

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (2.24) (2018) 500-503

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Data Integrity Verification Using MPT (Merkle Patricia Tree)

in Cloud Computing

Subasri Mathiyalahan*, Shobana Manivannan, Mahalakshmi Nagasundaram, R Ezhilarasie

School of Computing, SASTRA Deemed to be University, Thanjavur-613401

*Corresponding Author E-mail: subasrimathiyalahan95@gmail.com

Abstract

Data integrity of outsourced data is main problem in CSP (cloud service provider). Space overhead and computation complexity are very

high issue in recent PDP(Provable Data Possession) verification schemes. To overcome such issues MPDP (Mobile Provable Data

Possession) schemes using hash tree data structure and Boneh-Lynn-Snacham short signature scheme have been used over decade. Data

dynamics is well supported in MPDP scheme via block less verification, dynamic data operations, stateless verification, and verification

out sourcing. But still there are some operations which can be performed much more efficiently in some other way than that of the two

methods prescribed above. Operations in particular, data modification operations like insertion and deletion operations is somewhat

difficult or in other words time consuming in hash tree data structure. In this paper, we have deployed an improved hash tree structure

called MPT (Merkle Patricia Tree) for integrity checking.MPT is combination of MHT (Merkle Hash Tree) and patricia tree where each

node consists of key-value pairs. As of now, MPT has been used only in block chain technology for providing authentication of

transactions through Ethereum.

Keywords: Data Integrity, Provable Data Possession (PDP), Patricia Tree, Merkle Hash Tree, Merkle Patricia Tree, Block chain.

1. Introduction

Cloud Computing is one of the fastest emerging technologies and

widely used for discrete service like servers, storage, software

development platforms as Platform as a Service (PaaS), Software

as a Service (SaaS) and Infrastructure as a Service (IaaS). The

major concern in cloud computing is the vulnerability of the

data,since the data and resources are shared among the many users

and there is a higher chance of misuse or lose of data [7].Data

integrity process invokes the approach of assurance on data and

ensures that data is original, authentic and shielded from

unauthorized user alteration. It helps in identifying whether the

data are damaged by service owner’s hardware fault or by

forgetful operation or by an adversary malignant attack [2].The

elements that are inferred from the integrity analysis are Stateless

verification, Public Verification, Support dynamic operation,

Batch Auditing. In stateless verification phase, anyone can do the

verification of data successfully. Public Verification, the user can

invoke a separate third party auditor to check the storage available

on the cloud. The data that is outsourced is accessed as well as

updated by the user in Support dynamic operation. Batch Auditing

involves multiple delegated auditing functions from various

clients and it can be achieved synchronously by the (Third Party

Auditor) TPA in a privacy-preserving manner [5].

Over the years, various data integrity scheme like Provable Data

Possession(PDP) , POR(Proof Of Retrievability) and

MPDP(Mobile Provable Data Possession)have been proposed for

protecting outsourced data. The Provable Data Possession (PDP)

scheme plays amain role in Cloud Computing to design data

oriented security architecture. Without PDP scheme, customer’s

cannot authenticate the server whether the processed data is real

data or not[3].POR (Proof Of Retrievability) is used for handling

large files and users are allowed to retrieve the file without having

any computation overhead along with guaranteed QoS. In MPDP,

Boneh-Lynn-Snacham, Merkle hash tree concept are the 2

methods used to enhance efficiency and data integrity [4]. In MHT

data structure, data blocks can be arranged in flexible manner and

has a minimum transmission cost, whereas easy verification of

data corruption is provided by bilinear mapping and BLS scheme.

2. Preliminaries

2.1 System Architecture

There are three entities viz, 1) data owner, owns the data which is

stored in the cloud 2) CSP (Cloud Service Provider),provides the

storage service which is utilized by the customers 3) TTP (Trusted

Third party),responsible for assuring the integrity of the data

requested by the owner.

http://creativecommons.org/licenses/by/3.0/

International Journal of Engineering & Technology 501

Fig. 1: Scheme Architecture

2.2 Methodology

The integrity of data in the cloud can’t be guaranteed effectively

because of the following reason: 1) Users lose the confidentiality

of data. 2) Conventional cryptographic analyzing method can’t

ensure the assurance of data security. Recently, MHT is a

prevailing method for integrity checking in any field especially in

cloud based data storage. MHT provides the some data security,

but the insertion and deletion operation are difficult to perform.

Our Paper depicts a better data structure, MPT(Merkle Patricia

Tree) than the existing one to tackle the unforeseen challenges.

Performance can be effectively increased by making use of MPT

for insertion and deletion operations.MPT is the fusion of Merkle

tree concept and Patricia Tree. The key features provided by MPT

includes: i)storage in the form of key value pair, ii)Lightweight

expanded node, merkle proof, iii) quick state of rolling

mechanism. iv)Rapid calculation of hash functioning of data.

2.2.1 Patricia Tree

Patricia tree is a slight modification of prefix tree. In the case of

prefix tree, location of the prefix node is decided by the details of

its key i.e., the data is encoded in path of the node from root node.

But in Patricia tree, the data value is stored in a single node unless

a new data with the same prefix as the stored one is inserted.

2.2.2Merkle Patricia Tree (MPT)

MPT is the Combination of MHT(Merkle Hash Tree) and Patricia

Tree. The time Complexity of the MPT for insert, delete and

search is 𝑂(log(𝑛)).The advantage of using the MPT is to reduce

the time taken for modifying the data similar to insertion and

deletion operations. In this data structure, every node that is a

single child is combined with its parent.

2.3 Pseudocode for Operation of MPT

Algorithm MPTree(File, MPT)

 returns hash value of the root of Merkle Patricia Tree

 Persistent: File - A text file that is to be stored and

verified for data integrity.

 MPT - A tree structure initially empty.

 wordfile<- Read the input File word by word and store it

in a new file.

 for each word in wordfile:

 MPT <- MPT.insert(word)

 Root <- MPT.root

 filehash<- MerkleHashRoot(Root)

 returnfilehash

Function insert(word)

returns MPT with the word inserted in it.

 Persistent: word - word to be inserted into the MPT

structure.

 MPT - Tree structure where the word is to be

inserted.

 if MPT is empty then

 create a new node and store the word in the node as its

value.

 else

 for each node in MPT:

 compare the word and node.value

 if both are equal then

 return MPT

 elseifnode.value is a prefix of the word then

 create a child for the node with

value (word-node.value)

 elseif the word is a prefix for node.value then

 split the node at its first difference

with the word.

 else

 create a new node with a value of

word.

 return MPT

Function MerkleHashRoot(root)

 returns hash of the file

returnMerkleHash(root)

Function MerkleHash(root)

 returns hash of the Merkle Patricia Tree

 Perisistent: root - The root node of Merkle Patricia

Tree.

 ifnode.children is empty then

 return Hash(node.value)

 children_list<- node.children

 temp<- Hash(node.value)

 for all child in children_list:

 temp<- temp + MerkleHash(child)

 return Hash(temp)

According to the algorithm an empty tree structure with root node

as null is created. When the file containing the data to be stored is

given as input to this algorithm, it reads the file word by word and

each of these words will be inserted into the tree immediately after

it is read. So the first word will be inserted into an empty tree

thereafter the words will be compared with all the nodes’ data to

check for similarity between the two and if there is partial

difference then the point of first difference is saved for further

operations. If the new word is same as the node’s word then no

new node is created and added to the tree. If the new word forms

a prefix for the node’s data then the node is divided into two

nodes, one as parent with the common prefix value of the two

words and the other as the child of the node with the remaining

word. If the node’s word is entirely a prefix for the new word

then the new word with the removal of the prefix word from it will

be inserted as a child for the node. If the new word is entirely

different from all of the existing words in the tree then a new node

is created and added to the tree. These words stored in the tree

nodes are considered as the keys. When the file is read

completely and the tree is formed, the root of the tree is passed to

a function for calculating the hash values for each of the node and

storing it as the values for the keys stored in the tree. In the

function, the tree is traversed from the children nodes to the root

consolidating the hash values of the children towards each of its

parent. At the end of this algorithm, the hash of the entire tree

will be obtained as a result of consolidated hash value calculation.

502 International Journal of Engineering & Technology

3. Results and Discussion

MHT is the complete binary tree format, but in our paper, we have

employed MPT data structure which can have a maximum of 26

children for each alphabet. The approach employed in this work

follows Merkle tree concept for deriving calculated hash values

and to have key value pairs Patricia Tree concept is used. Each

node in tree contains key and a hash value. Here, the key in each

node represents either a prefix value or the entire data in case of

single child and the value’s data is consolidated hash of its own

key and its children’s value if exist.

Fig. 2: MHT data structure

Fig. 3: MPT data structure

In fig 2.,it is the patricia tree data structure devoid of hash values

whereas in case of MPT each node will have its corresponding

hash values calculated by MHT format along with its key data

value. These kinds of data structure reduce the extra disk access

and also insertion and deletion operations are easy to perform. The

root node of the MPT data structure is always null. In fig 3 some

words are arranged in prefix order. Those words are action,

activity, extern, extra, external, externally, extraneous, ultra, ulta.

Hash values are calculated for each and every node after storing

the word and traversed in the reverse order from the leaf to the

root. If there is a modification of a single letter in any of the node,

it is very easy to update but at the same time the hash value of

particular node will be changed which ultimately causes the hash

value of the root node to be changed. For example if we take

words like ‘action’ and ‘activity’ with a common prefix ‘acti’ then

the prefix will for a node ‘acti’, it will be stored as the first node

International Journal of Engineering & Technology 503

on its path from the root followed by its two distinct suffixes ‘on’

and ‘vity’ as its children. So for calculating hash values the prefix

node must take into consideration all its children nodes. Table 1

Shows hash value of two subtrees with prefixes ‘acti’ and ‘ult’

along with its children and shows hash value of modified data

file(act-atc) which affects not only its individual hash value but

also the root has but it will not affect others subtrees.

Table 1: Initial hash value and hash value after modification of data

Root 60bd0a02ca4dace4ac07d22e8b0d09bb Root c89fb30beddb290c0035a7aa6a7ffcafd

act 51fcfa78c0646f287587a8123792f0ff atc db26ee047a4c86fbd2fba73503feccb6

on ed2b5c0139cec8ad2873829dc1117d50 on ed2b5c0139cec8ad2873829dc1117d50

vity 0af5e227cb909796dfb03430f1fcd6f6 vity 0af5e227cb909796dfb03430f1fcd6f6

ult a0ad7803047afc61cab73de5d41ad539 ult a0ad7803047afc61cab73de5d41ad539

a 0cc175b9c0f1b6a831c399e269772661 a 0cc175b9c0f1b6a831c399e269772661

ra db26ee047a4c86fbd2fba73503feccb6 ra db26ee047a4c86fbd2fba73503feccb6

Table 2: Shows the relationship between MPT and MHT efficiency

Time taken for insert

Operation

Time taken for delete

operation

Time taken for update

operation

Time taken for search

operation

MHT High High High High

MPT Low Low Low Low

4. Conclusion

Security of the cloud computing is still challenging task. Many

algorithm and data structures are proposed for this integrity

verification.MHT data structure is one of the best integrity

checking algorithms. But the insertion and deletion operations are

somewhat difficult to be performed in MHT. In this paper, we

analyze the functionality of MPT data structure (integrated MHT)

which functions similar to MHT but the difference is insertion and

deletion operations can be performed much easier when compared

to MHT. Both the MPT and MHT are depends on Trusted Third

Party (TTP).In future work we will expand our scheme to

untrusted TTP.

References

[1] M. S. Niaz and G. Saake, “Merkle hash tree based techniques for
data integrity of outsourced data,” CEUR Workshop Proc., vol.

1366, pp. 66–71, 2015.

[2] A. Shoufan, N. Huber, and H. Gregor Molter, “A novel
cryptoprocessor architecture for chained Merkle signature

scheme,” Microprocess. Microsyst., vol. 35, no. 1, pp. 34–47,

2011.
[3] V. Verma, “An Efficient Signcryption Algorithm using Bilinear

Mapping,” Computing for Sustainable Global Development

(INDIACom), 3rd International Conference,pp. 680–682, 2016.
[4] C. Lin, Z. Shen, Q. Chen, and F. T. Sheldon, “A data integrity

verification scheme in mobile cloud computing,” J. Netw.

Comput. Appl., vol. 77, pp. 146–151, 2017.
[5] N. Garg and S. Bawa, “RITS-MHT: Relative indexed and time

stamped Merkle hash tree based data auditing protocol for cloud

computing,” J. Netw. Comput. Appl., vol. 84, no. January, pp. 1–
13, 2017.

[6] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik,

“Scalable and efficient provable data possession,” Proc. 4th Int.
Conf. Secur. Priv. Commun. netowrks - Secur., 2008.

[7] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the

weil pairing,” J. Cryptol., vol. 17, no. 4, pp. 297–319, 2004.
[8] V. Kher and Y. Kim, “Building trust in storage outsourcing:

Secure accounting of utility storage,” Proc. IEEE Symp. Reliab.

Distrib. Syst., pp. 55–65, 2007.
[9] A. . Juels and B. S. . Kaliski Jr., “Pors: Proofs of retrievability for

large files,” Proc. ACM Conf. Comput. Commun. Secur., pp.

584–597, 2007.
[10] G. Xu, Z. Sun, C. Yan, and Y. Gan, “A rapid detection algorithm

of corrupted data in cloud storage,” J. Parallel Distrib. Comput.,

vol. 111, pp. 115–125, 2018.
[11] E. Mykletun, M. Narasimha, and G. Tsudik, “Authentication and

integrity in outsourced databases,” ACM Trans. Storage, vol. 2,

no. 2, pp. 107–138, 2006.
[12] J. Zhang, Z. Zhang, and H. Guo, “Mobile Cloud Computing,” vol.

16, no. 11, pp. 3222–3235, 2017.

[13] J. Xu and E. Chang, “Towards Efficient Provable Data

Possession,” Organization, pp. 1–16, 2007.

[14] R. Arora and A. Parashar, “Secure User Data in Cloud Computing
Using Encryption Algorithms,” Int. J. Eng. Res. Appl., vol. 3, no.

4, pp. 1922–1926, 2013.

[15] R. Popa, J. Lorch, and D. Molnar, “Enabling security in cloud
storage SLAs with CloudProof,” Proc. USENIX, pp. 355–368,

2011.

[16] J. Yuan and S. Yu, “Public Integrity Auditing for Dynamic Data
Sharing With Multiuser Modification,” vol. 10, no. 8, pp. 1717–

1726, 2015.

[17] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling Public
Verifiability and Data Dynamics for Storage Security in Cloud

Computing Computer Security – ESORICS,” IEEE Trans. Parallel

Distrib. Syst., vol. 5789, no. 5, pp. 355–370, 2009.
[18] P. Ora and C. Scienc, “Data Security and Integrity in Cloud

Computing Based On RSA Partial Homomorphic and MD5

Cryptography,” International Conference on Computer,
Communication and Control (IC4), 2015.

[19] C. Sarika and R. M. Jasmine, “An Outsourced Proof of

Retrievability for Dynamic Data Operation in Cloud Abstract,”
International Journal for Research in Science Engineering and

Technology, vol. 3, no. 1, pp. 19–22, 2016.

[20] G. Ateniese et al., “Provable data possession at untrusted stores,”
Proc. 14th ACM Conf. Comput. Commun. Secur. CCS, no. 1, pp.

598, 2007.

[21] SHUBHANSHU GUPTA, S. KOLANGIAMMAL,
T.PADMAPRIYA, “Smart Curtain Using Internet Of Things”

International Innovative Research Journal of Engineering and

Technology, Vol. 2, Special Issue, pp. 4-8.
[22] M. Rajesh, Manikanthan, “ANNOYED REALM OUTLOOK

TAXONOMY USING TWIN TRANSFER LEARNING”,

International Journal of Pure and Applied Mathematics, ISSN
NO: 1314-3395, Vol-116, No. 21, Oct 2017.

