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Abstract. ID-Logic is a knowledge representation language that ex-
tends first-order logic with non-monotone inductive definitions. This pa-
per introduces an ID-Logic based framework for database schema inte-
gration. It allows us to to uniformly represent and reason with indepen-
dent source databases that contain information about a common domain,
but may have different schemas. The ID-Logic theories that are obtained
are called mediator-based systems. We show that these theories properly
capture the common methods for data integration (i.e., global-as view
and local-as-view with either exact or partial definitions), and apply on
them a robust abductive inference technique for query answering.

1 Introduction

This work introduces a query answering system that mediates among several
independent databases (sources) that contain information about a common do-
main, but where each source may have a different schema. These systems, called
information integration systems (or mediator-based systems, see [24, 25, 31]) con-
sist of an alphabet, called the global schema (representing the global informa-
tion), and a structure that links the information of the sources with the global
schema, such that a virtual knowledge-base in terms of the global schema is
obtained. Each schema of a source, as well as the global schema, reflects its own
view on the information domain. Therefore, the “intended meaning” of the differ-
ent schemas should be related, and this is done by a logic theory. This requires
appropriate definitions, in which the relations of one schema are expressed in
terms of another. There are two common methods to define these relations: one,
called Global-as-View (GAV) [31], expresses the relations of the global schema
in terms of those of the sources. The other, called Local-as-View (LAV) [25],
defines each source relation in terms of the relations of the global schema.

Both approaches have to deal with gaps between the amount of knowledge
in the sources and in the intended global database. Even if a certain source con-
tains a complete knowledge about its own relations, it might possess only partial
information about the global relations, which means (in the LAV approach) in-
complete definitions. It might happen, however, that the partial information is



complemented by other sources, so that together the sources possess complete
knowledge about (part of) the intended global database. The possible relations
between the amount of (extentional) knowledge contained in a source predicate
and that of the (intended) global database predicates are designated in [14, 22]
by different labels: a source predicate that contains a proper subset (respec-
tively, superset) of the intended knowledge of the corresponding predicate at the
global schema is labeled open (respectively, closed). A source predicate whose
information is the same as that of the global one is labeled clopen.

In addition to its (global) schema and the mapping to the sources’ schemas,
a mediator-based system also defines an inference procedure that exploits the
represented information in order to answer queries. Different semantics [1] have
been used for query answers (in terms of the global schema): (1) According to
the certain answer semantics a tuple [t] is an answer to a global query Q if its
true in all possible instances of the global schema. (2) According to the possible
answer semantics a tuple [t] is an answer of a query Q if [t] holds in at least one
instance of the global schema. Typically, answers are computed in two phases:
first, the query is rewritten in a query in terms of the source relations. Next,
the sources are queried.This is needed because the sources are not materialized
at the global level. Among query answering algorithms are Bucket [25], Minicon
[29] and Inverse-rule [20].

We present a mediator-based system that is based on ID-Logic [15, 16], an
expressive knowledge representation language. Contrary to most systems, ours
explicitly distinguishes between complete and incomplete knowledge. It also al-
lows us to formalize the knowledge expressed by the labels of [14, 22] and offers
a uniform treatment of the LAV and GAV approaches (as well as a mixture of
both). Query answering is implemented by abductive reasoning [19] that simpli-
fies the construction of the transformed queries and provides informative answers
when sources are temporary unavailable.

2 Preliminaries

2.1 Mediator-based systems

A source database is a structure 〈L, I〉 where L is a first-order language and I

is a database instance, i.e., a set of tuples representing all true instances of the
predicates of L. It is assumed that the unique names axioms hold.

Example 1. A source describing a set of students may have the following struc-
ture: S1 = 〈{student(·)}, {student(john), student(mary)}〉

Definition 1 (A mediator-based system). A mediator-based system G is a
triple 〈L, S, M〉, where L is a first-order language of the integrated (or global)
database, S = {S1, . . . ,Sn} is a set of source databases, and M is a set of sets
of formulae in L (representing the relationships between the sources and the
intended global database).



To simplify the presentation, we assume that each predicate is uniquely de-
fined by either a source or the global schema3. We also assume the unique do-
main assumption: all involved database languages share the same domain, i.e.,
all constants and function symbols are shared and have the same interpreta-
tion everywhere. Hence, as in the above example, the language of a database is
completely determined by its vocabulary, i.e., its set of predicates.

Example 2. Consider the following two data-sources:
S1 = 〈{student(·)}, {student(john), student(mary)}〉,
S2 = 〈{enrolled(·, ·)}, {enrolled(john, 1999), enrolled(mary, 2000)}〉.

A possible mediator-based system G for these sources is 〈L, S, M〉, where
L = {st99(·)}, S = {S1,S2}, and
M = {{∀ x.st99(x)← student(x) ∧ enrolled(x, 1999)}}4

Queries w.r.t. G will be first-order formulas over L (e.g. ∃ x.st99(x)).

2.2 ID-Logic

ID-Logic [15–18] is a knowledge representation language that extends classical
first-order logic with non-monotone inductive definitions. Formally:

Definition 2 (ID-Logic). An ID-Logic theory T based on the first-order logic
language L is a pair (D,F). D is a set of definitions Di (i = 1 . . . n) and F is a
set of first-order formulas. A definition D is a set of rules of the form p(t)← B

where p(t) is an atom and B is any first-order formula.

The predicates occurring in the heads of the rules of an inductive definition D are
the defined predicates of D. All the other predicates belong to Open(D), the set
of open predicates of D. As will be exploited in Section 3, the same predicate can
be defined in different definitions. Care must be taken that different definitions
are equivalent.

Definition 3 (A model of a definition5). A structure M is a model of a
definition D iff there exists an interpretation I of Open(D) such that M is the
two-valued well-founded [33] model of D that extends I. A structure M is a model
of D iff M is a model of each D ∈ D.

Definition 4 (Formal semantics of an ID-Logic theory). A structure M

is a model of the ID-Logic theory T =(D,F) iff M is a model of D and satisfies
all formulas of F . The collection of all models of T is denoted by Mod(T ).

Note 1 (Relation with Description Logics (DL)). Several data integration sys-
tems use DL [6] as underlying language (see, e.g., [13, 14]). As shown in [32],
ID-Logic can be viewed as a very expressive DL. The main differences between
both are the facility to specify inductive definitions6, and the computational

3 If needed, a simple renaming of predicates in sources can establish this property.
4

M expresses that st99(x) is the conjunction of two relations. See Section 2.2.
5 This is also well defined for general non-monotone inductive definitions [16].
6 Most DL only allow transitive closure as a special case of an inductive definition.



paradigm; whereas DL systems focus on deductive query answering, ID-Logic
systems also make use of abductive reasoning, i.e., computing (classes of) models
(explanations) that support the query.

Definition 5 (Composition of ID-Logic theories). For two ID-Logic the-
ories T1 and T2 over the same language L, the composed theory T1 ◦ T2 is an
ID-Logic theory T over L, obtained via the pairwise union of both theories:

T = T1 ◦ T2 = (D1,F1) ◦ (D2,F2) = (D1 ∪ D2,F1 ∪ F2).

Proposition 1. For two ID-Logic theories T1 and T2 over a language L, it holds
that Mod(T1 ◦ T2) = Mod(T1) ∩Mod(T2).

2.3 Expressing partial knowledge

When designing mediator-based systems, the available information is often in-
sufficient to define the ontological relations between the global database and the
sources. We explain how open predicates can complete partial knowledge.

An incomplete set of rules. Suppose that the set of rules {p(t) ← Bi|i =
1 . . . k} only partially defines p. A complete definition can be obtained by
adding a rule p(s) ← p∗(s), in which the auxiliary open predicate p∗ rep-
resents all the tuples in p that are not defined by any of the bodies Bi.
To ensure that the tuples in p∗ do not overlap with the other tuples, the
integrity constraint ∀ p∗(s)→ ¬(B1 ∨ . . . ∨Bk) can be added.

An imprecise rule. Another type of incompleteness occurs when the body of
a rule p(t) ← B is overly general, i.e., includes tuples not intended to be
in the relation p. This can be repaired by adding to the body an auxiliary
open predicate ps that filters the extraneous tuples. The completed rule in
this case is p(t)← B ∧ ps(t).

Example 3. Let st99(·) be defined in terms of student(·). The rule st99(x) ←
student(x) is overly general since not all students did enroll in 1999. By adding
an auxiliary predicate st99s(·), denoting all persons enrolled during 1999, the
revised rule st99(x)← student(x) ∧ st99s(x) correctly defines st99(·).

3 An ID-Logic Mediator-based System

Definition 6 (An ID-Logic mediator-based system). For a set of sources
{S1, . . . ,Sn } and a global schema LG, an ID-Logic mediator-based system is a
triple G = 〈LG, S, M〉, where

– S is a set of ID-Logic theories {S1 . . .Sn} encoding the source databases.
– M is a set of ID-Logic theories {W1 . . .Wn,K} encoding the relationships

between the sources and the intended global database:
• Wi, i = 1, . . . , n, are source mappings for the source Si w.r.t. LG,
• K is an ID-Logic theory that describes how the information in the dif-

ferent sources complement each other.

and the knowledge of the ID-Logic mediator-based system G is represented by
the ID-Logic theory T = S1 ◦ · · · ◦ Sn ◦W1 ◦ · · · ◦ Wn ◦ K.



The sources. A source Si = 〈LS , I〉 is encoded as Si = ({{I}} , ∅) where I is
obtained by interpreting the database instance I as an enumeration of facts.

Example 4. The source S = 〈{student(·)}, {student(john), student(mary)}〉 of
Example 1 is interpreted as the following ID-Logic theory:

S =
({{

student(john). student(mary).
}}

, ∅
)

Relating one source with the global schema. This part defines the rela-
tionships between the relations of a source and of the global database. These
relationships are expressed in the form of (inductive) definitions, taking into ac-
count the ontological relationships between the predicates and the actual knowl-
edge of the source. The techniques described in Section 2.3 are used when there
is a mismatch between the information in the source and in the global database.

Definition 7 (A source mapping). A source mapping from a language L2 to
a language L1 is an ID-Logic theory W defining the predicates of L1 in terms of
the predicates of L2 and of the necessary auxiliary open predicates.

Local-as-View (LAV) and Global-as-View (GAV) are particular instances of
source mappings. For a source with vocabulary LS and a global database with
vocabulary LG, LAV (GAV) defines the predicates of LS (LG) in terms of the
predicates of LG (LS).

Example 5. Consider the languages L1 = {st99(·)} and L2 = {student(·)},
where st99(·) represents the students enrolled in 1999 and student(·) represents
all the students. The possible source mappings are the following:

1. W1→2 = ({{st99(x)← student(x) ∧ students(x).}} , ∅)
2. W2→1 =

({{student(x)← st99(x) ∨ st99∗(x).}} , {∀ x.st99∗(x)→ ¬st99(x).})

The meaning of the predicates allows only those two representations. When L1

is the source predicate, the first mapping is LAV and the second is GAV. Now,
the auxiliary predicate st99∗(·) represents the students that are not known by
the source, while students(·) represents the students known by the source.

Note 2 (GAV or LAV?). According to our definition GAV and LAV are equally
good approaches.7 However, as it is more natural to define abstract concepts
in terms of more detailed notions, differences in abstraction levels of the source
and the global languages imply that in practice one approach could be more
appropriate than the other. Moreover, since the abstraction levels of the sources’
languages may also be different (some of which may be more abstract than
the global language and some may be less abstract than it), it makes sense to

7 In the literature one finds arguments in favor of one or the other. For our repre-
sentational point of view there is no difference. However, in the section on query
answering, we give an argument in favor of GAV.



combine both approaches, i.e., to use GAV for the source mappings between
certain sources and the global schema, and the LAV approach for the mappings
between the other sources and the global schema. The fact that our framework
supports such a combination may serve, therefore, as one of its advantages over
other formalisms.

As noted in the introduction, special labels are sometimes used to denote
the amount of knowledge a source stores (see, e.g., [14, 22]). For the sake of
presentation, we show this in the context of LAV mappings between one source
relation and one global relation. In general, the labels express a relation between
a query over the source and over the global schema [14]. The following example
illustrates that our use of open auxiliary predicates exactly captures the meaning
of such labels. It is a variant on the world cup example, considered in [22].

closed source: The source predicate contains more information than the me-
diator predicate needs.
Consider LG = {st99(·)} and LS = {student(·)}. Here, the mapping is:

({{

student(x)← st99(x) ∨ student∗(x).
}}

,
{

∀ x.student∗(x)→ ¬st99(x).
}

)

student∗(·) models that there are other students than those listed by st99(·).

open source: The source predicate contains less information than the media-
tor predicate needs. Consider LG = {st99(·)} and LS = {st99male(·)}. Now,
the mapping is:

({{

st99male(x)← st99(x) ∧ st99males(x).
}}

, ∅
)

st99males(x) models the unknown subset of male students.

clopen source: The source predicate has exact information for the mediator
predicate. Consider LG = {st99(·)} and LS = {studentsOf1999(·)}. The
mapping is as follows:

({{

studentsOf1999(x)← st99(x).
}}

, ∅
)

Knowing what multiple sources know. The last component in the com-
position of the ID-Logic theories, introduced in Definition 6 for representing a
mediator-based system, contains an ID-Logic theory that allows the designer
to formulate additional meta-knowledge about how partial information of one
source (regarding a certain predicate of the global schema) is completed by data
of other sources. This ID-Logic theory is denoted by K, and as shown below, its
information may be vital for a proper schema integration.

Example 6. Consider the global schema {student(·)} and the sources
S1 = 〈{st99(·)}, {st99(john)}〉 and S2 = 〈{st00(·)}, {st00(mary)}〉 having the
source mappings

W1→G =
(

{{student(x)← st99(x) ∨ st99∗(x).}} ,
{

∀ x.st99∗(x)→ ¬st99(x).
})

W2→G =
(

{{student(x)← st00(x) ∨ st00∗(x).}} ,
{

∀ x.st00∗(x)→ ¬st00(x).
})



Note that W1→G ◦ W2→G contains two (alternative and equivalent) definitions
for the student relation. The statement that the relation student(·) is complete
w.r.t. the set of sources {S1,S2} can be formalized by the first-order assertion

K = (∅, {∀ x.¬(st99∗(x) ∧ st00∗(x)).})

Obviously, no general rules for expressing meta-knowledge exist. It depends
on the representation choices of the source mappings, the information content
of the sources and the intended information content of the global database.

An elaborated example. We conclude this section with an elaboration of
Example 2. It shows, in particular, that a certain data integration problem can
be described by many different mediator-based systems.

Example 7. Consider two sources, each one has a complete knowledge about its
relations. Source S1 stores all full-time students, and source S2 contains data
about the year of enrollment of all students (both part-time and full-time):

S1 = 〈{student(·)}, {student(john), student(mary), student(bob)}〉,
S2 = 〈{enrolled(·, ·)}, {enrolled(john, 1999), enrolled(eve, 1999),

enrolled(mary, 2000), enrolled(alice, 2003)}〉

A mediator-based system that extracts lists of full-time students enrolled at the
years 1999 and 2000 looks as follows: G = 〈LG, {S1, S2}, M〉, where:

– LG = {st99(·), st00(·)}

– S1 =

















student(john).
student(mary).
student(bob).













, ∅





– S2 =





































enrolled(john, 1999).
enrolled(eve, 1999).
enrolled(mary, 2000).
enrolled(alice, 2003).





























, ∅









Three possible mappings are presented below. In these mapping, we have
additionally assumed that the sources contain all information about the global
relations.

– The GAV approach where each source is individually related with the global
schema. Here, M = {WG→1,WG→2,K}, where

WG→1 =

({{

st99(x)← student(x) ∧ st99s
S1

(x).
st00(x)← student(x) ∧ st00s

S1
(x).

}}

, ∅

)

WG→2 =

({{

st99(x)← enrolled(x, 1999)∧ st99s
S2

(x).
st00(x)← enrolled(x, 2000)∧ st00s

S2
(x).

}}

, ∅

)

K =









∅,















∀ x.st99s
S1

(x)↔ enrolled(x, 1999).
∀ x.st00s

S1
(x)↔ enrolled(x, 2000).

∀ x.st99s
S2

(x)↔ student(x).
∀ x.st00s

S2
(x)↔ student(x).

























– An alternative GAV approach that treats the two sources as if there are one.
This time, M = {WG→{1,2}}, where:

WG→{1,2} =

({{

st99(x)← student(x) ∧ enrolled(x, 1999).
st00(x)← student(x) ∧ enrolled(x, 2000).

}}

, ∅

)

– The LAV approach: M = {W1→G,W2→G,K}.

W1→G =

({{

student(x)← st99(x) ∨ st00(x) ∨ student∗(x).
}}

,

{∀ x.student∗(x)→ ¬(st99(x) ∨ st00(x)).}

)

W2→G =

























enrolled(x, y)← st99(x) ∧ y = 1999.

enrolled(x, y)← st00(x) ∧ y = 2000.

enrolled(x, y)← enrolled∗(x, y) ∧ (y 6= 1999 ∨ y 6= 2000).













,

{

∀ x, y.enrolled∗(x, y)→ ¬(st99(x) ∧ y = 1999).
∀ x, y.enrolled∗(x, y)→ ¬(st00(x) ∧ y = 2000).

}













K =









∅,















∀ x.st99(x)→ student(x).
∀ x.st00(x)→ student(x).
∀ x.st99(x)→ enrolled(x, 1999).
∀ x.st00(x)→ enrolled(x, 2000).























According to any one of the representations above, the unique model of G

(restricted to LG) is {st99(john), st00(mary)}.

4 Query Answering

In the previous sections we have shown how to set up correctly an ID-Logic
mediator-based system. This section discusses how queries can be answered with
respect to such system. First, we consider the general context of ID-Logic theo-
ries and then concentrate on abductive inference as a general technique of com-
puting answers posed to mediator-based systems. We also show that the answers
generated by the abductive process are more informative than answers that are
produced by other techniques.

Definition 8 (Types of queries). Let T be an ID-Logic theory and Q a query.

a) Q is skeptically true iff it is entailed by every model of T ; i.e.,

T |=skep Q iff for each model M of T : M |= Q.

b) Q is credulously true iff it is entailed by at least one model of T ; i.e.,

T |=cred Q iff there exists a model M of T : M |= Q.

In a mediator-based system G, the sources contain fixed information. Thus,
answers to queries that are supported by the sources will be always skeptically
true, while answers to queries for which the sources have no information might
be either skeptically false or credulously true.

As mediator-based system does not materialize the knowledge of the sources
in its own schema, the process of answering a global query Q is two-phased:



a) Compute for Q an equivalent (if possible) query Qs expressed in terms of
the source languages.

b) Query the sources with Qs.

Abductive Inference. Abductive reasoning is related to credulous query an-
swering, i.e., finding a model that satisfies the query. Recall that each model
of an ID-Logic theory is uniquely determined by an interpretation of the open
predicates of the theory. Abductive reasoning is the inference process that con-
structs an explanation formula E in terms of the open predicates that entails the
query Q. Formally, for an ID-Logic theory T and a query Q, E is an abductive
solution iff ∃ (E) is satisfiable w.r.t. T and T |= ∀ (E → Q).

Abductive reasoning for ID-Logic theories is provided by the Asystem [3, 5,
23]. A preprocessing step transforms an ID-Logic theory into an equivalent ID-
Logic theory consisting of one definition. Such theories correspond to abductive
normal logic programs that form the input for the Asystem. The open predicates
of this ID-Logic theory are mapped into the abducibles in the abductive logic
programming framework. We refer the reader to [19] for more details about
abduction and its relation with ID-Logic.

In the case of the Asystem the computed explanation formula E describes
a class of models of T . When E is true, the query is satisfiable w.r.t. to all
models. When the Asystem is unable to find an abductive solution for Q, then
T |= ∀ (¬Q)8.

Answers for Queries. Consider G = 〈LG, {S1, . . . ,Sn}, {W1, . . . ,Wl,K}〉, a
mediator-based system, and Tq =W1 ◦ · · · ◦Wl ◦K, the derived ID-Logic theory.
This theory describes only the relationship between the languages. Then a new
query Qs expressed in terms of LG is derivable from an abductive solution for
the query Q w.r.t. Tq. According to the mapping style, the abductive solution
forms the new query Qs or the basis to compute it. In GAV the open predicates
are the source predicates, and thus, an abductive solution E is an expression
in terms of the source predicates. E is then a representation of Qs. The LAV
case is different: the open predicates are those of the global schema LG. An
abductive solution E does not encode directly Qs. However, all models satisfying
E correspond to answers for Qs. Hence one has to design an extra procedure to
compute answers form Qs out of the abductive solution for LAV mappings. In
the literature one finds approaches that can form the basis for that procedure.
For example, the inverse-rule algorithm for Datalog [20]. The availability of a
general computational engine (an abductive solver) for GAV and the absence of
such one for LAV, is in our opinion an argument in favor of GAV.

Example 8. Consider G = 〈{student(·)}, S, {WG→{1,2}}〉, a mediator-based sys-
tem in which

S = { S1 = 〈{st99(·)}, {st99(john)}〉, S2 = 〈{st00(·)}, {st00(mary)}〉 },

8 This is called the duality property of abductive systems.



WG→{1,2} = ({student(x)← st99(x) ∨ st00(x) ∨ student∗(x)}, ∅).
Now suppose we pose the global query Q : ∃ student(john) to G. In order

to answer this query with the data from the sources, an abductive explanation
for Q w.r.t. Tq =WG→{1,2} is computed by the Asystem:

Qs : st99(john) ∨ st00(john) ∨ student∗(john).

This explanation is exactly the expected reformulated query Qs. Because Qs is
expressed in terms of the sources and the auxiliary predicates, we can evaluate
this query over the sources. When the first two predicates fail, the last one
always succeeds, denoting the fact that the sources lack the knowledge to decide
whether John is a student. In that case the answer is credulously true. In our
case, since S1 contains the information that John is enrolled in 1999, it follows
that he is a student. This is a skeptically true answer.

Supporting dynamics of a mediator-based system. Abductive inference is
particularly useful when the mediator-based system acts in a dynamic environ-
ment, i.e., the sources are dynamically added or removed. In such a situation,
the produced abductive answer contains certain information that justifies the
result, and helps to understand it.

Consider, for example, the following scenario: in the university restaurant one
gets only a student reduction if he or she is registered in the university database
as a student. When the source that contains all part-time students falls out,
it might be that none of these students can get its reduction. If the mediator-
based system removes each piece of knowledge from the unavailable source and
it notifies the restaurant only that one of its sources is down, the restaurant is
unable to grant the student reduction to all part-time students. Only when the
restaurant is informed with the precise information that the list of part-time
students is unavailable, it can question every person that is not recognized as a
student if he or she is a part-time student.

The intended behavior is obtained by a source removal operation. Given a
mediator-based system 〈LG, {S1, . . . ,Sn}, {W1, . . . ,Wl,K}〉 and a corresponding
ID-Logic theory

T = S1 ◦ · · · ◦ Sn ◦W1 ◦ · · · ◦ Wl ◦ K,

a removal of a source Sk (1 ≤ k ≤ n) yields the following theory:

T ′ = S1 ◦ · · · ◦ Sk−1 ◦ Sk+1 ◦ · · · ◦ Sn ◦W1 ◦ · · · ◦ Wl ◦ K,

in which all predicates of Sk are open predicates.9 Note that this update has
non-monotonic characteristics, and that our framework correctly handles this.
When the mediator-based system uses GAV, abductive reasoning can determine
precisely the information the restaurant needs to react properly on the fall-out
of the part-time student source.

9 Many mediator-based systems remove all knowledge of Sk, as shown by the first
possibility in the restaurant scenario. We can simulate this by replacing the source
by the empty source where all predicates are false.



Example 9 (Example 8 continued). If source S1 drops out, the abductive answer
{st99(john)} will have no source to be queried. The system can report to the
user that in order to answer skeptically the query it is necessary to wait until S1

is available again, and the information st99(john) can be verified.

Adding a new source is slightly more complex, because the mappings might
have to be reconsidered. The amount of work in this case depends on the amount
and type of information that the new source contributes. For example, a new
source might require that the completeness assertions imposed in K must be
reconsidered. In any data integration system the addition of a source requires
this reconsideration. (Except when strong preconditions are imposed on the new
sources.) In the worst case each mapping has to be updated. Fortunately, in most
practical cases this is unlikely to happen. Moreover the modularity of ID-Logic
enforces a strong locality of the changes since the changes must only be applied
on the definitions that contain involved predicates.

5 Generalizations

5.1 Lifting the unique domain assumption

Often two sources use different domain elements to denote the same object in the
world (e.g., a client number and a social security number for the same person).
By introducing an auxiliary mapping, these differences can be taken into account.
Let HU(L) denote the Herbrand Universe of the language L.

Definition 9. A mapping between the domains of two languages L1 and L2

is the bijection mapL1→L2
= {map(t1, t2)|t1 ∈ HU(L1) and t2 ∈ HU(L2)}.

mapL2←L1
denotes the inverse of the mapping mapL1→L2

.10

It is sufficient to define a mapping between each source and the global schema.
A mapping map(Name, ID) that maps names in identity numbers can be defined
by the following theory: W = ({{st99(x)→ map(x, y) ∧ student(y).}}, ∅).

5.2 Reasoning with inconsistent knowledge

Up to now, we assumed that all information in the sources was consistent w.r.t.
the intended global database, and so integrity constraints at the global level were
not considered. In case that the global schema does contain such constraints,
inconsistencies can arise11. We are aware of two approaches for handling this:

Computing repairs [3, 4, 9]: A repair is a set of atoms that must be added
or retracted from the knowledge base in order to make it consistent. Repairs
may advise the user about changes needed to restore consistency. In our
context the repairs are computed at the level of each source.

10 The mapping is the identity when both languages share the same Herbrand universe.
11 Not to be confused with the notion of consistency in [22] where the concept is applied

to conflicts that can arise when integrating complete sources.



Consistent query answering [2, 8]: This approach avoids the computation
of the repairs. It transforms a query such that the answers of the transformed
query are consistent w.r.t. to all repaired knowledge bases.

6 Comparison with Related Works

In the previous sections we introduced an ID-Logic mediator-based system for
data integration and argued in favor of its expressive power. In this section we
discuss how our work is related to some well-known existing formalisms.

GAV, LAV, and their combinations ([25, 29, 31]). A decade of active
research in the topic of data integration has resulted in several implemented
mediator-based systems. Some of them apply LAV, others are based on GAV
(for a review, see [31]). Our ID-Logic framework takes into consideration both
approaches, so the data integration system designer can select one or another,
or work with both (see Note 2).

Generalized methods for data integration. At least two extensions have
been proposed to increase the expressive power of LAV and GAV paradigms.

GLAV approach ([21]). This is an extension of LAV that allows to map a
conjunctive query expression φG over the global schema into a conjunctive
query expression φS over the sources 12. This variant can be simulated in
our framework by the introduction of an auxiliary predicate, say p, which
has the view definition {p(t)← φS} w.r.t. the sources (φS). Using p, a LAV
mapping can be constructed by {p(t)← φG}.
Both-As-View (BAV) ([28]). McBrien and Poulovassilis present a novel me-
thod that combines the advantages LAV and GAV in the presence of dynamic
schemas. They show how LAV and GAV view definitions can be fully de-
rived from BAV transformation sequences, and that BAV transformation
sequences can be partially derived for LAV or GAV view definitions. We
believe that these transformation sequences (or extensions of them) could
be applied to translate BAV mapping into ID-Logic mappings.

Data integration by Description Logics ([14]). Calvanese et al. present a
general framework for data integration. Tt turns out that our framework encodes
in a nice way this framework. In particular, they define labels (similar to [22])
to denote the amount of knowledge a mapping rule contributes to the global
database. As shown before, this can be captured by the use of (auxiliary) open
predicates.

A remarkable statement in [14] concerns the appropriateness of Description
Logics for data integration. Due to the limitations on the use of variables, De-
scription Logics are poor as query languages. Calvanese et al. argue that for the

12 An equivalent extension for the GAV approach is straightforward.



data integration problem the modeling language has to be good in that respect.
Since ID-Logic imposes no restriction on the use of variables, and can be re-
garded as a very expressive Description Logic, it is not surprising that the use of
ID-Logic leads to a general approach, enclosing many of the existing approaches.

Data integration by abductive methods ([10, 11]). The power of abduc-
tion for data integration has already been recognized in the COntext INterchange
project, where abductive logic programs are used to represent the mappings ac-
cording to the GAV approach. In the same spirit, our answering procedure is
based on abductive reasoning, that may be supported by existing abductive
computational tools [3].

Query answering with incomplete knowledge ([1, 22, 26]). The inherent
connection between incomplete knowledge and mediator-based systems has been
broadly identified in the literature. Applying an expressive knowledge representa-
tion language with explicit denotation of incompleteness, a better understanding
of the nature of the whole data integration problem is gained. Moreover, we ar-
gued how this knowledge can be used by the inference mechanism to compute
more informative answers, for example, when a source is dropped.

Relation with composition of knowledge bases The knowledge represen-
tation origins of ID-Logic relate the data integration problem considered here
with merging of knowledge bases [7, 34]. The former can be viewed as a par-
ticular case of the latter, where some knowledge bases contain actual data and
others do not.

7 Conclusions and Future Work

This ID-Logic framework supports both the GAV and the LAV approaches to
the data integration problem, any combination of these approaches, as well as
various generalized methods (such as GLAV and BAV). Our framework provides
a general method for expressing the relationships between a global schema and
those of the sources. Specifically, the state of knowledge of each source w.r.t. the
intended global database can be explicitly represented in the ID-Logic theories
themselves. This allows to capture precisely the information of labels in [14, 22],
and it clearly shows the strong relation of the data integration problem with
incomplete knowledge [12], no matter which mapping approach is taken.

Since ID-Logic may be regarded as an expressive Description Logic [32], our
approach generalizes all approaches that use Description Logics provided they
take equal assumptions on the problem context.

For the future, we plan to implement the ID-Logic mediator-based system
together with inconsistency repairing techniques, and test their behavior in re-
alistic situations.
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