number of instances to

be matched is small.

4.6 Related Work

Candidate selection (blocking) techniques [48] aim at more efficient instance matching

by reducing the number of similarity comparisons between instances. As blocking keys,

the set of all tokens that can be extracted from the instance data has been used [77].

This approach may yield too many incorrect candidates (as shown in our experiment).

The authors tackled this problem by extracting several such profiles and combining

them [29]. In principle, this is similar to using several attributes as keys. There are

works, which have shown that the most discriminative keys can be selected by considering

their discriminative power and coverage [38].

For matching, various learning-based approaches exist that can be further distinguished

in terms of training data and degree of supervision, respectively (i.e. supervised, semi-

supervised, unsupervised [35, 38, 56, 87]). These approaches focus on learning instance

matching schemes that are optimized solely towards result quality. There are also works

that address the efficiency of learning. In particular, the efficiency of learning has been

also studied at query time, where the goal is to minimize the amount of data needed for
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learning [88]. The authors perform collective matching, which improves the quality of

matches by considering the similarities of nodes related to these matches (the collective).

Techniques have been proposed to reduce the number of related nodes that have to be

considered [88]. In this work, we show how the number of queries can be minimized to

efficiently compute the matches. The proposed technique for retrieving related nodes [88]

can be applied in addition (for collective matching). Furthermore, we also optimize the

queries towards execution efficiency.

In On-the-fly integration scenario, prior research on similarity joins and efficient indexes

can be exploited for faster execution [89]. They are complementary to our work. We aim

to select efficient queries while these works can be exploited (and implemented by the

endpoints) to further optimize the processing of these queries. In principle, SERIMI [25]

is able to perform instance matching over SPARQL endpoints. It focuses on refining

results using a class-based strategy for pruning those, that do not belong to the class of

interest. We take this idea to design class components. However, while SERIMI uses a

set of instances as an instance-based class representation, we learn the class component

(an explicit query-based representation of class) from data. Further, SERIMI focuses

on the quality results but does not pay attention to the cost of obtaining these results,

i.e. execution efficiency. Also focusing on result quality, it has been shown that through

on-the-fly instance matching, entity search results can be improved [90]. As opposed to

these works, we propose to optimize for both result quality and execution efficiency.

4.7 Conclusions

We proposed a candidate selection approach that operates by querying remote data

endpoints in the Linked Data. Our method focuses on optimizing the quality of the

results as well as optimizing the execution time to obtain them. To achieve high quality

results, we learn from the data, candidate selection schemes that are used to build

effective instance-specific queries. To achieve time performance, we employ a heuristic-

based search algorithm that learns to efficiently execute those queries. We evaluate our

approach over two baseline, using two benchmark matching task, OAEI 2010 and 2011.

The results indicate that the use of schema information in the queries improves the

quality of the results and the overall execution time (because limit the scope where the

queries are computed) considerably. Overall, compared to the best baseline, Sonda was

34% faster and improved the quality by 13%, measured in terms of F1.



Chapter 5

Learning Edit-Distance Based

String Transformation Rules

From Examples

The task of transforming a string from a source format into a target format

is encountered in many information-processing tasks. Consider the task of

transforming a list of names in the form “firstname lastname” (e.g. “Michael

Jackson”) into the target form “lastname first letter of the firstname” (e.g.

“Jackson M”). In many domains, identifying an appropriate set of operations

that transforms one string to another is challenging, as the space of possible

transformations is large. In this work, we investigate the problem of learning

string transformation rules from pairs of example strings. We propose a solid

way to design these rules based on only four string operations: permutations,

insertions, deletions and updates. Additionally, we propose an efficient al-

gorithm to learn such rules, implemented as a combination of variations of

well-known string manipulation algorithms. The proposed algorithm has the

following desirable properties: it can express any string transformation; it

can produce transformation rules that correctly transform a large part of the

data, even when a limited number of training examples is provided; it is lin-

ear w.r.t the training sample size, which allows it to scale for large tasks; and

it easy to understand and implement. We demonstrate the ability of our al-

gorithm over real-world transformation tasks. The results indicate that the

algorithm learns transformation rules that are generalizable for a broader

range of strings to be transformed, using very few examples. The algorithm

is especially useful for spreadsheets and data cleaning tool developers that

want to support their end-users on string transformation related tasks.

85
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Table 5.1: Examples of String Transformations

i ui → vi si → ti
1 25/12/2003 → 2003-12-25 12/11/2032 → 2032-11-12
2 Aug 06, 2013 → 06/08/13 Aug 20, 2017 → 20/08/17
3 Desoxyn (Tablet) → DESOXYN Cataflan (For Injection) → CATAFLAN
4 Glycine → <tag>GLYCINE</tag> Taurines → <tag>TAURINES</tag>
5 Oakland (Calif) → Oakland, California Dionisio (Calif) → Dionisio, California
6 regulation → regulate legislation → legislate
7 regulate → regulation legislate → legislation
8 studies → study dummies → dummy
9 Durbin, Richard J → Durbin Amaren, Maro F → Amaren
10 Deutch, John M → John M. Deutch Kalikow, Peter S → Peter S. Kalikow
11 maria joana → maria joana brunela averedo → brunela averedo
12 michael j. jackson → Jackson, Michael J. jerry l. lewis → Lewis, Jerry L.
13 Perle, La → La Perle Circulo Magico, El → El Circulo Magico
14 microsoft corp. → Microsoft Corporation oracle corp. → Oracle Corporation
15 microsoft → MICROSOFT oracle → ORACLE

5.1 Introduction

The task of transforming a string from a source format into a target format is encoun-

tered in many information-processing tasks [91, 92]. Consider the task of transforming a

list of names in the form “firstname lastname” (e.g. “Michael Jackson”) into the target

form “lastname first letter of the firstname” (e.g. “Jackson M”); or the task to transform

a list of dates in the form “31/12/2009” into the form “12-31-2009”. These types of string

transformations are performed by hundreds of millions of end-users of spreadsheets and

data cleaning tools every day. Microsoft has recently implemented a string transfor-

mation functionality [93] in the Excel Spreadsheet 2013 [94] and Google has launched

Google Refine1, both aiming to support end-users (specially non-programmers) on data

transformation related tasks (e.g. data cleaning).

Recently, Gulwani et. al [94] introduced an effective way to do string transformations.

Their method allows end-users to provide an example of a transformation that they

want to obtain, and then they can generalize the transformation to the rest of the users’

data. This Programming by Example strategy (PBE) [95] allows non-programmers (e.g.

data analysts, business analysts) to perform transformations that before only expert

programmers could perform using shell scripts combined with Awk2, regular expressions

or other advanced programming techniques. PBE avoids repetitive manual labour and

allows non-professional programmers to perform complex string transformation tasks.

1http://code.google.com/p/google-refine/
2https://en.wikipedia.org/wiki/AWK
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Although PBE tools are undoubtedly useful, to design these tools is a challenging task.

Particularly, it becomes challenging because users want to provide as few example trans-

formations as possible and to produce rules, from this limited set of examples, that

generalize for the rest of the data is not trivial.

Existing methods, discussed in Sec. 5.6, either focus on a small set of string transforma-

tions or require a large amount of examples to guarantee accurate transformations. For

instance, in the well-known area of record matching, some authors [51] have proposed

to use string transformations in the process of matching of records. Basically, these

methods concern the problem of learning one-to-one mapping rules from pairs of match-

ing examples, i.e., they learn tokens that map to each other. Then they can use these

mappings to improve the matching of records. Because they do not learn the charac-

ter replacements that lead a string into another, these learned transformation rules can

only transform what they have observed in the set of examples, i.e., the learned rules

generalize poorly. For instance, they can learn North→ N , but they cannot transform

“South” into “S”.

Other authors [96] looked into the problem of finding mappings between synonyms,

abbreviations and acronyms, which are types of transformations that, usually, cannot

be generalized for other strings. For example, a rule that transforms New Y ork →
Big Apple is specific for the string “New Y ork” and cannot be applied in any other

string. This problem (that can also be described as learning a dictionary) is considered

orthogonal to the problem of learning string transformation rules of interest here.

Closely related to our problem is the work of Okazaki et al. [97]. They tackle the problem

of word lemmatization (e.g. studying → study) and spelling correction (e.g. vapour →
vapor) by learning transformations to be applied on the strings. Their work limits the

transformations to a single substring replacement in the source string. Although quite

effective for the transformation task that they designed, their method requires a large

number of examples to learn the transformation rules. Apart from the works mentioned

so far, only few works exist tackling the same problem. We discuss them in more details,

in Section 5.6.

This chapter presents a general string transformation algorithm that learns transforma-

tion rules from a few given examples. Given a pair of strings (u, v), this work tackles the

problem of learning a transformation rule (for short, a rule), which transforms u into v,

so that this learned rule can be used to transform an unseen string s into t, where s is in

the same form as u. For example, a rule learned from the pair of strings (“31/12/2009”,

“12-31-2009”) should also transform “01/04/2012” into “04-01-2012” . Particularly, a

transformation rule is considered as a set of character permutations, insertions, deletions



Chapter 5. Learning String Transformation Rules From Examples 88

and updates that takes place in u to transform it into v. We will use the notation u→ v

to denote a transformation of a string u into v (e.g. Michael Jackson→Michael J.).

Table 5.1 shows a few relevant examples of transformations addressed in this chapter.

They are real-world use cases drawn from data cleaning and spreadsheet processing

literature, representing user questions in data cleaning forums and discussion lists.

The method proposed in this chapter, called STransformer, differs from the state-of-

the-art string transformation methods in two ways. First, it learns an edit-distance

based transformation rule (i.e. a set of character permutations, insertions, deletions and

updates) from a single example (u, v), which is the most general set of basic operations

that can transform u→ v. The learned rule can not only transform u→ v but, also, an

unseen string s similar to u into its desired target form t. Second, it focuses on string

transformations that change the formatting of a string into another. For example, in

Table 5.1, a rule that transforms ui → vi must also transform si → ti.

The proposed method requires only a few positive examples to learn transformation

rules, which are user-provided examples of valid transformations u→ v. The basic idea

is to learn a rule for each example transformation that the user has to perform. Next, the

learned rules are used to transform the remaining strings that the user has at hand; for

each string to be transformed, STransformer selects the rule that is likely to transform it

correctly. We assume that the user can provide a compilation of examples of the desired

transformations. We do so, because usually the user has a specific need, over a specific

dataset, and examples are not available beforehand and cannot be generated or selected

by automatic means. The user can potentially participate in the process providing more

examples when she observes incorrect transformations being produced. In this work, we

assume that the examples are given, and we focus on learning the transformation rules.

5.1.1 Overview and Contributions

Basically, a string can be transformed into another, by eliminating the differences be-

tween them, i.e., the parts of a string that are not parts of the other and vice-versa. To

do so, the basic edit-distance operations of character permutations, insertions, deletions

and updates can be applied. To find a set of operations (a transformation rule) that

generates a transformation u→ v can be trivial (e.g. delete all characters in u and add

all characters of v); to find a set of operations that transforms a large number of string

correctly is, however, a challenge. The problem involves not just selecting the best set

of operations to compose a rule but also how to express these operations as generally as

possible. To this end, we propose a set of primitive string operations that can precisely

describe a transformation u → v but can also be used to transform a large number
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of unseen strings similar to u, correctly. To make the problem linear w.r.t the size of

the learning sample, each rule is learned independently for each pair of example strings

(u, v). As this learning approach leads to many learned rules, a method is proposed to

select, automatically, the likely probable rule to transform correctly an unseen string s.

The problem of learning a general transformation rule is formalized in Section 5.2. Any

transformation can be expressed with four basic string operations. We propose a gener-

alization of the four basic string operations so that a transformation rule learned from

a single example can transform other strings with similar features. As these operations

include characters permutation as well, in Section 5.3 we provide a linear time algorithm

to find the best permutation of characters of u for permutation-based transformations

(e.g. 01/04/2012 → 04/01/2012). In Section 5.4, we describe an algorithm to select a

learned rule to transform a given unseen string s.

We conduct a detailed empirical investigation of our algorithm (Section 5.5) using real-

world string transformation scenarios. For example, in one of these scenarios the user

faces the task of putting book titles in a standard format, given a dataset of available ti-

tles described in a non-standard format, i.e., transformation like Art of Science, The→
The Art of Science. We study various aspects of the algorithm including the generality

of learned rules and the linearity w.r.t. the input size. Particularly, we investigate the

accuracy of the algorithm in the real-world setting where a very limited set of exam-

ples is provided. We do so because in the real world transformation tasks, the user

wants to obtain the correct string transformations providing the minimal number of

examples as possible. Also, we compare the proposed algorithm, STransformer, to the

state-of-the-art string transformation algorithm implemented in Microsoft Excel 2013,

called FlashFill. The results show that STransformer is 30% more accurate than Flash-

Fill, on average. Additionally, STransfomer accuracy dependents less upon a particular

example, which is an important property, given that the variety of available examples

can be large. Finally, we discuss related work in Section 5.6 and conclude the chapter

in Section 5.7.

5.2 Learning Transformations

This section formulates our problem. The input for the transformation-learning problem

is a set of N positive string transformation examples Λ+ = {(ui, vi) : i ∈ [1, N ]}, where
(ui, vi) are pairs of strings from an arbitrary domain; for example, organization names

or log file entries. Our high-level goal is to learn transformations from these examples

that can be applied to new instances of our problem where the desired output is not
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yet available. First we introduce basic definitions, and then we formulate the learning

problem.

5.2.1 Preliminary Definitions

Definition 5.1 (Characters). A character a belongs to an alphabet Σ. A distance

between two characters a and b is denoted as ∆(a, b) = n, where n ∈ Z. Also, a

character a belongs to a class of characters denoted as C(a) = e, where e ∈ EΣ, the set

of all regular expression for the alphabet Σ.

Definition 5.2 (Strings). A string u ∈ Σ∗. The set of all substrings of u is denoted

as u∗. The length of u is denoted as |u| = n. An empty string is denoted as λ, where

|λ| = 0. A character at position i in a string u is denoted as u[i]. A substring of u is

denoted as u[i..j], where 0 ≤ i ≤ j ≤ |u|. The uc is a string where ∀i, uc[i] = C(u[i]).

Without loss of generality, unless noted otherwise, we assume the ISO-8859-13 character

set as the alphabet Σ and the distance ∆(a, b) as the difference of the decimal repre-

sentation of a and b in the ISO-8859-1 character set table. For example, the distance

∆(“a”, “A”) = 97 − 65 = 32, while ∆(“A”, “a”) = 65 − 97 = −32. We defined the

following specific classes of characters: lowercase letter (l), uppercase letter (u), digit

(d), space (s), punctuation (p), lowercase accented letter (a), uppercase accented letter

(b), and any other character (f). We denote as z the class of delimiter characters, which

unless noted otherwise, we consider existing in the beginning and end of every string.

We defined four basic string operations: permutation, insertion, deletion and update

such as:

Definition 5.3 (Permutations). The function permutation P (u, i, j) : Σ∗×N×N→ Σ∗;

permutes a character u[i] with u[j] in u.

Definition 5.4 (Insertions). The function insertion I(v, u, i, ) : Σ∗ × Σ∗ × N → Σ∗;

inserts a string v in the position i of u.

Definition 5.5 (Deletions). The function deletion D(u, i) : Σ∗ × N → Σ∗; deletes the

character in the position i of u.

Definition 5.6 (Updates). The function update U(a, u, i) : Σ× Σ∗ × N → Σ∗; replace

the character in the position i of u by a.

The last three operations recall the operations used in the Levenshtein edit distance

[98], a string metric for measuring the difference between two strings. However, in this

3http://en.wikipedia.org/wiki/ISO 8859-1
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chapter, these operations will be used to determine a string transformation instead of

measuring the difference between two strings. Moreover, an additional permutation

operation is considered, to describe a transformation represented by the permutation of

characters in a string (e.g. Michael Jackson→ Jackson Michael).

Notice that string permutations and updates can be represented by insertions and dele-

tions, but these four operations better represent a transformation u → v that consists

of eliminating differences between u and v, i.e., first, if |u| = |v| and they have the same

characters but u 6= v, then characters in u have to be permuted to transform it into v;

second, if |u| > |v|, it means that characters in u should be deleted; third, if |u| < |v|, it
means that characters from v have to be inserted in u; and finally, if |u| = |v| and set of

characters of u differs from the set of characters from v, it means that characters in u

have to be replaced by a character from v. For example, a transformation rule to produce

the transformation michael jackson→ J. Michael would require all four types of string

operations. It would require to permute michael with jackson (jackson michael), to

delete “akson” (j michael), to insert “.” after “j” (j. michael), and to update “j” with

“J” and “m” with “M” (J. Michael).

A string operation t (permutation, insertion, deletion or update) over a string u that

results in a string u1 is denoted as u 7→t u1.

5.2.2 Transformation Rules

The set of transformations that we consider in this work is based on these four string

operations. Basically, a transformation u → v, is seen as a set of permutations, inser-

tions, deletions and updates that have to be performed in u to transform it into v. A

transformation rule is a chain of string operations. A transformation model is a set of

transformation rules learned from a set of examples Λ+, denoted by Ω(Λ+).

Definition 5.7 (Transformation Rule). Given a pair of strings (u, v), a transformation

rule is a chain of string operations T = {t1, . . . , tn} that transforms u to v. It is denoted

as u→T v, where →T can be expanded to u 7→t1 ui 7→t2 . . . 7→tn v.

For example, the transformation 12/01/2009 → 12/01/09 can be achieved using the

specific transformation rule 12/01/2009 →D 12/01/09, where D = {D(u, 7), D(u2, 7)}
is a chain of deletion operations. This transformation can also be expressed in terms of

its operations; i.e., 12/01/2009 7→D(12/01/2009,7) 12/01/009 7→D(12/01/009,7) 12/01/09.

Different transformations require different types of transformation rules. For example,

the four transformations michael jackson → jackson michael, michael jackson →
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michael (jackson),michael jackson→ michael j,michael jackson→Michael Jackson,

require permutation, insertion, deletion and update transformation rules, respectively.

More complex transformations require a concatenation of transformation rules.

In this work, we are particularly interested in complex transformation rules in the form

u→P u1 →I u2 →D u3 →U v, where P , I, D and U , are sequences of permutation, inser-

tion, deletion and update operations; respectively. We denote such a transformation rule

as Ψu,v. Notice this chain of transformations can represent any string transformation.

Universe of permutations: The purpose of using permutation in our rules is to

capture permutation of tokens in a string (e.g. michael jackson vs. jackson michael,

or 12/01/09 vs. 09/12/01). As these permutations usually involve a separator character

(e.g. space, slash), we will consider only permutations of substrings (tokens) that are

separated by a character a (separator) of u. Such a subset of permutations captures

permutations on the majority of the human readable strings and drastically reduces the

problem search space.

Universe of insertions: When transforming a string u to v, it only makes sense to

consider insertions that insert a substring x ∈ v∗ into u, because the insertion of any

substring y /∈ v∗ would require further an update or deletion in u to obtain v. For that

reason, we restrict our insertions I to the set of insertions that insert x ∈ v∗ into u.

Notice that an insertion is only performed if |u| < |v|.

Universe of deletions: Deletions always occur after insertions in a transformation

rule. Their purpose is to reduce the length of |u| to |v|, if |u| > |v|.

Universe of updates: In the chain of transformations that we propose, updates only

occur in the last step. At that point, |u| = |v|. We only consider updates of a character

u[i] with its corresponding character v[i]. This set of updates always transforms u into

v.

5.2.3 Generalization of Transformation Rules

Our ultimate and most important goal is to transform an unseen string w, using the

transformation rules learned from Λ+. However, a transformation rule learned for a

single example (u, v) ∈ Λ+ is very specific and would, if at all, only generalize to a limited

set of strings highly similar to u. For example, a transformation rule 12.00 →Ψ 12, 00

can be created based on replacing the “.” by a “,”: a rule Ψ composed of P = I = D = ∅
and U = U(“, ”, 12.00, 3). Such a rule can generate a correct transformation for w =

“32, 03”, i.e., 32.03 →Ψ 32, 03, but when applied to w = “145.00”, the transformation
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145.00 →Ψ 14, .00 results in an incorrect string. Any human would proper understand

from the example that the intended transformation is 145.00→Ψ 145, 00.

To achieve this goal, a generalization of the basic string operations is proposed, so that

a larger range of strings can be transformed correctly by the same transformation rule.

Consequently, fewer examples will be needed to cover a larger number of strings that the

user may want to transform. We denote as ΨG
u,v, a generalization of a transformation

rule Ψu,v. Mainly, they differ on the level of abstraction that their operations are defined.

Intuitively, to make a rule general, covering the highest number of strings possible, it

makes sense to consider information about all strings to be transformed. However, to

make this problem feasible, only information in the string (ui, vi) is used to produce a

rule ΨG
ui,vi . Although it looks like a limitation, such strategy is very effective (as we will

show empirically) and avoids an exponential problem of combining information of many

strings in this process of generalization.

Two elements in a rule can be generalized: the position in the string where an operation

takes place and the character(s) part of the operation. We propose to infer the position

as a function of a character in the string; and a character itself to be abstracted to

its class (e.g. 7 can be seen as a digit). For example, the transformation Michael →
M could be expressed as: remove all characters after the first uppercase letter. This

rule is clearly more general than a rule that specifies a chain of deletion operations

that transforms “Michael” to “M”. Consequently, it could also be used to transform

Elvis→ E. Therefore, we define the new notion of relative position in a string, to allow

us to express more general transformations.

Definition 5.8 (Relative position). A relative position function Ru(k, e, j) : N× EΣ ×
Z→ N retrieves a position i in a string uc of u that is j positions distant from the k-th

occurrence of a substring e in uc.

We define e as an n-gram (a string of size n) in uc. The set of all relative positions in

u is denoted as Ru.

Using relative position, the “/” between day and month in the string u = “12/01/09”,

can be represented as Ru(1,p, 0) = 3, i.e., the position of the first punctuation (p). As

well as by Ru(3,d,−1) = 3, i.e., the position before the third digit (d).

Using relative position, we introduce generalizations of the four basic operations intro-

duced above: generalized permutation, insertion, deletion and update.

Generalized Permutation. A permutation rule P = {p1, . . . , pn} is generalized into

a permutation rule PG
a = {sG1 , . . . , sGm}, where m ≤ n, a is a character (separator) and
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→PG
a is a chain of concatenations of the type sG1 + a+ sG2 + a+ · · ·+ a+ sGm, where sGi

is selection operation defined below:

Definition 5.9 (Selection). The function selection S(u, r1, r2) : Σ∗ × Ru × Ru → Σ∗;

selects the substring u[r1..r2].

For example, the transformation 30/05/09→ 09/30/05 could be done with the general-

ized permutation rule PG
/ = {S(u,Ru(2,p, 1), Ru(2, z,−1)), S(u,Ru(1,d, 0), Ru(2,d, 0)),

S(u,Ru(3,d, 0), Ru(4,d, 0)}, where u = “30/05/09”. Notice that z denotes an unprint-

able delimiter character in the beginning and end of all strings. The three selection

operations in PG
/ select the substrings “09”, “30” and “05”; respectively. The chain of

concatenations “09” + “/” + “30” +“/” + “05” results in the string “09/30/05”. Notice

that the previous rule can be used to transform any date in the source format into the

target format, including a date such as “12/20/2009”, where the year is represented with

four digits.

Generalized Insertion. An insertion rule I = {I1, . . . , In} is generalized into IG =

{IG1 , . . . , IGn }, by making the positions of the insertions Ii relative.

For example, to transform Microsoft Corp →Microsoft Corporation, the operation

I(“oration”, u, 14) is required, where u = “Microsoft Corp”. The position 14 can also

be represented as Ru(2, z,−1), where z is the set of delimiter characters. By making

the position relative, i.e. I(“oration”, u, Ru(2, z,−1)), this rule would also transform

Apple Corp→ Apple Corporation.

Generalized Deletion. A deletion ruleD = {D1, . . . , Dn} is generalized into a deletion

ruleDG = {DG
1 , . . . , D

G
m}, wherem ≤ n,→DG

is a chain of operationsDG
i defined below:

Definition 5.10 (Deletion). The function deletion DG(u, r1, r2) : Σ
∗ ×Ru ×Ru → Σ∗;

deletes from u the substring u[r1..r2].

For example, James Brown→ J Brown can be transformed by deleting the characters

between the first uppercase character and the subsequent space, i.e., by the generalized

deletion rule DG(u,Ru(1,u, 1), Ru(1, s,−1)), where u = “James Brown”. The relative

positions r1 = Ru(1,u, 1) = 2 and r2 = Ru(1, s,−1) = 5 define the substring u[2..5] =

“ames”, which is the substring to be deleted from u.

Generalized Update. An update rule U = {U1, . . . , Un} is generalized into an update

rule UG = {UG
1 , . . . , U

G
m}, where m ≤ n,→UG

is a chain of operations UG
i defined below:

Definition 5.11 (Update). The function update UG(u, r, e, d) : Σ∗×Ru×EΣ×Z→ Σ∗;

applies a distance d to each character of the substring resultant from the first match of

the regular expression e in the substring u[r..|u|].
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For example, the transformation V ICTOR HUGO → V ictor Hugo can be achieved

with the update rule UG = {UG
1 (u,Ru(1,u, 1),u

+,−32), UG
2 (u,Ru(1, s, 2),u

+,−32)},
i.e., V ICTOR HUGO →UG

1 V ictor HUGO →UG
2 V ictor Hugo, where u = “V ICTOR

HUGO” 4.

Concluding, we are particularly interested in learning the transformation rules ΨG
u,v of

the form u →PG
u1 →IG u2 →DG

u3 →UG
v. Section 5.3 introduces our algorithms to

learn the components of ΨG
u,v: P

G, IG, DG and UG.

5.2.4 Learning Problem

This section defines the validity and coverage of a transformation rule ΨG
u,v for a trans-

formation x→ y; and, finally, formalizes the string transformation-learning problem.

Definition 5.12. Given a pair of strings (x, y), the validity of a transformation rule

ΨG
u,v is defined as:

V alidity(ΨG
u,v, x, y) =

{

1 if x→ΨG
u,v y

0 otherwise
(5.1)

The coverage of ΨG
u,v, given a set of examples Λ+ is defined as:

Cov(ΨG
u,v,Λ

+) =
∑

(x,y)∈Λ+

V alidity(ΨG
u,v, x, y) (5.2)

The string transformation-learning problem is divided into two sub problems. The first

sub problem concerns the problem of learning a transformation rule from a pair of strings

(u, v). The second sub problem concerns the problem of selecting a rule from a set of

learned rules to transform an unseen string w. We now formally state our first learning

problem.

Definition 5.13. Given a pair of strings (u, v) and a set of positive examples Λ+, find

the transformation rule ΨG
u,v that maximizes its coverage over Λ+.

We now state our second and last learning problem.

Definition 5.14. Given a transformation model Ω(Λ+) and a pair of strings (x, y), find

a transformation rule ΨG
u,v ∈ Ω(Λ+), such that V alidity(ψG

u,v, x, y) = 1.

Assuming that we have learned a transformation model Ω(Λ+), this second learning

problem is the problem of selecting from Ω(Λ+) a rule that can possible transform an

4Adding -32 to each character in “ICTOR” produces its correspondent lower case version “ictor”.
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unseen string x correctly. The algorithm that solves the first learning problem is called

the rule learner, while the one that solves the second learning problem is called the rule

selector. They are described in Section 5.3 and 5.4; respectively.

5.3 Rule Learner Algorithm

This section describes our algorithm to produce a transformation rule ΨG
u,v from (u, v).

5.3.1 Rule Learning

The rule learner algorithm is composed of four parts, corresponding to the four basic

string operations permutation, insertion, deletion and update. Intuitively, the algorithm

learns possible permutations in u, then on the permuted string up it identifies insertions

and deletions to transform it to ui d, such that |ui d| = |v|; and finally, in the resultant

string ui d, it learns the character replacements necessary to transform ui d into v.

Firstly, we describe the algorithm to find a relative position in u, to be used in the string

operations.

5.3.2 Relative Position Algorithm

Alg. 9 obtains a relative position Ru(k, e, j) of u[i] in the string u. The purpose of the

algorithm is to select the most general relative position as possible, i.e., the one that is

likely to represent the same absolute position over a set of similar strings. Practically,

the most general relative position is also the most discriminative one, with the smallest

offset j. In other words, we identify e that is the least frequent in uc while closest to the

absolute position i.

In order to compute the relative position Ru(k, e, j) of a position i of u, all substrings e

in uc have to be considered. Let En be the bag of all n-grams of uc, i.e., En = {ep|∀p, 0 <
p < |uc| − n : ep = uc[p..p + n]}, where 1 ≤ n ≤ |uc|, and let f(x) be a function that

gives the frequency of a substring x in uc; then, for a specific e ∈ En, k = f(e).

For example, consider the string u = “Noia, La”. Assume E2, the bag of bigrams,

of uc = zulllpsulz, i.e., E2 = {zu, ul, ll, ll, lp, ps, su, ul, lz}. The frequency of

each distinct character class a ∈ uc is f(u) = 2, f(l) = 4, f(p) = 1 and f(s) = 1.

Particularly, f(z) = 0, by definition. While the frequency of each bigram in E2 is:

f(zu) = 1, f(ul) = 2, f(ll) = 2, f(lp) = 1, f(ps) = 1, f(su) = 1 and f(lz) = 1.
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The most discriminative e ∈ En is the one with the smallest k (frequency) and smallest

absolute distance j to i. This discriminative score can be computed by calculating the

average frequency of the characters in a substring we ∈ uc∗ that starts in e and ends in

i, (or vice-versa, if i < p).

Take for example the position i = 7. In the previous example, uc[7] = u. For the first

bigram e1 = zu, the substring we1 would be wzu = zulllpsu, and for the bigram e9 = lz,

wlz = ulz. The example is illustrated in Fig. 5.1.

i  0  1  2  3  4  5  6  7  8  9 

u  N  o  i  a  ,  L  a 

uc  z  u  l  l  l  p  s  u  l  z 

E2  zu  ul  ll  ll  lp  ps  su  ul  lz 

w
e1
=zullpsu 

w
e9
=ulz 

Figure 5.1: String u = “Noia, La”, uc = zulllpsulz, E2(u
c) =

{zu, ul, ll, ll, lp, ps, su, ul, lz}, we1
= zulllpsu and we9

= ulz.

The best e will be the one with the smallest average frequency in we. It is obtained by

solving the minimization described in Eq. 5.3:

argmin
e∈En

F (e) (5.3)

F (e) = f(e)
√

Mean(e) (5.4)

Mean(e) =
m

√

∑

a∈we
g(a)m

m
(5.5)

where m = |we|, a is a character in we and g(a) = f(a)
|uc| . Notice that Mean(e) is the

power mean over the frequency f(a) of character a in uc. Intuitively, the power mean

gives a higher score to longer strings we, i.e., e that are far from uc[i]. Consequently, e

that are closer to i will have a smaller score. In Eq. 5.4, the root f(e) is used to increase

the score of e that are more frequent. Therefore, e that are less frequent in uc and closer

to i will be selected.
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In the current example, as |uc| = 10, we obtain the following scores F (e) for each

e ∈ E2: F (zu) = 0.353, F (ul) = 0.354, F (ll) = 0.356, F (ll) = 0.578, F (lp) = 0.287,

F (ps) = 0.149, F (su) = 0.158, F (ll) = 0.562 and F (lz) = 0.288. F (ps) = 0.149 is

the smallest score, therefore, e = ps is selected. Then, the relative position for i = 7 is

defined as Ru(1,ps, 1).

Algorithm 9 RelativePosition(u, i, n).

1: for all p in 0..|u| − n do

2: e← uc[p..p+ n]
3: En ← En ∪ e
4: if p ≤ i− n then

5: we ← uc[p..i]
6: else if p > i− n and p ≤ i then
7: we ← uc[p..p+ n]
8: else

9: we ← uc[i..p+ n]
10: end if

11: sum[we]← 0
12: for all a in we do

13: sum[we]← sum[we] + (f(a)/|uc|)m
14: end for

15: m← |we|
16: Mean[e]← m

√

(sum[we]/m)
17: F [e]← f(e)

√

Mean[e]
18: end for

19: ep ← argminep∈En
F [ep]

20: return [f(ep), ep, i− p]

This algorithm is bound by O(|u|2) for n = 1, and O(1) for n = |u|. We observed

empirically that this algorithm produces the most discriminative relative position with

high likelihood when n = 2. Notice that for n = |u|, j = i in Ru(k, e, j), i.e. j is the

value of the absolute position i.

5.3.3 Permutation Rule Learner

To learn permutations in u, we have to select among all permutations of tokens in

u (separated by a character c), the permutation that the concatenation of its tokens

forms a string that is closer to the target string v. For example, for the transforma-

tion John M. Lewis → John, Lewis M., considering that the tokens are separated

by a space (c is a space character), there are six possible permutations for the tokens

[“John”, “M.”, “Lewis”]: {[“John”, “Lewis”, “M.”], [“M.”, “John”, “Lewis”], [“M.”,

“Lewis”, “John”], [“Lewis”, “John”, “M.”], [“Lewis”, “M.”, “John”]}. The permuta-

tion [“John”, “Lewis”, “M.”] is the most similar to the string v = John, Lewis M..
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As we do not know the separator c in advance, all characters in u should be considered

as possible separators. So, to learn permutations in u (delimiters are ignored), for each

distinct character c in u, we build a set of tokens tc = {u1, . . . , un}, where u = utc =

u1 + c + · · · + c + un. Let Qtc be the set of all n! permutations of tokens in tc, where

n = |tc|. From the union Q =
⋃

c∈uQ
tc , we select the permutation qi ∈ Q that generates

a string uqi with the highest similarity to v, i.e. we solve the problem:

argmax
qi∈Q

sim(uqi , v) (5.6)

The well-known Levenshtein edit-distance5 is used as sim(·, ·).

For example, for the transformation John M. Lewis → John, Lewis M., consid-

ering c =“ ” (space), the token set is tc = {“John”, “M.”, “Lewis”} and Qtc =

{[“John”, ”M.”, “Lewis”], [“John”, “Lewis”, “M.”], [“M.”, “John”, “Lewis”], [“M.”,

“Lewis”, “John”], [“Lewis”, “John”, “M.”], [“Lewis”, “M.”, “John”]}. Among all

possible Qtc , the permutation qi = [“John”, “Lewis”, “M.”], which forms the string

“John Lewis M.”, has the highest similarity to the target string. Notice that the com-

plete set Q would be the union of sets Qtc , where c would be any of the characters

{“J”, “o”, “h”, “n”, “ ”, “M”, “.”, “L”, “e”, “w”, “i”, “s”}.

The generation of all permutations of tc becomes prohibitive when tc has too many

tokens. As we do not need to list all permutations but only to find the best one, the

best permutation of tc can be efficiently found by sorting the tokens in tc, using sim as

criteria of ordering the tokens. Alg. 10 specifies this sorting process, explained below.

Starting from a set of tokens tc = {u1, . . . , un}, the algorithm (Alg. 10) uses Selection

Sort6 to sort the tokens, where sim is the criteria of ordering. Basically, in this algorithm

two tokens i and j in tc are permuted if sim(wtc , v) > sim(utc , v), where i and j are

permuted in wtc and i and j are not permuted in utc . The final sorted tc is included

in Q. Notice that Q will have a maximum of m elements, where m is the number of

distinct characters in the string u.

The Sorting algorithm takes O(n2) comparisons to sort n = |tc| tokens in tc. In the

worse case, when all characters in u are distinct (i.e., m = |u|), the algorithm to solve

Eq. 5.6 is bound by O(m.n2) because it runs the sorting algorithm m times, once for

each possible separator in u. As Q contains the best permutation of each separator, the

5Notice that set-based similarity functions (e.g., Jaccard) cannot be used as sim(·, ·) because they
ignore the tokens order in uqi and v.

6Any sorting algorithm can be used to sort the tokens. We used Selection Sort because in this problem
the number of tokens are relatively small and it performs satisfactorily.



Chapter 5. Learning String Transformation Rules From Examples 100

Algorithm 10 Sorting(tc, v).

1: return tc if |tc| = 1
2: utc ← concatenate(tc)
3: uscore← sim(utc , v)
4: i← j ← max← 0
5: for all i in 0..|tc| − 1 do

6: max← j
7: for all j in i+ 1..|tc| do
8: tmp← tc
9: tmp[j], tmp[max]← tmp[max], tmp[j]

10: wtc ← concatenate(tmp)
11: wscore← sim(wtc , v)
12: if wscore > uscore then

13: uscore← wscore
14: max← i
15: tc[i], tc[max]← tc[max], tc[i]
16: end if

17: end for

18: end for

19: return tc

overall best permutation in Q can be trivially obtained in O(m). Notice that excluding

letters as separators decreases the size of m, substantially.

Lemma 5.15. The Selection Sort is correct 7.

Theorem 5.16. The procedure Sorting(tc, v) using Levenshtein edit distance as sim

finds the permutation of tc that maximizes sim(utc , v), i.e., it solves the problem:

argmax
q∈Qtc

sim(uq, v) (5.7)

Proof. The Levenshtein edit-distance measures the number of operations to transform a

string into another. Following the Lemma 5.15, at any iteration, tc[i] is only permuted

to tc[j] if the permutation reduces the number of operations to transform utc → v.

Consequently, the final sorted tc contains the permutation that reduces the highest

number of edit-distance operations in utc → v. In other words, the sorted tc maximizes

sim(utc , v).

Finally, the permutation qi ∈ Q with highest similarity to v is expressed as a transforma-

tion rule as follows. For each token uk ∈ qi, a selection operation S(u, r1, r2) is created,

where r1 is the relative position of the first character of uk in u, and r2 is the relative

position of the last character of uk in u . Then, the set of all selection operations forms

a permutation rule PG
c .

7The proof of the Lemma 5.15 is available in [99].
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For instance, in the current example, considering c =“ ”, then, PG
c would contain three

selection operations, one for each token in tc = [“John”, “Lewis”, “M.”], i.e., PG
c =

{S(u,Ru(1, zu, 1), Ru(1, ls, 0)), S(u,Ru(2, su, 1), Ru(1, lz, 0)), S(u,Ru(1, su, 1), Ru(1, ps,

0))}. As u = “John M. Lewis”, the first selection would select “John”, the second

would select “Lewis” and the third “M.”. By definition, the permutation operation

concatenates all selected strings by the character c, which in this case would produce

up = “John Lewis M.”. In this example an additional insertion of a conman after

“John” would be required to fully transform John M. Lewis→ John, Lewis M.. No-

tice that the same permutation rule could be used to transform Michael B. White →
Michael, White B..

5.3.4 Insertions and Deletions Rule Learner

To learn the insertions and deletions in up, we propose an algorithm based on the known

longest common substring algorithm (LCS)8 [101]. The purpose of our algorithm is to

find all possible alignments of characters between up and v. As the characters in u have

the best permutation at this stage, if up[i] = v[j] and up[h] = v[k], then i > h and

j > k or i < h and j < k. If up and v are represented in a matrix as shown in Fig. 5.2;

basically, characters in up that do not align to v (zero columns) have to be deleted from

up to transform it into v; and characters in v that does not align to up (zero rows) have

to be inserted in up to transform it into v.

    $ A u g    0 6 ,    2 0 1 3  $ 
 $ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

 6 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

 /  0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 /  0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

 3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

 $ 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Figure 5.2: All common substrings between up = “Aug 06, 2013” and v =
“06/08/13”.

For example, Fig. 5.2 shows a matrix representing all character alignments between

up = “Aug 06, 2013” and v = “06/08/13”. The characters that align are represented

8Not to be confused with longest common subsequence problem [100].
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as 1 and the characters that do not align are represented as zero. In this example, the

substrings {“Aug”, “, 2”} (zero columns) have to be deleted from up; and {“/”, “8/”}
(zero rows) have to be inserted in up. The insertion and deletion rule can be represented

as: DG = {DG
1 (up, Rup(1, zu, 1), Rup(1, zu, 4)), D

G
2 (up, Rup(1,ps, 0), Rup(1,ps, 2))} and

IG = {IG1 (“/”, up, Rup(1,ps, 0)), I
G
2 (“8/”, up, Rup(1,ps, 4))}, respectively.

Given a matrix K of m × n where m = |up| and n = |v|, the LCS finds the longest

diagonal in the matrix where up[i] = v[j], 1 ≤ i ≤ m and 1 ≤ j ≤ n. We consider up[i]

equal to v[j], if up[i] = v[j] or lowercase(up[i]) = lowercase(v[j]).

Our algorithm starts looking for the longest common substring (lcs) between up and v,

using LCS. Once the lcs up[r..s] = v[x..y] is determined, the LCS is applied recursively

over the upper and lower matrix KU = [1, 1, r, x] and KL = [s, y,m, n], respectively.

This step makes this algorithm different from the LCS because it will guarantee, after

all character are matched, that if up[i] = v[j] and up[h] = v[k], then i > h and j > k or

i < h and j < k. After all lcs are determined, the lines that are not part of a lcs represent

the characters in v that have to be inserted in up and the columns the characters that

have to be deleted from up. This algorithm is bound by the upper bound of the original

LCS, which is O(n.m).

Alg. 9 is used to find the relative position for the insertions and deletions. The set of

insertions IG forms a transformation rule up →IG ui, and the set of deletions DG forms

a transformation rule ui →DG
ui d.

5.3.5 Update Rule Learner

To learn the update rules, for each ui d[i] in ui d, a rule UG
i (u, ri, ei, di) is created, where

the relative position ri of i is found using Alg. 9, the distance di = ∆(ui d[i], v[i]), and

the RE ei = uc[i]. Any consecutive set of rules UG
i , . . . , U

G
j that have the same distance

and the same ei, are merged in one UG
i , where ei is defined to e+i , the Kleene Plus [102]

of ei. This produces a set of update rules UG, such that ui d →UG
v. This algorithm is

bound by O(|v|), due that it has to walk once through the string ui d to compute the

distance ∆ to v.

For example, for jack w. → Jack W., we have uc = llllplp and vc = ulllsup. The

algorithm produces 7 rules (ignoring the delimiters, |u|=7), i.e., UG
1 (u,R(1, l, 0), l,−32),

UG
2 (u,R(1,p,−3), l, 0), UG

3 (u,R(1,p,−2), l, 0), UG
4 (u,R(1,p,−1), l, 0), UG

5 (u,R(1,p, 0),

p, 63), UG
6 (u,R(1,p, 1), l,−32), UG

7 (u,R(2,p, 0),p, 0). The consecutive rules UG
2 , UG

3

and UG
4 have the same distance and RE, then they are replaced by the rule UG

2 (u,R(1,p,

−3), l+, 0). Such a set of rules can transform any string in the form ll+plp into ul+sup.
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5.3.6 Discussion

Table 5.1 shows a large variety of examples of string transformations: ui → vi and

si → ti. The algorithm just described can learn a rule using as example a transformation

rule ΨG
ui,vi and produce a correct transformation for any string si in this table (i.e.

si →ΨG
ui,vi ti). Although some of these transformations could be easily expressed by

programmers, non-programmers do not have the skills to express it. The proposed

method allows them to perform a large range of non-trivial transformations by simply

providing examples.

As a design decision, the rules are learned and applied independently of each other.

This avoids the exponential problem of searching for the combination of operations that

maximize the coverage over all examples. Obviously, it is impossible to learn a rule

with maximal Cov(ΨG
u,v,Λ

+) for any arbitrary string pair (u, v) and Λ+, considering

only information in (u, v). However, in Section 5.5, we will show that the rule learner

algorithm produces high coverage rules over real-world transformation tasks, which can

be properly selected to transform an unseen string s, correctly.

5.4 Rule Selector Method

In this section, we describe our method to tackle the second learning problem.

Given a transformation model Ω(Λ+) and a pair of strings (x, y), we model the problem

of finding a transformation rule ΨG
u,v ∈ Ω(Λ+), such that V alidity(ψG

u,v, x, y) = 1, as a

classification problem. Our training data are pairs of string (ui, vi) ∈ Λ+ (observations)

and rules in ψG
ui,vi ∈ Ω(Λ+) (categories). Then given a new string x, the task is to assign

a specific rule (category) to it, based on the features extracted from x. We use a Naive

Bayes Classifier as classifier.

During the training phase, where u and v are available, the set of trigrams (3-grams) of

the strings u, uc, v and vc, and the frequency of the trigrams of uc were used as features.

Precisely, the set of features can be represented as: (Trigram(u) − Trigram(v)) ∪
(Trigram(uc)− Trigram(vc)) ∪ freq(Trigram(uc)).

A frequency was represented by concatenating the trigram with its frequency value, e.g.,

for a trigram ull with f(ull) = 2, the feature was represented as ull2.

During the classification phase, where only the string x to be transformed is available,

the set of trigrams of the string x and xc, and the frequency of the trigrams of xc were

used as features. Precisely, this set of features can be represented as: Trigram(x) ∪
Trigram(xc) ∪ freq(Trigram(xc)).
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Notice that the difference of the set of trigrams used above gives exactly the trigrams

that change during a transformation u→ v. During the classification phase, if a string

x shares these features (trigrams) that represent a rule m, it is likely that m is the best

candidate rule to transform x correctly.

As any other classification task, we assume the user can collect a representative and

discriminative training sample to obtain a satisfactory performance of this method. We

acknowledge that for specific transformation tasks other machine learning approaches

may perform better. However, in Section 5.5, we will show that the effectiveness of the

Naive Bayes Classifier is sufficient for our purpose, on average.

5.5 Evaluation

In this section, we investigate empirically three aspects of our method: the coverage of

the rules produced by the rule learner, the accuracy of the rule selector, and the learning

time of the rule learner. In the end of this section, we compare our algorithm, namely

STransformer, to a state-of-the-art string transformation method.

5.5.1 Data

In this investigation, four datasets were constructed based on real-world string transfor-

mation use cases drawn from data cleaning and spreadsheet processing literature. As

we will discuss, these four scenarios show the power of STransformer, which can solve

different transformation tasks, requiring a very limited set of examples.

Abbreviations Use Case. Ana is a secretary of an institute and she has a catalog

with a few thousands organizations names that need to be converted into their ab-

breviations. The list contains universities, society groups among others entities. To

achieve her task, she copies the names of the organizations into her text editor and

tries to build the abbreviations manually; e.g., Y outh Hostels Association → Y HA,

University of New Hampshire→ UNH. After transforming a few abbreviations, she

realizes that her manual process is not productive and she would like to automate the

task. To that, she decides to use STransformer (a feature available on her text edi-

tor). She inputs the transformations she has done so far as examples and STransformer

transforms the rest of the data.

To simulate this task, we used an open online catalog9 with 2034 organization names

and their abbreviations. The overall task was to learn transformation rules from a few

9http://www.betweenthelakes.com/pdfs/organizations.pdf
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examples that could generate the abbreviations to the full organizations names, Then,

the learned rules were used to transform all organizations names into their abbreviations.

Table 5.5 shows the examples selected for this task.

Book Titles Use Case. John is a librarian in charge of publishing a catalog of books

acquired by the National Library. He obtained, from the IT department, a list of book

titles. He observes the titles of the books have the article shifted to the end of the

sentence, e.g. “Cloud, The” instead of “The Cloud”. Consequently, he needs to fix

them, i.e., he needs to apply a transformation in the titles of the form: Cloud, The→
The Cloud. He needs the task done as soon as possible, and he cannot count upon the IT

department. Using STransformer, he can prepare his own data, providing a few manual

examples of the desired titles to input to STransformer, without any programming skills.

To simulate this task, we used book titles from the Book Crossing dataset [103], which

contains 51690 titles from books records where the titles start with an article (e.g. “The”,

“La”, “El”, “An”). Then, we shifted the article to the end of the sentence, after inserting

a comma and a space. Consequently, the task was to put the title in the original form,

i.e., to shift the article to the beginning of the sentence and to remove the additional

comma and space. As in the previous scenario, rules were learned from a limited given

set of examples (shown in Table 5.6), and then used to transform all titles in the correct

conventional form, i.e. Cloud, The→ The Cloud.

Songs Use Case. Mary is a fan of the band R.E.M. She is building a blog and she

would like to list all songs of R.E.M at her blog’s home page. She finds on Wikipedia 184

R.E.M ’s songs. She copies the songs into her editor but she realizes the songs contain

also the song duration, which she would like to remove, e.g., “Shiny Happy People” -

3:44. To obtain only the title of the songs, she decides to remove the song’s duration

manually. She expends 3 seconds per songs, taking in total 9 minutes to convert all 184

songs. Later, she learns about STransformer and realized that the task could have been

done much faster.

We simulate this use case collecting 184 songs from Wikipedia, and we simulate the

task of learning rules that could extract the song titles from the copied text, i.e. “Shiny

Happy People” 3:44 → Shiny Happy People. The task can be achieved with two

examples shown in Table 5.7.

Dates Transformation Use Cases. Bob is an weather researcher studying tempera-

tures of in the surroundings of an industrial zone. In his measurements, he uses sensors

from two manufactures that output data in different formats. Particularly, one kind

of sensor outputs the dates of the measurements in format “month day, year”, where

month is represented by its abbreviated name (e.g. Jan 02, 2013). While the other
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kind, outputs in the format “day/month/year”, where the month is represented by its

decimal representation (e.g. 02/01/13). Bob would like to transform the output the of

first sensor into the format of the second, i.e., Jan 02, 2013 → 02/01/13, so he can

build an homogeneous report. To that, he uses the STransformer, providing examples

of the dates that he needs to transform.

To simulate this task, we used an artificial dataset containing 366 dates in format “month

day, year”. This dataset is quite homogeneous requiring exactly 12 rules to transform all

strings, which map to the twelve-month names and their equivalent decimal representa-

tions. Contrarily, all other datasets evaluated are heterogeneous, i.e., there is no logical

pattern or obvious regularity that can explain their data beforehand. Particularly, we

selected this Dates dataset to show that when there is regularity in the data, the algo-

rithm can learn it with 100% accuracy. The 12 dates used as examples are shown in

Table 5.8.

We manually constructed the ground truth for all strings in all datasets. To ensure

reproducibility of our results both datasets and the implementation of the proposed

algorithm are available for download10.

5.5.2 Evaluation Metric

To assess the quality of the rule learner algorithm (i.e. the rule coverage), we used the

notion of maximal coverage, which is the minimal number of example transformations

that have to be learned to transform all strings correctly. We evaluated the rule learner

with three different configurations of n-grams (En) in relative position algorithm (Alg.

9): E1 (1-gram), E2 (2-grams) and E3 (3-grams).

To assess the quality of the rule selector algorithm, the accuracy measure was used. It

is defined below:

accuracy =
#correct transformations

#string pairs in the ground truth
(5.8)

Where #correct transformations stand for the number of transformations that the rule

selector produces correctly; and #string pairs in the ground truth stands for the total

number of strings that have to be transformed.

10https://github.com/samuraraujo/StringTransformation
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5.5.3 Rule Coverage

Table 5.2 shows the maximum coverage per task. It indicates that indeed the rule learner

algorithm would need a relatively small number of examples to transform all strings in

the ground truth correctly, on average. For the Books, Songs and Dates datasets, E2

requires 157, 2 and 12 examples, respectively. This equates to 0.29%, 1% and 3% of the

data, respectively.

Table 5.2: Maximal Coverage Per Task

Abbreviations Books Songs Dates

E1 439 132 3 12
E2 305 157 2 12
E3 326 249 6 12

In total, 305 (for E2) examples are necessary to obtain maximal coverage in the Ab-

breviations dataset. This equates to 15% of the data. Although this is a relative large

number of examples in our context, a small set of rules (precisely, 7 rules) covers 78% of

the strings (i.e., 1577 out of 2034 strings), as can be observed in Table 5.3. It indicates

that given the right seven examples, STransformer can learn seven rules that transform

78% of this dataset, correctly. This is quite satisfactory coverage considering that there

are precisely 244 cases (12% of the data) that can only be transformed by completely

distinct rules, i.e., no general rule could transform them. Examples of these cases are:

Zeta Psi → ZPsi and Congregation of the Holy Ghost → CSSp. Consequently, to

achieve 100% coverage with seven or fewer rules is not truly possible in this data due to

the lack of regularity in the data. In practice, no method can learn rules from the other

available examples that can transform these 244 cases, correctly. Although, this is a very

heterogeneous dataset with distinct forms of abbreviating the organizations names, for

the cases where there is regularity, the algorithm learns them with acceptable coverage.

Notice that if we exclude these 244 outlier cases, then the coverage would be 88%.

Table 5.3: The first 7 rules with the highest coverage for the Abbreviations dataset
using E2.

Rule Covered Examples Percentage of Data Cumulative %

1 752 37.0% 37.0%
2 430 21.2% 58.2%
3 233 11.5% 69.6%
4 85 4.2% 73.8%
5 37 1.8% 75.6%
6 22 1.1% 76.7%
7 18 0.8% 77.6%

Total 1577 77.6% 77.6%
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Similarly to the Abbreviations dataset, in the Books dataset, many examples, in total

157 (for E2), are necessary to obtain maximal coverage. However, as observed in Table

5.4, a very small set of rules (precisely, 11 rules) covers a large number of strings (i.e.,

51282 strings or 99% of the strings). It confirms that the algorithm is effective in learning

transformation rules from a few examples, provided that some regularity is presented in

the data.

Table 5.4: The first 11 rules with the highest coverage for the Books dataset using
E2.

Rule Covered Examples Percentage of Data Cumulative %

1 37854 73.2% 73.2%
2 4026 7.8% 81.0%
3 2113 4.1% 85.1%
4 1952 3.8% 88.9%
5 1766 3.4% 92.3%
6 1632 3.2% 95.5%
7 570 1.1% 96.6%
8 368 0.7% 97.3%
9 346 0.7% 98.0%
10 331 0.6% 98.6%
11 324 0.6% 99.2%

Total 51282 99.2% 99.2%

In the case of the Songs dataset, the algorithm (with E2) needs only 2 examples. This

shows that it can capture the regularity in the data quite precisely.

In all configurations (E1, E2 and E3), STransformer performs optimally for the Dates

dataset, requiring exactly 12 examples, to capture the 12 distinct patterns of dates in the

ground truth, i.e., the twelve-month names and their equivalent decimal representations.

Concluding, the results show that the rule learner is able to generate rules with accept-

able coverage in a variety of datasets. To obtain the best performance, we recommend

using E2 instead of E1, because E2 is more discriminative than E1, even though slightly

more examples were necessary in the Books case.

5.5.4 Rule Selector Accuracy

To verify the rule selector accuracy, examples with maximal coverage were selected for

each task; except for the Abbreviations and Books tasks, where only 7 examples with

78% coverage and 11 examples with 99% coverage were selected, respectively. As these

examples produce rules that accumulate 100% coverage (78% for the Abbreviations ex-

amples and 99% for the Books examples), we generated rules using the selected examples,

and then we verified the accuracy of the rule selector in selecting a rule that transforms
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correctly a new string s. Table 5.5, 5.6, 5.7 and 5.8 show the examples used to build the

rules for the Abbreviations, Books, Songs, and Dates transformation tasks; respectively.

These examples were manually selected, by drawing from the set of examples a few

exemplars with evident difference in their features (precisely, strings with different uc

trigrams). Given that the majority of the example strings are quite similar, applying a

random selection of examples does not make sense in this setting, because likely we would

select examples that produce the same rule; consequently, resulting in low coverage and

accuracy. To such an approach to be effective, we would have to consider a large number

of examples, which goes against our goal here.

Table 5.5: Abbreviations Examples

u → v

1 American Baptist Foreign Missionary Society→ABFMS
2 American Kennel Club Canine Health Foundation→AKCCHF
3 Congressional Medal of Honor Society→CMHS
4 American Society of Agricultural and Biological Engineers→ASABE
5 Alcoholics Anonymous→AA
6 Army Against War and Fascism→AAWF
7 Army Air Corps→AAC

Table 5.6: Book Titles Examples

u → v

1 Perle, La → La Perle
2 Kill, A → A Kill
3 Angel, The → The Angel
4 Solstice,The → The Solstice
5 Solstice ,The → The Solstice
6 LONG SECRET, THE → THE LONG SECRET
7 CHOCOLATE TOUCH,THE → THE CHOCOLATE TOUCH
8 Hunny, Funny, Sunny Day, A → A Hunny, Funny, Sunny Day
9 street bible, the → the street bible
10 mummies of Urumchi, The → The mummies of Urumchi
11 Mummies of Urumchi, The → The Mummies of Urumchi

Table 5.7: Song Examples

u → v

1 “New Test Leper” - 5:26 → Sitting
2 “Radio Song” (feat. KRS-One) - 4:12 → Radio Song

Table 5.9 shows the accuracy of rule selector for each transformation task using the

examples described previously. For the Abbreviations, Books, Songs and Dates task,

the accuracy was 74%, 83%, 96%, 100%; respectively. Although, the naive classifier is

very sensitive w.r.t the quantity and quality of the examples [104], particularly when a

few examples are provided, it performed satisfactorily with high accuracy, on average.
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Table 5.8: Dates Examples

u → v

1 Jan 27, 2013 → 27/01/13
2 Feb 27, 2013 → 27/02/13
3 Mar 27, 2013 → 27/03/13
4 Apr 27, 2013 → 27/04/13
5 May 27, 2013 → 27/05/13
6 Jun 27, 2013 → 27/06/13
7 Jul 27, 2013 → 27/07/13
8 Aug 27, 2013 → 27/08/13
9 Sep 27, 2013 → 27/09/13
10 Oct 27, 2013 → 27/10/13
11 Nov 27, 2013 → 27/11/13
12 Dec 27, 2013 → 27/12/13

This is due to the quality of the examples provided, which were manually selected in

this investigation. Particularly, in the Books task, the accuracy (83%) was a bit lower

than expected. Given that selected Books examples have high coverage, features that

were insufficiently discriminative can explain this accuracy. The Abbreviations task had

the lowest accuracy (74%); however, the coverage of the examples was only 78%, for this

task. It means that its relative accuracy, w.r.t its coverage, was 95%.

Overall, we observed that the rule learner indeed learned rules that were quite general,

most of the incorrect transformations observed were due to the rule selector that selected

incorrect rules. Concluding, the results demonstrate the feasibility of STransformer

for general string transformations tasks. Users without programming knowledge can

produce useful string transformations by simply supplying a set of examples. Future

extensions could engineer better features to improve the effectiveness of rule selector

even further, e.g., using the techniques of [105, 106].

Table 5.9: Accuracy of the Rule Algorithm With E2

Setup Abbreviations Books Songs Dates

E2 74% 83% 96% 100%

5.5.5 Runtime Cost

Now, we show the linearity of the rule learner algorithm. For this evaluation, we used

an Intel Core 2 Duo, 2.4 GHz, 4 GB RAM, using a FUJITSU MHZ2250BH FFS G1

248 GB hard disk. As noted in Section 3, the algorithm is linear which allows it to

scale well with the number of examples, considering transformation tasks where a large

number of examples is available and necessary. We empirically study the performance

of the learner algorithm with an increasing number of input examples. We use subsets
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of increasing cardinality drawn from the Books dataset. Fig. 5.3 shows the running time

of four runs for various sample sizes. We observe a linear increase in running times as

the number of input examples grows, as expected from our analysis in Section 3.
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Figure 5.3: Learning time varying the sample size for the Books dataset. We consid-
ered 4 runs for each sample size.

5.5.6 Performance Comparison

Finally, we compare the STransformer to the state-of-the-art string transformation

method proposed in [93, 94] (namely, FlashFill). Their algorithm is implemented in

the Microsoft Excel 2013, available as a command in the Excel’s toolbar. Particularly,

we used Excel 2013 version 15.0.4505.1001 in this evaluation.

We measured the accuracy of both systems in solving 4 tasks: Abbreviations, Books,

Songs and Dates, which use the same datasets described in the previous evaluations.

For each task, we randomly selected a single example from a list of examples that have

regular features (e.g., common trigrams) in the data, so that this example transformation

had a clear pattern that could be learned. In both systems, a rule was learned from the

selected example, and then used to transform the rest of the data.

Particularly, for STransformer, a single rule was learned from this single example using

the rule learner and then used to transform the rest of the data. In the FlashFill, this

single example was input into Excel’s interface as the example of the desired transfor-

mation. Then, we apply the FlashFill Excel command to the rest of the data. Finally,
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we measured the accuracy of each system for each task. We repeated this process five

times for different examples and computed the average accuracy. Table 5.10 shows the

results.

Table 5.10: Average accuracy per system.

System Abbreviations Books Songs Dates

STransformer - 1 39% 72% 92% 8%

STransformer - 2 39% 72% 92% 8%

STransformer - 3 39% 72% 92% 8%

STransformer - 4 39% 72% 92% 8%

STransformer - 5 39% 72% 92% 8%

STransformer (Average) 39% 72% 92% 8%

FlashFill - 1 2% 9% 83% 1%
FlashFill - 2 74% 9% 23% 1%
FlashFill - 3 74% 98% 3% 1%
FlashFill - 4 74% 98% 83% 1%
FlashFill - 5 74% 18% 83% 0.8%

FlashFill (Average) 60% 46% 55% 1%

In this evaluation, some tasks reported low accuracy (e.g. Dates) because a single rule

could not cover 100% of the universe of transformations; however, the results clearly

reflects the ability of each system in producing general rules from a single example.

Comparatively, in practice, from a single example, STransformer can transform a larger

portion of the data correctly than FlashFill.

Considering the average accuracy among all tasks, STransformer’s accuracy was supe-

rior to FlashFill’s accuracy. Particularly, STransformer’s average accuracy per task was

superior in the Books (72%), Songs (92%) and Dates (8%) tasks, compared to FlashFill’s

average accuracy in the Books (46%), Songs (55%) and Dates (1%) tasks. FlashFill’s

average accuracy in the Abbreviations task was 60% while STransformer’s average ac-

curacy in this task was 39%. The results indicate that in some individual runs FlashFill

had a better performance than STransformer (e.g. FlashFill - 3, in Abbreviations and

Books tasks.); however, STransformer’s accuracy was stable, i.e., it did not vary for dif-

ferent examples (different runs), contrarily to FlashFill’s accuracy that varied a lot in all

tasks for different examples. It indicates that FlashFill depends on very specific exam-

ples to produce very good accuracy, contrarily to STransformer that produces equally

good accuracy for arbitrary examples.

These results indicate that STransformer produces more general rules than FlashFill, on

average. Also, the results expose a strong characteristic of STransformer: it is robust,

i.e., its accuracy is less impacted by different examples than FlashFill. This is a desirable

property, given that the universe of examples available is diverse in these types of tasks.
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Concluding, the edit-distance based transformation rules generalize much better in real

data than the grammar-based string transformation approach proposed by FlashFill.

STransformer has less than 2000 lines of code11 and can be easily be integrated into

PBE interfaces, such as Microsoft Excel 2013, or into data cleaning tools.

5.6 Related Work

In this section, we discuss the related work and other methods addressing string trans-

formations.

Learning Association Rules. Arasu et al. [51] studied the problem of learning a set

of transformation rules given a set of examples matches. In their problem, they assume

that a transformation rule maps a sequence of tokens to another sequence of tokens (e.g.

1st Ave. → First Avenue). These mappings or associations are then used to transform

a string into another. A limitation of their approach is that rules cannot be applied

over unseen tokens. For instance, the rule North → N , cannot be used to transform

“South” into “S”. Moreover, their algorithm needs a large number of examples to

generate useful rules. Importantly, they showed that string transformation can be used

to normalize strings in record matching tasks, which improves the quality of the matches

because it reduces the dissimilarity among the strings. Michelson et al. [96] studied the

problem of heterogeneous transformations, which are translations between strings that

are not characterized by a single function. E.g. abbreviation, synonyms and acronyms.

Addressing the problem of record linkage, Patro et al. [107] proposed an automatic

method to extract top-k high quality transformation rules given a set of possibly co-

referent record pairs. Tejada et al. [108] addressed a similar problem. Although relevant,

these transformations are complementary to the class of transformations that we looked

at in our work. We looked into transformations that change the formatting of a string,

instead of a mapping based transformations.

Learning Candidate Transformations. Okazaki et al. [97] studied the problem of

generating candidate strings to which a given string s is likely to be transformed. They

propose a supervised approach that uses sub-string substitution rules as features and

score them using an L1 regularized logistic regression model. Then their model selects

the best target string t based on the probability of a string t be a transformation to s.

As they use a discriminative model, they required a large number of both positive and

negative examples [109]. Moreover, the authors state that their model cannot handle

changes at phrase/term level, e.g., “Michael Jackson” and “Jackson Michael”, which we

propose to address in our work.

11https://github.com/samuraraujo/StringTransformation
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Learning String Transformations from Examples. Gulwani [93] proposed a grammar-

based string transformation language to express syntactic transformations. Their method

aims to synthesize a desired program including loops and conditions, which together with

other functions can express a transformation. Although they designed an efficient al-

gorithm, their method has many performance issues due to the exponential space of

transformations that they have to explore. As stated by the author, their algorithm

works in practice, but it is not guaranteed to work for all cases. Particularly, we ob-

served in the experiments that their method cannot process strings larger than 255

characters. This method was extended by Singh et al. [110] to support semantic based

transformations. Recently, Wu et al. [111] also proposed a gram-based string transfor-

mation learner. Compared to these systems, our approach is simpler and can express

all transformations listed in their papers, when the right number of examples is given.

String transformations have been studied in many other domains, as well. For instance,

Satta et al. [112], introduce an original data structure and efficient algorithms that

learn some families of transformations that are relevant for part-of-speech tagging and

phonological rule systems. Potter’s Wheel [113] is a system that proposes an interactively

transformation strategy for data cleaning. They show the evident need of the user

interaction in some transformation tasks. Our algorithm can be easily integrated into

more complex transformation workflows, as in this process proposed by Potter’s Wheel.

5.7 Conclusions

We have presented a novel algorithm to learn string transformation rules from exam-

ples. The algorithm is especially useful for non-programmers that in preparation of their

data analysis expend a considerable effort on string transformations (e.g. data cleaning).

Here, it is presented as a standalone algorithm that can be integrate into data process-

ing tools that support the programming-by-example paradigm, such as Microsoft Excel.

The empirical investigation indicates this algorithm can learn transformation rules that

generalize for a large number of strings, even when a limited number of training examples

is given. Additionally, the comparison against a state-of-the-art string transformation

algorithm shows 30% improvement in accuracy (on average), indicating that the pro-

posed algorithm is more effective in learning a transformation from a single example, in

the majority of the cases.

As future research, we will investigate alternative machine learning approaches to select

the rules when a limited set of features and examples are available. The rule selector

proposed in this work is satisfactory and ready to be deployed in real applications; how-

ever, it may be improved by incorporating feature selection state-of-the-art techniques.
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Overall, the results achieved in this work can facilitate the data processing tasks of mil-

lions of non-programmers (and programmers) that need to do string transformations, in

a daily basis.





Chapter 6

Exercises on Knowledge Based

Acceleration

So far, this thesis has focused on the problem of interlinking resources.

This chapter investigates the use of interlinked data in an information fil-

tering task, organized by the information retrieval community at the Text

Retrieval Conference (TREC). The Knowledge Base Acceleration task 2012

(TREC-KBA) aims to identify documents from a stream corpora that brings

new information about a Wikipedia entity. Given a Wikipedia entity, the

task consists of filtering this stream to find documents that are central to

this entity. Informally, a central document would be cited on the Wikipedia

page, and may trigger an update thereof. We used unsupervised and su-

pervised approaches as retrieval models to detect the document centrality.

The unsupervised approach filters the stream based on keywords extracted

from DBpedia.org representation of the given target entities. As supervised

approaches, we employed two distinct approaches. The first method learns

a language model from documents annotated as central, while the second

learns relevant discriminative keywords that occur uniquely on the docu-

ments annotated as central. In the supervised cases, both the language

model and the set of learned keywords are used to rank the documents in

the stream corpora. Using those simple approaches, we obtained good results

compared to the other participants; however, overall, there is a huge space

for improvement in this task.

117
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6.1 Introduction

This chapter describes the retrieval models used and the results obtained in the Knowl-

edge Base Acceleration track in TREC 2012 [114] (TREC-KBA). The TREC-KBA fo-

cuses on a single task: filter a time-ordered corpus for documents that are highly relevant

to a predefined list of Wikipedia entities. A successful KBA system must do more than

resolve the meaning of entity mentions by linking documents to the KB: it must also

distinguish centrally relevant documents that are worth citing in the entitys Wikipedia

article. Relevance can be interpreted as a fact about an entity that is not described

in its respective Wikipedia article, yet. While centrality can be interpreted as a fact

that is so important that should be mentioned in the entity’s page. Consequently, the

task requires the documents to be ranked according to their relevancy for an specific

Wikipedia entity.

The total number of documents to be processed and ranked amounts to approximately

400 M, consuming 9 TB of disk space. A sample of documents in these corpora that

mentioned a Wikipedia entity has been annotated as garbage, neutral, relevant or cen-

tral, by human judgment. Particularly, we focused on detecting the last two cases, i.e.,

we try to detect documents that were central and/or relevant for an entity.

Part of the annotated documents have been provided as training data. We used unsu-

pervised and supervised approaches as retrieval models to detect a document’s relevancy

and centrality. The unsupervised method (called Disambiguator) relies upon keywords

extracted from the DBpedia.org representation of the given target entities; as supervised

approaches we employed two approaches, one that learned a language model of docu-

ments annotated as central (called LanguageModel); and another that learned relevant

discriminative keywords that occurs uniquely on the documents annotated as central

(called Learning16000 ).

Surprisingly, the simplest unsupervised approach, the Disambiguator, performed con-

siderably better than the supervised approaches (LanguageModel and Learning16000).

They obtained 0.32, 0.13 and 0.31 F1; respectively. Overall, the Disambiguator did

extremely well, obtaining the TOP-3 best result as reported at TREC-KBA 2012 con-

ference.

In the remainder of this chapter, we discuss each of the approaches in details. Section

6.2 introduces the TREC-KBA task. Section 6.3 introduces our approaches. Section

6.4 describes the evaluation and the results obtained. And finally, Section 6.5 concludes

this work.
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6.2 TREC-KBA Task Overview

The Knowledge Base Acceleration track in TREC 2012 focused on a single task: filter

a time-ordered corpus for documents that are highly relevant to a predefined list of

entities. It goal is to help accelerate the construction and maintenance of large KBs.

This section describes details of the TREC-KBA task.

6.2.1 Data Overview

Corpora overview. For TREC 2012, 29 Wikipedia entities were selected: 27 people

and 2 organizations (vide Table 6.1). A stream corpus has been constructed spanning

4,973 consecutive hours from October 2011 through April 2012. It contains over 400M

documents augmented with automatic named entity tagging for the 4̃0% of the docu-

ments that has been identified as English. Each document has a timestamp that places

it in the stream. This collection has a total size of 9 TB.

Table 6.1: Entities Names

Aharon Barak Alex Kapranos
Alexander McCall Smith Annie Laurie Gaylor

Charlie Savage Darren Rowse
Douglas Carswell Frederick M. Lawrence
Ikuhisa Minowa James McCartney

Jim Steyer Lisa Bloom
Lovebug Starski Mario Garnero
Masaru Emoto Nassim Nicholas Taleb

Rodrigo Pimentel Roustam Tariko
Ruth Rendell Satoshi Ishii

Vladimir Potanin William Cohen
William D. Cohan William H. Gates, Sr

Basic Element (company) Basic Element (music group)
Bill Coen Boris Berezovsky (businessman)

Boris Berezovsky (pianist)

Relevancy Judgment. The 29 target entities were mentioned infrequently enough in

the corpus that NIST1 assessors could judge the relevance of most of the mentioning

documents (91%). Judgments for documents from before January 2012 were provided

to TREC teams as training data for filtering documents from the remaining hours. The

results were evaluated against the assessor generated list of citation-worthy documents.

1http://www.nist.gov/
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6.2.2 TREC-KBA Baseline

TREC-KBA organizers provided a simple reference baseline. This baseline assigns a

score in the range [0, 1000] to each document based on a set of filtering tokens. A

threshold is used to select the documents that are relevant+central, or central. In this

baseline, the score of a document is computed using the equation below:

score = argmax
t∈T

length(t)

length(entity name)
× 1000 (6.1)

where entity name is the name of the entity, as listed in Table 6.1, and T is a set of

tokens (an entity name split by ” ”), including the entity name itself.

6.3 Approaches

This section describes three the approaches that we have applied to this challenge. The

first approach, Prefix-Suffix Learning, namely Learning16000, focuses on precision, pe-

nalizing the recall. The second, namely Disambiguator, focuses on recall, with minimal

improvement on precision over the Baseline. The third and last approach, namely Lan-

guage Model, focuses on balancing the precision and recall.

Firstly, we introduce an entity representation, which basically is a set of strings used to

represent a specific Wikipedia entity. This representation will used later in the three

approaches presented.

6.3.1 Entity Representation

Given an entity e ∈ E(the 29 given Wikipedia entities), we represent e as a set of string

Ve, defined below:

Definition 6.1 (Entity Representation). The entity representation Ve of an entity e is

constructed by the results of the SPARQL2 query q over the DBPedia3 representation

of an entity e, where q is defined such as:

SELECT distinct ?o WHERE

{ e <http :// www.w3.org /2000/01/ rdf -schema#label > ?o .}

UNION

2http://en.wikipedia.org/wiki/SPARQL
3http://dbpedia.org
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SELECT distinct ?o WHERE {

e <http :// xmlns.com/foaf /0.1/ name > ?o .}

In other words, the set Ve is the set of labels and names of the entity e in DBPedia,

which is a RDF 4 version of Wikipedia. For example, the entity representation for the

entity Nassim Taleb 5 is: VNassimTaleb = {Nassim Nicholas Taleb, Nassim Taleb}.

6.3.2 Prefix-Suffix Learning Approach

The purpose of this approach is to focus on the precision of the annotations, penalizing

the recall. Basically, the precision can be controlled by identifying central documents

using tokens that occur uniquely in documents previously annotated as central. In that

way, the number of documents classified as central is reduced, potentially increasing the

precision, but consequently penalizing the recall. This intuition that central documents

are likely to share the same set of discriminative tokens is exploited as follows.

For each entity e, we learned a set of strings Se of the form uv and vw that occur in

the documents annotated as central (denoted as ∆+) and does not occur in document

annotated as relevant, neutral or garbage (denoted as ∆−); where v ∈ Ve, u is prefix of

v of size K and w is a suffix of v of size K (in characters). We vary K in the interval

[1, ..,K], considering at most 2K different strings per unique v ∈ Ve.

Example: Consider the entity Nassim Taleb, its set VNassimTaleb = {Nassim Nicholas

Taleb, Nassim Taleb} and the news document below:

“Among the people we reached out to while reporting this weeks cover story on Rich

Marin was Nassim Taleb. Not only is he a well-known talking head (and presumably

accessible), but he also got his start at Bankers Trust, just like Mr. Marin.”

For K = 4, the set SNassimTaleb = { Nassim Taleb, s Nassim Taleb, as Nassim Taleb,

was Nassim Taleb, Nassim Taleb., Nassim Taleb. , Nassim Taleb. N, Nassim Taleb.

No}

The algorithm to learn the set of strings Se is described in the Alg. 11. In the run that

we submitted, we used K = 10.

During the annotation phase, an arbitrary document D was annotated as central for e

if any string in Se occur in D. In this approach a score of 1000 was assigned to the

document in the mentioned case, or zero otherwise.

4Resource Description Framework - http://www.w3.org/RDF/
5In DBPedia: http://dbpedia.org/page/Nassim Nicholas Taleb
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Algorithm 11 LearningPrefixSuffixStrings(e, ∆+,∆−, K).

Se ← ∅
Ve ← QueryDBPediaLabels(e)
for all v ∈ Ve do

for all d ∈ ∆+ do

if d.contains(v) then
Se ← Se ∪ prefix(v, d,K)
Se ← Se ∪ suffix(v, d,K)

end if

end for

for all d ∈ ∆− do

if d.contains(v) then
Ne ← Ne ∪ prefix(v, d,K)
Ne ← Ne ∪ suffix(v, d,K)

end if

end for

end for

return (Se −Ne)

6.3.3 Disambiguator Approach

This approach aims to produce high recall and improve the precision over the Baseline

by solving only the cases where the source entities are ambiguous.

Definition 6.2 (Ambiguous Entities). Given two distinct entities e and f , they are

ambiguous if the intersection of their entity representations is non-empty, i.e., Ve∩Vf 6= ∅.

Basically, to ensure high recall, we select documents using the strings in the entity

representation Ve, and then to improve precision over this initial selection, we filter out

the documents using an extended entity representation Te that we describe next.

When two or more entities are ambiguous, it is impossible to decide exactly the entity

referred to by only considering strings in Ve. In TREC-KBA 2012, among the 29 entities

provided, at least four entities were ambiguous, as observed in the query set:

Boris_Berezovsky_(businessman );

Boris_Berezovsky_(pianist );

Basic_Element_(company );

Basic_Element_(music_group ).

For example, the string Boris Berezovsky may refer to a pianist or a businessman.

Without context information, we cannot decide which one it refers to.

In order to decide which one of the ambiguous entity an document mention, we contex-

tualize an entity representation using type information extracted from DBPedia repre-

sentation of this entity. An typified entity representation is defined such as:
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Definition 6.3 (Typified Entity Representation). A typified entity representation Te of

an entity e is the results of the SPARQL query below:

SELECT distinct ?c WHERE {

e <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#type > ?o .

?o <http :// www.w3.org /2000/01/ rdf -schema#label > ?c. }

UNION

SELECT distinct ?c WHERE {

e <http :// purl.org/dc/terms/subject > ?o .

?o <http :// www.w3.org /2000/01/ rdf -schema#label > ?c. }

UNION

SELECT distinct ?c WHERE {

e <http :// purl.org/dc/terms/subject > ?z .

?z <http :// www.w3.org /2004/02/ skos/core#broader > ?o .

?o <http :// www.w3.org /2000/01/ rdf -schema#label > ?c. }

In other words, this query retrieves a set of strings representing the type of an entity e

in its DBPedia representation. The properties type and subject above define the type

of a specific DBPedia representation.

For example, considering the entity Boris Berezovsky (businessman), the instantiation

of the query above would be:

SELECT distinct ?c WHERE {

<http :// dbpedia.org/page/Boris_Berezovsky_(pianist)>

<http :// www.w3.org /1999/02/22 -rdf -syntax -ns#type > ?o .

?o <http :// www.w3.org /2000/01/ rdf -schema#label > ?c. }

UNION

SELECT distinct ?c WHERE {

<http :// dbpedia.org/page/Boris_Berezovsky_(pianist)>

<http :// purl.org/dc/terms/subject > ?o .

?o <http :// www.w3.org /2000/01/ rdf -schema#label > ?c. }

UNION

SELECT distinct ?c WHERE {

<http :// dbpedia.org/page/Boris_Berezovsky_(pianist)>

<http :// purl.org/dc/terms/subject > ?z .

?z <http :// www.w3.org /2004/02/ skos/core#broader > ?o .

?o <http :// www.w3.org /2000/01/ rdf -schema#label > ?c. }

Then TBoris Berezovsky (pianist) = {pianist,musician, russian}.
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Given an entity e, the algorithm process the news stream sequentially and for all docu-

ment D that contains a string v ∈ Ve, we produce a Jaccard score between Te and de,

where the entity context de and Jaccard is defined such as:

Definition 6.4 (Entity Context). A entity context de of an entity e is a set of tokens

of a string uvw in D, where v ∈ Ve, and u and w have at most a length L. In the run

that we submitted, we set L = 400.

Definition 6.5 (Jaccard Score). Given two sets A and B, the Jaccard score of these

sets are:

Jaccard =
(A ∩B)

(A ∪B)

A document D is considered central for an entity e if:

Jaccard(Te, de) > 0 ∧ x ∈ E : x 6= e, Jaccard(Te, de) > Jaccard(Tx, de)

Alg. 12 describes the process of annotating central documents using this method.

Algorithm 12 DisambiguatorCentralAnnotator(E, D, L).

CENTRAL← ∅
MATRIX ← newMatrix(D,E)

for all e ∈ E do

Ve ← QueryDBPediaLabels(e)

Te ← QueryDBPediaTypes(e)

for all v ∈ Ve do

for all d ∈ D do

if d.contains(v) then

de ← context(d, e, L)

MATRIX[d][e]←MATRIX[d][e] + Jaccard(Te, de)

end if

end for

end for

end for

for all d ∈ D do

if MATRIX[d].max > 0 then

CENTRAL← CENTRAL ∪ [d,MATRIX[d].maxEntity]

end if

end for

return CENTRAL
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6.3.4 Language Model Approach

This approach focuses on balancing precision and recall. To do so, we build a statistical

language model for each entity e ∈ E using the training documents annotated as central.

Then, we score the documents based on the perplexity measure between the entity lan-

guage model and the document text. We normalize the values between [0, 1000]. This

measure may produce some documents with low score; however, we consider all those

documents with score > 0 as central. Below we detail this approach.

Definition 6.6 (Entity Language Model). Given an entity e and a corpora ∆+ of

documents annotated as central, we build a statistical language model, a trigram model,

LMe for e over
⋃

d∈∆+
e
d, where ∆+

e = {d|d ∈ ∆+ ∧ v ∈ Ve ∧ d = uvw}

In other words, for each entity e we build a trigram language model LMe over an

aggregated document containing all document annotated as central for the entity e.

We have used the Kyoto Language Modeling Toolkit (Kylm)6 to build this language

model. The only parameter set in this api was smoothuni (it avoids zero probabilities

when trigrams do not occur). Alg. 13 describes the process of creating the language

model.

Algorithm 13 LanguageModelTraining(E, ∆+).

LM ← ∅
for all e ∈ E do

Ve ← QueryDBPediaLabels(e)

for all v ∈ Ve do

for all d ∈ ∆+ do

if d.contains(v) then

∆+
e ← ∆+

e ∪ d
end if

end for

end for

LMe ← NGramModel(∆+
e , 3) #Trigram

LM ← LM ∪ LMe

end for

return LM

In order to annotate documents in the test corpus as central, we compute the perplexity

between a new document and each specific language model.

6http://www.phontron.com/kylm/
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The perplexity is based on entropy, where the entropy gives a measure of how likely the

ngram model is to have generated the test data. Entropy is defined (for a sliding-window

type ngram) as:

H = − 1

Q

Q
∑

i=1

logP (wi|wi−1, wi−2, ...wi−N+1)

where Q is the number of words of test data and N is the order of the ngram model.

Perplexity is a more intuitive measure, defined as:

perplexity = 2H

The perplexity of an ngram model with vocabulary size W varies between 1 and W. Low

perplexity indicates a more predictable language. All documents with perplexity < 100

were consider as central.

Alg. 14 describes this process.

Algorithm 14 LanguageModelCentralAnnotator(E, D, LM).

CENTRAL← newMatrix(D,E)

for all e ∈ E do

Ve ← QueryDBPediaLabels(e)

for all v ∈ Ve do

for all d ∈ D do

if d.contains(v) then

p← perplexity(LMe, d)

if p < 100 then

CENTRAL[d][e]← p

end if

end if

end for

end for

end for

return CENTRAL

6.4 Evaluations and Discussions

This section discusses the results that we obtained in TREC-KBA challenge. Table 6.2

shows the average precision, recall and F1 over all entities for each approached that we

evaluated. F1 = 2× precision×recall
precision+recall is the harmonic mean between precision (proportion

of correct annotations among annotated documents) and recall (proportion of documents



Chapter 6. Exercises on Knowledge Based Acceleration 127

annotated among all actual documents). To compute F1, the ranking that was submitted

to TREC-KBA was ignored, we use as ground truth all annotated documents provided

by TREC-KBA.

Table 6.2: Precision (P), Recall (R) and F1 for each evaluated approach, w.r.t central
documents.

P R F1

Baseline 0.21 0.81 0.30
Disambiguator 0.23 0.82 0.32

LanguageModel 0.18 0.22 0.13
Learning16000 0.36 0.35 0.31

The Disambiguator obtained the best evaluation results when considering F1 (0.32),

which was slightly better than the Baseline (0.30 F1). Although, only a small improve-

ment was observed, the Disambiguator increased both the precision (0.23) and recall

(0.82) w.r.t the Baseline (0.21 and 0.81). We observed that this improvement can be

attributed to the use of DBPedia labels in the entity representations. It confirms our

intuition that those labels are more representative to the entities than the strings used

in the Baseline (listed on Table 6.1).

The LanguageModel had the worse performance (0.13 F1). The central documents are

so diverse that there is no model that can describe successfully all the central documents

of an entity. Basically, central documents are highly similar to only few other central

documents. Consequently, building a language model for each individual central docu-

ment, and then ranking the documents based on those individual models may produce

a better result. An additional challenge in this approach would be to make it efficient,

considering the space of search would increase drastically. As such, the entity-centric

approach offers clear advantages over the traditional language-oriented approach.

The Learning16000 approach had a similar F1 as Disambiguator, 0.31 and 0.32; respec-

tively. As expected, Learning16000 had a better precision (0.36) than Disambiguator

0.23, and, as may be expected given the precision-recall trade-off usually observed, a

lower recall (0.35 and 0.82; respectively). Such a low average recall and better precision

can be attributed to more selective keywords used by Learning16000.

Overall, the Disambiguator had the third best performance on F1 among all TREC-KBA

submissions. The best approach, namely UDInfoKBA WIKI1 (see [114] for details),

obtained 0.42. Surprisingly, this approach used an approach quite similar to that of the

Disambiguator. Instead of using the DBPedia type to give context to an entity, they

considered inner links in the entity’s Wikipedia page; then they ranked the documents

according to the number of occurrence of the entities referred by those inner links.

Although they obtained a greater performance than our best performance (0.32 F1
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Disambiguator), they still obtained a relative low performance, indicating that there is

a lot of space for improvement in this task.

In general, we observed that it was quite hard to improve precision while preserving

recall, when using only information in the content of the documents. A possible reason

for this fact may be that the human annotators have used criteria to judge the centrality

of a document based on non-content based features. For example, the annotators may

have selected the first news item in a day, or news from authority sources like BBC,

giving priority to a specific source.

Despite of all results, clearly, the simple and blind application of state-of-the-art content

filtering techniques on this task is not appropriate. To improve the accuracy on this task,

the human annotator behavior, i.e. the criteria that they used to define centrality, will

need to be better understood, so that such a behavior can be better reproduced in

computer programs.

6.5 Conclusion

Concluding, we have participated in TREC-KBA 2012 where we obtained good results

relative to the other 10 participants. We used a content based approach to determine

whether a document carries new information about an entity. Entity-centric approaches

seems adequate to achieve reasonable effectiveness, for example when comparing to a

more classic approach based on statistical language modeling. The results indicate that

human assessors may also judge the centrality of a document using information that were

not only content based. We argue that in order to obtain a significant improvement on

this task in the next years, the criteria used by the human assessors to annotated central

documents have to the better defined.



Chapter 7

Conclusions

This chapter reflects on the research questions posed in Chapter 1 and discusses the

status of each with respect to the results that we obtained. Further, we discuss future

research directions.

7.1 Research Questions

7.1.1 Towards Self-Linking Linked Data

The vision of a Self-Linking Linked Data introduced in Chapter 2 seems feasible by

deploying results of Chapter 3 and Chapter 4. The components described in this thesis

can be immediately deployed to attain a limited form of self-linking behavior. However,

we acknowledge that many research questions that need to be answered before we have

the proposed self-linking behavior implemented in the Linked Data. In particular, a

community effort would be needed to integrate these components in the standard Linked

Data tool suite.

7.1.2 SERIMI: Class-based Matching for Instance Matching Across

Heterogeneous Datasets

How can we obtain correct matches for a set of source instances when there is no over-

lapping between the source and target schemas? (Chapter 3)

Firstly, it is important to mention that the cases where there is limited overlapping

between schemas occur in the real-world matching tasks. In Chapter 2, we discussed a

scenario where only an overlap in the entity’s labels occurs, and we showed the proposed

129
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method can satisfactorily solve the instance matching problem in this case. Particularly

in this scenario, there were no properties in the source data besides the label of the en-

tities (band’s names); consequently, no overlapping of properties (in the schema) could

exist to the target dataset (MusicBrainz). We have observed only marginal schema

overlap between the source and target datasets on the OAEI 2011 benchmark, espe-

cially when considering the New York Times collection. In the person and organization

datasets of this collection, only a label and a type property overlapped with the target

schemas. This shows that in the reference benchmark in the field, the lack of schema

overlap also exists, and it is not an isolated case. These cases help to enforce that the

problem that we tackled in Chapter 3 is indeed a relevant problem.

We have shown that it is possible to match instances when the schemas do not overlap,

by using newly created method of class-based matching. We observed that this method

is more effective when there are instances in the target dataset that share the same

or similar label, such as we observed in Geonames and DBPedia. In those cases, and

when there is not schema overlap between source and target datasets, the class-based

matching is the approach to integrate resources.

The results lead us to conclude that class-based matching should be combined with direct

matching to obtain further improvements in instance matching performance (accuracy).

Direct matching performs better than class-based matching when there is enough schema

overlap in the data, i.e., when the predicates that overlap can identify the correct target

matching instance for a source instance. Class-based matching and direct matching

complement each other, because no method exists that will perform optimally in all

matching tasks. In the future, these two approaches should be combined with newcomer

approaches to cover a larger set of matching tasks.

7.1.3 Efficient and Effective On-the-fly Candidate Selection over Sparql

Endpoints

How can we obtain candidate matches for a set of source instance in an effective and

time efficiency way, by querying a target remote endpoint? (Chapter 4)

The querying solution that we propose in Chapter 4 is on average 10 times faster than

the straightforward (but too naive) solution that we considered to this problem in the

beginning of our research. This can be observed when comparing the two implemen-

tations of SERIMI in GitHub, one using the discussed method1 and the other a naive

1https://github.com/samuraraujo/SondaSerimi
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querying approach2. The gain in efficiency compared to the alternative approaches dis-

cussed in Chapter 4 is not as big as the gain observed in these two implementations,

but the performance increase is still considerable. The experimental results indicate

that indeed it is possible to obtain candidate matches via querying. As we showed, for

the cases proposed in the OAEI benchmark, even if integration is performed only once,

the proposed strategy is more efficient than today’s default to download the data and

process it locally. We have tested this approach in many other real-world scenarios, and

it produced comparable results to the one that we discussed in this thesis. The proposed

strategy is therefore considered a viable alternative to instance matching over Linked

Data.

The utility of our method is dependent on the throughput of the remote endpoints, which

can be calculated beforehand. In general, our method should be preferred when we

consider integration of a few thousands third-party resources to online remote endpoints

with reasonable response time. On our studies on DBPedia and Geonames, two central

hubs in the LOD network [115–117] it performed faster, with satisfactory accuracy, than

approaches that aims to download and index these datasets for further processing.

We acknowledge that there is a long path ahead of research in this field. For instance,

query engines could be optimized to answer to specific matching queries (e.g., those

that includes geo similarity), by using specific query operators (e.g. geo-like) and tuning

their internal index structures to this end. A related direction to explore is to use the

algorithm design on Chapter 5 (discussed below) to learning the correct formatting of

string in the target dataset. This would allow to build exact queries as opposed to

approximate queries. Exact queries are more precise and more efficient to compute,

as we observed in our experiment. However, a deep investigation of this problem is

necessary to draw an a convincing conclusion.

7.1.4 Learning Edit-Distance Based String Transformation Rules From

Examples

How can we learn string transformation rules from a limited set of examples that can

correctly transform a large amount of unseen strings similar to the examples? (Chapter

5)

The results obtained in Chapter 5 demonstrate how a learning approach can infer rules

with high coverage from only few unique examples. Partially, the good results presented

are due to the distribution of the data in the datasets that we evaluated; and partially

the good results are due to the novel algorithm that we proposed. The method works

2https://github.com/samuraraujo/SERIMI-RDF-Interlinking
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so well because most of the human readable strings, or strings produced by human lan-

guage, are quite homogeneous. No algorithm can transform data if there is no regularity

(pattern) between the data and the given example transformations used to learn the

rules. We expect that it will be hard to improve the current coverage of the rule leaner,

without drastically compromising its efficiency. In contrary, the rule selector can easily

be improved upon, when applying state-of-the-art machine learning techniques to select

a specific rule from the set of learned ones.

Concluding, the proposed method can learn string transformation rules from a limited

set of examples that can correctly transform a large amount of unseen strings similar to

the examples, assuming that the examples are representatives. The algorithm proposed

can be easily incorporated into information processing tools such as spreadsheets and

data cleaning engines. Microsoft has recently released a version of its spreadsheet tool

(Excel) implementing an algorithm to support the tasks discussed in our work. The

proposed algorithm can be easily incorporated into open source related tools to provide

competitive functionality. Among its applications, we have used this algorithm to clean

and normalize data on databases, to extract information from HTML tables and XML

files, and to modify text on repetitive string transformation tasks.

7.1.5 Exercises on Knowledge Based Acceleration

How can we design a model of centrality for news documents? (Chapter 6)

The study done in this work indicates that the model of centrality is very subjective to

the explicit decisions done by the human annotators. The use of information retrieval

techniques or semantics on the modeling of centrality produces marginal improvement

to an elementary baseline because it does not capture the decisions of the human anno-

tators.

A significant improvement in this area would require better understanding of the human

annotators judgment of centrality. It seems reasonable that new facts that appear for the

first time in the news about an entity is relevant for this entity. To determine whether a

new fact is central or important for an entity, and worth to be mentioned in Wikipedia,

requires more discussion. Concrete questions that may help to understand this issue are:

what class of facts are worth mentioning in Wikipedia? Daily habits of an entity are

important? Is there any temporal aspect of a fact that can determine its importance? Is

there any meta-property (e.g. time, space) about a fact that can be used to determine

its importance? Whether the answers to these questions lead to decisions that converge

to an human annotator’s decisions is also an interesting subject of study. It is hard to
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outline whether the issue of determine centrality of a fact is a decision theory discipline

or a computer science one.

7.2 Future Research

In this thesis, we studied a variety of topics mostly focused on instance matching of

heterogeneous and distributed data. Within each research theme, several perspectives

are not fully addressed, and or open issues are worth further investigation.

We start with Chapter 2. The self-linking architecture we proposed requires further re-

search in many areas. Research on federated querying aiming to improve the discovery

of datasets by the self-linking engines is necessary. Also, research on self-linking policies

is a brand new area to be explored. Unsupervised approaches for instance matching

should be reviewed when considering its application in Linked Data. Progress on index-

ing should be conducted aiming to support the self-linking behavior. For example, as

matching queries are quite specific, an index structure could be designed to support a

quicker evaluation of these types of queries. Finally, research on SPARQL language and

protocol should investigate new primitives to support signaling between datasets in the

Linked Data specifically focusing on the self-linking behavior.

In Chapter 3, our results on combining class-based matching and direct matching are

preliminary. The results that we obtained rise a new research question: How can we

select the best matching strategy for a matching task? The benefit of selecting the most

appropriate matching strategy is to have gain in efficiency, avoiding unnecessary com-

putation. Efficiency is another area of study, given that at a large scale may make sense

to consider pruning strategies. For example, avoiding computing scores for candidate

instances that are identified as false-positive, early in the process.

In Chapter 4, we concluded that exact queries are faster than other queries but do not

work in all cases, mainly due to variations on the string formatting between the source

and target instances. This rises a new question: How could we formulate exact instance

matching queries? The challenge is two-fold. First, find a function that transform a

source string (instance label) to the correct target format is problematic. As data are

heterogeneous many formats may exist; consequently, how to select the correct one is

an issue to be investigated. Second, there is no guarantee that the time to learn the

transformation functions plus the time to execute the exact queries will be faster than

the time to execute the method proposed in Chapter 4. The efficiency of this new

approach would need further investigation. Due to the expected improvements that it

may bring, this is definitely an interesting direction to be explored.
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In Chapter 5, we obtained promising results using the proposed algorithm. Considering

that this algorithm has a large range of applications, the identification of a rule selector

method that performs optimally to a specific data collection is an interesting research

area.

In Chapter 6, we studied the particular problem proposed by Knowledge Based Accel-

eration of TREC 2012. The research area of building a model of centrality for a new

stream is still in its childhood. It would be interesting to investigate by interviewing

human annotators how they define centrality. Further investigation of a centrality model

based on these reported aspects would be of great interest for this community.

Overall, the results in this thesis merit further investigation on how to adapt the pro-

posed components into the Linked Data. Also, our findings prompt the question whether

instance matching has a different nature in Linked Data settings. Our studies and re-

sults indicates that it does, which might stimulate further research into the purpose of

instance matching for the Semantic Web.

This thesis sheds more light on instance matching on heterogeneous and distributed

data, broadens its relevance for Linked Data and opens up a range of topics for future

research.



Appendix A

Jaccard Vs. FSSim

Amos Tversky [55] proposed the ratio model as a measure of similarity between two sets

A and B. The ratio model is given below:

S(A,B) =
|A ∩B|

|A ∩B|+ α|A−B|+ β|B −A| , α, β ≥ 0 (A.1)

The parameters α and β balance the weight of the differences in the equation. This

equation normalizes the similarity so that S is between 0 and 1. We can show that this

model generalizes several set-theoretical models of similarity proposed in literature. If

α = β = 1 it reduces to the Jaccard coefficient, i.e. Jaccard(A,B) = |A∩B|
|A∪B| :

Proof. Replacing α = β = 1 in E.q. A.1, we have S(A,B) = |A∩B|
|A∩B|+|A−B|+|B−A| . Then,

using the identity |AUB| = |A∩B|+ |A−B|+ |B −A|, we have: |A∩B|
|A∩B|+|A−B|+|B−A| =

|A∩B|
|A∪B| = Jaccard(A,B)

It is easy to show that when FSSim is replaced by Jaccard it violates the Theorem 3.7.

Proof. By counterexample: Let |A∩B| = 20 and |A∩C| = 10, and let |A∪B| = 40 and

|A∪C| = 20. Then |A∩B| > |A∩C| but |A∩B|
|A∪B| =

|A∩C|
|A∪C| ⇒ 20

40 = 10
20 ⇒ Jaccard(A,B) =

Jaccard(A,C).

Now we proof that Theorem 3.7 is valid for FSSim(A,B).

Lemma A.1. If |A ∩B| > 0 then |A−B|+|B−A|
2|A∪B| < 1

Proof. Proof of Lemma A.1: If |A ∩ B| > 0 then |A − B| + |B − A| < |A ∩ B| + |A −
B| + |B − A| < 2(|A ∩ B| + |A − B| + |B − A|). Applying identity mentioned in Proof

A, we have: |A−B|+ |B −A| < 2|A ∪B| ⇒ |A−B|+|B−A|
2|A∪B| < 1

135
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Proof. Proof of Theorem 3.7: If |A ∩ B| > |A ∩ C| then |A ∩ B| > 0. Let a positive

integer δ < 1 and ω < 1, then |A∩B| > |A∩C|+(δ−ω)⇒ |A∩B|−δ > |A∩C|−ω. By
Lemma A.1 δ = |A−B|+|B−A|

2|A∪B| < 1 and ω = |A−C|+|C−A|
2|A∪C| < 1, then |A∩B|− |A−B|+|B−A|

2|A∪B| >

|A ∩ C| − |A−C|+|C−A|
2|A∪C| ⇒ FSSim(A,B) > FSSim(A,C).
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Cássia Trojahn dos Santos. Ontology alignment evaluation initiative: Six years of

experience. J. Data Semantics, 15:158–192, 2011.

[85] Samur Araujo, Thanh Tran, Arjen P. de Vries, Jan Hidders, and Daniel Schwabe.

Serimi: Class-based disambiguation for effective instance matching over heteroge-

neous web data. 2012.

[86] Wei Hu, Jianfeng Chen, Gong Cheng, and Yuzhong Qu. Objectcoref & falcon-ao:

results for oaei 2010. In OM, 2010.

http://dx.doi.org/10.1111/j.1751-5823.2001.tb00465.x
http://dx.doi.org/10.1111/j.1751-5823.2001.tb00465.x


Bibliography 144

[87] Juanzi Li, Jie Tang, Yi Li, and Qiong Luo. Rimom: A dynamic multistrategy

ontology alignment framework. IEEE Trans. Knowl. Data Eng., 21(8):1218–1232,

2009.

[88] Indrajit Bhattacharya and Lise Getoor. Query-time entity resolution. J. Artif.

Intell. Res. (JAIR), 30:621–657, 2007.

[89] Ahmed Metwally and Christos Faloutsos. V-smart-join: A scalable mapreduce

framework for all-pair similarity joins of multisets and vectors. PVLDB, 5(8):

704–715, 2012.

[90] Daniel M. Herzig and Thanh Tran. Heterogeneous web data search using relevance-

based on the fly data integration. In WWW, pages 141–150, 2012.

[91] Usama M. Fayyad. Data mining and knowledge discovery: Making sense out of

data. IEEE Expert, 11(5):20–25, 1996.

[92] Erhard Rahm and Hong Hai Do. Data cleaning: Problems and current approaches.

IEEE Data Eng. Bull., 23(4):3–13, 2000.

[93] Sumit Gulwani. Automating string processing in spreadsheets using input-output

examples. In POPL, pages 317–330, 2011.

[94] Sumit Gulwani, William R. Harris, and Rishabh Singh. Spreadsheet data manip-

ulation using examples. Commun. ACM, 55(8):97–105, 2012.

[95] Tessa Lau. Why programming-by-demonstration systems fail: Lessons learned for

usable ai. AI Magazine, 30(4):65–67, 2009.

[96] Matthew Michelson and Craig A. Knoblock. Mining the heterogeneous transfor-

mations between data sources to aid record linkage. In IC-AI, pages 422–428,

2009.

[97] Naoaki Okazaki, Yoshimasa Tsuruoka, Sophia Ananiadou, and Jun ichi Tsujii. A

discriminative candidate generator for string transformations. In EMNLP, pages

447–456, 2008.

[98] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions,

and reversals. Technical Report 8, 1966.

[99] Design and Analysis of Algorithms. Pearson Education Canada, 2009. ISBN

9788177585957. URL http://books.google.nl/books?id=RxvrDwBUzcIC.

[100] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms (3. ed.). MIT Press, 2009. ISBN 978-0-262-03384-8.

http://books.google.nl/books?id=RxvrDwBUzcIC


Bibliography 145

[101] Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science

and Computational Biology. Cambridge University Press, 1997. ISBN 0-521-58519-

8.

[102] Peter Linz. An introduction to formal languages and automata (4. ed.). Jones and

Bartlett Publishers, 2006. ISBN 978-0-7637-3798-6.

[103] Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen. Im-

proving recommendation lists through topic diversification. In Proceedings of the

14th international conference on World Wide Web, WWW ’05, pages 22–32, New

York, NY, USA, 2005. ACM. ISBN 1-59593-046-9. doi: 10.1145/1060745.1060754.

URL http://doi.acm.org/10.1145/1060745.1060754.

[104] Jie Cheng and Russell Greiner. Comparing bayesian network classifiers. In UAI,

pages 101–108, 1999.

[105] L.C. Molina, L. Belanche, and A. Nebot. Feature selection algorithms: a sur-

vey and experimental evaluation. In Data Mining, 2002. ICDM 2003. Pro-

ceedings. 2002 IEEE International Conference on, pages 306–313, 2002. doi:

10.1109/ICDM.2002.1183917.

[106] Chotirat (Ann) Ratanamahatana and Dimitrios Gunopulos. Feature selection for

the naive bayesian classifier using decision trees. Applied Artificial Intelligence, 17

(5-6):475–487, 2003.

[107] Sunanda Patro and Wei Wang. Learning top-k transformation rules. In DEXA

(1), pages 172–186, 2011.

[108] Sheila Tejada, Craig A. Knoblock, and Steven Minton. Learning domain-

independent string transformation weights for high accuracy object identification.

In KDD, pages 350–359, 2002.

[109] Guillaume Bouchard and Bill Triggs. The trade-off between generative and dis-

criminative classifiers. In Proceedings in Computational Statistics, 16th Symposium

of IASC, pages 721–728. Physica-Verlag, 2004.

[110] Rishabh Singh and Sumit Gulwani. Learning semantic string transformations from

examples. PVLDB, 5(8):740–751, 2012.

[111] Bo Wu, Pedro A. Szekely, and Craig A. Knoblock. Learning transformation rules

by examples. In AAAI, 2012.

[112] Giorgio Satta and John C. Henderson. String transformation learning. In Philip R.

Cohen and Wolfgang Wahlster, editors, ACL, pages 444–451. Morgan Kaufmann

http://doi.acm.org/10.1145/1060745.1060754


Bibliography 146

Publishers / ACL, 1997. URL http://dblp.uni-trier.de/db/conf/acl/acl97.

html#SattaH97.

[113] Vijayshankar Raman and Joseph M. Hellerstein. Potter’s wheel: An interactive

data cleaning system. In VLDB, pages 381–390, 2001.

[114] J. R. Frank, M. Kleiman-Weiner, D. A. Roberts, F. Niu, C. Zhang, C. Re, and

I. Soboroff. Building an Entity-Centric Stream Filtering Test Collection for TREC

2012. In Proceedings of the Text REtrieval Conference (TREC), 2012. URL http:

//trec.nist.gov/pubs/trec21/papers/KBA.OVERVIEW.pdf.
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2006-16 Carsten Riggelsen (UU)

Approximation Methods for Efficient Learning of Bayesian Networks

2006-17 Stacey Nagata (UU)

User Assistance for Multitasking with Interruptions on a Mobile Device

2006-18 Valentin Zhizhkun (UVA)

Graph transformation for Natural Language Processing
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2006-19 Birna van Riemsdijk (UU)

Cognitive Agent Programming: A Semantic Approach

2006-20 Marina Velikova (UvT)

Monotone models for prediction in data mining

2006-21 Bas van Gils (RUN)

Aptness on the Web

2006-22 Paul de Vrieze (RUN)

Fundaments of Adaptive Personalisation

2006-23 Ion Juvina (UU)

Development of Cognitive Model for Navigating on the Web

2006-24 Laura Hollink (VU)

Semantic Annotation for Retrieval of Visual Resources

2006-25 Madalina Drugan (UU)

Conditional log-likelihood MDL and Evolutionary MCMC

2006-26 Vojkan Mihajlovic (UT)

Score Region Algebra: A Flexible Framework for Structured Information Retrieval

2006-27 Stefano Bocconi (CWI)

Vox Populi: generating video documentaries from semantically annotated media repositories

2006-28 Borkur Sigurbjornsson (UVA)

Focused Information Access using XML Element Retrieval

==== 2007 ====

2007-01 Kees Leune (UvT)

Access Control and Service-Oriented Architectures

2007-02 Wouter Teepe (RUG)

Reconciling Information Exchange and Confidentiality: A Formal Approach

2007-03 Peter Mika (VU)

Social Networks and the Semantic Web

2007-04 Jurriaan van Diggelen (UU)

Achieving Semantic Interoperability in Multi-agent Systems: a dialogue-based approach

2007-05 Bart Schermer (UL)

Software Agents, Surveillance, and the Right to Privacy: a Legislative Framework for Agent-enabled Surveillance

2007-06 Gilad Mishne (UVA)

Applied Text Analytics for Blogs

2007-07 Natasa Jovanovic’ (UT)

To Whom It May Concern - Addressee Identification in Face-to-Face Meetings

2007-08 Mark Hoogendoorn (VU)

Modeling of Change in Multi-Agent Organizations

2007-09 David Mobach (VU)

Agent-Based Mediated Service Negotiation

2007-10 Huib Aldewereld (UU)

Autonomy vs. Conformity: an Institutional Perspective on Norms and Protocols
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2007-11 Natalia Stash (TUE)

Incorporating Cognitive/Learning Styles in a General-Purpose Adaptive Hypermedia System

2007-12 Marcel van Gerven (RUN)

Bayesian Networks for Clinical Decision Support: A Rational Approach to Dynamic Decision-Making under

Uncertainty

2007-13 Rutger Rienks (UT)

Meetings in Smart Environments; Implications of Progressing Technology

2007-14 Niek Bergboer (UM)

Context-Based Image Analysis

2007-15 Joyca Lacroix (UM)

NIM: a Situated Computational Memory Model

2007-16 Davide Grossi (UU)

Designing Invisible Handcuffs. Formal investigations in Institutions and Organizations for Multi-agent Systems

2007-17 Theodore Charitos (UU)

Reasoning with Dynamic Networks in Practice

2007-18 Bart Orriens (UvT)

On the development an management of adaptive business collaborations

2007-19 David Levy (UM)

Intimate relationships with artificial partners

2007-20 Slinger Jansen (UU)

Customer Configuration Updating in a Software Supply Network

2007-21 Karianne Vermaas (UU)

Fast diffusion and broadening use: A research on residential adoption and usage of broadband internet in the

Netherlands between 2001 and 2005

2007-22 Zlatko Zlatev (UT)

Goal-oriented design of value and process models from patterns

2007-23 Peter Barna (TUE)

Specification of Application Logic in Web Information Systems

2007-24 Georgina Ramrez Camps (CWI)

Structural Features in XML Retrieval

2007-25 Joost Schalken (VU)

Empirical Investigations in Software Process Improvement

==== 2008 ====

2008-01 Katalin Boer-Sorbn (EUR)

Agent-Based Simulation of Financial Markets: A modular, continuous-time approach

2008-02 Alexei Sharpanskykh (VU)

On Computer-Aided Methods for Modeling and Analysis of Organizations

2008-03 Vera Hollink (UVA)

Optimizing hierarchical menus: a usage-based approach

2008-04 Ander de Keijzer (UT)

Management of Uncertain Data - towards unattended integration
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2008-05 Bela Mutschler (UT)

Modeling and simulating causal dependencies on process-aware information systems from a cost perspective

2008-06 Arjen Hommersom (RUN)

On the Application of Formal Methods to Clinical Guidelines, an Artificial Intelligence Perspective

2008-07 Peter van Rosmalen (OU)

Supporting the tutor in the design and support of adaptive e-learning

2008-08 Janneke Bolt (UU)

Bayesian Networks: Aspects of Approximate Inference

2008-09 Christof van Nimwegen (UU)

The paradox of the guided user: assistance can be counter-effective

2008-10 Wauter Bosma (UT)

Discourse oriented summarization

2008-11 Vera Kartseva (VU)

Designing Controls for Network Organizations: A Value-Based Approach

2008-12 Jozsef Farkas (RUN)

A Semiotically Oriented Cognitive Model of Knowledge Representation

2008-13 Caterina Carraciolo (UVA)

Topic Driven Access to Scientific Handbooks

2008-14 Arthur van Bunningen (UT)

Context-Aware Querying; Better Answers with Less Effort

2008-15 Martijn van Otterlo (UT)

The Logic of Adaptive Behavior: Knowledge Representation and Algorithms for the Markov Decision Process

Framework in First-Order Domains.

2008-16 Henriette van Vugt (VU)

Embodied agents from a user’s perspective

2008-17 Martin Op ’t Land (TUD)

Applying Architecture and Ontology to the Splitting and Allying of Enterprises

2008-18 Guido de Croon (UM)

Adaptive Active Vision

2008-19 Henning Rode (UT)

From Document to Entity Retrieval: Improving Precision and Performance of Focused Text Search

2008-20 Rex Arendsen (UVA)

Geen bericht, goed bericht. Een onderzoek naar de effecten van de introductie van elektronisch berichtenverkeer

met de overheid op de administratieve lasten van bedrijven.

2008-21 Krisztian Balog (UVA)

People Search in the Enterprise

2008-22 Henk Koning (UU)

Communication of IT-Architecture

2008-23 Stefan Visscher (UU)

Bayesian network models for the management of ventilator-associated pneumonia
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2008-24 Zharko Aleksovski (VU)

Using background knowledge in ontology matching

2008-25 Geert Jonker (UU)

Efficient and Equitable Exchange in Air Traffic Management Plan Repair using Spender-signed Currency

2008-26 Marijn Huijbregts (UT)

Segmentation, Diarization and Speech Transcription: Surprise Data Unraveled

2008-27 Hubert Vogten (OU)

Design and Implementation Strategies for IMS Learning Design

2008-28 Ildiko Flesch (RUN)

On the Use of Independence Relations in Bayesian Networks

2008-29 Dennis Reidsma (UT)

Annotations and Subjective Machines - Of Annotators, Embodied Agents, Users, and Other Humans

2008-30 Wouter van Atteveldt (VU)

Semantic Network Analysis: Techniques for Extracting, Representing and Querying Media Content

2008-31 Loes Braun (UM)

Pro-Active Medical Information Retrieval

2008-32 Trung H. Bui (UT)

Toward Affective Dialogue Management using Partially Observable Markov Decision Processes

2008-33 Frank Terpstra (UVA)

Scientific Workflow Design; theoretical and practical issues

2008-34 Jeroen de Knijf (UU)

Studies in Frequent Tree Mining

2008-35 Ben Torben Nielsen (UvT)

Dendritic morphologies: function shapes structure

==== 2009 ====

2009-01 Rasa Jurgelenaite (RUN)

Symmetric Causal Independence Models

2009-02 Willem Robert van Hage (VU)

Evaluating Ontology-Alignment Techniques

2009-03 Hans Stol (UvT)

A Framework for Evidence-based Policy Making Using IT

2009-04 Josephine Nabukenya (RUN)

Improving the Quality of Organisational Policy Making using Collaboration Engineering

2009-05 Sietse Overbeek (RUN)

Bridging Supply and Demand for Knowledge Intensive Tasks - Based on Knowledge, Cognition, and Quality

2009-06 Muhammad Subianto (UU)

Understanding Classification

2009-07 Ronald Poppe (UT)

Discriminative Vision-Based Recovery and Recognition of Human Motion

2009-08 Volker Nannen (VU)

Evolutionary Agent-Based Policy Analysis in Dynamic Environments
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2009-09 Benjamin Kanagwa (RUN)

Design, Discovery and Construction of Service-oriented Systems

2009-10 Jan Wielemaker (UVA)

Logic programming for knowledge-intensive interactive applications

2009-11 Alexander Boer (UVA)

Legal Theory, Sources of Law & the Semantic Web

2009-12 Peter Massuthe (TUE, Humboldt-Universitaet zu Berlin)

Operating Guidelines for Services

2009-13 Steven de Jong (UM)

Fairness in Multi-Agent Systems

2009-14 Maksym Korotkiy (VU)

From ontology-enabled services to service-enabled ontologies (making ontologies work in e-science with ONTO-

SOA)

2009-15 Rinke Hoekstra (UVA)

Ontology Representation - Design Patterns and Ontologies that Make Sense

2009-16 Fritz Reul (UvT)

New Architectures in Computer Chess

2009-17 Laurens van der Maaten (UvT)

Feature Extraction from Visual Data

2009-18 Fabian Groffen (CWI)

Armada, An Evolving Database System

2009-19 Valentin Robu (CWI)

Modeling Preferences, Strategic Reasoning and Collaboration in Agent-Mediated Electronic Markets

2009-20 Bob van der Vecht (UU)

Adjustable Autonomy: Controling Influences on Decision Making

2009-21 Stijn Vanderlooy (UM)

Ranking and Reliable Classification

2009-22 Pavel Serdyukov (UT)

Search For Expertise: Going beyond direct evidence

2009-23 Peter Hofgesang (VU)

Modelling Web Usage in a Changing Environment

2009-24 Annerieke Heuvelink (VUA)

Cognitive Models for Training Simulations

2009-25 Alex van Ballegooij (CWI)

”RAM: Array Database Management through Relational Mapping”

2009-26 Fernando Koch (UU)

An Agent-Based Model for the Development of Intelligent Mobile Services

2009-27 Christian Glahn (OU)

Contextual Support of social Engagement and Reflection on the Web
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2009-28 Sander Evers (UT)

Sensor Data Management with Probabilistic Models

2009-29 Stanislav Pokraev (UT)

Model-Driven Semantic Integration of Service-Oriented Applications

2009-30 Marcin Zukowski (CWI)

Balancing vectorized query execution with bandwidth-optimized storage

2009-31 Sofiya Katrenko (UVA)

A Closer Look at Learning Relations from Text

2009-32 Rik Farenhorst (VU)

and Remco de Boer (VU)

Architectural Knowledge Management: Supporting Architects and Auditors

2009-33 Khiet Truong (UT)

How Does Real Affect Affect Affect Recognition In Speech?

2009-34 Inge van de Weerd (UU)

Advancing in Software Product Management: An Incremental Method Engineering Approach

2009-35 Wouter Koelewijn (UL)

Privacy en Politiegegevens; Over geautomatiseerde normatieve informatie-uitwisseling

2009-36 Marco Kalz (OUN)

Placement Support for Learners in Learning Networks

2009-37 Hendrik Drachsler (OUN)

Navigation Support for Learners in Informal Learning Networks

2009-38 Riina Vuorikari (OU)

Tags and self-organisation: a metadata ecology for learning resources in a multilingual context

2009-39 Christian Stahl (TUE, Humboldt-Universitaet zu Berlin)

Service Substitution – A Behavioral Approach Based on Petri Nets

2009-40 Stephan Raaijmakers (UvT)

Multinomial Language Learning: Investigations into the Geometry of Language

2009-41 Igor Berezhnyy (UvT)

Digital Analysis of Paintings

2009-42 Toine Bogers (UvT)

Recommender Systems for Social Bookmarking

2009-43 Virginia Nunes Leal Franqueira (UT)

Finding Multi-step Attacks in Computer Networks using Heuristic Search and Mobile Ambients

2009-44 Roberto Santana Tapia (UT)

Assessing Business-IT Alignment in Networked Organizations

2009-45 Jilles Vreeken (UU)

Making Pattern Mining Useful

2009-46 Loredana Afanasiev (UvA)

Querying XML: Benchmarks and Recursion

==== 2010 ====
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2010-01 Matthijs van Leeuwen (UU)

Patterns that Matter

2010-02 Ingo Wassink (UT)

Work flows in Life Science

2010-03 Joost Geurts (CWI)

A Document Engineering Model and Processing Framework for Multimedia documents

2010-04 Olga Kulyk (UT)

Do You Know What I Know? Situational Awareness of Co-located Teams in Multidisplay Environments

2010-05 Claudia Hauff (UT)

Predicting the Effectiveness of Queries and Retrieval Systems

2010-06 Sander Bakkes (UvT)

Rapid Adaptation of Video Game AI

2010-07 Wim Fikkert (UT)

Gesture interaction at a Distance

2010-08 Krzysztof Siewicz (UL)

Towards an Improved Regulatory Framework of Free Software. Protecting user freedoms in a world of software

communities and eGovernments

2010-09 Hugo Kielman (UL)

A Politiele gegevensverwerking en Privacy, Naar een effectieve waarborging

2010-10 Rebecca Ong (UL)

Mobile Communication and Protection of Children

2010-11 Adriaan Ter Mors (TUD)

The world according to MARP: Multi-Agent Route Planning

2010-12 Susan van den Braak (UU)

Sensemaking software for crime analysis

2010-13 Gianluigi Folino (RUN)

High Performance Data Mining using Bio-inspired techniques

2010-14 Sander van Splunter (VU)

Automated Web Service Reconfiguration

2010-15 Lianne Bodenstaff (UT)

Managing Dependency Relations in Inter-Organizational Models

2010-16 Sicco Verwer (TUD)

Efficient Identification of Timed Automata, theory and practice

2010-17 Spyros Kotoulas (VU)

Scalable Discovery of Networked Resources: Algorithms, Infrastructure, Applications

2010-18 Charlotte Gerritsen (VU)

Caught in the Act: Investigating Crime by Agent-Based Simulation

2010-19 Henriette Cramer (UvA)

People’s Responses to Autonomous and Adaptive Systems

2010-20 Ivo Swartjes (UT)

Whose Story Is It Anyway? How Improv Informs Agency and Authorship of Emergent Narrative
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2010-21 Harold van Heerde (UT)

Privacy-aware data management by means of data degradation

2010-22 Michiel Hildebrand (CWI)

End-user Support for Access to

Heterogeneous Linked Data

2010-23 Bas Steunebrink (UU)

The Logical Structure of Emotions

2010-24 Dmytro Tykhonov Designing Generic and Efficient Negotiation Strategies

2010-25 Zulfiqar Ali Memon (VU)

Modelling Human-Awareness for Ambient Agents: A Human Mindreading Perspective

2010-26 Ying Zhang (CWI)

XRPC: Efficient Distributed Query Processing on Heterogeneous XQuery Engines

2010-27 Marten Voulon (UL)

Automatisch contracteren

2010-28 Arne Koopman (UU)

Characteristic Relational Patterns

2010-29 Stratos Idreos(CWI)

Database Cracking: Towards Auto-tuning Database Kernels

2010-30 Marieke van Erp (UvT)

Accessing Natural History - Discoveries in data cleaning, structuring, and retrieval

2010-31 Victor de Boer (UVA)

Ontology Enrichment from Heterogeneous Sources on the Web

2010-32 Marcel Hiel (UvT)

An Adaptive Service Oriented Architecture: Automatically solving Interoperability Problems

2010-33 Robin Aly (UT)

Modeling Representation Uncertainty in Concept-Based Multimedia Retrieval

2010-34 Teduh Dirgahayu (UT)

Interaction Design in Service Compositions

2010-35 Dolf Trieschnigg (UT)

Proof of Concept: Concept-based Biomedical Information Retrieval

2010-36 Jose Janssen (OU)

Paving the Way for Lifelong Learning; Facilitating competence development through a learning path specification

2010-37 Niels Lohmann (TUE)

Correctness of services and their composition

2010-38 Dirk Fahland (TUE)

From Scenarios to components

2010-39 Ghazanfar Farooq Siddiqui (VU)

Integrative modeling of emotions in virtual agents

2010-40 Mark van Assem (VU)

Converting and Integrating Vocabularies for the Semantic Web
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2010-41 Guillaume Chaslot (UM)

Monte-Carlo Tree Search

2010-42 Sybren de Kinderen (VU)

Needs-driven service bundling in a multi-supplier setting - the computational e3-service approach

2010-43 Peter van Kranenburg (UU)

A Computational Approach to Content-Based Retrieval of Folk Song Melodies

2010-44 Pieter Bellekens (TUE)

An Approach towards Context-sensitive and User-adapted Access to Heterogeneous Data Sources, Illustrated in

the Television Domain

2010-45 Vasilios Andrikopoulos (UvT)

A theory and model for the evolution of software services

2010-46 Vincent Pijpers (VU)

e3alignment: Exploring Inter-Organizational Business-ICT Alignment

2010-47 Chen Li (UT)

Mining Process Model Variants: Challenges, Techniques, Examples

2010-48 Withdrawn

2010-49 Jahn-Takeshi Saito (UM)

Solving difficult game positions

2010-50 Bouke Huurnink (UVA)

Search in Audiovisual Broadcast Archives

2010-51 Alia Khairia Amin (CWI)

Understanding and supporting information seeking tasks in multiple sources

2010-52 Peter-Paul van Maanen (VU)

Adaptive Support for Human-Computer Teams: Exploring the Use of Cognitive Models of Trust and Attention

2010-53 Edgar Meij (UVA)

Combining Concepts and Language Models for Information Access

==== 2011 ====

2011-01 Botond Cseke (RUN)

Variational Algorithms for Bayesian Inference in Latent Gaussian Models

2011-02 Nick Tinnemeier(UU)

Organizing Agent Organizations. Syntax and Operational Semantics of an Organization-Oriented Programming

Language

2011-03 Jan Martijn van der Werf (TUE)

Compositional Design and Verification of Component-Based Information Systems

2011-04 Hado van Hasselt (UU)

Insights in Reinforcement Learning; Formal analysis and empirical evaluation of temporal-difference learning

algorithms

2011-05 Base van der Raadt (VU)

Enterprise Architecture Coming of Age - Increasing the Performance of an Emerging Discipline.

2011-06 Yiwen Wang (TUE)

Semantically-Enhanced Recommendations in Cultural Heritage
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2011-07 Yujia Cao (UT)

Multimodal Information Presentation for High Load Human Computer Interaction

2011-08 Nieske Vergunst (UU)

BDI-based Generation of Robust Task-Oriented Dialogues

2011-09 Tim de Jong (OU)

Contextualised Mobile Media for Learning

2011-10 Bart Bogaert (UvT)

Cloud Content Contention

2011-11 Dhaval Vyas (UT)

Designing for Awareness: An Experience-focused HCI Perspective

2011-12 Carmen Bratosin (TUE)

Grid Architecture for Distributed Process Mining

2011-13 Xiaoyu Mao (UvT)

Airport under Control. Multiagent Scheduling for Airport Ground Handling

2011-14 Milan Lovric (EUR)

Behavioral Finance and Agent-Based Artificial Markets

2011-15 Marijn Koolen (UvA)

The Meaning of Structure: the Value of Link Evidence for Information Retrieval

2011-16 Maarten Schadd (UM)

Selective Search in Games of Different Complexity

2011-17 Jiyin He (UVA)

Exploring Topic Structure: Coherence, Diversity and Relatedness

2011-18 Mark Ponsen (UM)

Strategic Decision-Making in complex games

2011-19 Ellen Rusman (OU)

The Mind ’ s Eye on Personal Profiles

2011-20 Qing Gu (VU)

Guiding service-oriented software engineering - A view-based approach

2011-21 Linda Terlouw (TUD)

Modularization and Specification of Service-Oriented Systems

2011-22 Junte Zhang (UVA)

System Evaluation of Archival Description and Access

2011-23 Wouter Weerkamp (UVA)

Finding People and their Utterances in Social Media

2011-24 Herwin van Welbergen (UT)

Behavior Generation for Interpersonal Coordination with Virtual Humans On Specifying, Scheduling and Real-

izing Multimodal Virtual Human Behavior

2011-25 Syed Waqar ul Qounain Jaffry (VU)

Analysis and Validation of Models for Trust Dynamics

2011-26 Matthijs Aart Pontier (VU)

Virtual Agents for Human Communication - Emotion Regulation and Involvement-Distance Trade-Offs in Em-

bodied Conversational Agents and Robots



SIKS Dissertations 164

2011-27 Aniel Bhulai (VU)

Dynamic website optimization through autonomous management of design patterns

2011-28 Rianne Kaptein(UVA)

Effective Focused Retrieval by Exploiting Query Context and Document Structure

2011-29 Faisal Kamiran (TUE)

Discrimination-aware Classification

2011-30 Egon van den Broek (UT)

Affective Signal Processing (ASP)

: Unraveling the mystery of emotions

2011-31 Ludo Waltman (EUR)

Computational and Game-Theoretic Approaches for Modeling Bounded Rationality

2011-32 Nees-Jan van Eck (EUR)

Methodological Advances in Bibliometric Mapping of Science

2011-33 Tom van der Weide (UU)

Arguing to Motivate Decisions

2011-34 Paolo Turrini (UU)

Strategic Reasoning in Interdependence: Logical and Game-theoretical Investigations

2011-35 Maaike Harbers (UU)

Explaining Agent Behavior in Virtual Training

2011-36 Erik van der Spek (UU)

Experiments in serious game design: a cognitive approach

2011-37 Adriana Burlutiu (RUN)

Machine Learning for Pairwise Data, Applications for Preference Learning and Supervised Network Inference

2011-38 Nyree Lemmens (UM)

Bee-inspired Distributed Optimization

2011-39 Joost Westra (UU)

Organizing Adaptation using Agents in Serious Games

2011-40 Viktor Clerc (VU)

Architectural Knowledge Management in Global Software Development

2011-41 Luan Ibraimi (UT)

Cryptographically Enforced Distributed Data Access Control

2011-42 Michal Sindlar (UU)

Explaining Behavior through Mental State Attribution

2011-43 Henk van der Schuur (UU)

Process Improvement through Software Operation Knowledge

2011-44 Boris Reuderink (UT)

Robust Brain-Computer Interfaces

2011-45 Herman Stehouwer (UvT)

Statistical Language Models for Alternative Sequence Selection

2011-46 Beibei Hu (TUD)

Towards Contextualized Information Delivery: A Rule-based Architecture for the Domain of Mobile Police Work
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2011-47 Azizi Bin Ab Aziz(VU)

Exploring Computational Models for Intelligent Support of Persons with Depression

2011-48 Mark Ter Maat (UT)

Response Selection and Turn-taking for a Sensitive Artificial Listening Agent

2011-49 Andreea Niculescu (UT)

Conversational interfaces for task-oriented spoken dialogues: design aspects influencing interaction quality

==== 2012 ====

2012-01 Terry Kakeeto (UvT)

Relationship Marketing for SMEs in Uganda

2012-02 Muhammad Umair(VU)

Adaptivity, emotion, and Rationality in Human and Ambient Agent Models

2012-03 Adam Vanya (VU)

Supporting Architecture Evolution by Mining Software Repositories

2012-04 Jurriaan Souer (UU)

Development of Content Management System-based Web Applications

2012-05 Marijn Plomp (UU)

Maturing Interorganisational Information Systems

2012-06 Wolfgang Reinhardt (OU)

Awareness Support for Knowledge Workers in Research Networks

2012-07 Rianne van Lambalgen (VU)

When the Going Gets Tough: Exploring Agent-based Models of Human Performance under Demanding Condi-

tions

2012-08 Gerben de Vries (UVA)

Kernel Methods for Vessel Trajectories

2012-09 Ricardo Neisse (UT)

Trust and Privacy Management Support for Context-Aware Service Platforms

2012-10 David Smits (TUE)

Towards a Generic Distributed Adaptive Hypermedia Environment

2012-11 J.C.B. Rantham Prabhakara (TUE)

Process Mining in the Large: Preprocessing, Discovery, and Diagnostics

2012-12 Kees van der Sluijs (TUE)

Model Driven Design and Data Integration in Semantic Web Information Systems

2012-13 Suleman Shahid (UvT)

Fun and Face: Exploring non-verbal expressions of emotion during playful interactions

2012-14 Evgeny Knutov(TUE)

Generic Adaptation Framework for Unifying Adaptive Web-based Systems

2012-15 Natalie van der Wal (VU)

Social Agents. Agent-Based Modelling of Integrated Internal and Social Dynamics of Cognitive and Affective

Processes.

2012-16 Fiemke Both (VU)

Helping people by understanding them - Ambient Agents supporting task execution and depression treatment
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2012-17 Amal Elgammal (UvT)

Towards a Comprehensive Framework for Business Process Compliance

2012-18 Eltjo Poort (VU)

Improving Solution Architecting Practices

2012-19 Helen Schonenberg (TUE)

What’s Next? Operational Support for Business Process Execution

2012-20 Ali Bahramisharif (RUN)

Covert Visual Spatial Attention, a Robust Paradigm for Brain-Computer Interfacing

2012-21 Roberto Cornacchia (TUD)

Querying Sparse Matrices for Information Retrieval

2012-22 Thijs Vis (UvT)

Intelligence, politie en veiligheidsdienst: verenigbare grootheden?

2012-23 Christian Muehl (UT)

Toward Affective Brain-Computer Interfaces: Exploring the Neurophysiology of Affect during Human Media

Interaction

2012-24 Laurens van der Werff (UT)

Evaluation of Noisy Transcripts for Spoken Document Retrieval

2012-25 Silja Eckartz (UT)

Managing the Business Case Development in Inter-Organizational IT Projects: A Methodology and its Application

2012-26 Emile de Maat (UVA)

Making Sense of Legal Text

2012-27 Hayrettin Gurkok (UT)

Mind the Sheep! User Experience Evaluation & Brain-Computer Interface Games

2012-28 Nancy Pascall (UvT)

Engendering Technology Empowering Women

2012-29 Almer Tigelaar (UT)

Peer-to-Peer Information Retrieval

2012-30 Alina Pommeranz (TUD)

Designing Human-Centered Systems for Reflective Decision Making

2012-31 Emily Bagarukayo (RUN)

A Learning by Construction Approach for Higher Order Cognitive Skills Improvement, Building Capacity and

Infrastructure

2012-32 Wietske Visser (TUD)

Qualitative multi-criteria preference representation and reasoning

2012-33 Rory Sie (OUN)

Coalitions in Cooperation Networks (COCOON)

2012-34 Pavol Jancura (RUN)

Evolutionary analysis in PPI networks and applications

2012-35 Evert Haasdijk (VU)

Never Too Old To Learn – On-line Evolution of Controllers in Swarm- and Modular Robotics
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2012-36 Denis Ssebugwawo (RUN)

Analysis and Evaluation of Collaborative Modeling Processes

2012-37 Agnes Nakakawa (RUN)

A Collaboration Process for Enterprise Architecture Creation

2012-38 Selmar Smit (VU)

Parameter Tuning and Scientific Testing in Evolutionary Algorithms

2012-39 Hassan Fatemi (UT)

Risk-aware design of value and coordination networks

2012-40 Agus Gunawan (UvT)

Information Access for SMEs in Indonesia

2012-41 Sebastian Kelle (OU)

Game Design Patterns for Learning

2012-42 Dominique Verpoorten (OU)

Reflection Amplifiers in self-regulated Learning

2012-43 Withdrawn

2012-44 Anna Tordai (VU)

On Combining Alignment Techniques

2012-45 Benedikt Kratz (UvT)

A Model and Language for Business-aware Transactions

2012-46 Simon Carter (UVA)

Exploration and Exploitation of Multilingual Data for Statistical Machine Translation

2012-47 Manos Tsagkias (UVA)

Mining Social Media: Tracking Content and Predicting Behavior

2012-48 Jorn Bakker (TUE)

Handling Abrupt Changes in Evolving Time-series Data

2012-49 Michael Kaisers (UM)

Learning against Learning - Evolutionary dynamics of reinforcement learning algorithms in strategic interactions

2012-50 Steven van Kervel (TUD)

Ontologogy driven Enterprise Information Systems Engineering

2012-51 Jeroen de Jong (TUD)

Heuristics in Dynamic Sceduling; a practical framework with a case study in elevator dispatching

==== 2013 ====

2013-01 Viorel Milea (EUR)

News Analytics for Financial Decision Support

2013-02 Erietta Liarou (CWI)

MonetDB/DataCell: Leveraging the Column-store Database Technology for Efficient and Scalable Stream Pro-

cessing

2013-03 Szymon Klarman (VU)

Reasoning with Contexts in Description Logics

2013-04 Chetan Yadati(TUD)

Coordinating autonomous planning and scheduling
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