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Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Hans Michael Gerndt
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Abstract

Beside traditional direct solvers iterative methods offer an efficient alternative for the

solution of systems of linear equations which arise in the solution of partial differen-

tial equations (PDEs). Among them, multigrid algorithms belong to the most efficient

methods based on the number of operations required to achieve a good approximation

of the solution. The relevance of the number of arithmetic operations performed by an

application as a metric for the complexity of an algorithm wanes since the performance

of modern computing systems nowadays is limited by memory latency and bandwidth.

Consequently, almost all computer manufacturers nowadays equip their computers with

cache–based hierarchical memory systems. Thus, the efficiency of multigrid methods is

rather determined by good data locality, i.e. good utilization of data caches, than by the

number of arithmetic operations.

In this thesis, the cache and memory access behavior of multigrid methods is system-

atically analyzed for the first time. The analysis is based on an exhaustive study of modern

microprocessor memory hierarchies. Detailed runtime as well as theoretical studies of the

performance of these methods demonstrate the interaction between multigrid algorithms

and deep memory hierarchies. In particular, issues involved with the multilevel nature

of the memory hierarchy are addressed. Furthermore, delays due to main memory ac-

cesses are clearly revealed as the performance bottlenecks of multigrid methods and their

components. Besides the performance bottlenecks, upper limits for the achievable perfor-

mance of multigrid methods on RISC based microprocessors are determined by means of

theoretical models.

Based on the knowledge gained from the analysis of multigrid algorithms and micro-

processor architectures, new data locality optimization techniques for multigrid methods

are proposed. The techniques extend existing code and data layout restructuring tech-

niques and are able to significantly improve data locality and consequently speed up the

execution of multigrid algorithms by a multiple. With the improved data locality multi-

grid methods are able to utilize 15 to 30 per cent of the peak performance on a multitude

of modern computer systems. The impact of the techniques is demonstrated with run-

time and memory hierarchy behavior measurements as well as theoretical data locality

examinations.

The applicability of the techniques is demonstrated by means of the DiMEPACK li-

brary. DiMEPACK is a multigrid solver for two–dimensional problems with constant

coefficients on structured grids. In this thesis, however, aspects of multigrid methods for

three–dimensional problems and variable coefficients are discussed as well.
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Chapter 1

Introduction

1.1 Motivation

The performance of microprocessors increased significantly over the years so that nowa-

days standard computer systems provide a theoretical peak performance of one GFLOPS1

and beyond. Nevertheless, it is a well–known fact that the speed of processors has been

increasing much faster than the speed of main memory components. Recently, there is

much effort in improving memory technology but many computer architects are expect-

ing that the tendency will persist for at least a decade. As a general consequence, current

memory chips based on DRAM technology cannot provide the data to the CPUs as fast as

necessary. This memory bottleneck often results in significant idle periods of the proces-

sors and thus in very poor code performance compared to the theoretically available peak

performance of current machines.

To mitigate this effect, modern computer architectures use multilevel cache memo-

ries which store data frequently used by the CPU. Caches are usually integrated into the

CPU or based on SRAM chips. Both approaches deliver data much faster than DRAM

components, but on the other hand have comparatively small capacities, for both tech-

nical and economical reasons. Efficient execution can therefore be achieved only if the

hierarchical structure of the memory subsystem (including main memory, caches and the

processor registers) is respected by the code, especially by the order of memory accesses.

Unfortunately, even modern compilers are not very successful in performing data locality

optimizations to enhance cache efficiency. As a consequence, most of this effort is left to

the programmer.

Applications such as simulations of physical phenomena require apparently unlimited

calculation power. Therefore, they are predestinated for more powerful microprocessors.

These phenomena, for instance currents in fluids, are often described by partial differential

equations (PDEs) which can be approximated by sparse systems of algebraic equations.

To represent realistic two– resp. three–dimensional problems, however, systems of linear

1One MFLOPS � 10
6 floating point operations per second. One GFLOPS � 10

9 floating point opera-

tions per second.

1
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equations with up to several hundred millions of unknowns are required. The data struc-

tures which store the equations easily consume several hundred Mbyte or even Gbyte of

main memory.

Multigrid methods are among the most efficient algorithms for the solution of large

systems of linear equations arising in the context of numerical PDE solution, based on the

number of operations required to achieve a good approximation of the solution. Generally

speaking, multigrid methods approximate the physical domain with one fine grid and

several coarser grids. The problem on the finest grid is solved approximately with a

smoother resp. relaxation method such as the red–black Gauss–Seidel algorithm. The

coarser grids are in turn used to calculate corrections to the approximation. Information

between grid levels is transferred with inter–grid transfer operations such as restriction

and interpolation.

Multigrid algorithms belong to the class of iterative methods, which means that the

underlying data set is repeatedly processed several times. Thus, during one iteration the

whole or at least a large part of the data has to be delivered from main memory to the

CPU to be processed. In the following iteration the same process happens again with a

slightly changed data set. The fact that multigrid methods repeatedly access their data

set promises high data locality, however, in reality this data locality is not exploited. The

direct consequence of their bad data locality is that multigrid methods merely reach a

small fraction of the available peak performance of current microprocessors.

The discrepancy between inherent and exploited data locality of multigrid algorithms

forms the key motivation for this work. With a consolidated knowledge of microprocessor

architectures with deep memory hierarchies and of the algorithmic behavior of multigrid

methods it should be possible to restructure multigrid methods so that the inherently avail-

able data locality is exploited and consequently a better performance is achieved. It must

be pointed out that the optimizations should not change the semantics of the multigrid

algorithms so that standard multigrid convergence estimates apply to the new cache opti-

mized multigrid codes.

Another approach to improve the performance of iterative methods which is not in-

vestigated in this thesis is parallelization. Many researches have implemented hand–

coded efficient parallel multigrid methods very often based on domain decomposition

techniques. While parallelization often leads to significant speedups, the computation

on each node will still suffer from high latency and low bandwidth involved with main

memory accesses. Thus, the work in this thesis will apply to both parallel and sequen-

tial multigrid codes. However, details and extensions to parallel codes are left for further

research.

1.2 Contributions

This thesis reveals that the major problem, which prohibits the exploitation of the data lo-

cality inherently present in multigrid methods, is the fact that the data sets involved with

realistic problems are much larger than the cache levels built in currently available or fore-



1.2 Contributions 3

casted computer systems. The direct consequence of the bad data locality is a bad runtime

performance on architectures with deep memory hierarchies. Based on a detailed study

of multigrid methods and microprocessor architectures new data locality optimizations

are proposed which significantly improve the runtime performance of multigrid methods.

The key contributions of the thesis are as follows:

� For the first time a detailed and systematic study of the runtime, cache, and memory

behavior of multigrid methods is performed. The analysis demonstrates the inter-

action between multigrid methods and deep memory hierarchies. The analysis is

based on runtime measurements as well as on theoretical studies of the data local-

ity and performance of multigrid methods. In particular, issues involved with the

multilevel nature of the memory hierarchy are addressed. The analysis exposes that

the performance of multigrid algorithms is determined by main memory accesses.

When executing the smoother which is by far the most time consuming component

of the multigrid method on a Compaq PWS 500au, for example, the microprocessor

is idle 80 per cent of all cycles waiting for data to arrive from main memory. Fur-

thermore, properties of multigrid methods are exposed which are responsible for

the bad performance.

� Upper limits for the achievable performance of multigrid methods on RISC based

microprocessors are determined by means of theoretical models. The models tes-

tify that multigrid algorithms will at best achieve 50 per cent of the available peak

performance on typical microprocessors.

� New data locality optimization techniques for multigrid methods on structured grids

are developed based on the knowledge gained from the detailed analysis of multi-

grid methods, modern microprocessor memory hierarchies, and their interaction.

The techniques extend existing data locality optimization techniques such as loop

fusion or loop blocking and are able to significantly improve the data locality of

multigrid algorithms. The optimizations which focus on the smoother component

are able to speed up the execution on currently available workstations and PCs by

a factor of up to five, especially for large grid sizes. The significance of all op-

timization techniques is demonstrated by means of detailed performance analysis

and theoretical discussions of data locality properties.

� Although the thesis focuses on optimization techniques for the smoother com-

ponent, other optimization techniques for inter–grid transfer operations are pro-

posed. These optimization techniques combine pre– and post–coarse–grid oper-

ations. Thus, the number of global sweeps through the data structure is reduced

which in turn improves data locality and performance.

The applicability of the techniques will be demonstrated by means of the DiMEPACK

library. DiMEPACK is a fully functional multigrid library for two–dimensional constant

coefficient problems on structured grids. The fast smoothers and inter–grid transfer opti-

mizations developed in this thesis establish the core elements of the DiMEPACK multigrid
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solver. The library demonstrated its robustness and efficiency in a global cell placement

code for VLSI circuits developed at the Institute of Electronic Design Automation (LEA),

Technische Universität München.

In addition to the major contributions, new cache visualization techniques are pro-

posed based on the experience gained during the performance analysis. The new visu-

alization techniques provide a more intuitive understanding of the dynamical nature of

memory hierarchies. Some of the techniques have been integrated in the experimental

memory hierarchy visualization tool called MHVT.

1.3 Thesis Organization

The thesis is structured as follows: Chapter 2 describes the architectural development and

performance issues involved with high main memory latency and insufficient memory

bandwidth. Common properties of all memory hierarchies are identified and establish the

fundamentals for the algorithmic studies. In Chapter 3, the idea of multigrid methods

is introduced and the runtime, cache, and memory behavior of multigrid algorithms is

analyzed. Thus, the algorithmic properties, memory performance bottlenecks, and upper

limits for the achievable floating point performance of multigrid methods are determined.

The fundamental principles of data locality optimizations based on data access and data

layout transformations are introduced in Chapter 4. Although these kinds of optimizations

are able to improve the performance of simple codes, they fail to improve the performance

of multigrid codes due to data dependences. However, the techniques are the basis of new

data locality optimization techniques for the red–black Gauss–Seidel smoother which are

proposed in Chapter 5. The performance improvement is demonstrated by means of de-

tailed runtime and memory access analysis. The cache–optimized smoother routines as

well as cache–optimized inter–grid transfer operations have been integrated in the DiME-

PACK multigrid library which is introduced in Chapter 6. They establish the core routines

for the library. In Chapter 7, existing tool support for data locality optimization is dis-

cussed and new cache visualization techniques are proposed which are derived from the

experience gained during the performance study of multigrid codes. The thesis concludes

with some final remarks and a brief outlook on future work.
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Chapter 2

Memory Hierarchy Aspects in

Computer Architecture

Microprocessors nowadays operate at a clock frequency of one GHz and above. In con-

trast to the past, however, high performance microprocessors are no longer limited to

expensive high end products. Mass market microprocessor products like the Pentium 3

[Int00b, Int00c], Pentium 4 [Int01] and AMD Athlon [Adv99] can be bought in the shop

around the corner for reasonable prices and used in common PCs. They provide a floating

point peak performance equal or even higher than high end workstations. Hence, new

PCs provide a peak performance of one billion floating point instructions per second (�
one GFLOPS)and beyond at home for a reasonable price.

The reason for the incredible performance increase is the continuing advance in inte-

grated circuit (IC) technology over the years. 0.18–micron IC process is standard nowa-

days and microprocessors produced with 0.15–micron and 0.13–micron IC processes al-

ready start to appear (see Table 2.1). Along with the continuing miniaturization of circuits

the numbers of transistors which can be realized on a chip has been increasing over the

years and this trend continues. For example, The HP PA–8500 and HP PA–8600 mi-

croprocessors are built with 130 million transistors. Even mass market products like the

Pentium 4 and AMD Athlon microprocessor already use a transistor budget of more than

30 million transistors. The average transistor budget of a CPU is still approximately 10 to

20 million transistors (see Table 2.1) but microprocessors with billions of transistors have

already been forecasted [BG97]. Microprocessor manufacturers employ these transistors

to implement more and more fine–grain parallel instruction execution techniques such as

deep pipelining, multiple instruction issue, dynamic scheduling, out–of–order execution,

speculative execution, and also on–chip caches with small capacities as compared to main

memory. These structural enhancements are additionally contributing to the performance

improvement.

In this chapter, the architectural features pipelining and superscalar execution will be

introduced which are among the most important architectural improvements in micropro-

cessor architecture. Then, the limiting performance factor in todays computer architecture

— the memory bottleneck — is identified. Subsequently, the memory hierarchy concept
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Processor Clock Rate Transistors IC Process Pipeline

Intel Pentium 4 1.5 GHz 42.0 mio. 0.18� 22/24 stages

AMD Athlon 1.2 GHz 37.0 mio. 0.18� 9/11 stages

Intel Pentium 3 1.0 GHz 24.0 mio. 0.18� 12/14 stages

Sun Ultra–3 900 MHz 29.0 mio. 0.15� 14/15 stages

Alpha 21264B 833 MHz 15.4 mio. 0.18� 7/9 stages

HP PA–8600 552 MHz 130.0 mio. 0.25� 7/9 stages

Sun Ultra–2 480 MHz 3.8 mio. 0.29� 6/9 stages

IBM Power 3–II 450 MHz 23.0 mio. 0.22� 12/14 stages

MIPS R12000 400 MHz 7.2 mio. 0.25� 6 stages

Table 2.1: Some parameters of currently available microprocessor chips in 2001[Mic00].

is described which is used by computer manufacturers to mitigate the impact of the mem-

ory bottleneck. Then, an overview of the state of the art in microprocessor architecture

with an emphasis on the memory hierarchy architecture is given. The chapter concludes

with a summary of trends in microprocessor architecture.

2.1 Pipelining and Superscalar Execution

In this section, pipelining will only be briefly introduced. A more detailed description of

pipelining for microprocessors can be found in [Kog81, HP96].

Pipelining is a technique that is applied to many situations to speed up the overall

execution of a process which repeatedly performs a certain task. It must be possible to

divide the task into a series of individual and independent operations, or stages, that, when

applied sequentially, perform the overall task. With pipelining the individual operations

are executed in an overlapped manner. As one item progresses through the pipeline, other

items can be initiated before the first has completed all stages. That is, once the first stage

of the first task is completed, the second stage of the first task is executed concurrently

with the first stage of the second task, and so on.

Pipelining exploits parallelism among instructions in a sequential instruction stream

to speed up execution. In a microprocessor each pipeline stage executes one part of an

instruction like instruction fetch (IF), instruction decoding (ID), execution (EX), memory

access (MA), and write back (WB). Figure 2.1 illustrates different execution schemes.

If instructions are executed sequentially the processor has to execute each phase of the

first instruction before it can start executing the next instruction. In a pipelined CPU the

execution of the first phase of the second instruction can begin as soon as the first phase

of the first instruction is finished.

The longest running stage in a pipeline determines the time (usually measured in clock

ticks) to advance all instructions to the next stage. Hence, the work done in each stage

should be distributed equally. If this is the case the execution time of one instruction is
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IF ID EX MA WB IF ID EX MA WB

IF ID EX MA WB 1st instruction

IF ID EX MA WB 2nd instruction

IF ID EX MA WB 3rd instruction

IF ID EX MA WB 4th instruction

pipelined execution:

IF ID EX MA WB 1st instruction

IF ID EX MA WB 2nd instruction

IF ID EX MA WB 4th instruction

IF ID EX MA WB 3rd instruction

pipelined and superscalar execution:

2nd instruction1st instruction

sequential execution:

Figure 2.1: Sequential execution of instruction vs. pipelined and superscalar execution

equal to the sequential execution time. In real systems, however, the execution time for

one instruction is usually higher than the one for sequential execution. Nevertheless, the

throughput of instructions will be increased. Provided that an ideal pipeline is considered,

i.e. the work in each stage is equally distributed and no further overhead is present, a

pipelined microprocessor will accelerate execution by a factor equal to the number of

stages.

The Compaq Alpha 21264 microprocessor [Com99, Gwe96a] implements a 7 stage

pipeline for instruction execution, for example. The stages include instruction fetch, in-

struction slot, mapping, issue, register read, execute, and data cache access. Other proces-

sors like the HP PA–8500, the Sun UltraSparc–II, the Power PC G4, or the MIPS R12000

implement pipelines of similar depth. With the increase in clock frequency the time which

can be spent in one pipeline stage is decreased. Consequently, some operations which

have been completed in one cycle in the past will require several cycles when the CPU

is operated at higher frequency. Thus, the stages which process such operations have to

be split into several stages leading to an architecture such as the Pentium 4 architecture

developed by Intel which already uses a very deep pipeline with 24 stages.

The idea of pipelining only works if there is a continuous flow of instructions through

them. If, for whatever, reason a pipeline stage cannot complete its work there will be a

long delay until new instructions can be processed. Such a situation is called a hazard.

Possible hazards are structural, control and data hazards. A more detailed description of
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hazards can be found in the literature [HP96].

The concept of pipelining can be extended to groups of instructions. Figure 2.1 illus-

trates the instruction execution of a microprocessor which is able to start the execution of

two instructions per cycle. A microprocessor which is able to execute multiple instruc-

tion per cycle is called superscalar. Typically, only a small number of instructions — like

one to eight — can be executed simultaneously. Parallel instruction execution requires

that the instructions are independent of each other. The independence is checked by the

microprocessor dynamically during the execution of the instructions.

To be able to process several instructions in parallel the microprocessor must provide

the resources needed in each stage like integer and floating point calculation units multi-

ple times. To reduce the number of resources which have to be duplicated, simultaneously

executed instructions typically must obey some constraints. A typical constraint, for ex-

ample, is that only a certain number (usually two to four) of integer instructions can be

issued together with a certain number of floating point instructions (usually two).

The Compaq Alpha 21264 microprocessor is able to issue up to four instructions per

cycle, for example. It provides two floating point units and four integer execution units

(two general–purpose units and two address arithmetic logic units (ALUs)). Hence, al-

though four instructions can be issued simultaneously, only two floating point instructions

are allowed per cycle; and also only for certain combinations of integer operations four

instructions can be issued per cycle.

2.2 The Bottleneck: Memory Performance

Baskett [Bas91] estimated in 1991 that the performance of microprocessors increased

by 80 per cent per year in the past. At the same time the access delays for DRAM chips,

however, decreased more slowly at an annual rate of 5 – 10 per cent [ASW+93]. The speed

of microprocessors as well as the speed of DRAM chips improved exponentially during

the same time. Unfortunately, the exponent for microprocessors is substantially larger

than that for DRAM chips. The trend already produced a large gap between CPU and

DRAM speed. Although the annual performance of microprocessors slightly decreased

in the last years, the general trend is still maintained so that the gap will grow further. The

significance of this trend will be illustrated with the following example.

At a clock frequency of one GHz a two–way superscalar CPU is theoretically able

to perform two floating point operations every nanosecond. For each floating point op-

eration two words are required as operands and one word is produced as a result. With

a memory access latency of about 100 nanoseconds which is approximately the memory

latency of the Compaq PWS 500au, for example, a microprocessor will face a memory

access latency of approximately 100 cycles every time it fetches data from main memory.

This is a severe problem since the microprocessor could execute up to 200 floating point

instructions during that time. This problem is called latency problem. Researchers have

developed several techniques, like software and hardware prefetching [CKP91, MLG92,

CB94], non–blocking caches [Kro81, SF91], stream buffers [Jou90, PK94], multithread-



2.2 The Bottleneck: Memory Performance 9

Processor Bandwidth Out–of–Order Cache (I/D/L2)

Sun Ultra–3 4.8 Gbyte/s none 32 K / 64 K / –

Intel Pentium 4 3.2 Gbyte/s 126 ROPs1 12 K / 8 K / 256 K

Alpha 21264B 2.7 Gbyte/s 80 instr 64 K / 64 K / –

AMD Athlon 2.1 Gbyte/s 72 ROPs 64 K / 64 K / 256 K

Sun Ultra–2 1.9 Gbyte/s none 16 K / 16 K / –

IBM Power 3–II 1.6 Gbyte/s 32 instr 32 K / 64 K / –

HP PA–8600 1.5 Gbyte/s 56 instr 512 K / 1 M / –

Intel Pentium 3 1.1 Gbyte/s 40 ROPs 16 K / 16 K / 256 K

MIPS R12000 0.5 Gbyte/s 48 instr 32 K / 32 K / –

Table 2.2: Memory peak bandwidth, out–of–order capability, and on–chip cache sizes of

microprocessor chips in 2001 [Mic00].

ing [LGH94], and out–of–order execution [HP96] to tolerate at least some memory access

latency. However, these techniques are not able to compensate a latency of over 100 cy-

cles. Especially, since instructions executed while loading data might access other data

themselves which may again lead to idle time which has to be tolerated. Another prob-

lem involved with some latency tolerating techniques such as prefetching, for example,

is that they increase the total amount of memory traffic and thus will expose the memory

bandwidth problem [BGK95].

To store the results of two floating point operations per cycle in memory, a micro-

processor requires a memory bandwidth of six words each nanosecond, or 48 Gbyte/s

(assuming double precision floating point operations). Although the focus of computer

designers has recently shifted towards increasing the memory bandwidth, the peak main

memory bandwidth of today’s computers is still far below 48 Gbyte/s. As Table 2.2 shows

the peak bandwidth of microprocessors is typically between one and two Gbyte/s. The

peak bandwidth, however, is a theoretical value which is very hard to achieve in real life.

Another measure of bandwidth is the sustainable bandwidth of user programs which is

determined with the STREAM benchmark [McC95]. The STREAM benchmark program

accesses data in a way which is advantageous for memory systems. Thus, the memory

bandwidth achieved with it can be seen as the maximally achievable user program mem-

ory bandwidth. Figure 2.2 summarizes the results of the STREAM benchmark on a HP

SPP 2200 Convex Exemplar node (HP PA–8200, 200 MHz), a Compaq PWS 500au (Al-

pha 21164, 500 MHz), a Dell PC (Intel Pentium 2 Xeon, 450 MHz), a SGI Origin 2000

node (SGI R10000, 195 MHz), a Sun Ultra 60 (UltraSPARC–II, 296 MHz), a HP N–Class

node (HP PA–8500, 440 MHz), and a Compaq XP1000 (Alpha 21264, 500 MHz). The

Compaq XP1000 with a peak bandwidth of over two Gbyte/s reaches only a STREAM

bandwidth of 745 Mbyte/s. As Figure 2.2 shows the sustainable bandwidth for other

1The Intel Pentium 4, Intel Pentium 3, and AMD Athlon are x86–compatible microprocessors. Thus,

they internally translate the complex x86 instructions into possibly several RISC operations (ROPs) which

are then executed by the microprocessor core.
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Figure 2.2: Stream Bandwidth for several workstations

architectures might be even less.

Current computers are already slowed down considerably by the slower main memory.

If the difference in microprocessor speed and main memory speed diverges at the same

pace, a point will be reached where the speed of calculations is determined by the speed of

memory. Improving microprocessor speed will then only result in marginal improvement

in execution speed. This phenomenon is called hitting the memory wall [WM95]. The

typical solution is to postpone the impact to a later date by implementing the concept of a

memory hierarchy.

2.3 The Memory Hierarchy Concept

There are many different ways of implementing the memory hierarchy concept, but the

consistent theme is that there is a small, expensive, high speed memory at the top of the

hierarchy which is usually integrated within the CPU to provide data with low latency

and high bandwidth. As we move further away from the CPU the layers of memories

get successively larger and slower. These high speed memories are called caches and

are intended to contain copies of main memory blocks to speed up accesses to frequently

needed data. The lowest level of the memory hierarchy is the main memory which is

large but also comparatively slow. The levels of the memory hierarchy usually subset

one another so that data residing within a smaller memory is also stored within the larger

memories.

A typical memory hierarchy is shown in Figure 2.3. It contains a small number (32

to 64) of registers on the chip which are accessible without delay. Furthermore, a small

cache — usually called level one (L1) cache — is placed on the chip to ensure low latency

and high bandwidth. The L1 cache is usually split into two separated caches. One only

keeps data, the other instructions. The latency of on–chip caches is typically one or two

cycles. The chip designers, however, already face the problem that large on–chip caches

of new high–frequency microprocessors aren’t able to deliver data within one cycle since
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Figure 2.3: A typical memory hierarchy containing two level one on–chip caches, one

on–chip level two caches, and a third level of cache off–chip. The thickness of the inter-

connections emblematizes the bandwidth between levels of the memory hierarchy.

the signal delays are too long. Therefore, the size of on–chip L1 caches is limited to 64

Kbyte or even less for many chip designs. Larger cache sizes with accordingly higher

access latency, however, start to appear. Table 2.2 summarizes on–chip cache sizes of

some state of the art microprocessors.

The L1 caches are usually backed up by a level two (L2) cache. In some architectures

like for example the Compaq Alpha 21164 [Com97], the Intel Pentium 4 [Int01] or the

AMD Athlon [Adv99] the second level cache is also implemented on chip. Most of the

architectures still build the L2 cache with SRAM chips on the motherboard of the com-

puter. Off–chip caches are much bigger but also provide data with lower bandwidth and

higher access latency. L2 caches on chip are usually smaller than 512 Kbyte and provide

data with a latency of approximately 5 to 10 cycles. If the L2 caches are implemented on

the chip, a third level of off–chip cache may be added to the hierarchy. Off–chip cache

sizes vary from one Mbyte to 16 Mbyte. They tend to provide data with a latency of 10 to

20 cycles.

2.3.1 Locality of References

Because of the limited size, caches can only hold copies of recently used data or code.

Typically, when new data is loaded into the cache other data has to be replaced2. Caches

improve performance only if data already loaded into the cache is reused before it is

replaced by other data. The reason why caches are nevertheless able to substantially

reduce program execution time is the principle of locality of references [HP96] which

states that recently used data is very likely to be used again in the near future. Locality

can be subdivided into temporal locality and spatial locality [WL91]. A sequence of

references has temporal locality when recently accessed data is likely to be accessed again

2In the startup phase of a microprocessor or after a cache flush no data has to be replaced since the cache

is considered to be empty. Some set–associative caches may also voluntarily evict data, so that empty cache

lines are present in the cache. To simplify matters, the further explanation ignores these special cases. A

description of the handling of these cases can be found in [HP96], for example.
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in the near future. A sequence of reference has spatial locality when data located close

together also tends to be referenced close together in time.

2.3.2 Block Placement

Data within the cache is stored in cache lines. A cache line holds the content of a con-

tiguous block of main memory. If data requested by the processor is found within a cache

line this is called a cache hit. Otherwise, a cache miss occurs. The content of a memory

block containing the requested word is fetched from a lower memory layer and copied

into a cache line. In that process another item is (typically) replaced. Therefore, the ques-

tion into which cache line the data should be placed and how to locate it must be handled

efficiently to guarantee a low latency.

One of the cheapest approaches to implement block placement strategies in respect to

hardware expense is direct–mapping. Thereby, the contents of a memory block can be

placed (or mapped) into exactly one cache line. The cache line in which the contents will

be copied is determined by the following formula:

cache line address = (block address) MOD (number of cache lines)

Direct–mapped caches have been among the most popular cache architectures in the

past. Recently, however, computer architects returned to implement more and more k–

way set–associative on–chip caches. Direct–mapped caches, however, are still very com-

mon for off–chip caches. k–way set–associative caches have higher hardware expenses

but usually imply higher hit rates.

The cache lines of k–way set–associative caches are grouped into sets of k cache lines

and the contents of a memory block can be placed into any cache line of exactly one set.

The set in which the contents will be placed is determined by the following equation:

set address = (block address) MOD (number of sets)

Finally, a cache is fully associative when the contents of a memory block can be placed

into any cache line of the cache. Fully associative caches are usually only implemented

in small sized special purpose caches, but not in general data or instruction caches.

Direct–mapped and fully associative caches can be viewed as special cases of k–way

set–associative caches. A direct–mapped cache is a one–way set–associative cache and

a fully associative cache is an n–way set–associative cache provided that n equals the

number of cache lines.

2.3.3 Block Replacement

In fully associative and k–way set–associative caches the memory block can be placed in

several cache lines. The question into which cache line a new memory block is copied and

consequently which block has to be replaced is decided by a (block) replacement strategy.

The two most commonly used strategies for today’s microprocessor caches are random
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and least–recently used (LRU). The random replacement strategy chooses a random cache

line to be replaced. The LRU strategy replaces the block which hasn’t been accessed for

the longest time. According to the principle of locality it is more likely that a recently

accessed item will be accessed again in the near future. Less common strategies are the

least–frequently used (LFU) and first in, first out (FIFO) replacement strategy. The former

replaces the item which was least frequently used whereas the latter replaces the memory

block in the cache line which resided in the cache for the longest time.

Finally, the optimal replacement strategy [Bel66, SA93] replaces the memory block

which will not be accessed for the longest time. It is impossible to implement this strategy

in a real cache, since it requires information about future cache references. Thus, the

strategy is only of theoretical value. Note, however, that a fully associative cache with

optimal replacement strategy will have the minimal number of cache misses any cache of

the same size for any possible sequence of references can have [SA93, Tem98].

2.4 State of the Art

In the following, an overview of the state of the art in microprocessor technology is given

with an emphasis on the cache and memory system. In addition, predecessor models and

some already announced, but not yet available, microprocessors are introduced briefly.

Readers not interested in technical details may skip the following sections and resume the

reading in Section 2.4.7.

2.4.1 Compaq Microprocessors

The microprocessor currently shipped by Compaq is the Alpha 21264 [Gwe96a]. It is

the successor to the Alpha 21164 [Com97]. For the Alpha 21164 the chip manufacturer

decided to use a very simple design without out–of–order execution, branch prediction,

or other sophisticated features which were state of the art at the time the Alpha 21164

was released. The simple design was chosen to allow the chip to be operated at a clock

frequency that was much higher than that of other microprocessor at that time.

Alpha 21164

The Alpha 21164 is equipped with a direct–mapped 8 Kbyte instruction and a direct–

mapped 8 Kbyte data cache, both located on the chip. Furthermore, a unified three–way

set–associative 96 Kbyte second level cache for data and instruction is implemented on

chip. The design allows a L1 data access with only one cycle latency. A second level

cache access already takes 6 to 10 cycles. Finally, the L2 cache is backed up by an

optional direct–mapped off–chip cache of up to 64 Mbyte. Data from main memory

can be delivered to the microprocessor resp. L3 cache if present with a peak memory

bandwidth of 400 Mbyte/sec.
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Alpha 21264

In contrast to its predecessor, the Alpha 21264 implements state of the art processor fea-

tures. The Alpha 21264 implements out–of–order execution of 80 instructions and allows

8 outstanding loads. It also provides branch prediction techniques to reduce idle time. The

execution core is equipped with four integer and two floating point arithmetic units. It is

able to execute up to six instructions per cycle. However, only four instructions can be

issued per cycle so that only an execution of four instructions can be sustained. The draw-

back of the new design is that it only allows a marginal increase of the clock frequency

and the peak performance of the chip is equal to the peak performance of its predeces-

sor, operated with the same clock frequency. Nevertheless, the sustained performance for

many applications increased substantially.

One reason for this is, that the designers spent a lot of effort into improving the mem-

ory access performance of the new chip. The Alpha 21264 is equipped with two separated

64 Kbyte on–chip L1 caches for instructions and data. Both caches are two–way set–

associative. The instruction cache uses 32 byte cache lines whereas the data cache uses

64 byte cache lines. The designers decided to build two large L1 caches for instruction

and data instead of two small caches backed up by an additional second level of on–chip

cache. The access latency of the primary data caches, however, is two to four cycles and

not one cycle like for the L1 cache of the Alpha 21164 microprocessor. The data cache is

dual ported and can deliver two independent 64–bit words every cycle. The microproces-

sor includes a dedicated 128–bit L2 cache bus and a separated 64–bit system bus to main

memory. Both can be operated at speeds up to 333 MHz. The external cache provides a

backup store for both primary caches. It is direct–mapped and shared by instructions and

data. The off–chip cache is controlled by a cache controller on the processor to guarantee

a low latency. The off–chip cache size can vary from one to 16 Mbyte and the latency is

12 to 14 cycles. Data from the second level off–chip cache can be delivered to the pri-

mary data caches with a peak bandwidth of 4 Gbyte/s with 250 MHz SRAM chips. For

the Alpha CPU also a slot architecture with processor and L2 cache on a small PC board

similar to Intel’s Slot 2 Xeon is available. This allows the off–chip cache to be operated

at a higher clock frequency to reduce latency and increase bandwidth. The system bus

which connects the chip with main memory is operated at 333 MHz and delivers a peak

main memory bandwidth of 2.7 Gbyte/s.

Alpha 21364

The successor to the Alpha 21264, the Alpha 21364, is announced for the second half

of 2001 [Gwe98a]. It will be based on a the Alpha 21264 CPU with additional fea-

tures wrapped around the core. The main improvement will be the use of multiple Direct

RDRAM channels which will increase main memory bandwidth and greatly reduce mem-

ory access latency. Furthermore, a six–way set–associative 1.5 Mbyte L2 cache will be

placed on chip. The cache will cycle at the speed of the CPU, delivering 128 byte of data

every nanosecond. The latency of the L2 cache will be the same as the second level cache

latency of the Alpha 21264. This is a direct consequence of the decision that the 21364
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uses the same core design with only minor changes. In contrast to the other Compaq chips

the Alpha 21364 will not support any off–chip caches. However, the RDRAM channels

will provide a direct main memory access with a peak bandwidth of 6.0 Gbyte/s

2.4.2 Hewlett Packard Microprocessors

The current microprocessor shipped by Hewlett–Packard is the HP PA–8600 [Gwe99c].

It is a member of the PA–8x00 family which is based on the core design of the PA–8000

microprocessor.

PA–8000

The PA–8000 [Hun95] is a four–way superscalar microprocessor with dynamic instruc-

tion reordering capability (out–of–order execution). The PA–8000 includes two integer

ALUs and two floating point multiply/accumulate units. Hence, the chip is able to exe-

cute up to four floating point operations per cycle in the case of multiply–add operations.

Otherwise two floating point operations and two integer operations can be performed in

parallel.

The memory hierarchy design of the PA–8x00 family is very conservative. It is limited

to a single level of two large low latency caches for data and instructions. The PA–8000,

for example, is equipped with a one Mbyte two cycle latency direct–mapped off–chip

cache for both data and instructions.

PA–8200

The PA–8200 microprocessor [SBK+97, Gwe96b] uses a fine tuned version of the PA–

8000 core. The cache design is more or less equal to the design of the PA–8000, however,

newer SRAM technology allows a cache size of two Mbyte for both data and instructions.

PA–8500

The PA–8500 processor [LH97] is based on the PA–8200 core with only minor enhance-

ments. The use of a newer fabrication process allows a larger amount of transistors for

the PA–8500 microprocessor. The enhanced transistor budget is used to move the two

first–level caches on chip. Therefore, the PA–8500 includes a 0.5 Mbyte four–way set–

associative cache for instructions and a one Mbyte four–way set–associative cache for

data. Further off–chip caches are not supported. The latency of both caches is still two

cycles, but the new design allows a higher clock frequency for the cache and consequently

a higher clock frequency for the CPU core. The drawback of the decision to move both

caches on chip, however, is a dramatically increased die size and consequently higher

manufacturing costs. Consequently, the PA–8500 microprocessor as well as its successor

the PA–8600 microprocessor currently have the largest die size of all microprocessors

available.
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PA–8600

The PA–8600 microprocessor [Gwe99c] in turn is based on the PA–8500 core. Improve-

ments in the fabrication process allow slightly higher clock frequencies. The CPU is

equipped with two on–chip caches of the same size as the PA–8500. The cache system

is also more or less unchanged. However, the cache prefetching algorithm was improved

and the cache replacement was changed from round–robin to LRU replacement.

PA–8700

The next microprocessor — the PA–8700 [Gwe98b, Kre00a] — from Hewlett Packard

is expected to be shipped in 2001. The design will be based on the PA–8600 design

with only minor modifications to integrate the new cache sizes of 1.5 Mbyte of L1 on–

chip data cache and 0.75 Mbyte on–chip instruction cache. Furthermore, again minor

improvements will be made in the data prefetching algorithm and the replacement strategy

will be changed to quasi LRU replacement. After 2002, the PA–8x00 microprocessor

family will be replaced by IA–64 based CPUs.

2.4.3 Sun Microsystems Microprocessors

UltraSparc–II

The UltraSparc–II [Sun97] is the predecessor of the UltraSparc–III chip which is currently

shipped by Sun Microsystems. It is equipped with two separate 16 Kbyte caches on the

chip for instructions and data. The instruction cache is pseudo associative and the line

size is 32 bytes3. The data cache is direct mapped and the cache line size is also 32 bytes.

Both caches are backed up by a unified direct–mapped external L2 cache of up to 16

Mbyte with a cache line size of 64 byte. The external cache is controlled by an on–chip

integrated cache controller.

UltraSparc–III

The UltraSparc–III [Son97b, Kre00c, HL99] chip is based on a completely new core de-

sign. The new core supports four–way superscalar in–order execution. The core operates

a pipeline with 14 stages to allow a high clock frequency. The chip is equipped with a

32 Kbyte four–way set–associative instruction cache using pseudo random replacement.

The instruction cache uses a cache line size of 32 bytes and provides data with a two cy-

cles latency. Furthermore, the chip is equipped with three first level on–chip data caches:

a 64 Kbyte four–way set–associative general purpose data cache using pseudo random

replacement and 32 byte cache lines, a two Kbyte four–way set–associative write cache

3Upon a memory request a pseudo associative cache looks up a memory block in cache like a direct

mapped cache. If the data is not present, i.e. a cache miss happens, a secondary slot is checked for the data.

If it is found there the cache lines are swapped. Thus, a pseudo associative cache behaves like a two–way

set–associative cache but has a shorter access time.
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using LRU replacement and 64 byte cache lines to reduce store traffic to the external L2

cache, and a two Kbyte four–way set–associative prefetch cache using LRU replacement.

The L1 general purpose data cache provides data with a two cycle latency. If data is not

found in the L1 general purpose data cache but in the prefetch cache, the prefetch cache

is able to provide the data for two load instructions per cycle with a latency of three cy-

cles. Furthermore, the prefetch cache fills its 64–byte cache lines in 14 cycles from the

L2 cache. The prefetch cache is able to process up to 8 software– and hardware–initiated

prefetch requests simultaneously.

The on–chip caches are backed up by an external direct–mapped L2 cache which can

be up to 8 Mbyte large. The cache is managed by a cache controller which is on the chip

to keep latency low [HL99]. The peak bandwidth of the L2 cache is 6.4 Gbyte/sec with

200 MHz SRAM chips. To reduce main memory latency the microprocessor also includes

an SDRAM controller which delivers a main memory peak bandwidth of 2.4 Gbyte/sec.

MAJC-5200

Besides the SPARC–architecture Sun Microsystems also developed the MAJC (Micro-

processor Architecture for Java Computing) architecture [Sun99]. The architecture is a

very long instruction word (VLIW) architecture [Kar93] which allows several instruc-

tions to be grouped into one package which is then issued to functional units. Note, that

instructions are grouped into packages at compile time to be executed concurrently at

runtime. Contrary, superscalar RISC architectures use complex control logic in order to

decide dynamically at run time which operation can be executed concurrently. To provide

a Java–friendly environment MAJC also supports thread–level parallelism by providing

several CPU cores on a chip. Instructions of different threads are bundled into different

packages which can then be dispatched to different CPU cores.

The MAJC–5200 [Sud00, Cas99] is the first (and so far only) implementation of

MAJC. It implements two identical and independent but cooperative processor cores.

Each core is equipped with a 16 Kbyte, two–way set–associative (LRU replacement) in-

struction cache using 32 byte lines. Furthermore, both cores share a single 16 Kbyte,

four–way set–associative (LRU replacement) data cache with 32 byte cache lines. The

data cache is dual ported to allow the simultaneous access of both cores. The design

does not include a L2 cache. In order to compensate for the missing L2 cache the chip is

equipped with four IO–ports. Two of the ports are general purpose off–chip communica-

tion paths with a bandwidth of 2 Gbyte/sec each. Furthermore, the chip is equipped with

a Rambus DRAM (RDRAM) interface which is able to deliver data from main memory

with a bandwidth of up to 1.6 Gbyte/sec. Finally, the chip is equipped with a PCI inter-

face. The high off-chip bandwidth is supposed to give the chip an advantage in multimedia

processing where typically large amounts of streaming data have to be processed.
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2.4.4 IBM Microprocessors

Power 3

The Power 3 [Son97a, PDM+98] processor from IBM implements a two level memory

hierarchy. The first level instruction and first level data cache are located on chip, whereas

the unified L2 cache is located off chip. The L1 instruction cache is 32 Kbyte large, using

128 byte cache lines. The latency of the instruction cache is one cycle. The L1 data cache

is 64 Kbyte large and uses 128 byte lines. According to [PDM+98] both L1 caches are

128–way set–associative. The instruction cache allows two outstanding loads, whereas

the data cache allows four outstanding loads. The controller for the off–chip L2 cache is

placed on board. The L2 cache controller allows a maximum of 16 Mbyte of cache. At

200 MHz the bandwidth from the L2 cache to the processor is 6.4 Gbyte/sec. The chip

also implements a hardware initiated prefetching. Sequential instruction or data accesses

are detected in hardware. A stream is detected when the data accesses happen with a

stride of one cache line. The Power 3 allows four streams to be prefetched with up to two

cache lines fetched ahead from L2 or main memory.

Power 4

The successor to the Power 3 microprocessor will be the Power 4 microprocessor [Die99b,

Kre00b]. It will supports multithreaded programs by implementing chip multiprocessing

(CMP) and provides a high bandwidth chip–to–chip interconnection network. The micro-

processor chip will include two identical processor cores on chip. Each will be equipped

with a 64 Kbyte L1 instruction cache and 32 Kbyte L1 data cache. The core will allow

11 outstanding loads (eight from the data cache and three from instruction cache). The

caches of both cores will be backed up by a unified L2 cache which will be split into three

equally sized, and independent 0.5 Mbyte caches. Two slices will be dedicated for the

two cores. The remaining slice will be dedicated for the chip–to–chip interconnect. The

slices will be connected to the cores by a 100 Gbyte/sec port to allow high bandwidth

from caches. The L2 slices will be ensured to be cache coherent. All L2 slices together

will allow a total of 12 outstanding loads from L3 or main memory. Furthermore, the

chip will include a cache controller for an eight–way set–associative off–chip cache. The

controller will deliver data from L3 cache with a bandwidth of 10 Mbyte/sec. Similar to

the Power 3 microprocessor, the Power 4 chip will also implement hardware prefetching.

The Power 4 chip will allow eight prefetch streams with up to 20 cache lines kept in flight.

Finally, the chip will be equipped with a chip–to–chip interconnect which allows high–

speed coupling with two other Power 4 microprocessors. The chip–to–chip interconnect

will allow a sustained data transfer bandwidth of 35 Gbyte/sec from chip to chip.
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2.4.5 Intel Microprocessors

Pentium 3

The Pentium 3 processor [Gwe99a, Int00c, Int00b] implements a two level cache hier-

archy. The first level of the hierarchy includes a 16 Kbyte, four–way set–associative L1

instruction cache and a 16 Kbyte, four–way set–associative L1 data cache on chip. The

L2 cache contains both data and instructions. The L2 cache is available in two different

variants [Gwe99a]: a 512 Kbyte, four–way set–associative off–chip cache or a 256 Kbyte,

eight–way set–associative, on–chip cache.

Pentium 4

The successor chip — the Pentium 4 [Sti00, Gla00] — also implements a two level cache

hierarchy. The first level of the hierarchy includes a 8 Kbyte four–way set–associative data

cache using 64 byte lines and a newly designed instruction cache called trace cache. The

Pentium microprocessor family decodes x86 instructions into several micro operations

which can then be executed internally in a RISC style manner. The trace cache does not

store x86 instructions like the older Pentium instruction cache designs do, but already

decoded micro operations. The trace cache is able to cache 12K of micro operations. The

second level cache is a unified eight–way set–associative L2 cache of 256 Kbyte. The L2

cache uses 128 byte cache lines and is integrated on chip. An option for an L3 off–chip

cache is planned to appear in the next version of the core. The chip is connected to main

memory with a 400 MHz bus. Instead of DRAM or SDRAM, so far only RDRAM with

a peak bandwidth of 3.2 Gbyte/sec is supported.

Itanium

Besides the Pentium architectures Intel also developed the IA-64 based on EPIC. EPIC

(Explicitly Parallel Instruction Computing) is a 64-bit microprocessor instruction set,

jointly defined and designed by Hewlett Packard and Intel, that provides up to 128 gen-

eral and floating point unit registers and uses speculative loading, predication, and explicit

parallelism (VLIW style). The Itanium processor [Int00a] is the first implementation of

the IA-64 architecture based on EPIC. In contrast to the Pentium systems the Itanium pro-

cessor is not equipped with a out–of–order execution RISC core but executes instructions

in software–supplied order.

The Itanium implements a three level cache hierarchy. The first two cache levels are

integrated on the chip whereas the third level is located off–chip. The first level of cache

consists of a 16 Kbyte instruction cache and a 16 Kbyte data cache. Both first level caches

are four–way set–associative and use 32 byte cache lines. The L1 data cache is only used

for integer data. Thus, floating point load instructions bypass the L1 data cache and fetch

data directly from the L2 cache. The L2 cache is 96 Kbyte large, 6–way set-associative,

and uses 64 byte cache lines. The L2 caches is unified, i.e. it caches data as well as

instructions. The L3 cache is located off-chip but integrated in the Itanium cartridge.
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Depending on the particular Itanium package two Mbyte or four Mbyte L3 cache are

supported, respectively. The latency for integer loads is two cycles for a L1, six cycles

for a L2, and 21 cycles for a L3 cache access. The latency for floating point data loads is

slightly higher: 9 cycles for a L2 and 24 cycles for a L3 cache access.

2.4.6 AMD Microprocessors

AMD currently sells AMD Athlon and AMD Duron microprocessors. The AMD Athlon

microprocessor is available with two different cores: the K75 [Adv99] and the Thunder-

bird [Adv00b] core.

Athlon K75 core

The K75 microprocessor core implements a two level cache hierarchy. The first level of

the memory hierarchy includes a 64 Kbyte two–way set–associative L1 instruction cache

and a two–way set–associative L2 data cache. Both caches are backed up by a direct–

mapped off–chip L2 cache. The L2 cache can be up to 8 Mbyte large. However, the

on–chip controller is optimized for a 512 Kbyte L2 cache.

Athlon Thunderbird and Duron

The Thunderbird core also implements a two level cache hierarchy [Adv00a]. However,

the Thunderbird core includes both levels on chip. The L1 instruction cache and data

cache are both 64 Kbyte large and two–way set–associative. The 256 Kbyte large 16–

way set–associative L2 cache delivers data to both first level caches. In contrast to other

microprocessor developers, AMD did not choose the L2 cache to be an inclusive cache

but an exclusive cache. That is, the L2 cache does not include the data which is present in

one of the L1 caches. The AMD Duron microprocessor is identical with the AMD Athlon

(Thunderbird core) with the only exception that the L2 cache size is only 64 Kbyte.

2.4.7 Summary of the State of the Art

More or less all microprocessors nowadays are equipped with at least one level of cache.

The first level of cache which is usually located on the processor die includes two caches:

one cache for data and one for instructions. The size of first level caches varies from

8 Kbyte to one Mbyte. Some microprocessors like the Pentium 4 or the Alpha 21164

have only 8 Kbyte of cache for data and another 8 Kbyte for instructions. The reason

for such small level one caches is that at a clock frequency of 500 MHz to 1.5 GHz the

signal delays do no longer allow a one cycle access latency for larger caches. Several

microprocessor manufacturers nevertheless build CPU with larger L1 caches even if that

implies that the cache will have an access latency of at least two cycles. Examples for

CPUs with larger L1 caches are the Compaq Alpha 21264 with 64 Kbyte data and 64

Kbyte instruction cache or the IBM Power 3 chip with 64 Kbyte for data and 32 Kbyte of
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cache for instructions. HP decided to equip its new microprocessors with a single level

of two very large on–chip caches. The HP PA–8500 and the HP PA–8600, for example,

include 0.5 Mbyte of instruction cache and one Mbyte of data cache on the processor

die. HP also decided that the large L1 caches are sufficient and that no other cache levels

are required. Most other microprocessor manufacturers, however, implement one or two

additional levels of cache. Intel equips the Pentium 4 with another second level of cache

on the chip with 256 Kbyte for data and instructions, for example. However, the chip does

not support any off–chip cache. The Compaq Alpha 21164, on the other hand, is equipped

with a medium–sized second level cache on chip and another level of SRAM cache off

chip. Placing cache on the processor die allows the cache to be operated at the same

frequency as the processor core. This reduces the access latency to the cache and the tight

integration usually allows a higher bandwidth. The drawback is that the microprocessor

chip requires more transistors and will be more expensive in manufacturing. However,

this might not be a severe obstacle in the future, as the amount of transistors is increasing

thanks to improved semiconductor technology.

Contrary, off–chip caches can be built with comparatively cheap SRAM chips. This

allows much larger cache sizes but also implies higher latency and lower bandwidth.

Therefore, most of the chip designers include on chip controllers for off–chip caches

and main memory.

In the recent past most microprocessors used direct–mapped caches. Most of the on–

chip caches nowadays, however, are highly associative and even off–chip caches start to

be associative due to on–chip cache controllers. Furthermore, cache systems are getting

smarter due to automatic stream detection, prefetching, better replacement strategies, and

many other features. Sun’s UltraSparc–III and IBM’s Power 3, for example, support

hardware and software initiated prefetch to hide main memory latency.

2.5 Future Processor Trends

Within the next 15 years microprocessors with a billion logic transistors are forecasted

[BG97, ITR00]. These microprocessor chips will be clocked with a frequency of several

GHz.

The increase in frequency in the past already led to very deep pipelines. The av-

erage pipeline currently is 12 to 14 stages deep and even longer pipelines are already

implemented in the new high frequency microprocessors like the Pentium 4. The further

increase in clock frequency will most likely imply even deeper pipelines. Deep pipelines,

however, involve inefficiency once pipeline stalls occur, the workload of the stages can-

not be balanced, or if instructions are not inserted into the pipeline every cycle (pipeline

bubbles).

In the past further performance gain was achieved through exploitation of instruction

level parallelism (ILP).This introduced four–way, out–of–order, speculatively executing

CPU cores which already use more than 10 million transistors. This is approximately

10 times as much as a one–way issue core would require. The sustainable ILP, however,
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typically is two instructions per cycle. That is, the sustainable throughput is typically only

two instructions per cycle. Thus, the transistor budget is used inefficiently in respect to

performance gain and it will be hard to do better.

Nevertheless, some microprocessor developers claim that with more transistors and

sophisticated compiler support it will be possible to exploit more ILP. Future micropro-

cessor architectures which try to exploit more ILP are for example advanced superscalar

processors [PPE+97], superspeculative processors [LS97], and trace processing [SV97].

Intel’s and HP’s EPIC architecture is an example of an advanced superscalar architecture

although their approach is not based on a RISC but on a VLIW approach with some fea-

tures of a superspeculative architecture. The Hal Sparc64 V [Die99a] chip, on the other

hand, is based an a trace processing architecture with superspeculative execution.

Other microprocessor manufacturers claim that ILP is already tapped out so that only

thread level parallelism (TLP) remains to be exploited. IBM with the Power 4 micro-

processor and Sun with the MAJC–5200 will implement a chip multiprocessing (CMP)

[NO97] architecture with a small number of independent microprocessors on a single chip

which communicate through a coherent (on–chip) cache.

Another approach pursued by Compaq is the exploitation of TLP with a simultaneous

multithreaded processor (SMT) [EEL+97]. The approach is based on a superscalar core

which shared by several threads. Once one thread is delayed due to a stall, another thread

is executed on the core to fill idle cycles. The Alpha 21464 [Gwe99b], for example, will

use an eight–way issue core which allows several threads to share the common core4.

A completely different approach is taken by the IRAM processors [KPP+97]. An

IRAM processor will couple the traditional vector processor concept with large DRAM

banks (rather than SRAM) on the chip to allow high memory bandwidth. Although, the

major area of application will be multimedia applications with streaming data the au-

thors also hope that other areas will also benefit from the higher (on–chip) main memory

bandwidth.

In summary, the common property of all architectures is that they will have large on–

chip memory capacities to provide data with a reasonably low latency and high bandwidth.

Two levels of cache on the chip and multi–megabyte level two caches will be the norm.

Unfortunately, even the forecasted cache sizes are too small to cache the whole data set

used by multigrid methods for realistic problem sizes and resolutions currently in use.

Furthermore, it is very likely that the problem sizes will grow further along with the

expected performance improvement. Thus, using existing caches efficiently is already

crucial and will be even more crucial if the current trends in performance improvement of

microprocessors and memory chips prevail.

4Note that, with the current market situation (September, 04th 2001) it is not clear whether the Alpha

21464 will actually be released.
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2.6 Summary

The increasing gap in microprocessor and main memory speed leads to a latency and

bandwidth problem. Microprocessor manufacturers build computer systems which are

equipped with memory hierarchies to mitigate the effect of these problems. The study of

microprocessors points out that all memory hierarchies are of similar structure. A typical

memory hierarchy nowadays has several layers of cache. The first and maybe a second

layer of cache is integrated on the chip. Furthermore, currently available computer sys-

tems are equipped with larger off–chip caches. However, the size of these caches is far too

small to contain data structures used in multigrid codes. Most of the forecasted systems

will be equipped with memory structures similar to the memory hierarchies currently in

use. Admittedly, those caches will be bigger and smarter. However, the data structures

used in multigrid codes are already too big to even fit in the bigger cache sizes of fore-

casted computer architectures.

Based on the observation that the microprocessor architectures with memory hierar-

chies are similar, it can be assumed that the data locality optimization techniques which

will be proposed in this thesis are of relevance for virtually all microprocessor architec-

tures which employ the memory hierarchy concept, including systems currently in use as

well as forecasted systems.
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Chapter 3

Memory Characteristics of Multigrid

Methods

In this chapter, the basic concept of multigrid methods and their mathematical princi-

ples are briefly described. Then, the performance of multigrid methods will be exam-

ined. Detailed runtime as well as theoretical studies of the performance of these methods

demonstrate the interaction between multigrid algorithms and deep memory hierarchies.

Thereby, delays due to main memory accesses will be revealed as the performance bottle-

neck of multigrid methods and their components on cache based architectures. Further-

more, upper limits for the achievable performance of multigrid methods on RISC based

microprocessors are determined by means of theoretical models.

3.1 Introduction to Multigrid Methods

Multigrid methods play an important role in the numerical solution of physical processes.

Chemical, technical or physical processes are often mathematically modeled with ellip-

tic partial differential equations (PDEs). Multigrid methods are among the most efficient

algorithms for the numerical solution of that type of equation. This chapter will only

provide a brief introduction to the essential ideas of the multigrid concept. A more de-

tailed description of multigrid methods and the mathematical background can be found in

[Bra84, Hac85, BHM00].

3.1.1 Model Problem and Discretization

This work focuses on boundary value problems of second–order elliptic partial differential

equations. The general form of these PDEs in a two–dimensional domain 
 is:

Auxx + 2Buxy + Cuyy +Dux + Euy + Fu+G = 0 (3.1)

AC � B2 > 0; 8(x; y) 2 
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Figure 3.1: Discretization of the domain (0; 1)� (0; 1)

A,B,C,D,E,F , and G are functions in two real parameters. As an example for illus-

tration the following equation will be used:

��u = �uxx � uyy + �u = f(x; y) (3.2)

0 < x < 1; 0 < y < 1; � � 0

With � = 0, this equation is usually called Poisson equation. The Poisson equation is

of relevance for statics calculation, analysis of electrical fields, steady–state temperature

distribution in homogenous media, and diffusion processes. In the case of � > 0 the

equation is called Helmholtz equation. For the rest of this chapter, it will be assumed that

� = 0. The equation is considered under the condition that u is prescribed on the bound-

ary of the domain. This condition is usually called Dirichlet boundary condition. Other

boundary conditions like Neumann or Cauchy boundary conditions are not described here.

The numerical solving of a model or real–world problem usually starts with a dis-

cretization of the physical continuum. There are different possibilities to discretize the

problem domain like for example finite differences, finite elements, or finite volumes.

The simplest approach is probably the finite difference method.

For the discretization of the model problem each dimension of the physical continuum

(
 = (0; 1) � (0; 1) in the example) is partitioned into equally spaced subintervals by

introducing grid points (xi; yj) = (ih; jh) where h = 1=n, i; j = 0; 1; : : : ; n with n
representing the number of subintervals in each dimension.

The result for the example is a two–dimensional grid over the unit square as shown in

Figure 3.1. At each inner point of the grid the differential equation is approximated by a
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second–order difference equation. The resulting linear equation is:

0
BBBBBBB�

A �I
�I A �I

. . .
. . .

. . .

�I A �I
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1
CCCCCCCA
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0
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(3.3)

I =

0
BBBBBBB�

1
1

. . .

1
1

1
CCCCCCCA
A =

0
BBBBBBB�

4 �1
�1 4 �1

. . .
. . .

. . .

�1 4 �1
�1 4

1
CCCCCCCA

~ui = (ui1; ui2; : : : ; uin�2 ; uin�1); 1 � i � n� 1

~fi = (fi1; fi2 ; : : : ; fin�2 ; uin�1); 1 � i � n� 1

The coefficient matrix is sparsely populated and is usually stored in a stencil notation

which only represents the relation to neighboring nodes in the grid to reduce storage

requirement. The stencil notation for the Poisson equation is:

1

h2

2
64

�1
�1 4 �1

�1

3
75 (3.4)

The system of linear equations can be solved with standard elimination methods like

Gauss elimination, for example. Unfortunately, Gauss elimination destroys the sparsity

of the coefficient matrix by generating fill–ins. The much higher memory requirement

of that method, therefore, usually forbids the usage of these methods for larger systems

of equations. Furthermore, the complexity of Gauss elimination is relatively high with

O((n� 1)2�3) = O(n6). Better complexity is achieved with band matrix solvers (O(n4)),
direct solvers based on Fourier transformation (O(n2 logn)), or iterative methods.

3.1.2 Basic Iterative Methods

Multigrid methods provide a space and time efficient way to solve systems of linear equa-

tions which arise from the numerical solution of PDEs. A conventional iterative method

or relaxation method is one of the main components of a multigrid method. Iterative

methods generate a sequence of approximations of the exact solution u of a system of

equations Au = f (3.5) starting with an initial guess v (0) = (v
(0)
1 ; v

(0)
2 ; � � � ; v

(0)
m�1)

T . In

this thesis, only the Jacobi and Gauss–Seidel method together with slightly modified ver-

sions of these methods will be introduced. Further iterative methods can be found in the

literature [GL83, Hac93].
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An initial guess can be for example v(0) = (0; 0; � � � ; 0)T . From the initial guess v(0)

the sequence of approximations should converge as fast as possible to the exact solution

u. The faster the sequence converges the better the iterative method is.

Jacobi Method

Among the simplest iterative methods is the Jacobi method. It solves a linear system of

equations Au = f by generating a new approximation v(k+1) from the previous approxi-

mation v(k) in the following way:

v(k+1)i :=
1

ai;i

0
��

m�1X
j=1;j 6=i

ai;jv
(k)
j + fi

1
A (3.6)

i = 1; 2; : : : ; m� 1; k � 0

Each element of the newly generated approximation vector v(k+1) only depends on

the constant matrix A, the constant vector f , and the previous approximation v (k). That

property offers the possibility to perform the calculation of the vector elements of the

new approximation in parallel. Furthermore, only storage space for two approximations

is required since the next approximation v(k+2) can be stored in the no longer needed

storage space of the approximation v(k).

Weighted Jacobi Method

The weighted Jacobi method is a slightly modified version of the Jacobi method. The

new approximation is calculated by a weighted average of the new approximation as it is

calculated by the standard Jacobi method and the previous approximation:

v
(k+1)
i := (1� !)v

(k)
i + !

1

ai;i

0
��

m�1X
j=1;j 6=i

ai;jv
(k)
j + fi

1
A (3.7)

i = 1; 2; : : : ; m� 1; k � 0

The factor ! dilutes or amplifies the change which takes place from one approximation

to the other. In the case of ! = 1 the weighted Jacobi method is identical to the standard

Jacobi method.
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Figure 3.2: A two–dimensional grid with red–black coloring.

Gauss–Seidel Method

The two main disadvantages of the two Jacobi methods are that they require 2(m � 1)
storage space for the unknowns instead of only m� 1 and that newly calculated informa-

tion can only be used in the next step of the calculation and not as soon as it is available.

The Gauss–Seidel method uses a similar approach as the Jacobi method but it uses already

calculated elements of the new approximation for the calculation of other elements of the

new approximation. For this purpose a new element v
(k+1)
i of an approximation v(k+1)

overwrites an element v
(k)
i of the approximation v(k). The Gauss–Seidel method can be

described in the following way:

v
(k+1)
i := �

1

ai;i

0
�

i�1X
j=1

ai;jv
(k+1)
j +

m�1X
j=i+1

ai;jv
(k)
j � fi

1
A (3.8)

i = 1; 2; : : : ; m� 1; k � 0

The storage requirement of the Gauss–Seidel method for the unknowns is, therefore,

m � 1. However, the ordering of the nodes in the approximation vector v now plays an

important role. Different orderings of the approximation elements (which are represented

by grid nodes) result in different execution schemes. Instead of updating the elements

in ascending order as shown above they can also be updated in descending or alternating

order.

A popular ordering is the red–black ordering. A two–dimensional grid is dyed red and

black as shown in Figure 3.2. First, all red nodes and then all black nodes are updated

according to equation (3.8). The main advantage of the red–black ordering is that there
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are no data dependences between new elements which correspond to red nodes. Thus,

they can be calculated in an arbitrary order since only black nodes are required for the

calculation. The black nodes in turn only depend on red nodes, so that the elements of the

new approximation for these nodes can be calculated in an arbitrary order as well.

This allows an easy parallelization of the red–black Gauss–Seidel method as follows.

The grid is partitioned and each processor operates on one partition. In a first step the

current approximation for all nodes is distributed on the parallel processors. Then, the

approximation of red nodes is updated. Thereby, each processor calculates its part of

the new approximation. After all red nodes have been updated, the new approximation

of the red nodes is again propagated to all processors followed by the calculation of a

new approximation for the black nodes. After all processors finish their work and the

information of the black nodes is propagated to the other processors the process starts

with the calculation of the approximation of the red nodes again. Since each processor

doesn’t require all grid nodes, this approach can be improved by only exchanging partition

boundaries.

Successive Over Relaxation Method

The successive over relaxation method (SOR) is a slightly modified version of the Gauss–

Seidel method. Like the weighted Jacobi method the SOR method uses a weighted aver-

age of the new and old approximation. Again, in the case of ! = 1 the SOR methods is

identical to the standard Gauss–Seidel method. If 0 < ! < 1 the impact of the change

caused by the iteration on the new approximation is damped otherwise it is amplified. The

calculation scheme for the SOR method is:

v
(k+1)
i := (1� !)v

(k)
i �

!

ai;i

0
�

i�1X
j=1

ai;jv
(k+1)
j +

m�1X
j=i+1

ai;jv
(k)
j � fi

1
A (3.9)

i = 1; 2; : : : ; m� 1; k � 0

3.1.3 The Multigrid Idea

The representation of the problem domain with a grid leads to a discretization error since

a grid usually will not represent a continuous domain correctly. Using a finer grid with

a smaller grid distance will reduce the error involved with the discretization. However,

it can be shown [BHM00] that the reduction of low frequency error parts decreases with

decreasing grid spacing h. With decreasing h the number of grid points and consequently

the amount of work to be done for one iteration will increase by O(h�1). I.e. finer grids

will require more work for one iteration and the iteration will be less efficient in respect

to the error reduction. The key observation which leads to multigrid methods is that a

low frequency error is of a higher frequency on grids with fewer grid points. Therefore,

multigrid methods use coarser grids to reduce low frequency error parts, whereas a low

discretization error and a good reduction of high frequency errors is achieved by using

fine grids. There are several strategies how coarser grids can be used within multigrid
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methods like the correction scheme, full approximation scheme, or hierarchical multigrid.

The thesis will focus on the correction scheme.

The correction scheme usually starts with a good approximation vh of the exact solu-

tion uh of the equation Ahuh = fh. In a first step, the high frequency error parts in the

approximations are reduced. For this purpose a small number of iterations with a method

like the weighted Jacobi or Gauss–Seidel method are usually sufficient. Then, the low

frequency error part is reduced with a correction step on a coarser grid with grid spacing

of 2h, for example. Other grid coarsening is possible but not described in this thesis.

For the correction step, the right–hand side f 2h of the equation for the coarser grid

is obtained by calculating the residuum rh of the current approximation on the fine grid

and restricting it to the coarser grid. The equation A2he2h = r2h is then solved on the

coarser grid and the obtained solution e2h is used after interpolation to correct the current

solution on the fine grid. e2h is a coarse grid representation of the error of the current

fine grid solution. The correction with the coarse grid representation of the error usually

introduces new high frequency errors. These errors can be removed by applying additional

smoothing steps after the coarse grid correction.

rh = fh � Ahvh (3.10)

f 2h = r2h = I2hh rh

eh = Ih2he
2h

vhnew = vh + eh

The correction on the coarser grid can in turn be obtained by a similar approach using

coarser grids. In the following, three grid visiting schemes for multigrid methods will be

discussed:

V–cycle Scheme

The V–cycle scheme is the basic building block for all grid visiting schemes described

in this thesis. The algorithm for the V–cycle scheme is shown in Algorithm 3.1. It starts

with a series of iterations on the finest grid to remove high frequency error parts. Then,

it moves to successively coarser grids until the coarsest grid is reached. The solution of

the coarsest grid is then interpolated to the next finer grid where it is used to correct the

current approximation calculated on that grid1. After an additional smoothing step that

approximation in turn is used to correct the current solution on the next finer grid. This

process continues until the finest grid is reached. The grid visiting of the V–cycle scheme

for a four level multigrid is shown in Figure 3.3.

1Note, that the approximations on all grids except the one on the finest grid are corrections of the error

of the approximation of the next finer grid.
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Algorithm 3.1 V–cycle(v1; v2; A
h; vh; fh; h)

if h = hmax then

// coarsest grid is solved directly:

solve (Ahvh = fh)

else

// pre–smoothing

for i = 1 to v1 do

relax (Ahvh = fh)

end for

// recursive coarse grid correction:

f 2h = I2hh (fh � Ahvh)
v2h = 0
generate(A2h);

V–Cycle(v1; v2; A
2h; v2h; f 2h; 2h)

vh = vh + Ih2hv
2h

// post–smoothing:

for i = 1 to v2 do

relax (Ahvh = fh)

end for

end if

h

4h

2h

8h

Figure 3.3: Grid visiting of the V–cycle scheme
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Figure 3.4: Grid visiting of the �–cycle (� = 2) scheme

�–cycle Scheme

The �–cycle scheme is a trivial extension of the V–cycle scheme. The V–cycle algorithm

makes exactly one recursive call to obtain the coarse grid correction. The �–cycle algo-

rithm illustrated in Algorithm 3.2, however, invokes itself � times to obtain a better coarse

grid correction. In practice, only � = 1 and � = 2 are used. If � = 1, the �–cycle scheme

is identical to the V–cycle scheme. The grid visiting of � = 2 for a four level multigrid

method is shown in Figure 3.4.

Algorithm 3.2 �–Cycle(v1; v2; �; A
h; vh; fh; h)

if h = hmax then

solve (Ahvh = fh)

else

for i = 1 to v1 do

relax (Ahvh = fh)

end for

// recursive coarse grid correction:

f 2h = I2hh (fh � Ahvh)
v2h = 0
generate(A2h);

for i = 1 to � do

�–Cycle(v1; v2; �; A
2h; v2h; f 2h; 2h)

end for

vh = vh + Ih2hv
2h

for i = 1 to v2 do

relax (Ahvh = fh)

end for

end if



34 Memory Characteristics of Multigrid Methods

h

4h

2h

8h

Figure 3.5: Grid visiting of the FMG scheme

Full Multigrid Scheme

So far, coarser grids have only been used to calculate corrections for the next finer grid.

A coarse grid, however, can also be used to obtain a good initial guess for the finer grid.

The full multigrid scheme (FMG scheme) uses that approach and combines it with the

V–cycle scheme. Algorithm 3.3 shows how this is done.

The FMG scheme starts by generating a series of equations by restricting the original

fine grid problem. Then, the original problem is solved on the coarsest grid with a direct

solver or a sufficient amount of iteration steps to get an initial guess for the next finer

grid. On the next finer grid the initial guess is then improved with a V–cycle starting

and ending at the current grid to obtain a better approximation of the original problem.

That approximation is then in turn used as an initial guess for the next finer grid2. The

progress continues until the finest grid is reached. The grid schedule of the FMG scheme

is illustrated in Figure 3.5.

Algorithm 3.3 FMG–V–cycle(v1; v2; A
hmin; vhmin ; fhmin; hmin)

generate(Ahmin ; fhmin) // generate A and f for every grid level

h = hmax // start with coarsest grid

solve (Ahvh = fh)

while h > hmin do

h = h
2

// start using finer grids

vh = Ih2hv
2h // use result from coarser grid as start value

V–cycle(v1; v2; A
h; vh; fh; h)

end while

2Note, that for the interpolation of the solution an operator I
h

2h
of higher order is often used since the

solution is not smooth in general.
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3.2 Standard Multigrid Performance

It has been shown [Hac85, Bra84, TOS01] that multigrid methods are among the most

efficient methods to solve partial differential equations. The work to be done in this case

is linear (optimal) per unknown. These studies, however, are based on the assumption

that an estimate of the number of executed operations is a good estimate for the run

time of a program. With the introduction of superscalar microprocessors equipped with

deep memory hierarchies other criteria like the number of memory accesses or cache hit

rates have become more and more important for the estimation of the performance of an

algorithm. In this section, the behavior of a “text book” multigrid method on modern

superscalar microprocessors will be analyzed with a focus on run time analysis, data

access analysis, and cache behavior.

3.2.1 Experimental Environment

For the experiments in this chapter the DiMEPACK library which is the result of a joint

effort of the Lehrstuhl für Informatik 10, University Erlangen–Nuremberg, Germany,

and the Lehrstuhl für Rechnertechnik und Rechnerorganisation (LRR–TUM), Technische

Universität München, Germany will be used. DiMEPACK is a C++ library of multigrid

implementations for the solution of two–dimensional partial differential equations. The

library internally uses Fortran77 subroutines for the smoother and grid transfer operations.

The library includes a “text book” multigrid implementation as well as cache–optimized

multigrid code. In this section only the standard multigrid implementation will be used.

The red–black Gauss–Seidel smoother and the inter–grid transfer operations as well

as the data locality improved routines have been implemented as part of this thesis. They

build the core routines of the DiMEPACK library. The multigrid interface, the direct

solver for the coarsest grid, the grid visiting schemes, and several other routines have

been implemented by Markus Kowarschik (University Erlangen–Nuremberg).

The DiMEPACK library implements the V–cycle and full multigrid (FMG, nested

iteration) schemes based on a coarse–grid correction scheme. Full–weighting as well

as half–weighting are implemented as restriction operators. The prolongation of the

coarse–grid corrections is done using bilinear interpolation. DiMEPACK uses a Gauss–

Seidel/SOR smoother based on a red–black ordering of the unknowns. DiMEPACK can

handle constant–coefficient problems based on discretizations using 5–point or 9–point

stencils. DiMEPACK is applicable to problems on rectangular domains where different

mesh widths in both space dimensions are permitted. It can handle both Dirichlet and

Neumann boundary conditions. A more detailed description of the DiMEPACK library

can be found in [KW01, KKRW01] and Chapter 6.

All experiments in this thesis solve the Poisson’s equation��u = sin(2�x) sin(2�y)
on the unit square with equal mesh widths in both dimensions and Dirichlet boundary

conditions. The values on the boundary of the domain are set to zero. In all experiments

the following standard 5–point resp. 9–point stencil is used:
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Furthermore, the number of grid levels was chosen so that the coarsest grid only con-

sists of a single unknown. If not otherwise noted, a discretization based on a 5–point

stencil and the full–weighting restriction operation will be used. Unless otherwise noted,

all floating point calculations will be performed with double precision floating point arith-

metic.

The experiments were conducted on an Linux PC based on 700 MHz AMD Athlon

(K75 core) with a peak floating point performance of 1.4 GFLOPS, another Linux PC

based on a 1.5 GHz Intel Pentium 4 with a peak performance of 1.5 GFLOPS3, a Compaq

PWS 500au based on a 500 MHz Alpha 21164 with a peak performance of 1 GFLOPS,

and a Compaq XP1000 based on a 500 MHz Alpha 21264 with a peak performance of

1 GFLOPS. The Athlon PC was equipped with 512 Kbyte off–chip cache whereas both

Compaq machines were equipped with a 4 Mbyte off–chip cache. A detailed description

of the microprocessors can be found in Chapter 2.

On the Linux machines, DiMEPACK was compiled with the GNU compiler whereas

on the Compaq machines the native compiler was used. In both cases aggressive compiler

optimizations were enabled.

For the experiments, the profiling tool PCL, DCPI, and hiprof have been used. The

Performance Counter Library (PCL) [BM00] is a software library which provides a uni-

form interface to hardware performance counters of many microprocessors. The PCL

functions can be used by application programmers to do detailed analysis on program

performance and by tool writers to base their work on a common platform. PCL also pro-

vides a command line tool to access performance counters. The command line tool is used

in the experiments. The tools DCPI [ABD+97] and hiprof [Com01] are only available

on the Compaq machines running Tru64 Unix. The Compaq (formerly Digital) Continu-

ous Profiling Infrastructure (DCPI) is a tool set similar to PCL but provides an interface

only for the hardware counters on the Alpha 21164 and Alpha 21264 microprocessors.

Since DCPI provides access to more hardware counters than PCL on the Compaq ma-

chines, DCPI is used in most cases on these machines. hiprof is a hierarchical instruction

profiler which is based on program instrumentation. hiprof itself is based on the atom

instrumentation tool [Ato96, ES95] which is available for Compaq Tru64 Unix systems.

hiprof produces a flat profile of an application that shows the execution time spent in a

given procedure, and a hierarchical profile that shows the execution time spent in a given

procedure and all its descendents. For the experiments only the flat profile has been used.

3The Pentium 4 is able to perform one floating point operation per cycle with the regular instruction set.

With streaming data instructions the Pentium 4 is able to perform up to four single precision or two double

precision floating point operations per cycle. It can be assumed that the gnu C++ and Fortran77 compiler

which were used to compile DiMEPACK are not able to utilize these instructions. Therefore, the peak float

performance of the Pentium 4 PC is 1.5 GFLOPS.
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Figure 3.6: MFLOPS of a standard multigrid V–cycle scheme

3.2.2 Floating Point Performance

The key motivation of this thesis is that the machines described above deliver a peak

floating point performance of one GFLOPS and beyond, but the sustained MFLOPS rates

when executing a standard multigrid program are far below the theoretical performances.

To illustrate this, Figure 3.6 summarizes the MFLOPS rates of DiMEPACK using two-

dimensional grids of various sizes measured with PCL. DiMEPACK was set up to use a

V–cycle scheme and full–weighting as restriction operation. The discretization was based

on a 5–point stencil.

Although, the multigrid code is relatively simple and is designed to make it as easy as

possible for a compiler to apply optimizations, it only exploits a fraction of the floating

point peak performance of current microprocessors. Furthermore, the performance drops

dramatically with growing problem size.

The Pentium 4 based machine delivers the best performance for almost all grid sizes

followed by the Compaq XP1000 machine. The two other computers are clearly slower,

although the Athlon is able to deliver a performance comparable to the Compaq XP1000

for smaller grid size.

The Pentium system is equipped with two data caches: an 8 Kbyte L1 data cache

and a 256 Kbyte L2 cache. The L1 cache is too small to hold any multigrid data except

the one for the smallest grid size. The Pentium 4 achieves the best performance of 453

MFLOPS for the 64� 64 grid. The L2 cache is large enough to store the 256� 256 grid

completely, nevertheless, the performance deteriorates. The explanation for this is that the

whole multigrid data required for solving a problem on a grid of that size is approximately
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twice as large and consequently doesn’t fit in the L2 cache completely. Hence, the cache

is able to speed up the smoother operating on the finest grid but not the whole multigrid

algorithm. For the larger grid sizes not even the finest grid itself fits in the L2 cache so that

another performance drop to about 200 MFLOPS can be observed for these grid sizes.

The Compaq XP1000 is equipped with a 64 Kbyte L1 data cache and a four Mbyte

(off–chip) L2 cache. The L1 cache is able to store multigrid data for grids not larger than

the 64 � 64 grid. Consequently, the best performance of approximately 270 MFLOPS

is achieved for that grid size. After that the performance slightly decreases to about 260

MFLOPS. In contrast to the Pentium 4 system, however, no dramatical performance drop

occurs until the grid size reaches 513 � 513. The L2 cache seems to be able to deliver

the data fast enough to sustain the performance. The multigrid data for the three largest

grids, however, is even too large for the four Mbyte L2 cache, so that the performance

deteriorates to about 130 MFLOPS.

The AMD Athlon PC is also equipped with a two level cache hierarchy. Similar to the

Compaq XP1000 architecture the two L1 caches are 64 Kbyte in size. Consequently, the

performance trend of the multigrid on the AMD Athlon based computer is similar to the

trend on the Compaq XP1000. However, the performance degradation after the data no

longer fits in the L1 cache is higher and the second drop already occurs at a grid size of

257� 257 due to the smaller L2 cache.

3.2.3 Analysis of the Run Time Behavior

In the following, the runtime behavior of DiMEPACK on the Compaq PWS 500au for

various grid sizes will be carefully examined with the profiling tool DCPI. This machine

is used because it provides the largest set of hardware counters and a cache hierarchy with

three levels of cache which is the deepest cache hierarchy of all studied machines.

The result of the analysis is a breakdown of cycles spent for execution (Exec), nops,

and different kinds of stalls (see Table 3.1). Possible causes for stalls are instruction cache

misses, data cache misses (D–Cache), data translation look–aside buffer misses4 (DTB),

branch mispredictions (Branch), and register dependences (Depend).

It is interesting to note that instruction cache misses are no performance limiting issue

for multigrid methods. The reason for this is that multigrid methods repeatedly execute

relatively small loop bodies which easily fit in the L1 instruction cache of modern mi-

croprocessors. Consequently, instruction misses only occur when the executed multigrid

component is switched, e.g. from smoother to restriction operation.

For smaller grid sizes the limiting factors are register dependences. With growing grid

size, the impact of data cache misses increases and starts to dominate the runtime for the

largest grids. For the largest grids cache miss stalls are responsible for over 50 per cent of

all cycles of the CPU.

4Translation look–aside buffers (TLB) are used in conjunction with virtually addressed caches, i.e.

caches whose tags are based on virtual memory addresses rather than physical addresses. A TLB caches

physical address page numbers associated with virtual address pages recently in use to accelerate the address

translation.
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Grid % of cycles used for

Size Exec I-Cache D-Cache DTB Branch Depend Nops Other

17 43.3 2.2 5.1 5.2 3.3 34.4 3.7 2.8

33 38.7 1.6 7.1 5.4 1.6 39.3 3.6 2.7

65 36.4 1.0 8.1 6.0 1.0 41.6 3.6 2.3

129 32.9 0.6 10.0 8.1 0.5 41.4 3.4 3.1

257 31.5 0.3 10.8 9.8 0.3 40.9 3.3 4.1

513 15.5 0.2 27.3 34.1 0.1 18.4 1.6 2.8

1025 12.0 0.1 57.0 13.0 0.1 15.1 1.3 1.1

2049 10.5 0.2 54.3 17.3 0.1 14.1 1.3 2.2

Table 3.1: Runtime behavior of DiMEPACK on a Compaq PWS 500au.

3.2.4 Performance Limits Introduced by Instruction Distribution

Multigrid methods repeatedly process large data sets. Many load and store instructions

must be executed to provide the data for these operations. However, the amount of work

done once a data item is loaded into the CPU is relatively small. Table 3.2 shows the

distribution of the amount of instructions executed within the multigrid program DiME-

PACK. The number of executed load and store instructions is actually higher then the

number of executed floating point instructions. Since load and store instructions must be

executed along to multiply and add operations this creates a severe bottleneck as will be

demonstrated in the following.

There a three possible strategies to execute floating point data load and store opera-

tions:

� The loads are executed with the same execution units which execute regular float

operations.

� The CPU provides a separate execution unit for loads and stores.

� Load and store operations are executed within the integer unit.

If the load and store operations are executed in the same execution units as the float-

ing point instructions, this creates a crucial limitation for the performance of multigrid

methods on these architectures. For a 2049 � 2049 grid the floating point units are kept

busy executing loads and stores for about 45 per cent of all cycles which the CPU actually

spends for executing instructions, for example. Even if the remaining 55 per cent of all

executed instructions are assumed to be floating point instructions and no stalls occur, the

achievable performance will be limited to 55 per cent of the peak performance.

Some architectures like the AMD Athlon architecture [Pra00] provide a specialized

float load and store unit which exclusively executes loads and stores for floating point

data. In the case of the Athlon processor, however, there is only one load unit which has
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Grid % of instructions executed as

Size Integer Float Load Store Others

17 42.5 18.0 25.4 6.1 8.0

33 34.3 24.3 29.8 6.1 5.7

65 26.7 28.9 33.6 6.5 4.3

129 21.5 31.8 36.2 6.9 3.6

257 18.5 33.5 37.8 7.2 3.0

513 17.0 34.3 38.6 7.4 2.7

1025 15.9 34.0 38.4 7.6 4.1

2049 16.3 32.4 37.4 7.7 6.2

Table 3.2: Partitioning of different kinds of instruction executed for DiMEPACK.

to provide data for 2 floating point execution units. Since the amount of load and stores

is higher than the amount of regular operations, the performance will be limited to the

performance of the load unit.

By far the most RISC architectures execute data load and store operations within their

integer units. In that case the integer units have to process the integer operations as well

as all load and store operations. Thus, for a 2049 � 2049 grid the integer units have to

process about 60 per cent of all instructions executed. This strategy will only defuse the

problem if more integer than floating point units are provided by the CPU. In the case of a

2049� 2049 grid a balanced system would require twice as many integer units as floating

point units (60 : 30 = 2 : 1).

If a ratio of 1 : 1 for integer and floating point units is assumed, no stalls of any kind

occur, and in each cycle one integer and one floating point instruction can be executed,

then the execution of all integer, load, and store instructions will take twice as much time

as the execution of all floating point instructions. Consequently, this will limit the achiev-

able floating point performance to 50 per cent of the peak performance. Although this

observation is idealized it gives an upper bound for the achievable performance of multi-

grid methods. Higher performance can only be achieved if the ratio of float instructions

to load and store instruction changes.

If the underlying multigrid algorithm stays unchanged, traditional cache optimization

techniques which are aimed at level one or level two caches will not alleviate the problem

described above. Relief can only be expected by data locality optimizations which target

registers and reduce the amount of loads and stores by keeping and reusing data already

within registers.

If the existence of stalls is added, e.g. triggered by data cache misses, to the exemplar-

ily model the achievable performance may degrade further. However, stalls which slow

down the execution of floating point instructions will not have such a severe impact since

the total execution time spent for floating point instructions is less time than the total ex-

ecution time spent for integer, load and store operations. Thus, the stall cycles are hidden

since the floating point units are idle 50 per cent of the time anyway provided that a ratio
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Grid % of all data accesses which are satisfied by

Size L1D Cache L2 Cache L3 Cache Memory

17 88.7 11.0 0.2 0.0

33 83.9 15.9 0.3 0.0

65 81.3 16.5 2.2 0.0

129 80.9 8.6 10.5 0.0

257 80.7 6.7 12.6 0.0

513 65.2 21.0 9.4 4.5

1025 48.6 39.6 6.2 5.6

2049 44.8 42.4 6.7 6.1

Table 3.3: Memory access behavior of DiMEPACK on a Compaq PWS 500au: The table

shows how many per cent of all data references are served by (or loaded from) a certain

level of the memory hierarchy. Thereby, the number of data references is determined by

counting the number of L1 data cache accesses.

of 1 : 1 is assumed for the execution units and a ratio of 60 : 30 for the instructions.

3.2.5 Data Access and Cache Behavior

Since data cache misses are the dominating factor for the disappointing performance of

the standard multigrid code, it seems reasonable to take a closer look at its cache behavior.

Table 3.3 shows how many per cent of all data accesses are satisfied by the corresponding

levels of the memory hierarchy. To obtain the data the number of L1 data cache accesses

as well as the number of cache misses for each level of the memory hierarchy was mea-

sured using DCPI. The number of references which are satisfied by a particular level of

the memory hierarchy is the difference between the number of accesses into it (misses

of the memory level above it) and the number of accesses which are not satisfied by it

(misses for that particular memory level). For example, the number of references satisfied

by the L2 data cache is the number of L1 data cache misses minus the number of L2 data

cache misses.

A different presentation of the data is shown in Table 3.4. The table shows how

efficient the caches are storing data. A low miss rate indicates that a cache is very efficient.

Note, that Table 3.4 and Table 3.3 are not complementary since the numbers illustrated in

Table 3.3 are not hit rates except for the L1 data cache.

The analysis of the memory access behavior shows that for the 17 � 17 and 33 � 33
grids the code can access a very large fraction of the data from the L1 cache and the

rest of the data from the L2 cache. For the small grid sizes the L2 data cache is a very

efficient backup of the L1 data cache and provides the data with a very low miss rate.

Consequently, almost no data must be loaded from the L3 cache or main memory. For

the 65� 65 grid we can observe that although a large fraction of the data is still delivered

from the L1 cache a growing amount of accesses are fetched from the L2 cache. The
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Grid L1D L2 L3

Size Cache Cache Cache

17 11.3 2.0 0.2

33 16.1 1.6 0.1

65 18.7 11.6 0.1

129 19.1 55.1 0.1

257 19.3 65.3 0.3

513 34.8 39.7 32.2

1025 51.4 22.9 47.2

2049 55.2 23.2 47.9

Table 3.4: Cache miss rates (in %) of the Compaq PWS 500au running DiMEPACK. A

high number indicates a bad efficiency of the particular cache level.

L2 cache delivers a large fraction of the remaining data but it isn’t able to keep all the

data active and the miss rate roughly increases by an order of magnitude to 11.6 per cent

(see Table 3.4). Consequently, some of the data must be loaded from the L3 cache. With

growing grid size this becomes even worse. For the 129 � 129 and 257 � 257 grids the

L3 cache, however, is still able to deliver the data with a miss rate which is almost zero.

Similarly, for grids larger then 257� 257 the data no longer fits in the L3 cache and some

data must be loaded from main memory. For these grid sizes we can also observe that less

then 50 per cent of the data is loaded from the L1 cache and it is very inefficient in keeping

the data. The efficiency of the L2 cache, however, increases again so that most of the data

which isn’t fetched from the L1 cache anymore can now be fetched from the L2 cache.

The absolute amount of data which has to be fetched from main memory or L3 cache is

relatively small. Nevertheless, this has a severe impact on the overall performance as will

be demonstrated in the following:

To simplify matters, assume that the execution time is determined by the total time

ttotal spent for memory accesses. Note, that this is almost true for the largest grid. Let

ttotal = #aess � tav . The average memory access time tav calculates as follows:

tav = tL1 � hL1 + tL2 � hL2 + tL3 � hL3 + tmem � hmem

Let hLx be the amount of data referenced from cache level x and tLx be the time

required to fetch a data from cache level x. hmem refers to the fraction of data which has

to be loaded from main memory and tmem is the time (latency) required to deliver the data

from the memory to the CPU. Assume that a level one cache access requires a one cycle

latency (tL1 = 1), a level two cache access 10 cycles (tL2 = 10), a level three cache

access 50 cycles (tL3 = 50), and a main memory access 100 cycles (tmem = 100).

For a 257 � 257 grid the average memory access time of the multigrid algorithm

according to the data in Table 3.3, therefore, is tav = 0:8�1+0:07�10+0:13�50= 8
whereas the average memory access time for a 2049� 2049 grid tav = 0:45 � 1+ 0:42 �
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Module V(1,0) V(1,1) V(2,1) V(2,2) V(4,0) V(3,3) V(4,4)

Smoother 48.4 % 64.9 % 73.4 % 78.4 % 78.2 % 84.7 % 88.0 %

Restriction 26.4 % 18.1 % 13.5 % 11.0 % 10.9 % 7.8 % 6.2 %

Interpolation 13.4 % 8.8 % 6.7 % 5.6 % 5.5 % 3.8 % 3.1 %

Total Multigrid 88.2 % 91.8 % 93.6 % 95.0 % 94.6 % 96.3 % 97.3 %

Init Problem 4.7 % 3.4 % 2.6 % 2.2 % 2.4 % 1.5 % 1.0 %

Init Data Structs 7.1 % 4.7 % 3.7 % 2.8 % 2.8 % 2.1 % 1.6 %

Total Overhead 11.8 % 8.2 % 6.4 % 5.0 % 5.4 % 3.7 % 2.7 %

Table 3.5: Per cent of CPU time spent in different multigrid components

10+ 0:07 � 50+ 0:06 � 100 = 14:2 is already almost twice as high. The high access

time for a memory access implies that a single additional per cent of memory accesses

will increase the average memory access time by one cycle and consequently increase the

total execution time significantly.

3.2.6 Workload Distribution Among Multigrid Components

So far, only the overall performance of the multigrid code has been analyzed. The dif-

ferent components of the multigrid algorithm like smoother, restriction operation, and

interpolation may have different run time and memory behavior. In a first step, hiprof

has been used to identify the most time consuming part of the multigrid program. Ta-

ble 3.5 shows the per cent of work spent in the three main components of the multigrid

code and the amount of overhead. The overhead summarizes the work required for the

specification of the problem and initialization of the data structures. The numbers are

presented in dependence to the number of applied pre– and post–smoothing steps. The

column V(2,1) represents the data measured for two pre– and one post–smoothing step,

for example. The analysis clearly identifies the smoother as the most time consuming part

of the multigrid program. The amount of work spent in the smoother, however, depends

on the amount of pre– and post smoothing steps applied within the multigrid algorithm. A

typical configuration uses two pre– and two post–smoothing steps. For that configuration

the smoother consumes 78.4 per cent of the runtime of the program. The second most

time consuming multigrid component is the residual calculation and restriction followed

by the interpolation operation.

In conjunction with the performance improvement of parts of a program, Amdahl’s

law [Amd67] points out that the achievable speedup for a program is determined by the

fraction of time the program spends in the accelerated component of the program. Am-

dahl’s law defines the achievable speedup for the whole program Stotal as follows:

tnew = told � ((1� f) +
f

Sf

)
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Grid FW 5P FW 5P FW 9P HW 5P HW 9P

Size SP DP DP DP DP

17 90.9 79.4 148.9 74.6 143.9

33 108.4 85.9 172.4 89.7 171.6

65 119.1 101.0 179.8 96.7 183.4

129 122.2 99.9 172.2 95.9 172.7

257 125.9 99.3 169.3 96.0 168.5

513 123.7 45.5 78.7 44.3 78.6

1025 115.3 37.7 62.7 36.2 63.1

2049 68.6 37.8 57.9 36.6 57.8

Table 3.6: MFLOPS of different DiMEPACK configurations.

Stotal =
told
tnew

=
1

(1� f) + f

Sf

(3.11)

Smax = lim
Sf!1

Stotal = lim
Sf!1

1

(1� f) + f

Sf

=
1

(1� f)
(3.12)

told is the original runtime of the whole program. Furthermore, tnew is the runtime

of the program after accelerating the component. f is the fraction of time spent in the

component whereas Sf is the speedup achieved for the component.

Amdahl’s law suggests that optimizations for multigrid codes should focus on the

improvement of the smoother algorithm. The maximally achievable speedup Smax for

the other components can be estimated with Equation 3.12. If two pre– and two post–

smoothing steps are used the maximally achievable speedup by improving the restriction

operation resp. the interpolation operation is 1.12 or 1.05, respectively. Therefore, opti-

mizing them will not be very rewarding.

3.2.7 Impact of Different Multigrid Configurations

Until now, the same multigrid configuration has been used for all experiments. Using a

9–point stencil discretization or a different restriction operation might change the runtime

and cache behavior of a multigrid code. To analyze the impact of different multigrid

configurations the floating point performance of DiMEPACK with other configurations

will be measured on the Compaq PWS 500au in the following. The result is summarized

in Table 3.6.

All configurations shown in the table use double precision floating point arithmetic

(DP) except the one shown in the first column which uses single precision floating point

arithmetic (SP). The second column shows the MFLOPS rates for the multigrid config-

uration with a 5–point (5P) stencil based discretization and a full–weighting restriction

operation (FW) which was used in the previous experiments for comparison. The other
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Grid % of all data accesses which are satisfied by

Size L1D Cache L2 Cache L3 Cache Memory

17 99.4 0.5 0.1 0.0

33 94.8 5.0 0.2 0.0

65 90.0 9.5 0.5 0.0

129 89.7 7.3 3.0 0.0

257 89.4 5.4 5.2 0.0

513 88.7 5.6 5.7 0.0

1025 75.9 18.3 3.0 2.8

2049 56.0 38.4 2.3 3.3

Table 3.7: Memory access behavior of a DiMEPACK code using a discretization based

on a 5–point stencil, a full–weighting restriction operation, and single precision floating

point arithmetic.

columns show combinations of other configurations with a discretization based on a 9–

point stencil (9P) and a half–weighting restriction operation (HW).

DiMEPACK using single precision floating point arithmetic performs significantly

faster than the double precision arithmetic version especially for larger grid sizes. The

speedup for the 2049 � 2049 grid is 1.8, almost a factor of two. Note, that a speedup

measured in MFLOPS is equivalent to a speedup of the runtime in our case, since the sin-

gle precision program has to exectute the same number of floating point operations as the

double precision version. In fact, the compiler produces an almost identical program for

both cases. Therefore, the same upper limits for the achievable floating point performance

which were discussed in Section 3.2.2 apply to the single precision version as well.

The main difference between the double precision and single precision version is that

the data structures of the single precision version are half as large as the double precision

data structures.

As a consequence, less data must be kept in the caches, and in the case that the data

is too large to fit in a cache, less data must be fetched from one of the lower levels of the

memory hierarchy. Table 3.7 shows the results of an analysis of the data access behavior

of the single precision DiMEPACK code. The table confirms that for the larger grids half

as much data must be loaded from the L3 cache and main memory.

The reduced data set size, however, is not the only reason for this. Since a single

precision word is only half as large as a double precision word a cache line will be able

to store more single precision words. So, once a word is loaded into the cache twice as

many words will be prefetched with the cache line and can be used without further delay.

I.e. if the main memory is processed in a sequential way with an access of stride one5,

only half as many cache misses would occur with a single precision code.

5The stride of an access is the distance of the array elements in memory accessed within consecutive

iterations of a loop.
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Grid % of instructions executed as

Size Integer Float Load Store Other

17 28.9 30.3 31.0 5.1 4.8

33 20.9 36.8 34.5 4.5 3.3

65 15.5 40.8 36.5 4.4 2.8

129 12.5 43.0 37.8 4.5 2.2

257 10.9 44.0 38.5 4.5 2.1

513 10.2 44.4 38.8 4.6 2.0

1025 9.9 44.0 38.6 4.7 2.7

2049 10.5 42.6 37.9 5.0 4.2

Table 3.8: Partitioning of instructions executed for a DiMEPACK code using a discreti-

cation based on a 9–point stencil and the full–weighting restriction operation.

The third and fifth column of Table 3.6 show the MFLOPS rates of DiMEPACK using

a discretization based on a 9–point stencil. The numbers show that a standard multigrid

algorithm with a 9–point stencil discretization performs better than one with 5–point sten-

cil discretization. For the 9–point version the total number of data accesses as well as the

total number of integer and floating point instructions is higher. However, Table 3.8 shows

that the ratio of floating point to integer instructions as well as the ratio of floating point to

load instructions increases. As discussed earlier too many loads and stores in a computa-

tion will limit the achievable floating point performance of multigrid codes. If the floating

point data loads and stores are assumed to be executed within the integer execution units

the ratio for instructions executed within the integer resp. floating point executions units

is approximately 1:25 : 1. This ratio is much better than the ratio of the 5–point stencil

case. Consequently, the achievable floating point peak performance is only limited to 80

per cent of the peak performance of the CPU if a ratio of 1 : 1 is assumed for integer and

floating point instruction execution units.

The two multigrid codes with half–weighting and full–weighting restriction operation

show an almost equal performance. For 5–point as well as 9–point stencil discretization,

the half–weighting operator performs fewer memory references but also fewer floating

point operations than the full–weighting operator. Hence, the half–weighting operator

will have smaller execution time than the full–weighting operator. The ratios of float-

ing point and load operations for the two inter–grid operations are different. The full–

weighting operator performs approximately 2.5 times as many floating point instructions

as the half–weighting operator but only twice as many load operations. Consequently,

the floating point rates of the full–weighting operator are slightly higher than that of the

half–weighting operator.

Nevertheless, the amount of time spent in the restriction operation is relatively small

as showed before. So, the impact of changes in runtime and performance in the restriction

operation on the total runtime and MFLOPS rate is small as well.
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3.3 Cache Behavior of Red–black Gauss–Seidel

The red–black Gauss–Seidel smoother used in DiMEPACK is the most time consuming

part of the multigrid method. Therefore, a standard implementation of a two-dimensional

red–black Gauss–Seidel relaxation method based on a 5-point discretization of the Laplace

operator, as shown in Algorithm 3.4 will be carefully analyzed in the following. The il-

lustrated code is a simplified version of the code used within DiMEPACK. To simplify

matters, Dirichlet boundaries are assumed and the handling of Neumann boundaries is

removed.

Algorithm 3.4 Standard implementation of red–black Gauss–Seidel

double u(0 : n; 0 : n), f(0 : n; 0 : n)
for it = 1 to noIter do

// red nodes:

for i = 1 to n� 1 do

for j = 1 + (i+ 1)%2 to n� 1 by 2 do

Relax( u(j; i) )

end for

end for

// black nodes:

for i = 1 to n� 1 do

for j = 1 + i%2 to n� 1 by 2 do

Relax( u(j; i) )

end for

end for

end for

The runtime behavior of the standard red–black Gauss–Seidel program on a Compaq

PWS 500au is summarized in Table 3.9. For the smallest grid size the floating point per-

formance is relatively high compared to the peak performance of one GFLOPS. With

growing grid size the performance increases slightly to more than 450 MFLOPS. Reach-

ing a grid size of 129 � 129, however, the performance dramatically drops to approx-

imately 200 MFLOPS. For even larger grids (> 513 � 513) the performance further

deteriorates below 60 MFLOPS.

To detect why those performance drops occur, the program was profiled using DCPI.

The result of the analysis is a breakdown of CPU cycles spent for execution (Exec), nops,

and different kinds of stalls (see Table 3.9). Possible causes of stalls are data cache misses

(Cache), data table look-aside buffer misses (DTB), branch mispredictions (Branch), and

register dependences (Depend). For the smaller grid sizes the limiting factors are branch

misprediction and register dependences. However, with growing grid size, the cache be-

havior of the algorithm seems to have an enormous impact on the runtime. Thus, for the

largest grids data cache miss stalls account for more than 80 per cent of all CPU cycles.

Since data cache misses are the dominating factor for the disappointing performance
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Grid % of cycles used for

Size MFLOPS Exec Cache DTB Branch Depend Nops

17 347.0 60.7 0.3 2.6 6.7 21.1 4.5

33 354.8 59.1 10.9 7.0 4.6 11.0 5.4

65 453.9 78.8 1.4 15.7 0.1 0.0 4.2

129 205.5 43.8 6.3 47.5 0.0 0.0 2.4

257 182.9 31.9 60.6 4.2 0.0 0.0 3.3

513 175.9 31.0 60.0 4.3 0.0 0.0 2.8

1025 58.8 10.5 85.9 2.4 0.0 0.0 1.1

2049 55.9 10.1 86.5 2.4 0.0 0.0 1.1

Table 3.9: Runtime behavior of red–black Gauss–Seidel.

Grid Data Set % of all accesses which are satisfied by

Size Size � L1 Cache L2 Cache L3 Cache Memory

33 17 Kbyte 4.5 63.6 32.0 0.0 0.0

65 66 Kbyte 0.5 75.7 23.6 0.2 0.0

129 260 Kbyte -0.2 76.1 9.3 14.8 0.0

257 1 Mbyte 5.3 55.1 25.0 14.5 0.0

513 4 Mbyte 3.9 37.7 45.2 12.4 0.8

1025 16 Mbyte 5.1 27.8 50.0 9.9 7.2

2049 64 Mbyte 4.5 30.3 45.0 13.0 7.2

Table 3.10: Memory access behavior of red–black Gauss–Seidel.

of the standard red–black Gauss–Seidel code, it seems reasonable to take a closer look

at its cache behavior. Table 3.10 shows how many per cent of all array references are

satisfied by the corresponding levels of the memory hierarchy. To obtain the data, the

total number of array references which occur in the relaxation algorithm was counted. If

all array references result in main memory references this number is equal to the number

of L1 data cache accesses. Furthermore, the actual number of L1 data cache accesses as

well as the number of cache misses for each level of the memory hierarchy was measured

with DCPI.

The difference between the measured and expected number of L1 data cache accesses,

is shown in column “�”. Small values can be interpreted as measurement errors. Higher

values, however, indicate that some of the array references are not implemented as loads

or stores, but as very fast register accesses.

The analysis clearly shows that for the 33 � 33 and 65 � 65 grids the algorithm can

access all of the data from the L1 or the L2 cache. However, as soon as the data does no

longer fit in the L2 cache a high fraction of the data has to be fetched from the L3 cache.

Similarly, for grids larger than 513�513, the data does not fit completely in the L3 cache.
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Figure 3.7: Data dependences in a red–black Gauss–Seidel algorithm.

Obviously, the memory hierarchy cannot keep all of the data close to the CPU when the

size of the data grows.

The standard red–black Gauss–Seidel algorithm performs repeatedly one complete

sweep through the grid from bottom to top updating all the red nodes and then another

complete sweep updating all the black nodes. Assuming that the grid is too large to fit

in the cache, the data of the lower part of the grid is no longer in the cache after the red

update sweep, because it has been replaced by the grid points belonging to the upper part

of the grid. Hence, the data must be reloaded from the slower main memory into the cache

again. In this process newly accessed nodes replace the upper part of the grid points in

the cache, and as a consequence they have to be loaded from main memory once more.

Although the red–black Gauss–Seidel method performs global sweeps through the

data set, caches can nevertheless exploit at least some temporal and spatial locality. For

example, if the black node shown in the middle of Figure 3.7 is updated, the data of all

the adjacent red nodes (which appear gray in the figure), the black node itself, and the

corresponding value of the right–hand side of the equation (RHS) is needed. The values

of the red points in lines i � 1 and i � 2 should be in the cache because of the update of

the black points in row i� 2. However, this is only true if at least two grid rows fit in the

cache simultaneously. Also, the updated black node in line i� 1 might be in the cache if

the black node and the red node on its left side belong to the same cache line. The same

argument holds for the red node in line i and the RHS value. Hence, the red node in line

i, the RHS, and the black node in line i � 1 have to be loaded from memory whenever a

cache line border is crossed, which means that the data has not yet been fetched into the

cache before.

Table 3.10 motivates two goals of data locality optimizations for iterative methods.

First, the number of values which are loaded from the lowest levels of the memory hier-

archy have to be reduced. In the case of a 1025� 1025 grid, the grid data is held in main

memory. The second goal is to fetch a higher fraction of the data out of one of the higher

levels of the memory hierarchy, especially the registers and the L1 cache.

3.4 Multilevel Considerations

The concept of the multigrid algorithm implies that different grid sizes are visited during

the computation. Possible grid visiting schemes have been introduced in Section 3.1.3.
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% of CPU time spent for
Grid Pre– Post– Total
Size relax Restr. Interp. relax level Total

< 513 0.4

513 0.9 0.5 0.4 0.9 2.7 3.1

1025 7.4 1.8 0.9 7.4 17.5 20.6

2049 29.4 7.7 4.2 29.4 70.7 91.3

Table 3.11: Per cent of CPU time spent on different grid levels during the execution of a

V(2,2) multigrid. The finest grid involved was a 2049 � 2049 grid. The computation is

based on a 5–point stencil discretization and a full–weighting restriction operation.

Since different grid sizes involve a different number of unknowns the work to be done

in the multigrid components smoother, residual calculation, restriction, and interpolation

varies dramatically.

Runtime Per Grid Level

Table 3.11 summarizes the CPU time in per cent of the total CPU time spent in different

multigrid components on the different levels involved in a multigrid computation on a

2049�2049 grid using a 5–point stencil discretization, two pre– and two post–smoothing

steps, and full–weighting as restriction operation.

The time spent on the grids smaller than 513 � 513 cannot be accounted to a single

multigrid component and is negligibly small. The table clearly shows that the amount

of time spent in the smoother dominates the runtime of the program. Furthermore, the

calculation involved with the finest grid — smoothing the finest grid, calculating resid-

uals on the finest grid, transferring residuals to the next coarser grid, and applying the

correction from the next coarser grid to the finest grid — consumes 70.7 per cent of the

total runtime whereas the computation involved with the next coarser grid involves 20.6

per cent of the total program runtime. This suggests that optimization techniques should

focus on improving the performance of the multigrid components for the large grids and

especially on improving the performance of the smoother component.

Residual Calculation

The multigrid methods discussed in this thesis solve a partial differential equation by

smoothing the error on a fine grid and recursively calculating corrections on coarser grids.

The memory and cache behavior of the smoothing step was discussed in detail in Sec-

tion 3.3. Generally speaking, the smoother repeatedly performs global sweeps through

typically large data sets. This type of approach offers a high potential of temporal data

locality. Since CPUs, however, are not able to cache the whole data set the data locality

is not exploited in usual implementations of a multigrid algorithm.



3.4 Multilevel Considerations 51

��
��
��
��

red point

black point

����

���� ����

����

j−1 j j+1

i−1

i

i+1

Figure 3.8: Residual calculation after red–black Gauss–Seidel smoothing.

After a smoothing step multigrid methods perform an inter–grid transfer operation.

For multigrid methods which use the correction scheme this operation involves a residual

calculation and the restriction of the residual to a coarser grid. The residual calculation

involves another global sweep through the fine grid data structure whereas the restriction

involves a global sweep through the coarser grid. Typically, these two operations are

combined into one operation where the calculated residual is immediately transferred to

the coarse grid. In contrast to the smoothing step, however, only one global sweep through

each data structure is performed for the residual calculation and restriction operation. I.e.

if the residual calculation and restriction operation is investigated separately from the

smoothing steps the exploitable locality is limited to spatial locality.

The residual calculation for a fine grid point involves a computation similar to the

relaxation of a node in the smoother component. If a discretization based on a 5–point

stencil is assumed the calculation of the residual for the red node (i; j) shown in Figure 3.8

requires the data of the red node itself and the data of all adjacent black nodes and the

corresponding value of the right–hand side of the equation. The values of the black nodes

in lines i and i � 1 should be in the cache because of the residual calculation of the red

nodes (i � 1; j � 1) and (i � 1; j + 1). However, the locality can only be exploited if at

least two grid rows fit in the cache simultaneously. Furthermore, the data for the black

node (i + 1; j) might be cached if the data happens to be mapped to the same cache line

as the black node (i + 1; j � 2).

Restriction

To simplify matters, assume that a red–black Gauss–Seidel smoother is used during the

smoothing step and the residuals of black grid points are zero. Consequently, only the

residuals at red nodes have to be transferred to the next coarser grid.

Then, the half–weighting restriction operator transfers only the residual of exactly

one fine grid point (2 � i; 2 � j)fine to get the right–hand side of the equation for the

corresponding coarse grid point (i; j)oarse, i.e. each coarse grid point is accessed exactly

once. Thus, the data of a coarse grid point will only be in cache if it was prefetched in a

cache line together with a neighboring coarse grid point.

In contrast to the half–weighting operator the full–weighting operator transfers a

weighted average of the residuals of a fine grid point (2 � i; 2 � j)fine and the four neigh-
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boring red fine grid points to a coarse grid point (i; j)oarse. There are two approaches to

implement the full-weighting restriction operation. First, a sweep over the fine grid can

be performed where all residuals are calculated. Once the residual of a fine grid point is

determined it is immediately propagated to the coarse grid. Thus, for each fine grid point

the residual of a fine grid point is calculated once but each coarse grid point is accessed

five times. The second possibility to implement full–weighting is to perform a sweep

over the coarse grid and calculating the residuals of the five red nodes which contribute

to the coarse grid point in the process. Thus, residuals must be computed several times.

Since the residual calculations are expensive, the first approach is assumed for the further

discussion.

As explained above, the implementation of a full–weighting operator accesses each

coarse grid point (i; j)oarse exactly five times. Therefore, the approach will be cache

efficient if the coarse grid point (i; j)oarse is kept in the cache once it is accessed the

first time. The accesses to the coarse grid point happen relatively close in time since they

are triggered by the residual calculation of the five neighboring fine grid points (2 � i �
1; 2 � j + 1)fine, (2 � i + 1; 2 � j + 1)fine, (2 � i; 2 � j)fine, (2 � i � 1; 2 � j � 1)fine,
and (2 � i + 1; 2 � j � 1)fine. Thus, the coarse grid point will be in cache if at least three

fine grid rows (the three rows 2 � j � 1, 2 � j, and 2 � j + 1 with the involved fine grid

nodes) and two coarse grid rows (the one with the investigated coarse grid node and the

next coarse grid row) fit in the cache.

Interpolation

After the coarse grid correction is calculated it has to be propagated to the fine grid.

DiMEPACK uses bilinear interpolation, i.e. the correction which is stored in a coarser

grid point (i; j)oarse located in the interior of the grid is propagated to the finer grid point

(2 � i; 2 � j)fine which is directly above it and to the eight neighboring nodes as illustrated

in Figure 3.9. For example, the coarse grid node (1; 1) propagates correction to the fine

grid point (2; 2) and all neighboring nodes with arrows pointing to them.

Similar to the restriction operation bilinear interpolation can be implemented in two

different ways. First, one can move over the coarse grid and propagate the correction to

the finer grid points. Since finer grid points (except some boundary points) get data from

several coarse grid points, they are accessed several times during one sweep through the

coarse grid. This algorithm is cache friendly if one grid line of the fine grid and some

additional grid points fit in the cache simultaneously.

The second approach is to implement the interpolation moves sequentially through

the fine grid. For a fine grid point data must be loaded from every coarse grid point

which propagates a correction to that fine grid point. However, since a coarse grid point

contributes to several fine grid points the coarse grid points are loaded several times. The

algorithm is cache friendly if one grid line of the coarser grid and some additional grid

points fit in the cache simultaneously.

The second approach is used within DiMEPACK since the first approach needs twice

as much data to fit in the cache simultaneously. Furthermore, the amount of load opera-
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Figure 3.9: Propagation of coarse grid data to fine grid nodes.

tions to fetch data from the coarse grid can be reduced by storing data within registers and

processing two fine grid lines simultaneously during one lateral move through the grid.

Consider the red nodes (0; 0) and (1; 1) in Figure 3.9. Both nodes receive data from the

coarse grid point directly below the fine grid point (0; 0). Thus, if row 0 and row 1 are

processed simultaneously the data has to be loaded from main memory only once.

3.5 Summary

In this chapter, the runtime and cache behavior of a standard multigrid method in DiME-

PACK is evaluated. Standard multigrid methods only exploit a small fraction of the peak

performance of cache–based computer systems. Especially for large grids with data struc-

tures too large to even fit in several Mbyte large off–chip caches, the CPU is busy waiting

for data to be delivered from main memory.

Much of the remaining runtime is spent for the execution of floating point instructions.

However, the execution is not dominated by floating point operations but by memory op-

erations. The typical microprocessor strategy to execute load and store instructions within

integer execution units turns out to make high demands on the number of integer execu-

tion units. Therefore, the typical ratio of 1:1 for floating point execution units to integer

execution units in modern RISC CPUs limits the achievable floating point performance

for multigrid methods to 50 per cent of the peak floating point performance. Although

many microprocessor manufacturers start to equip their CPUs with more integer execu-

tion units, CPUs with twice as many all–purpose integer units as floating point execution
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units are still rare.

By example of the red–black Gauss–Seidel method it has been demonstrated in this

chapter that the smoother, which is by far the most time consuming part of a multigrid

method, successively performs global sweeps through its data structures. Therefore, the

smoother inherently has a high potential of data locality. Additionally, the smoother pos-

sesses further inherent data locality since it reuses data during the update of single nodes

which was accessed while updating neighboring nodes. In general, however, the data

structures are too large to fit in any cache, so that the data locality is not exploited. The

consequence of this is a poor cache behavior and consequently a poor overall perfor-

mance.

Similar to the smoother, the residual calculation, restriction and interpolation opera-

tions perform global sweeps through the data structures. Since only one global sweep per

grid level is performed for these operations, data locality can only be exploited by com-

bining these operations with the smoother step. The achievable speedup however, will be

marginal since the percentage of the runtime spent in these functions is about 15 per cent

of the total runtime for typical scenarios.



Chapter 4

Basic Data Locality Optimization

Techniques

In this chapter, standard cache optimization techniques are described which in general

improve instruction and data locality. Since instruction cache misses do not introduce

a performance bottleneck for multigrid methods as shown in the previous chapter, this

chapter will focus on data locality optimizations. Most of the optimization techniques

described in this chapter, however, are not able to improve the performance of multigrid

methods since data dependences prohibit their application. Nevertheless, they are required

for the understanding of the more complex techniques for multigrid methods which will

be proposed later in this thesis.

4.1 Introduction

Caches utilize the principle of locality that states that data (and instructions) which have

been referenced recently will be accessed again in the near future. Therefore, caches

buffer recently used data to speed up repeated accesses to the same data. Due to econom-

ical and technical reasons, however, caches are much smaller than main memory. As a

result, very often data which was buffered in a cache for further access is replaced before

it can be reused. Hardware-based techniques try to make caches “smarter” to increase the

hit ratio of a cache. These techniques include higher associativity, hardware prefetching,

or victim buffers, for example [HP96]. Other hardware techniques just reduce the im-

pact of a miss by reducing the required time to reload the data like second level caches,

outstanding loads, or pipelined caches.

Another approach uses software techniques to improve hit rates of caches. These tech-

niques usually rearrange the execution or data of a program in a way that the semantics of

the program stays unchanged. These software techniques can be applied by the author of

a program or automatically applied by a compiler system. Software techniques which im-

prove the performance of data accesses are called data locality optimization techniques.

They can be divided into data access transformation techniques which rearrange the pro-

55
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gram execution order and data layout transformation techniques which change the layout

of the program data in memory. Which optimization is appropriate for a certain program

usually depends on the characteristics of the cache misses.

The misses for a cache C can be partitioned into the following three types [Hil87]:

� compulsory misses: The compulsory misses of a cache C are the misses which arise

when a data is requested for the first time in a program. Since the data was never

referenced before the data cannot be in the cache. Compulsory misses are often also

called cold or startup misses.

� capacity misses: The capacity misses of a cache C can be determined with a fully–

associative cache of similar structure as the observed cache C (i.e. same size, block

size, and replacement strategy). Per definition the number of capacity misses of a

cache C is equal to the number of cache misses of the fully associative cache minus

the number of compulsory misses. Although this definition is precise it is not very

intuitive, therefore, capacity misses are usually vaguely defined in the literature as

the misses which are introduced by the limited size of a cache.

� conflict misses: The number of conflict misses of a cache C is the total number of

cache misses minus the number of compulsory and capacity misses. Conflict misses

arise from limited associativity of the cache combined with too many active mem-

ory references which are mapped to the same cache set or cache line. A memory

reference is active as long as there will be further accesses to that memory location

in the future. Conflict misses are also often called interference misses.

Optimizations for compulsory misses include hardware techniques like longer cache

lines and hardware based prefetching. The prefetching technique can also be used in

software to reduce the impact of cold misses. Data access transformations like loop in-

terchange, loop fusion, or loop blocking can be applied to reduce the amount of capacity

misses, for example. Data layout transformations rearrange the layout of data to reduce

the amount of conflict misses or improve spatial locality. Data access and data layout

transformations can be applied automatically by compilers or manually by the program-

mer to optimize the program execution time. In both cases it is important that the trans-

formation is legal and doesn’t change the semantics of the program.

A transformation is legal if for any possible data the original and new execution order

produce the same result. This is very strict and in fact for many applications too strict.

Slightly different results which are introduced by small rounding errors, for example, are

acceptable in many cases. Some compilers allow the user to specify this. In most cases,

however, dependences in the program execution order which arise by control statements

like if–else or loop constructs as well as dependences which are introduced by variable

accesses must not be violated by program transformations.
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4.2 Dependence Analysis

Dependence analysis is used to determine whether a transformation can be applied with-

out changing the semantics of a computation. A dependence is a relationship between

two computations or statements that places a constraint on their execution order. The

constraints must be satisfied for the code to execute correctly. There are two kinds of de-

pendences: control dependences and data dependences. For the further reading Sa < Sb

will be written if a statement Sa precedes a statement Sb in a program without loops. In a

program without loops a statement Sb can only depend on Sa if Sa < Sb.

Algorithm 4.1 Example of control and data dependences

1: a = b
2: if a > 5 then

3:  = b + d
4: d = 
5: end if

6:  = d+ 2

A branch changes the control flow of a program depending on a certain condition.

Some instructions may or may not be executed depending on the condition of the branch.

Thus, there is a control dependence between a statement and the branch statement if

the execution of the former statement depends on the condition of the branch. In Algo-

rithm 4.1 the statement S2 precedes statement S3 (S2 < S3). However, S3 is only executed

if the condition a > 5 in statement S2 is evaluated as true. If Sa < Sb and there is a con-

trol dependence between statement Sa and Sb, then Sa

�! Sb. In the example, there is

a control dependence between S2 and S3 (S2

�! S3) and a control dependence between

S2 and S4 (S2

�! S4). A more detailed description of control dependences can be found

in [BGS94, Muc97].

4.2.1 Data Dependence Types

Data dependences are constraints which arise from the flow of data between statements

in a program. For example statement S1 sets the value of variable a and statement S2

is reading it. Therefore, there is a flow of data between these two statements which

constraints the execution order of these statements. There are four different types of data

dependences:

� flow dependence: There is a flow dependence (or true dependence) Sa
f
�! Sb

between two statement Sa and Sb, if Sa < Sb and statement Sa sets a value which

statement Sb later reads as input. In the example there is a flow dependence S3
f
�!

S4 since the variable  is set by statement S3 and used by S4.

� anti dependence: There is an anti dependence Sa
a
�! Sb between two statement Sa

and Sb, if Sa < Sb and statement Sa uses a variable which statement Sb later sets. In



58 Basic Data Locality Optimization Techniques

6SS4S3S2S1
c

i o

a a

i

Figure 4.1: Representing dependences with a dependence graph.

the example there is an anti dependence between statement S3 and S4 (S3
a
�! S4)

since S3 reads variable d which is later set by S4.

� output dependence: There is an output dependence Sa
o
�! Sb between two state-

ment Sa and Sb, if Sa < Sb and statement Sa sets the value of a variable which

is also set by the statement Sb. In the example statements S3 and S6 both write

variable . Hence, there is an output dependence S3
o
�! S6.

� input dependence: There is an input dependence Sa
i
�! Sb between two statements

Sa and Sb if both statements read the same variable. In the example both statements

S1 and S3 read the variable b. Hence, there is an input dependence S1
i
�! S3.

Input dependences do not apply constraints to the program execution order of two

statements. However, they indicate that data is reused during program execution

and a compiler might use that information for data locality optimization.

Dependences can be represented with a directed acyclic graph (DAC) called depen-

dence graph. The nodes of a dependence graph represent statements. Dependences are

represented by edges. Each edge is labeled to indicate the type of dependence it is repre-

senting. By convention edges which represent flow dependences are not labeled. Control

flow dependences are usually not represented in a dependence graph unless such a depen-

dence is the only edge which connects two nodes. Figure 4.1 represents the dependence

graph of Algorithm 4.1.

4.2.2 Loop–carried Data Dependences

So far, the discussion was restricted to non–looping statements. In high–performance

computing, however, statements which involve subscripted variables often occur within

nested loops. To simplify the description of dependences with nested loops, only perfectly

nested loops which are represented in a canonical form are considered in the following.

That is, the index of each loop runs from 1 to ni by 1 and only the innermost loop con-

tains statements other than for statements. An example for such a loop nest is shown in

Algorithm 4.2.

In non–looping and non–recursive codes each statement is executed at most once. The

dependence graph described above captures all possible dependences in such codes. The
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Algorithm 4.2 Loop–independent and loop–carried dependences within a loop nest.

1: for i1 = 1 to 4 do

2: for i2 = 1 to 3 do

3: a(i1; i2) = b(i1; i2)
4: b(i1; i2) = a(i1; i2 � 1)
5: end for

6: end for

statements within a loop nest cannot be represented individually since each statement is

executed many times in general. Beside loop–independent dependences, loop–dependent

(or loop–carried) dependences may occur. In Algorithm 4.2 there is an anti dependence

between statement S3 and S4. This dependence is loop–independent since it occurs in

each iteration independently of the surrounding loop nest. Furthermore, the code contains

a loop–carried flow dependence since the variable a(i1; i2 � 1) is used by statement S4 in

iteration (i1; i2) and written by statement S3 in iteration (i1; i2 � 1).
In codes containing no loops a statement Sb can only depend on a statement Sa

(Sa �! Sb) if Sa is executed before Sb (Sa < Sb). For loop based codes the < relation

must be extended. A statement Sa[i1a; : : : ; ina℄ which is executed in iteration [i1a ; : : : ; ina℄
is executed before a statement Sb[i1b ; : : : ; inb ℄ which is executed in iteration [i1b ; : : : ; inb℄
(written as Sa[i1a; : : : ; ina℄ < Sb[i1b ; : : : ; inb℄) if one of the following is true:

� Sa precedes Sb in the program and [i1a ; : : : ; ina℄ � [i1b ; : : : ; inb ℄.

� Sa and Sb are equal and [i1a ; : : : ; ina℄ < [i1b ; : : : ; inb℄.

� Sa follows Sb in the program and [i1a ; : : : ; ina℄ < [i1b ; : : : ; inb℄.

Consequently, there is a loop–carried flow dependence (written as Sa[i1a ; : : : ; ina℄
f
�!

Sb[i1b ; : : : ; inb ℄) between two statements Sa and Sb executed in loop iteration [i1a ; : : : ; ina℄
resp. [i1b ; : : : ; inb ℄, if Sa[i1a ; : : : ; ina℄ < Sb[i1b ; : : : ; inb ℄ and statement Sa sets a value

which Sb later reads and [i1a ; : : : ; ina℄ 6= [i1b ; : : : ; inb℄. The other types of dependences

are defined analogously. Note, that if [i1a ; : : : ; ina℄ = [i1b ; : : : ; inb℄ the dependence is

loop–independent.

Dependence graphs are acyclic directed graphs. To represent a dependence graph for

a loop, either cycles must be allowed or each execution of an individual statement within

a loop nest must be represented with its own node. Thus, loop–carried dependences are

usually represented with graphical visualizations of iteration spaces. Figure 4.2 shows the

dependences of Algorithm 4.2, for example. Each execution of the loop body is shown

with a node and loop–carried dependences between iterations are represented by edges

between nodes. In the example algorithm statement S4 within the loop nest executed

in iteration [1; 2℄ reads array element a(1; 1) which is set by statement S3 executed in

iteration [1; 1℄. So, S3[1; 1℄ < S4[1; 2℄ and S3
f
�! S4. The dependence is represented as

an edge between node (1; 1) and (1; 2) in Figure 4.2.
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Figure 4.2: Representing loop–carried dependences.

Other representations for loop–carried dependences within loop nests are distance,

direction, and dependence vectors. A description of these representations can be found in

[WL91, BGS94, Muc97].

4.2.3 Dependence Testing

Many loop transformations can only be applied if no loop–carried dependences or only

dependences of a particular kind are present. For a compiler a powerful dependence test

is the vital basis for the loop transformation phase. The general problem of dependence

testing is not computable. With some restrictions dependence testing, however, reduces to

solving equations with integer coefficients for integer solutions which also satisfy given

inequalities. This problem is equivalent to integer programming and known to be NP–

complete [MHL91]. The principle of dependence testing will be demonstrated in the

following by means of the Greatest Common Divisor test (GCD test) [Ban76, Tow76].

Algorithm 4.3 Testing dependences in loop nests.

1: for i = p to q do

2: : : : x(a � i+ a0) : : :
3: : : : x(b � i + b0) : : :
4: end for

To simplify matters while explaining the GCD test, assume a loop nest as shown in

Algorithm 4.3 with two array references within the loop nest. x is a one dimensional array

and p, q, a, a0, b, and b0 are integer constants. Both array references will access the same

array element if the following equation is satisfied under the inequalities p � i1; i2 � q:

ai1 + a0 = bi2 + b0 , ai1 � bi2 = b0 � a0
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For the equation ai1 � bi2 = b0 � a0 there is either no or an infinite number of

solutions. For loop–independent dependences the equation above can be simplified to

(a� b)� i = b0�a0 since i1 = i2 = i. Two array references will be independent if (a� b)
does not divide (b0 � a0). In the case of loop–carried dependences the equation has a

solution if and only if g = gd(a; b) divides (b0 � a0), i.e. if g does not divide (b0 � a0)
the two references are proven to be independent. The GCD test can be easily extended to

loop nests and multidimensional arrays [Ban88]. Other dependence tests of which some

are NP–complete can be found in the literature:

� Strong and weak SIV test [GKT91]

� Delta test [GKT91]

� Power test [WT90]

� Simple Loop Residue test [MHL91]

� Fourier–Motzkin test [DE73, MHL91]

� Constraint–Matrix test [Wal88]

� Omega test [PW92]

4.3 Data Access Transformations

Data access transformations are code transformations which change the order in which

iterations in a loop nest are executed. The focus of these transformations is to improve

data locality and register reuse. Beside improving data locality loop transformations can

expose parallelism, make loop iterations vectorizable, and combinations of these. Ap-

plying a transformation will hopefully result in a performance gain on the specific target

machine in use. However, it is difficult to decide which combination of transformations

has to be applied to achieve a performance gain. Compilers typically use heuristics to

determine whether a transformation will be effective. The loop transformation theory and

algorithms found in the literature [BGS94, Muc97, Wol92] focus on transformations for

perfectly nested loops. However, loop nests in scientific codes are not perfectly nested in

general. Hence, enabling transformations like loop skewing, loop unrolling, loop peeling

etc. are required. A description of these transformations can be found in the compiler

literature [BGS94, Muc97, Wol96].

Transformations can be applied by hand or by a compiler. A programmer intuitively

checks whether a transformation is legal or not. A compiler, however, needs to check

after each transformation whether a loop–independent or loop–carried dependence was

violated by the transformation.

In the following, a set of loop transformations will be described which focus on im-

proving data locality for one level of the memory hierarchy. This level is typically one
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of the caches but may also be registers. Some of these transformations can be used to

improve instruction locality as well but in some cases improving for data locality will

degrade instruction locality. For example, fusing two loops can improve data locality but

will make instruction locality worse if the loop body is too large after fusing to fit in the

instruction cache.

4.3.1 Loop Interchange

The loop interchange [AK84, AK87, Wol89b] transformation reverses the order of two

adjacent loops in a loop nest. Generally speaking, loop interchange works when the

order of the loop execution is unimportant. Loop interchange can be generalized to loop

permutation by allowing more than two loops to be moved at once and by not requiring

them to be adjacent.

Algorithm 4.4 Loop interchange

double sum;

double a[n; n℄;

1: // Original loop nest:

2: for j = 1 to n do

3: for i = 1 to n do

4: sum+ = a[i; j℄;
5: end for

6: end for

1: // Interchanged loop nest:

2: for i = 1 to n do

3: for j = 1 to n do

4: sum+ = a[i; j℄;
5: end for

6: end for

Loop interchange can be used to enable and improve vectorization and parallelism, to

improve register reuses, and to improve locality by reducing the stride of array accesses.

The different targets may be conflicting. For example, increasing parallelism requires

loops with no dependences to be moved outward whereas vectorization requires them to

be moved inward.

Loop interchange can improve locality by reducing the stride of a computation. The

stride is the distance of array elements in memory accessed within consecutive iterations

of a loop. Upon a memory reference several words of an array are loaded into a cache

line. Accesses with large stride only use one word per cache line with arrays bigger than

the cache size. The rest of the words fetched with the cache line are evicted before they

can be reused.
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Figure 4.3: Access patterns for interchanged loop nests.

This situation is illustrated in Figure 4.3. The computation on the left side accesses all

elements of a two–dimensional array of size (6; 8). The array is stored in memory in a row

major order, i.e. two elements of the array with second array indices which are consecutive

numbers are stored adjacent in memory. The computation, however, references each row

of the first column before accessing the elements of the next column. Consequently, the

preloaded data in the cache line marked with grey color will not be reused if the array is

too large to fit in the cache. After interchanging the loop nest as shown in Algorithm 4.4

the array accesses which have been performed contrary to the memory layout before, i.e.

which have been of stride eight, are now of stride one. The stride–one array access is

illustrated on the right side of Figure 4.3. Consequently, all words in the cache line are

now used within executions of consecutive iterations.

4.3.2 Loop Fusion

Loop fusion [Dar99] is a transformation which takes two adjacent loops that have the

same iteration space traversal and combines their bodies into a single loop, i.e. loops

with the same loop bounds. The loop fusion — sometimes also called jamming — is

the opposite operation of loop distribution or loop fission which breaks a single loop into

multiple loops with the same iteration space. Loop fusion is legal as long as no flow, anti,

or output dependences in the fused loop exists for which instructions from the first loop

depend on instructions from the second loop.

The result of fusing two loops is that the loop body contains more instructions offering

increased instruction level parallelism. Furthermore, only one loop is executed, thus,

reducing the total loop overhead by a factor of two. Loop fusion also improves data

locality. Assume that two consecutive loops perform global sweeps through an array like

the code shown in Algorithm 4.5 and the data of the array is too large to fit completely in

cache. The data which is loaded into the cache by the first loop will not completely stay

in cache and the second loop will have to reload the data from main memory. If the two

loops are combined with loop fusion only one global sweep will be performed through

the array. Consequently, fewer cache misses will occur.
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Algorithm 4.5 Loop fusion

1: // Original code:

2: for i = 1 to n do

3: b[i℄ = a[i℄ + 1:0;

4: end for

5: for i = 1 to n do

6: [i℄ = b[i℄ � 4:0;

7: end for

1: // After loop fusion:

2: for i = 1 to n do

3: b[i℄ = a[i℄ + 1:0;

4: [i℄ = b[i℄ � 4:0;

5: end for

4.3.3 Loop Blocking and Tiling

Loop blocking (also called tiling) is a loop transformation which increases the depth of a

loop nest with depth n by adding additional loops to the loop nest. The resulting loop nest

will be anything from (n + 1)–deep to (2 � n)–deep. Loop blocking is primarily used to

improve data locality [GJG88, Wol89a, WL91, SL99].

The need for loop blocking is illustrated in Algorithm 4.6. Assume that the execution

reads an array a with a stride of one whereas the access to array b is of stride n. Inter-

changing the loops won’t help in that case since this will make the access to array a stride

n instead.

Algorithm 4.6 Loop blocking

1: // Original code:

2: for i = 1 to n do

3: for j = 1 to n do

4: a[i; j℄ = b[j; i℄
5: end for

6: end for

1: // Loop blocked code:

2: for ii = 1 to n by B do

3: for jj = 1 to n by B do

4: for i = ii to min(ii +B � 1; n do

5: for j = jj to min(jj +B � 1; n do

6: a[i; j℄ = b[j; i℄
7: end for

8: end for

9: end for

10: end for
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Figure 4.4: Iteration space traversal for original and blocked code.

Tiling a single loop replaces it by a pair of loops. The inner loop of the new loop

nest traverses a part or block of the original iteration space with the same increment as

the original loop. The outer loop traverses the original iteration space with an increment

equal to the size of the block which is traversed by the inner loop. Thus, the outer loop

feeds blocks of the whole iteration space to the inner loop which then executes them step

by step. The change in the iteration space traversal of the blocked loop in Algorithm 4.6

is shown in Figure 4.4.

A very prominent example for the effect of the loop blocking transformation on data

locality is the matrix multiplication algorithm [LRW91, BACD97, KAP97, WD98]. Al-

gorithm 4.7 shows a text book matrix multiplication code and a blocked version of it.

Instead of operating on entire rows or columns of the arrays, the blocked algorithm

operates on tiles. The tiles are (hopefully) small enough to fit in the cache and can be

reused while processing the data. Thus, the amount of capacity misses is reduced. To

obtain good performance for matrix multiplication the size of the tiles must be tailored

to the cache size and other cache parameters like cache line size and set–associativity.

In some cases, however, blocking will increase the amount of conflict misses [FST91,

WL91].

4.3.4 Data Prefetching

The loop transformations discussed so far aim at reducing the capacity misses of a com-

putation. Misses which are introduced by first time accesses are not addressed by these

optimizations. Prefetching [VL00] allows the microprocessor to issue a data request be-

fore the computation actually requires the data. If the data is requested early enough the

penalty of cold misses as well as capacity misses not covered by loop transformations can

be hidden.

Many modern microprocessors nowadays implement a prefetch instruction which is

issued as a regular instruction. The prefetch instruction is similar to a load, with the

exception that the data is not forwarded to the CPU after it has been cached. The prefetch
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Algorithm 4.7 Loop blocking for matrix multiplication

1: // Textbook matrix multiplication:

2: for i = 1 to n do

3: for k = 1 to n do

4: r = a[i; k℄;
5: for j = 1 to n do

6: [i; j℄+ = r � b[k; j℄;
7: end for

8: end for

9: end for

1: // Blocked matrix multiplication:

2: for kk = 1 to n by B do

3: for jj = 1 to n by B do

4: for i = 1 to n do

5: for k = kk to min(kk +B � 1; n) do

6: r = a[i; k℄;
7: for j = jj to min(jj +B � 1; n) do

8: [i; j℄+ = r � b[k; j℄;
9: end for

10: end for

11: end for

12: end for

13: end for
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instruction is often handled as a hint for the processor to load a certain data item but the

fulfillment of the prefetch is not guaranteed by the CPU.

Prefetch instructions can be inserted into the code manually by the programmer or

automatically by a compiler [Por89, KL91, CKP91, Mow94]. In both cases prefetching

involves overhead. The prefetch instructions themselves have to be executed, i.e. pipeline

slots will be filled with prefetch instructions instead of other instructions ready to be

executed. Furthermore, the memory address of the prefetched data must be calculated

and will be calculated again when the load operation is executed which actually fetches

the data from the memory hierarchy.

Besides software prefetching hardware schemes have been proposed and implemented

which add prefetching capability to a system without the need of prefetch instructions.

One of the simplest hardware based prefetching schemes is sequential prefetching [Smi82].

Whenever a cache line l is accessed the cache line l + 1 and maybe some subsequent

cache lines are prefetched. More sophisticated prefetch schemes have been invented by

researchers [Jou90, JT93, CB95] but most microprocessors still implement only stride

one stream detection or even no prefetching.

In general prefetching will only be successful when the data stream is predicted cor-

rectly (in hardware or by a compiler) and if there is enough space left in the cache to keep

the prefetched data together with still active memory references. If the prefetched data

replaces data which is still needed this will increase bus utilization, increase the overall

miss rates, and memory latencies [BGK95].

4.4 Data Layout Transformations

Data access transformations have proven to be able to improve the data locality of ap-

plications by reordering the computation as shown in the previous section. However, for

many applications, loop transformations alone may not be sufficient for achieving good

data locality. Especially, for computations with a high degree of conflict misses loop

transformations are not effective in improving performance.

Data layout transformation modify how data structures or variables are laid out in

memory. These optimizations are aimed to avoid effects such as conflict misses or false

sharing1 and improve the spatial locality of a computation.

Data layout optimizations include changing base addresses of variables, modifying

array sizes, transposing array dimensions, or merging of arrays. These techniques are

usually applied at compile time although some optimizations can also be applied during

runtime.

1False sharing is the result of co–location of unrelated data in the same cache unit (e.g. cache lines or

pages): The data may be used by different processors such that the cache unit is shared among them but the

individual data elements contained in the unit are not each referenced by all these processors.
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4.4.1 Array Padding

If two arrays are accessed alternatingly as in Algorithm 4.8 and the data structures happen

to be mapped to the same cache lines a high amount of conflict misses is introduced.

In the example, reading the first element of array a will load a cache line containing

the first array element and possibly following array elements for further use. Provided

that the first array element of array b is mapped to the same cache line as the first element

of array a a read of the former element will trigger the cache to replace the elements of

array a which have just been loaded. The following access to the next element of array a
will no longer find that element in cache and will force the cache to reload the data and

replacing the data of array b in the process. Hence, the array b elements must be reloaded

and so on. Although both arrays are referenced sequentially with stride one, no reuse of

data preloaded in cache lines will happen since the data is evicted immediately after it

is loaded by elements of the other array. This phenomenon is called cross interference

[LRW91] of array references.

Algorithm 4.8 Applying inter array padding.

1: // Original code:

2: double a[1024℄
3: double b[1024℄
4: for i = 0 to 1023 do

5: sum+ = a[i℄ � b[i℄
6: end for

1: // Code after applying inter array padding:

2: double a[1024℄
3: double pad[x℄
4: double b[1024℄
5: for i = 1 to 1023 do

6: sum+ = a[i℄ � b[i℄
7: end for

A similar problem — called self interference — can occur if several rows of a multi-

dimensional array are mapped to the same set of cache lines and the rows are accessed in

an alternating fashion.

For both cases of interference array padding [BFS89, TLH90] provides a means to

reduce the amount of conflict misses. Inter array padding inserts unused variables (pads)

between two arrays to avoid cross interference between two arrays by modifying the offset

of the second array so that both arrays are mapped to different cache parts.

Intra array padding on the other side inserts unused array elements between rows of

a multidimensional array by increasing the leading dimension of the array, i.e. the dimen-

sion which runs faster in memory is increased by a small amount of extra elements as

shown in Figure 4.5. Which dimension runs faster in memory depends on the program-

ming language. In Fortran77 the first dimension runs fastest in memory, for example,



4.4 Data Layout Transformations 69

a[1,2]a[1,1] a[2,n]

intra array padding

a[1,n] a[2,1]

double a[2][n+x]double a[2][n]

a[2,2]

Figure 4.5: Intra array padding in a C–style language.

whereas in C or C++ the last dimension runs fastest.

The size of a pad depends on the mapping scheme of the cache, cache size, cache

line size, and the access pattern of the program. Typical padding sizes are multiples of the

cache line size but different sizes may be used as well. Array padding is usually applied at

compile time. Intra array padding can in principle be used at runtime, however, knowledge

of the cache architecture is indispensable and information about the access pattern of

the program will improve the quality of the selected padding size [RT98a, RT98b]. The

disadvantage of array padding is that extra memory is required for pads between or within

the array.

4.4.2 Array Merging

Array merging can be used to improve the spatial locality between elements of different

arrays or structures. Furthermore, array merging can reduce the amount of cross interfer-

ence misses in scenarios introduced in the previous section with large arrays and alternat-

ing access pattern. The array merging technique is also known as group–and–transpose

[JE95].

Algorithm 4.9 Applying array merging.

1: // Original data structure:

2: double a[1024℄
3: double b[1024℄

1: // array merging using multidimensional arrays:

2: double ab[1024℄[2℄

1: // array merging using structures:

2: structf
3: double a;

4: double b;
5: g ab[1024℄;
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a[0] b[0]a[2]a[1] a[3] b[1] b[2] b[3]

a[0] a[2]a[1]b[0] b[1] b[2] a[3] b[3]

Figure 4.6: Changing data layout with array merging.

Array merging is best applied if elements of different arrays are located far apart in

memory but usually accessed together. Transforming the data structures as shown in

Algorithm 4.9 will change the data layout so that the elements are now contiguous in

memory. The resulting data layout for two merged arrays is shown in Figure 4.6.

In some case array merging can deteriorate performance if the merged array elements

are not accessed together. Cache lines will be filled with data which isn’t accessed, thus,

effectively reducing spatial locality.

4.4.3 Array Transpose

Array transpose [CL95] permutates the dimensions within multidimensional arrays and

eventually reshapes the array as shown in Algorithm 4.10. The transformation has a

similar effect as loop interchange.

Algorithm 4.10 Applying array transpose.

1: // Original data structure:

2: double a[N ℄[M ℄

1: // Data structure after transposing:

2: double a[M ℄[N ℄

4.4.4 Data Copying

In Section 4.3 the loop blocking or tiling have been introduced as a technique to reduce

the amount of capacity misses. Several investigations [FST91, WL91] have shown that

blocked codes suffer from a high degree of conflict misses introduced by self interference.

The interference will be demonstrated by means of Figure 4.7. The figure shows a part

(block) of a big array a(i; j) which is to be reused by a blocked algorithm. Suppose that a

direct–mapped cache is used and the two words marked with “x” are mapped to the same

cache location. The periodicy of the cache mapping scheme will map the shaded words in

the upper part of the block into the same cache block as the shaded words in the lower part

of the block. Consequently, if the block is repeatedly accessed, the data of the upper left

corner will replace the data of the lower right corner and visa versa reducing the reusable

part of the block.
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Figure 4.7: Self interference in blocked code.

Lam et al. [WL91] proposed a data copying technique for tiled codes to guarantee a

high cache utilization for blocked algorithms. The approach copies the non–contiguous

data from a block into a contiguous area. Hence, each word of the block will be mapped

to its own cache location, effectively avoiding self interference within the block.

The technique, however, involves a copy operation which increases the total cost of the

algorithm. In many cases the additional cost will outweigh the benefit of the data copying.

Therefore, Temam et al. [TGJ93] introduced a compile time strategy to determine when

to copy which data, based on an analysis of cache conflicts.

4.5 Summary

High performance on architectures with deep memory hierarchies can only be achieved

by a good data locality. Data access transformations [BGS94] such as loop interchange,

loop fusion, loop blocking, and prefetching are primarily used to improve cache hit rates.

Most of the work concentrated on loop blocking and prefetching techniques. Data layout

transformations [RT98a] such as array padding and array merging are less prominent but

are useful in eliminating conflict misses and improve spatial locality.

Data locality or cache optimization techniques have been used to improve a variety of

algorithms. Among them matrix multiplication algorithms [LRW91, BACD97, KAP97,

WD98], linear algebra codes for dense matrices[ABB+99], FFT algorithms [FJ97], and

sorting algorithms [LL97, XZK00]. Most of the approaches use domain–specific knowl-

edge to drive transformations.

Some researchers [BACD97, WD98, FJ97] generate highly tuned cache aware pack-

ages for a certain class of algorithms based on code templates and machine parameters.

These parameters are collected by benchmark programs which have to be executed on
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the target machine before installing the package. These programs perform an exhaustive

search to identify good cache parameters for the package.

A more general approach is taken by the compiler community [WL91, KCRB98,

RT98a]. They developed schemes to apply data locality optimizations automatically

within a compiler pass. The optimizations within the compiler are guided by cache ca-

pacity estimates [FST91, GJG88, TFJ94] and cache miss prediction techniques [GMM99,

GMM00]. Available implementations of these techniques, however, are limited to re-

search compilers up to now. Furthermore, these data locality optimization techniques

cannot be applied to complex programs as for example multigrid methods since the data

dependences within the algorithm are typically to complicated to allow their application.



Chapter 5

Cache Optimization Techniques for

Red–black Gauss–Seidel

The major performance bottleneck of multigrid methods in general and especially the red–

black Gauss–Seidel smoother executed on computer systems equipped with deep memory

hierarchies is the delay due to main memory accesses as shown in Chapter 3. Thus, data

locality optimizations for the red–black Gauss–Seidel methods are promising in respect

to the achievable speedup.

As shown in the previous chapter the key idea behind data locality optimizations is to

reorder the data accesses so that as few of them as possible are performed between any

two data references to the same memory location. With this, it is more likely that the

data is not evicted from the cache and thus can be loaded from one of the higher levels

of the hierarchy. However, the new access order is only valid if all data dependences

are observed. Standard data locality optimizations, however, are not directly applicable

to multigrid methods due to the data dependences. Therefore, this chapter proposes new

program transformations which improve the data locality of the red–black Gauss–Seidel

method. Thereby, the proposed transformations obey all data dependences. Consequently,

the numerical results of the restructured are identical to those obtained by the original

algorithms.

The new optimization techniques are able to accelerate the execution of the red–black

Gauss–Seidel on currently available workstations and PCs by a multiple, especially for

large grid sizes. The impact of the new techniques will be demonstrated with runtime and

memory hierarchy behavior measurements as well as theoretical data locality examina-

tions. Thereby, the data locality analysis will especially focus on aspects involved with

the multilevel nature of the memory hierarchy.

The red–black Gauss–Seidel method can be directly used as iterative method to solve

partial differential equations (PDEs) or as the smoother component of more complex

multigrid methods. As demonstrated in Chapter 3, the smoother is by far the most time

consuming component of a multigrid method. Thus, improving the performance of the

smoother will result in significant speedup of the whole multigrid method as well.

73
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5.1 Fundamental Techniques

This section will describe the principles of data locality optimization techniques for it-

erative methods. To simplify matters the following study will be restricted to a two–

dimensional red–black Gauss–Seidel method based on a 5–point stencil discretization.

Furthermore, constant coefficient problems are assumed, i.e. in addition to the right–hand

side of the equation and the solution vector only five matrix coefficient for the whole grid

and not five matrix coefficients for each grid point have to be stored. Extensions required

for problems with variable coefficients, three–dimensional problems and discretizations

based on a 9–point stencil are discussed in the following sections.

Algorithm 5.1 Standard implementation of red–black Gauss–Seidel

1: double u(0 : n; 0 : n), f(0 : n; 0 : n)
2: for it = 1 to noIter do

3: // red nodes:

4: for i = 1 to n� 1 do

5: for j = 1 + (i+ 1)%2 to n� 1 by 2 do

6: Relax( u(i; j) )

7: end for

8: end for

9: // black nodes:

10: for i = 1 to n� 1 do

11: for j = 1 + i%2 to n� 1 by 2 do

12: Relax( u(i; j) )

13: end for

14: end for

15: end for

The optimization process is started with a straightforward implementation of the red–

black Gauss–Seidel method as illustrated in Algorithm 5.1. Note, that this version slightly

differs from the version analyzed in Section 3.31. The run time performance of the red–

black Gauss–Seidel method on a Compaq PWS 500au and the results of a profiling ex-

periment with DCPI are summarized in Table 5.1.

Although the code is rather simple the red–black Gauss–Seidel code only achieves a

fraction of the floating point peak performance of 1 GFLOPS. Furthermore, the perfor-

mance drops dramatically with growing problem size. The runtime of the program for

large grid sizes is dominated by cache miss stalls and data TLB misses. In contrary to the

analysis in Section 3.3 the TLB misses outmatch the data cache miss stalls by a factor of

two.

1The order of the index variables in line 6 and 12 is permutated.
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Grid % of cycles used for

Size MFlops Exec Cache DTB Branch Depend Nops

17 294.9 59.9 1.8 3.1 4.2 2.5 9.0

33 242.2 49.1 18.1 5.4 3.9 1.1 8.8

65 232.2 46.8 21.7 10.6 1.1 0.8 7.3

129 150.1 30.8 38.9 12.9 1.0 1.0 6.2

257 97.9 20.1 24.3 44.9 0.4 0.5 3.9

513 60.0 12.9 27.2 52.6 0.0 0.4 2.6

1025 22.0 3.9 26.7 65.6 0.0 0.1 0.7

2049 20.4 4.1 31.0 61.4 0.0 0.0 0.6

Table 5.1: Runtime behavior of red–black Gauss–Seidel.

5.1.1 Array Transpose

The basic cause for the bad performance and the high amount of data TLB misses is an

unproper memory layout of the grid data as will be explained in the following.

The first node updated by the red–black Gauss–Seidel method is the red node (1; 1)
followed by the red node (1; 3). For the update of a red node (i; j) the data of the four

adjacent black nodes (i; j � 1), (i + 1; j), (i; j + 1), and (i� 1; j) as well as the data of

the red node itself and the right–hand side of the equation is required.

The data layout for the code in a Fortran77 style language is illustrated in Figure 5.1.

Neighboring grid points in the same column of the grid are mapped to adjacent memory

locations. Neighboring grid points within the same grid row, however, are mapped to

memory locations (n+1)�sizeof(double) bytes apart. Thus, two neighboring grid points

within the same grid row in a double precision floating point grid of size 1025 � 1025
(n=1024) will be 8200 bytes apart, for example. Note, that a typical virtual memory page

size for many operating systems is 8192 bytes. Hence, neighboring grid points within the

same grid row may fall into different virtual memory pages. For the red–black Gauss–

Seidel method this means that two of the black nodes required for an update of a red node

are adjacent in memory to the updated node but the two others are (n+1)�sizeof(double)
memory locations apart and may fall into different virtual memory pages.

The red–black Gauss–Seidel method shown in Algorithm 5.1 starts with an update of

the red nodes followed by an update of the black nodes. The red nodes in the first row

are traversed first starting with the red node (1; 1) followed by (1; 3) and so on. After

that the red nodes in row two, three and so on are updated in a similar way. If a grid

size of 1025 � 1025 is assumed an update of a red node will involve an access to three

different virtual memory pages. The first access to each page will cause a miss in the data

translation look–aside buffer (TLB). The following accesses to the same virtual memory

page will hit in the TLB cache. However, moving through a grid row will result in two

TLB misses per update due to memory references to memory pages never accessed before.

These TLB entries will be reused once the algorithm starts to update the nodes within the
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Figure 5.1: Grid memory layout before array traversal.

next grid row. However, the TLB cache is usually very small and is able to cache only a

small number of entries. In our case, the amount of entries which has to fit in the TLB

cache is equal to n. Thus, the size of the TLB cache will not be sufficient for larger grids.

Consequently, the TLB entries for the grid elements in the lower part of the grid will be

replaced a long time before they get reused and the second sweep through the next grid

row will again cause two TLB misses per update. Contrary, moving through a column of

the grid only requires three TLB entries for a complete sweep through the column.

This phenomenon is similar to the one which motivated the loop interchange and array

traversal optimizations. Both optimizations change the traversal order of the iteration

space to reduce the amount of cache misses involved with a sequence of stride–n memory

accesses. Applying array traversal in our case is relatively simple since array accesses

only happen in line 6 and 12 in Algorithm 5.1. A reshaping of the arrays is not required

since the two arrays u and f are square.

The runtime performance of the transformed code (see Algorithm 5.2) in compari-

son to the original code is summarized in Table 5.2. A more detailed analysis of the

runtime behavior of the improved algorithm can be found in Section 3.3. Note, that an

improvement in the MFLOPS rate is equivalent to a runtime speedup of the program since

the amount of executed floating point operations is unchanged. This is true for all data

locality optimizations described in this thesis.
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Grid MFlops

Size Before After Speedup

17 294.9 347.0 1.2

33 242.2 354.8 1.5

65 232.2 453.9 2.9

129 150.1 205.5 1.4

257 97.9 182.9 1.9

513 60.0 63.7 1.0

1025 22.0 58.8 2.7

2049 20.4 55.9 2.7

Table 5.2: Speedup after array transpose.

Algorithm 5.2 Red–black Gauss–Seidel after array transpose

1: double u(0 : n; 0 : n), f(0 : n; 0 : n)
2: for it = 1 to noIter do

3: // red nodes:

4: for i = 1 to n� 1 do

5: for j = 1 + (i + 1)%2 to n� 1 by 2 do

6: Relax( u(j; i) )

7: end for

8: end for

9: // black nodes:

10: for i = 1 to n� 1 do

11: for j = 1 + i%2 to n� 1 by 2 do

12: Relax( u(j; i) )

13: end for

14: end for

15: end for



78 Cache Optimization Techniques for Red–black Gauss–Seidel

U
p

d
at

e 
d

ir
ec

ti
o

n

red point

���� black point

������

������������

������

������

������������

������

������

������i−1

i

i+1

i−2

Figure 5.2: Updating red and black nodes in pairs.

5.1.2 Fusion

When implementing the standard red–black Gauss–Seidel algorithm, the usual practice

is to do one complete sweep through the grid from bottom to top updating all of the red

nodes and then one complete sweep through the grid updating all of the black nodes. If

the grid data is too large to fit in the cache, the data of the lower part of the grid will no

longer be in the cache after the first sweep because it has been replaced by the grid points

belonging to the upper part of the grid. Consequently, the grid points belonging to the

lower part of the grid must be reloaded from main memory which will in turn replace the

cached data belonging to grid points of the upper part of the grid. As a consequence, they

have to be loaded from main memory once more.

If a 5–point stencil is placed over one of the black nodes in row i � 1 as shown

in Figure 5.2, then all of the red points that are required for relaxation are up to date

provided the red node directly above it in row i is up to date. Hence, no data dependences

of the red–black Gauss–Seidel algorithm will be violated if the red nodes in a row i and

the black nodes in row i� 1 are updated in pairs.

This technique is called fusion technique. It fuses two consecutive sweeps through the

grid, which update the red and black points separately, together to one sweep through the

grid. However, the red nodes in the first row and the black nodes in the last row of the grid

require special treatment. The red–black Gauss–Seidel method after applying the fusion

technique is shown as Algorithm 5.3.

Instead of doing a sweep updating the red nodes and then a sweep updating the black

nodes, just one sweep through the grid is done by the algorithm which is updating the red

and black nodes together. The consequence is that the grid must be transferred from main

memory to cache only once per update sweep instead of twice, provided that at least four

lines of the grid fit in the cache. Three lines must fit in the cache to provide the data for

the update of the black points and one additional line for the update of the red points in

the line above the three lines.

An additional effect, which can improve the data locality using the fusion technique,

is that the compiler might keep the values of the two updated nodes in a register, so that

the update of the black node in row i � 1 saves two load operations. Since 14 memory

operations are required for the two update operations (six loads and one store for each
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Algorithm 5.3 Red–black Gauss–Seidel after loop fusion

1: double u(0 : n; 0 : n), f(0 : n; 0 : n)
2: for it = 1 to noIter do

3: // special handling for first grid row:

4: for j = 1 to n� 1 by 2 do

5: Relax( u(j; 1) )

6: end for

7: // smoothing red and black nodes in pairs:

8: for i = 2 to n� 1 do

9: for j = 1 + (i + 1)%2 to n� 1 by 2 do

10: Relax( u(j; i) )

11: Relax( u(j; i� 1) )

12: end for

13: end for

14: // special handling for last grid row:

15: for j = 2 to n� 1 by 2 do

16: Relax( u(j; n� 1) )

17: end for

18: end for

update) about 15 per cent of all memory operations can be saved through better register

usage.

Table 5.3 summarizes the memory access behavior of the red–black Gauss–Seidel

algorithm after applying the fusion technique. About 20 per cent of all memory references

are not satisfied by any of the cache levels nor main memory. That is, the compiler is

indeed able to save two load operations as explained above by keeping the data of the two

updated nodes (a red and black node) within registers. Furthermore, less data has to be

loaded from the lowest (slowest) level in the memory hierarchy in which the whole grid

data fits. In fact the fraction of data which has to be loaded from main memory in the case

of the larger grid sizes is halved.

The optimizations are able to reduce the amount of cycles spent for data cache misses

for all grid sizes except for the three smallest grid sizes (see Table 5.4). Nevertheless, a

remarkable performance improvement is achieved for all grid sizes and especially for the

larger grid sizes.

The fusion technique for the red–black Gauss–Seidel method in principle is based on

the loop fusion data access transformation. However, loop fusion can only be applied to

loops with the same loop bounds and loop increment and if no array references in the

resulting loop are present with a dependence from a statement in the first loop to a state-

ment in the second loop. In the following, a series of transformations will be developed

which can be applied automatically by a compiler to perform the fusion technique to the

red–black Gauss–Seidel algorithm.

The two loops with index i in the red–black Gauss–Seidel method have a similar loop
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Grid % of all accesses which are satisfied by

Size � L1 Cache L2 Cache L3 Cache Memory

17 19.6 80.4 0.0 0.0 0.0

33 21.0 62.8 16.1 0.0 0.0

65 18.4 70.4 10.9 0.3 0.0

129 22.3 64.7 6.1 6.8 0.0

257 21.6 42.6 30.2 5.4 0.0

513 21.8 36.7 36.8 4.3 0.4

1025 20.9 28.9 43.1 3.4 3.6

2049 20.7 29.2 34.5 12.0 3.6

Table 5.3: Memory access behavior of fused red–black Gauss–Seidel.

Grid % of cycles used for

Size MFlops Exec Cache DTB Branch Depend Nops

17 402.6 54.3 0.5 4.5 5.4 25.8 6.4

33 458.0 60.7 11.4 3.2 2.8 10.7 9.5

65 564.2 72.7 4.8 9.2 2.8 0.0 11.0

129 363.0 50.4 36.0 4.0 2.0 0.0 8.5

257 357.0 51.6 34.0 5.5 2.0 0.0 8.7

513 196.6 34.1 52.8 5.8 1.0 0.0 4.8

1025 112.8 18.4 71.7 6.5 0.7 0.0 3.1

2049 78.6 12.6 83.5 1.4 0.5 0.0 2.1

Table 5.4: Runtime behavior of fused red–black Gauss–Seidel.
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structure and would qualify for loop fusion in general. Fusing the two loops results in a

pairwise update of the red and black node in a row i. As shown before the black nodes

can only be updated as soon as the red node in the row directly above has been update.

Hence, fusing the two loops directly violates a data dependence.

The correct procedure to fuse the two loops requires some enabling transformations.

First, loop peeling has to be applied to the first iteration of the loop which updates the

red nodes and to the last iteration of the loop which updates the black nodes. Note, that

this is equivalent to the special treatment of the first and last grid row mentioned earlier.

After that the loop bounds of both loops differ but fusing the two loops no longer violates

a data dependence. After normalizing the two loops with index i, they have similar loop

structure and can be fused.

The fused loop now contains two loops with index j with similar loop structure. The

first loop in the fused loop relaxes all red nodes in row i before the second loop relaxes all

black nodes in row i�1. These two loops can be fused directly. The resulting code updates

red nodes in row i and black nodes in row i � 1 in pairs while performing lateral moves

through the grid. Finally, the if–statements which were introduced by the loop peeling

transformations can be removed if the assumption is made that n � 2 and n%2 = 0.

5.1.3 One–Dimensional Blocking

The optimization technique presented in the previous section improves the data locality

between the global sweep through the grid which is updating all of the red nodes and

the global sweep which is updating all of the black nodes. This is done by fusing the

operations for the red and black update sweeps together to one operation.

If several successive red–black Gauss–Seidel relaxations have to be performed and

the grid data is too large to fit entirely in the cache, the data is not reused from one

iteration to the next. The one–dimensional blocking technique described in the following

addresses that issue. Instead of performing two global sweeps through the grid which are

updating the red and black nodes once each time, only one global sweep through the grid

is performed updating all nodes twice.

The blocking technique is based on the data locality optimization technique loop

blocking which was introduced in Chapter 4. Instead of operating on the whole array

at once loop blocking changes the iteration traversal so that the operations are performed

on small sub blocks or tiles of the whole array. The data within a tile is used as many

times as possible before moving to the next block. The data of the tile is usually small

enough to be kept in a faster level of the memory hierarchy.

Unfortunately, loop blocking is not directly applicable to iterative methods because of

data dependences between neighboring nodes of the grid. In the case of the standard red–

black Gauss–Seidel method based on a 5–point discretization of the Laplacian operator,

a node of the grid cannot be touched for the second time before all of its four direct

neighbors have been updated for the first time.

Consider the red node in row i � 1 of Figure 5.3. The node can be updated for the

second time provided that all neighboring black nodes have been updated once. This is
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Figure 5.3: Data propagation using the 1D blocking technique.
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Figure 5.4: Example of blocking two red–black Gauss–Seidel sweeps. The circles around

a node denote how often it has already been updated.

the case, as soon as the black node in line i directly above the red node has been updated

once. This black node in turn can be updated for the first time as soon as the red node in

line i+ 1 directly above it has been updated for the first time as explained earlier.

Thus, once the red node in a row i+1 is updated the first time the black node in row i,
the red node in row i�2 and the black node in row i�3 belonging to the same column of

the grid can be updated in a cascading manner. This may be done for all of the red nodes

in a row i + 1. Subsequently, the algorithm continues with relaxation in row i + 2. Of

course, some boundary handling is required in the lower and in the upper part of the grid.

An example of this proceeding is illustrated in Figure 5.4 starting in a situation where

the nodes of row i�1 and below have been updated in pairs. The circles around the nodes

indicate how often a node has been relaxed. In the next step, the red nodes in row i, the

black nodes in row i � 1, and the red nodes in row i � 2 are update in pairs. All red

nodes in row i� 2 are now updated twice. Then, the red nodes in row i + 1 are updated.

Consequently, the black nodes in row i and i� 2 as well as the red nodes in row i� 1 can

be updated. Now, all nodes in row i� 2 and all red nodes in row i� 1 are updated twice.

The one–dimensional blocking technique can be generalized to B successively per-

formed relaxations. In that case the update of a red node in row i permits a cascading

update of the nodes in row i�1 to i�2�B+1 directly below the red node. The code for

the red–black Gauss–Seidel method after applying the one–dimensional blocking tech-
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Figure 5.5: Data region classification for the one–dimensional blocking technique.

nique is represented by Algorithm 5.42.

The following example with B = 2 will illustrate the data required for the red–black

Gauss–Seidel method after applying the one–dimensional blocking technique. The two

groups of nodes starting in row i+1 which will be updated back–to–back are highlighted

with rectangles in the left side of Figure 5.5.

The data required for the update of the nodes within a rectangle are all the nodes within

a dotted shape around the rectangle. The data values within the overlapping region of two

adjacent dotted shapes (Area 1 in the left part of Figure 5.5) are directly reused between

the cascading update of the two node groups. The size of the data in Area 1 depends on the

number of blocked red–black Gauss–Seidel iterations and equals 2 � B nodes. Typically,

a small number of successive iterations (like one to four) are performed in the multigrid

context. Hence, the size of the data in Area 1 is small enough to be cached in a high level

of the memory hierarchy like the L1 cache. The data in Area 2 was accessed during a

previous lateral move through the grid which started cascading updates in row i. In the

example the data can be loaded from cache as long as the cache is large enough to store

six grid rows simultaneously. In general, 2�B+2 rows of the grid have to fit in the cache

simultaneously so that the data in the cache which is of a previous lateral move through

the grid can be reused. Thus, the proposed technique produces a cache–aware red–black

Gauss–Seidel method if at least 2 � B + 2 grid rows fit in the cache. The remaining data

required for the cascading update was never accessed before and must be loaded from

main memory, unless it is prefetched in any way.

Instead of doing B successive sweeps through the grid updating each node once the

2Note, that the total number of iterations is assumed to be a multiple of B. If this is not the case

the algorithm must be changed slightly to be semantically equivalent to the original red–black Gauss–

Seidel code: after the red–black Gauss–Seidel iterations performed in the code (noIter mod B) additional

iterations must be performed.
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Algorithm 5.4 Red–black Gauss–Seidel after one–dimensional loop blocking

1: double u(0 : n; 0 : n), f(0 : n; 0 : n)
2: for it = 1 to noIter=B do

3: // special handling for first grid rows:

4: for l = B to 1 by �1 do

5: for j = 1 to n� 1 by 2 do

6: Relax( u(j; 1) )

7: end for

8: for i = 2 to l � 2� 1 do

9: for j = 1 + (i + 1)%2 to n� 1 by 2 do

10: Relax( u(j; i) )

11: Relax( u(j; i� 1) )

12: end for

13: end for

14: end for

15: // smoothing block wise:

16: for k = B � 2 to n� 1 do

17: for i = k to k � B � 2 + 1 by �2 do

18: for j = 1 + (k + 1)%2 to n� 1 by 2 do

19: Relax( u(j; i) )

20: Relax( u(j; i� 1) )

21: end for

22: end for

23: end for

24: // special handling for last grid rows:

25: for l = 1 to B do

26: for i = (l � 1) � 2 to 1 by �1 do

27: for j = 1 + (i + 1)%2 to n� 1 by 2 do

28: Relax( u(j; n� i) )

29: Relax( u(j; n� i� 1) )

30: end for

31: end for

32: for j = 2 to n� 1 by 2 do

33: Relax( u(j; n� 1) )

34: end for

35: end for

36: end for
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Grid % of all accesses which are satisfied by

Size � L1 Cache L2 Cache L3 Cache Memory

2 relaxations combined

17 19.4 80.6 0.0 0.0 0.0

33 20.5 77.5 2.0 0.0 0.0

65 17.8 75.2 6.8 0.2 0.0

129 21.3 57.5 18.6 2.5 0.0

257 21.5 37.1 38.7 2.7 0.0

513 21.9 30.9 39.9 3.2 0.1

1025 21.1 29.1 43.6 4.4 1.8

2049 20.8 27.5 35.4 14.3 1.9

3 relaxations combined

17 18.8 81.2 0.0 0.0 0.0

33 20.1 78.1 1.7 0.1 0.0

65 17.4 71.4 11.0 0.2 0.0

129 21.0 50.9 25.8 2.3 0.0

257 21.2 36.7 40.2 1.9 0.0

513 21.0 35.2 41.0 2.7 0.1

1025 21.0 28.4 42.4 7.0 1.2

2049 20.9 27.2 35.6 15.1 1.2

Table 5.5: Memory access behavior of 1D blocked red–black Gauss–Seidel.

blocked red–black Gauss–Seidel method just performs one sweep through the grid updat-

ing each node B times. Hence, the grid is transferred from main memory to the cache

once instead of B times provided that 2 �B + 2 grid rows fit in the cache.

The percentage of main memory accesses needed for red–black Gauss–Seidel us-

ing the blocking technique should be equal to the percentage of main memory accesses

needed for fused red–black Gauss–Seidel divided by the number of blocked iterations.

Table 5.5 shows that the blocking technique does indeed reduce the number of memory

accesses by a factor of two or three, respectively.

Table 5.6 summarizes the runtime behavior of the one–dimensional blocked red–black

Gauss–Seidel algorithm. For the small grid sizes the optimization technique only achieves

marginal improvements relative to the performance already achieved with the fused red–

black Gauss–Seidel code. If three iterations are blocked the performance actually de-

creases. With growing grid size, however, the factor of the performance gain increases

to a factor of 2.5 compared to the performance of the standard red–black Gauss–Seidel

code after applying the array transpose technique for the 1025� 1025 grid before it starts

to decrease again. The reason for this is that the one–dimensional blocking technique

expects a relatively large amount of data to fit in cache. For three blocked iterations on a

2049 � 2049 grid at least 130 Kbyte of data must fit in cache. The data fits easily in the
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Grid % of cycles used for

Size MFlops Exec Cache DTB Branch Depend Nops

2 relaxations combined

17 391.3 57.8 0.2 3.5 5.8 22.2 9.0

33 489.2 64.9 5.2 2.8 3.5 10.9 11.5

65 609.9 72.4 3.1 4.2 4.2 5.3 10.7

129 404.1 58.9 25.0 5.9 2.3 0.0 10.0

257 364.6 52.7 32.1 6.2 2.0 0.0 9.0

513 255.1 41.5 45.2 5.7 1.0 0.0 6.2

1025 148.6 23.8 68.5 3.4 1.0 0.0 4.0

2049 89.6 15.1 80.5 1.5 0.6 0.0 2.4

3 relaxations combined

17 397.4 56.3 0.2 3.3 5.0 25.1 8.1

33 444.3 61.1 10.7 3.0 2.9 10.1 10.9

65 561.0 71.5 5.8 3.4 3.7 5.3 10.6

129 404.3 57.8 24.3 5.8 2.3 1.9 9.5

257 368.2 52.4 32.4 5.9 2.0 0.0 8.9

513 268.9 43.6 41.9 5.8 1.5 0.0 6.4

1025 150.9 23.7 69.2 2.9 0.9 0.0 4.0

2049 92.5 16.1 79.5 1.5 0.6 0.0 2.6

Table 5.6: Runtime behavior of one–dimensional blocked red–black Gauss–Seidel.
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Figure 5.6: A two–dimensional subblock of the grid.

L3 cache but not in the L1 data cache or the L2 cache. In general, the fraction of time the

CPU is stalled due to data delays from main memory decreases for all grid sizes. Contrary

to the reduction of data cache miss stalls the fraction of time the CPU spent for branch

misprediction and static stalls like register dependences increased slightly.

5.1.4 Two–Dimensional Blocking

Both of the above techniques require that a certain number of rows fit entirely in the cache.

The fusion technique assumes that the cache can hold at least four rows of the grid. The

one–dimensional blocking technique assumes that at least 2 � B + 2 rows of the grid fit

in the cache, if B successive sweeps through the grid are performed together. Hence,

they can reduce the number of accesses to slow memory, but fail to utilize the higher

levels of the memory hierarchy efficiently, in particular the registers and the L1 cache. A

high utilization of the registers and the L1 cache, however, is crucial for performance in

general and especially for iterative methods. In the following, two–dimensional blocking

strategies will be proposed. As for the one–dimensional blocking technique this requires

special consideration, because of the data dependences between neighboring nodes.

The key idea for standard two–dimensional loop blocking is to divide the whole array

into small two–dimensional sub blocks and perform as may operations as possible for a

sub block before moving to the next sub block of the array. In that manner all sub blocks

are visited until the operations are performed on the whole array. The data dependences

within the red–black Gauss–Seidel method, however, prevent that approach to be applied

directly.

Consider the 4 � 4 sub block of the grid shown in Figure 5.6. A two dimensional

loop blocking technique applied directly to the red–black Gauss–Seidel code starts with

an update of all red–nodes in the sub block. Updating these nodes will not violate any
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data dependence since red nodes can be updated independently of each other. Then, all

black nodes in the sub block have to be updated. The update of the black nodes in row 4

and column 4, however, is prohibited since the red nodes in row 5 and column 5 haven’t

been updated yet. To allow blocking, the sub block must be reduced by row 4 and column

4. Thus, the block effectively shrinks. Subsequently, the red nodes of the sub block have

to be updated a second time. Since the black nodes in row 4 and column 4 haven’t been

updated due to data dependences only the red nodes (2; 2) and (1; 1) can be updated.

The one–dimensional blocking technique faces the same problem, however, only in

one dimension. It solves the problem by sliding a constantly sized block from south to

north through the grid. The technique virtually widens the block at the northern border

to allow the update of new red nodes and consequently cascading updates of the nodes

directly below the annexed nodes and narrows the block at the southern border to keep

a constantly sized one–dimensional block. The same approach cannot be used directly

for the two–dimensional case since the block cannot move northward and eastward at the

same time. Consider the block illustrated in Figure 5.6. The block must be extended

by one grid row at the northern end of the block (row 5) and by one column at the east

(column 5) and shrunken by row 1 and column 1. The resulting block is no longer square

since it has to accommodate the grid node (1; 5) and (5; 1).

The dilemma can be solved in two different ways. The first approach revisits nodes

within a sub block which hasn’t fully relaxed due to data dependences while the nodes

within adjacent sub block are relaxed. The second approach is based on a reshaped block.

Instead of a rectangular block a parallelogram is used to obey the data dependences. Fur-

thermore, update operations within the parallelogram are performed in a line–wise manner

from top to bottom. Both approaches will be described in more detail in the following.

Square Two–Dimensional Blocking

Assume that Bx is the width and By the height of a two–dimensional tile of the grid. The

red–black Gauss–Seidel alternates relaxation sweeps for red and black nodes of the whole

grid. The same approach applied to the tile will violate data dependences as described

above. Nevertheless, in a sub tile of size (Bx � 2 � B + 1) � (By � 2 � B + 1) located

at the bottom left corner of the whole tile all red and black nodes can be relaxed B times

without violating any data dependence provided that Bx � 2 � B and By � 2 � B. The

rest of the nodes will only be relaxed partially, i.e. with growing distance from the sub tile

the number of relaxations decreases. Figure 5.7 illustrates the situation within a tile of

size 4 � 4 after applying two red–black relaxations. The circles around a node represent

the number of relaxations applied to the node.

The only sub tile which is completely relaxed is the sub tile in the lower left corner

containing a single node. All other sub tiles (including the tile itself) are relaxed as many

times as possible without violating a data dependence. The black nodes (1; 4) and (3; 4)
have not been relaxed so far since they rely on the relaxation of the red nodes (1; 5) and

(3; 5) which are located in the adjacent tile to the right. Hence, once the red nodes in

the adjacent tile are updated the first time the black nodes (1; 4) and (3; 4) in the first tile
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Figure 5.7: Two–dimensional blocked red–black Gauss–Seidel: Getting started

can be revisited. The supplementary relaxations of the black nodes in the first tile can

be combined with the relaxation of the black nodes in the second tile (see Figure 5.8).

Consequently, the red nodes (1; 3) and (2; 4) can be updated the second time. Again the

supplementary update can be combined with the second relaxation of the red nodes in the

right tile. Finally, the second update of the black node in row 1 of the left tile can be done

together with the update of black nodes in the last sub tile of the right tile. Note, that the

sub tile contains no black nodes in our example but may contain black nodes within larger

tiles.

The situation in the right tile now is similar to the situation in the left tile when the

revisiting of the tile started. The nodes in the first tile still need some more relaxations.

They will occur when the tile directly above and the tile adjacent to the upper right corner

are relaxed.

In general, the square blocked red–black Gauss–Seidel divides the whole grid in

equally sized tiles. Tiles are visited in the same order as grid nodes in the original al-

gorithm are visited. The blocked algorithm processes each of these tiles 2 � B times.

Thereby, each time in turn all red resp. black nodes within the tile are updated. After each

of these update sweeps the tile is moved one grid row down and one grid rows to the left

to not violate any data dependences and revisit nodes within other tiles. If a tile is partially

located outside the grid after moving it, the tile is narrowed until it is small enough to stay

within the grid boundaries. The code for this scheme is shown in Algorithm 5.5.

The data required for a single update of a tile and the cascading updates in the moved

tiles for B = 2 are all nodes within the dashed drawn shape around the squares in Fig-

ure 5.9. The size of the data set is independent of the grid size and only depends on the

amount of blocked red–black Gauss–Seidel iterations. Although, the data set size is only

12 � B2 + B + 1 the data is spread over a large area of the memory, especially for large

grids. This might turn out to be a disadvantage since it can involve conflict misses as well
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Algorithm 5.5 Red–black Gauss–Seidel after square two–dimensional loop blocking

1: double u(0 : n; 0 : n), f(0 : n; 0 : n)
2: for it = 1 to noIter=B do

3: // visit all tiles:

4: for ystart = 1 to n + 2 �B � 1 by height do

5: for xstart = 1 to n+ 2 �B � 1 by width do

6: // cascade sub tiles:

7: for k = 0 to 2 �B � 1 do

8: ibegin = ystart � k
9: iend = ibegin + height� 1

10: if ibegin < 1 then

11: ibegin = 1
12: end if

13: if iend � n then

14: iend = n� 1
15: end if

16: // relax a tile:

17: for i = ibegin to iend do

18: jbegin = xstart � k
19: jend = jbegin + width� 1
20: if jbegin < 1 then

21: jbegin = 1
22: end if

23: jbegin = jbegin + (jbegin + i+ k)%2
24: if jend � n then

25: jend = n� 1
26: end if

27: for j = jbegin to jend by 2 do

28: Relax( u(j; i) )

29: end for

30: end for

31: end for

32: end for

33: end for

34: end for
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Figure 5.8: Two–dimensional blocked red–black Gauss–Seidel: Continued

as data translation look–aside buffer misses similar to the TLB miss explained in Sec-

tion 5.1.1. Nevertheless, from the data locality point of view the data values in Area 1 can

be reused from the update of the tile directly to the left. The data will be in the cache if the

whole data required for the update — Area 1, 2 and 3 — fits in the cache simultaneously.

In a multigrid context the amount of data is relatively small since usually only one to four

consecutive red–black Gauss–Seidel iterations are used. Thus, the data should fit in the

higher levels of the memory hierarchy like the L1 data cache. The nodes located in Area 2

can be reused from a previous lateral slide through the grid. The data, however, will be

only in cache if 4 � B + 1 grid lines fit in the cache simultaneously. This is a relatively

large amount of data especially for large grids. Thus, the data will be typically cached

in one of the intermediate levels of the memory hierarchy like the L2 or L3 cache. Note,

that the one–dimensional blocked red–black Gauss–Seidel required only 2 � B + 2 rows

of the grid to fit in the cache simultaneously. The remaining data (Area 3) haven’t been

used before and must be loaded from main memory.

The square two–dimensional blocked red–black Gauss–Seidel requires more data to

fit in the cache simultaneously to be a cache aware algorithm. However, in contrary two

the one–dimensional blocking technique a larger fraction of the data is directly reused

between the update of adjacent nodes. Furthermore, the data required for the update of a

single tile (the (DTB misses)dashed area around a tile in Figure 5.10) overlaps with the

data needed for the cascading update in a moved tile. In fact more then 50 per cent of the

data (shaded area in Figure 5.10) is directly reused.

Skewed Two–Dimensional Blocking

The principle of the skewed two–dimensional blocking technique will be described in the

following by means of an an example, which illustrates how all the nodes in the grid

are updated twice during one global sweep. The explanation starts with the situation in
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Figure 5.9: Data region classification for the square two–dimensional blocking technique.
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Figure 5.11: Two–dimensional blocking technique for red–black Gauss–Seidel.

Figure 5.11 where the one–dimensional blocking technique was used to create a valid

initial state.

Consider the left of the parallelograms at the left of the grid. Assume that the red and

the black points in its lower half have already been updated once, while the upper part

stays untouched so far. The number of updates performed on each node is represented by

circles around that node. The following procedure will update all nodes in the parallelo-

gram once. For this, the diagonals are processed from top to bottom. As soon as the red

points in the uppermost diagonal have been updated for the first time, the black points in

the next diagonal within the parallelogram can also be updated for the first time. Then,

the red and the black points on the diagonals underneath are updated. Note, that for these

nodes this is now the second update. Finally, all the points in the left parallelogram have

been modified. For the right parallelogram this creates the same state as initially for the

left parallelogram where the nodes on the two lower diagonals have already been updated

once and the two upper diagonals are still untouched. Thus, the algorithm can switch to

the right parallelogram and start updating again, using the same pattern. In that fashion

the parallelogram is moved through the grid until it touches the right boundary. As soon as

the right boundary of the grid is reached, some extra boundary handling needs to be done

before the parallelogram is moved upward by four grid lines3. There, some boundary han-

dling on the left side follows, before the algorithm begins anew with the next lateral move

through the grid. A pseudo code which illustrates the skewed two–dimensional blocked

red–black Gauss–Seidel code is shown in Algorithm 5.6.

The data needed for an update of the grid points within one parallelogram are defined

by all the nodes within a dotted drawn shape around the parallelogram (see Figure 5.11).

The data values within the overlapping region of two adjacent dotted shapes (Area 1 in

3In general, the parallelogram has to be moved upward by 2 �B grid lines.
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Algorithm 5.6 Red–black Gauss–Seidel after skewed two–dimensional blocking

1: for it = 1 to noIter=B do

2: Relax ( bottomOfGrid() ) // special handling of first grid rows

3: for i = 4 �B � 1 to n� 1 by 2 �B do

4: Relax ( startTriangle(top,m,n) ) // relax initial start triangle

5: for j = 1 to n� 2 �B � 1 by 2 do

6: Relax( parallelogram(i,j) ) // relax nodes within parallelogram

7: end for

8: Relax ( endTriangle(top,m,n) ) // relax finale end triangle

9: end for

10: Relax ( residualOfGrid() ) // relaxing residual of the grid

11: Relax ( topOfGrid() ) // special handling of last grid rows

12: end for
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Figure 5.12: Data region classification for the skewed two–dimensional blocking tech-

nique.
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Figure 5.12) are the data values which are directly reused between two parallelogram up-

dates. The size of the data depends on the number of simultaneously performed update

sweeps. Since one to four smoothing steps between the grid transfer operations are per-

formed in typical multigrid algorithms, the size of that data should be small enough to

fit at least in the L1 cache. In our example, the amount of data being reused directly is

128 Bytes (16�8 Bytes, Area 1). Area 2 can be reused from a previous slide through the

grid from left to right, as long as enough grid lines can be stored in one of the levels of

the memory hierarchy. Typically, the data for Area 2 is stored in one of the intermediate

levels of the hierarchy. The rest of the data (Area 3), however, must be fetched from main

memory.

Performance Analysis

Tables 5.7 and 5.8 reveal that the two–dimensional blocking techniques are not perform-

ing satisfactorily. For the small and for the larger grids, the floating point performance is

equal or even worse than the performance of the one–dimensional blocked implemen-

tation. For some grid sizes even the standard implementation outperforms the two–

dimensional blocked algorithms. Comparing the two different implementations of the

two–dimensional blocking idea the skewed approach easily outperforms the square block-

ing technique.

The square blocking techniques suffers from a high amount of branch mispredictions

as well as stalls due to register dependences especially for the small grid sizes. For the

larger grids the run time is dominated by data cache stalls and DTB stalls, however,

branch mispredictions and register dependences have still a noticeable impact on the per-

formance. If more red–black Gauss–Seidel iterations are blocked the fraction of cycles

spent due to branch mispredictions and register dependences decreases. Consequently,

the performance for the small grid sizes increases significantly. The performance for the

large grids, however, is not affected because of an increased amount of data cache miss

stalls.

The skewed two–dimensional blocking technique outperforms the square blocking

approach for the smaller grid sizes because of less branch mispredictions and register

dependences. For the larger grids, however, the performance of both approaches is limited

by data cache stalls. Again, blocking more iterations is not improving performance.

Both approaches require complicated loop structures which make other loop transfor-

mations like loop unrolling or software pipelining harder. Thus, the compiler is not able

to fully optimize the schedule of assembler instructions to avoid register dependences and

branch mispredictions. However, this does not explain the high fraction of time spent for

data cache misses since both techniques are designed to reduce the number of data cache

misses.

The memory access behavior analysis for both approaches is summarized in Table 5.9

and Table 5.10. Both techniques fail to keep a reasonable fraction of the data within the

L1 cache although both techniques should be able to reuse a large fraction of the data from

the L1 cache as demonstrated above. Even the L2 cache is not able to cache a reasonable
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Grid % of cycles used for

Size MFlops Exec Cache DTB Branch Depend Nops

2 relaxations combined

17 111.3 44.0 0.1 3.5 5.9 40.9 1.1

33 105.0 38.9 10.6 3.5 4.0 38.7 1.1

65 110.2 40.3 4.0 3.8 4.3 41.8 2.2

129 108.2 39.4 12.0 3.4 3.8 37.1 0.0

257 102.2 37.0 13.6 5.8 3.6 35.0 2.1

513 82.9 29.0 29.2 7.1 2.8 27.9 0.4

1025 55.0 15.6 32.6 33.1 1.4 14.8 0.6

2049 38.2 13.6 57.3 13.9 1.4 11.8 0.9

3 relaxations combined

17 118.0 40.5 0.3 1.9 6.9 43.7 1.2

33 112.5 35.3 10.5 1.7 5.2 41.6 1.1

65 120.4 37.7 2.5 1.8 5.6 46.0 2.4

129 117.9 36.4 11.6 1.5 4.3 40.3 0.0

257 113.3 35.3 12.8 2.6 4.2 39.1 2.3

513 95.7 28.6 27.0 3.6 3.7 32.2 0.3

1025 60.4 16.5 44.0 15.1 2.7 18.4 0.7

2049 37.0 12.2 68.1 3.9 2.0 12.0 0.9

4 relaxations combined

17 196.6 53.1 0.3 1.8 5.4 30.5 3.7

33 196.8 49.1 22.1 1.1 3.1 15.7 4.0

65 216.7 56.6 12.4 9.1 1.9 7.1 7.1

129 231.7 58.9 18.1 4.9 1.3 3.1 7.2

257 207.7 50.7 28.9 2.4 0.9 1.5 7.0

513 157.0 37.2 41.3 11.4 0.7 0.6 4.9

1025 71.1 18.1 68.2 8.6 0.2 0.1 2.7

2049 36.2 9.9 84.2 2.9 0.2 0.1 1.7

Table 5.7: Runtime behavior of square two–dimensional blocked red–black Gauss–Seidel.
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Grid % of cycles used for

Size MFlops Exec Cache DTB Branch Depend Nops

2 relaxations combined

17 393.2 60.6 0.5 1.1 2.6 24.9 13.1

33 340.4 46.2 31.6 1.2 1.5 5.9 9.4

65 361.2 47.5 33.2 1.4 0.5 3.4 10.2

129 314.4 43.3 43.5 0.8 0.3 1.4 8.8

257 302.1 39.8 47.8 0.6 0.0 1.1 8.5

513 255.1 33.9 54.5 0.6 0.1 1.3 7.6

1025 91.4 13.1 81.8 0.3 0.0 0.4 3.1

2049 45.5 6.6 90.8 0.2 0.1 0.3 1.5

3 relaxations combined

17 368.6 51.6 0.4 1.8 1.9 29.4 8.2

33 304.7 43.5 12.6 0.4 4.0 28.9 2.3

65 314.6 45.0 32.5 0.9 0.3 7.0 9.1

129 309.5 42.6 36.5 0.7 0.2 5.1 10.6

257 284.8 38.8 41.7 1.3 0.1 4.8 9.6

513 231.4 33.1 50.3 1.0 0.1 4.8 7.0

1025 82.5 12.3 80.2 1.2 0.1 1.6 3.0

2049 47.8 7.3 87.4 1.6 0.0 1.0 1.8

4 relaxations combined

17 357.5 52.8 0.4 1.5 1.3 26.2 10.0

33 276.8 42.3 14.4 0.3 5.0 28.9 2.2

65 276.7 42.3 13.6 0.4 5.1 28.6 0.9

129 269.5 41.0 15.6 0.4 1.7 32.7 0.0

257 250.8 39.4 17.6 0.7 2.1 30.7 0.0

513 185.5 28.5 49.8 2.6 0.1 7.5 7.0

1025 80.1 12.6 76.1 2.8 0.0 3.6 3.1

2049 50.1 8.0 84.1 2.6 0.0 2.3 2.0

Table 5.8: Runtime behavior of skewed two–dimensional blocked red–black Gauss–

Seidel.
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Grid % of all accesses which are satisfied by

Size � L1 Cache L2 Cache L3 Cache Memory

2 relaxations combined

17 3.5 96.5 0.1 0.0 0.0

33 2.9 72.6 24.5 0.0 0.0

65 2.9 60.8 36.1 0.2 0.0

129 2.8 59.2 35.4 2.6 0.0

257 1.6 53.4 40.9 4.1 0.0

513 -0.2 31.6 59.4 8.5 0.7

1025 -3.7 25.5 59.3 17.0 1.9

2049 -3.4 24.0 37.5 38.1 3.9

3 relaxations combined

17 2.2 97.7 0.1 0.0 0.0

33 1.9 72.7 25.4 0.0 0.0

65 1.9 58.1 39.8 0.2 0.0

129 1.9 56.7 39.4 2.0 0.0

257 1.3 47.4 48.2 3.2 0.0

513 0.3 27.2 65.4 6.6 0.5

1025 -1.6 22.7 59.5 18.2 1.2

2049 -3.0 20.7 30.1 50.2 2.1

4 relaxations combined

17 0.8 99.2 0.0 0.0 0.0

33 -0.1 71.6 28.4 0.0 0.0

65 -2.8 68.6 34.0 0.2 0.0

129 -0.3 62.5 36.2 1.6 0.0

257 5.7 42.8 48.6 2.9 0.0

513 10.5 28.8 54.9 5.6 0.3

1025 9.6 21.1 46.0 22.4 0.9

2049 8.6 19.0 13.2 57.7 1.4

Table 5.9: Memory access behavior of square two–dimensional blocked red–black Gauss–

Seidel.
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Grid % of all accesses which are satisfied by

Size � L1 Cache L2 Cache L3 Cache Memory

2 relaxations combined

17 39.7 60.2 0.1 0.0 0.0

33 43.6 35.6 20.7 0.1 0.0

65 45.6 35.5 18.2 0.7 0.0

129 46.0 33.6 17.9 2.5 0.0

257 45.9 27.0 24.4 2.7 0.0

513 44.6 20.9 31.1 3.3 0.1

1025 40.9 18.2 28.7 10.4 1.8

2049 39.3 18.4 6.4 34.0 1.8

3 relaxations combined

17 28.2 71.3 0.3 0.2 0.0

33 40.9 34.8 24.3 0.1 0.0

65 44.7 34.3 20.5 0.5 0.0

129 47.5 31.2 19.3 2.0 0.0

257 48.4 24.8 24.3 2.4 0.0

513 48.0 20.2 26.8 4.9 0.1

1025 46.5 15.8 19.1 17.3 1.2

2049 45.5 16.6 0.2 36.4 1.2

4 relaxations combined

17 27.1 72.8 0.1 0.0 0.0

33 27.4 43.4 29.1 0.1 0.0

65 33.4 46.3 19.5 0.9 0.0

129 36.9 42.3 19.1 1.7 0.0

257 38.1 34.1 25.1 2.7 0.0

513 38.0 28.3 27.0 6.7 0.1

1025 36.9 24.9 19.7 17.6 0.9

2049 36.2 25.5 0.4 36.9 0.9

Table 5.10: Memory access behavior of skewed two–dimensional blocked red–black

Gauss–Seidel.
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Figure 5.13: Alpha 21164 L1 cache mapping for a 1025� 1025 grid.

fraction of the data for the 2049� 2049 grid. Consequently, a lage fraction of the data is

fetched from the relatively slow L3 cache.

Furthermore, the principle of the square blocked approach prevents the CPU from

keeping the directly reused data from the relaxation of a red node and the relaxation of

the black node directly below in a register since the red and black nodes are no longer

updated in pairs.

In the case of the skewed blocked approach, the utilization of the registers improved

slightly, however, the L1 and L2 cache utilization is worsened dramatically especially for

the larger grids. Most of the data has to be fetched from the L3 cache. If a 2 Mbyte L3

cache is used even the L3 cache is not able to keep the data and more than 20 per cent of

all array references are not cached and therefore lead to memory accesses [WKKR99].

The reason for this is a very high number of cross interference misses in the L1 cache.

A visualization with CVT [vdDTGK97] shows that throughout the whole run of the

skewed two–dimensional blocked red–black Gauss–Seidel only four cache lines of the

direct mapped L1 cache are used simultaneously. Surprisingly, even the L2 cache which

is three–way set associative in the case of the Compaq Alpha 21164 processor cannot

resolve the conflict misses.

A possible mapping of the nodes within a parallelogram of the skewed approach used

for a 1025� 1025 grid on the cache lines of the direct mapped Alpha 21164 L1 cache is

shown in Figure 5.13. All elements of the uppermost diagonal are mapped to the same

cache line (cache line number 1). Hence, the data of the uppermost diagonal is not reused

during the update of the second diagonal. Furthermore, the data needed for the update of

a single node is producing a conflict in the L1 cache. For example, when updating the red

node (7; 1), the nodes (7; 0), (8; 1), (7; 2), (6; 1), and (7; 1) are needed. Thus, accesses to

the nodes (7; 0) and (6; 1), (8; 1) and (7; 2), as well as (8; 1) and (7; 1) are causing conflict

misses.
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Figure 5.14: L1 miss rate for different padding sizes for 1025� 1025.

5.1.5 Array Padding

A common technique to reduce the number of conflict misses is array padding [RT98a,

RT98b]. In the case of the red–black Gauss–Seidel method the array padding technique

can be applied to two two–dimensional arrays (the unknowns u and the right–hand side

f of the equation). In general, array padding can be applied inbetween the two array

(inter array padding) as well as each of the array dimensions can be padded (intra array

padding).

The L1 data cache and L2 cache miss rates in per cent for a wide range of intra array

padding sizes for the skewed two–dimensional blocking approach applied to a 1025�1025
grid (B = 4) are shown in Figures 5.14 and 5.15.

If no padding is applied the miss rates for the L1 cache is extremely high. As soon

as a small padding for u or f is used the L1 miss rate drops significantly. Nevertheless,

good hit rates can only be achieved if padding for both arrays is applied simultaneously.

If equally sized padding for both arrays is used the L1 data cache miss rate is still signif-

icantly higher as illustrated by the diagonal in Figure 5.14. The reason for this is cross

interference between the two arrays. Cross interference is usually avoided by inter array

padding. The study, however, shows that inter array padding is not required for the red–

black Gauss–Seidel approach if two differently sized array paddings are used. In contrary

to the L1 cache the L2 cache is three–way set associative. Nevertheless, the miss rates are

very high if no padding is applied. The overall behavior for various padding sizes, how-

ever, is slightly different. For padding sizes which are bad for the L1 cache the L2 cache

is accessed more often than for good L1 padding sizes. Since the L2 can resolve many of

the conflicts which happen in the L1 cache a relatively high fraction of the accesses hit in
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Figure 5.15: L2 miss rate for different padding sizes for 1025� 1025.

the L2 cache. For the red–black Gauss–Seidel algorithm this is especially true if the same

padding size is used for both arrays.

The runtime performance of the skewed blocked red–black Gauss–Seidel algorithm

for a good L1 data cache padding size is summarized in Table 5.11. The performance

for all grid sizes except the smallest grid size increases. Especially the performance for

the large grid sizes improves by a factor of two to five depending on the grid size and

the number of blocked iterations. The skewed two–dimensional blocked algorithm now

easily outperforms the one–dimensional blocking technique. The analysis of the runtime

spent for execution and different kind of stalls shows that especially the data cache miss

stall time is reduced. In contrary to the version without padding, the L1 cache now is

efficiently used for all grid sizes (see Table 5.12). Thus, more than 80 per cent of the data

is fetched from registers and the L1 cache.

The array padding technique applied to the square blocking technique is able to im-

prove the performance of this approach as well. Figure 5.16 shows the MFLOPS of the

square blocked approach using various padding sizes for u and f . In contrary to the

skewed approach a relatively small padding is sufficient to avoid severe conflicts. The

runtime performance and memory access behavior after padding is summarized in Ta-

bles 5.13 and 5.14. The speedup for small grid sizes achieved with padding is not as

high as the speedup for the skewed approach. Nevertheless, for the larger grids and espe-

cially if many successive red–black Gauss–Seidel iterations are blocked, the technique is

able to accelerate the execution of the standard red–black Gauss–Seidel code after array

transpose by a remarkable factor of two to four. The performance of the square blocked

algorithm after padding is still dominated by data cache misses. In addition the DTB

misses, branch miss predictions, and register dependences, however, now have a severe
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Grid % of cycles used for

Size MFlops Exec Cache DTB Branch Depend Nops

2 relaxations combined

17 347.0 59.2 0.4 1.1 3.0 17.9 13.9

33 524.8 66.2 8.9 1.5 0.4 10.6 9.8

65 500.2 65.1 20.3 1.4 0.1 0.3 11.3

129 440.2 54.8 32.6 1.8 0.2 0.2 8.8

257 415.3 53.0 35.1 1.6 0.2 0.2 8.5

513 331.6 41.6 48.9 1.2 0.2 0.2 6.6

1025 190.8 26.4 65.9 0.5 0.0 0.0 6.0

2049 183.3 26.2 65.4 0.5 0.2 0.2 5.5

3 relaxations combined

17 353.9 41.8 0.9 1.9 3.0 43.0 1.8

33 497.2 49.1 0.6 0.6 2.5 38.6 0.7

65 487.7 44.5 3.0 0.2 0.9 44.2 0.0

129 430.6 51.9 29.9 1.4 0.4 2.7 9.3

257 433.4 51.8 32.7 1.3 0.2 1.6 9.4

513 355.3 42.9 42.5 0.8 0.1 0.6 9.1

1025 237.4 31.3 59.2 0.6 0.0 0.4 6.6

2049 231.6 32.4 56.2 0.6 0.0 0.4 7.2

4 relaxations combined

17 347.0 43.4 0.4 1.8 3.2 43.9 1.7

33 419.9 49.3 0.9 0.7 5.3 38.8 1.2

65 419.5 47.8 2.6 0.5 1.6 44.1 1.4

129 400.2 50.0 20.8 1.1 0.3 7.3 13.1

257 402.8 49.5 22.8 1.1 0.1 6.3 13.3

513 349.1 44.1 31.6 0.9 0.1 5.0 11.6

1025 267.6 35.3 46.6 0.9 0.1 3.5 10.1

2049 260.7 36.8 45.3 0.5 0.0 3.0 9.1

Table 5.11: Runtime behavior of skewed two–dimensional blocked red–black Gauss–

Seidel after array padding.



104 Cache Optimization Techniques for Red–black Gauss–Seidel

Grid % of all accesses which are satisfied by

Size � L1 Cache L2 Cache L3 Cache Memory

2 relaxations combined

17 36.3 59.5 4.2 0.0 0.0

33 44.7 50.7 4.5 0.1 0.0

65 48.4 43.7 7.3 0.7 0.0

129 47.5 43.0 6.9 2.6 0.0

257 45.2 44.6 7.6 2.6 0.0

513 44.1 45.1 7.2 3.1 0.5

1025 40.7 46.2 8.2 3.0 1.8

2049 39.2 48.3 7.3 3.5 1.8

3 relaxations combined

17 28.9 69.8 1.2 0.0 0.0

33 39.5 55.3 5.1 0.1 0.0

65 43.6 45.8 10.0 0.6 0.0

129 46.7 41.0 10.3 2.0 0.0

257 48.0 40.3 9.5 2.2 0.0

513 46.8 41.4 8.8 2.6 0.3

1025 46.2 42.6 7.7 2.3 1.2

2049 45.3 43.1 7.9 2.4 1.2

4 relaxations combined

17 26.1 72.7 1.2 0.0 0.0

33 28.2 66.4 5.3 0.1 0.0

65 34.3 55.7 9.1 0.9 0.0

129 37.5 51.7 9.0 1.9 0.0

257 37.8 52.8 7.0 2.3 0.0

513 38.4 52.7 6.2 2.4 0.3

1025 36.7 54.3 6.1 2.0 0.9

2049 35.9 55.2 6.0 1.9 0.9

Table 5.12: Memory access behavior of skewed two–dimensional blocked red–black

Gauss–Seidel after array padding.
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Grid % of cycles used for

Size MFlops Exec Cache DTB Branch Depend Nops

2 relaxations combined

16 107.2 45.0 0.1 3.2 5.7 39.1 2.0

32 110.5 45.3 0.3 3.2 4.5 40.8 2.2

64 110.2 43.4 1.6 3.5 4.0 41.6 2.2

128 104.8 42.4 5.6 3.4 3.8 40.1 2.1

256 99.2 39.7 12.0 5.4 3.8 33.6 2.0

512 85.0 35.6 18.5 7.8 3.0 30.3 0.4

1024 72.9 29.2 26.5 12.5 2.4 25.1 1.1

2048 65.2 27.6 26.0 15.5 4.5 22.4 1.7

3 relaxations combined

16 114.9 41.8 0.1 1.7 7.2 42.3 2.2

32 119.6 41.6 0.4 1.6 6.5 44.1 2.4

64 120.4 40.2 1.1 1.8 5.5 45.1 2.4

128 115.2 38.5 4.3 1.7 4.9 43.8 2.3

256 114.6 38.5 8.8 3.1 4.9 39.4 2.3

512 101.5 35.3 15.8 4.1 3.8 35.7 0.4

1024 90.1 30.0 23.9 5.9 4.0 30.4 1.2

2048 85.8 30.7 22.4 8.7 4.6 29.3 2.0

4 relaxations combined

16 190.3 55.2 0.3 1.6 5.2 26.4 5.5

32 237.7 63.9 1.3 2.3 3.7 16.0 6.8

64 255.0 69.2 3.2 3.4 2.4 8.3 8.2

128 220.1 60.7 13.5 8.1 1.6 3.7 7.3

256 225.3 59.0 20.6 2.7 0.9 1.7 7.5

512 228.7 60.6 22.7 3.3 1.1 0.9 6.0

1024 182.8 51.3 30.1 6.2 0.7 0.4 6.2

2048 167.6 49.4 28.0 10.7 0.7 0.5 6.8

Table 5.13: Runtime behavior of square two–dimensional blocked red–black Gauss–

Seidel after array padding.



106 Cache Optimization Techniques for Red–black Gauss–Seidel

Grid % of all accesses which are satisfied by

Size � L1 Cache L2 Cache L3 Cache Memory

2 relaxations combined

17 3.0 96.8 0.2 0.0 0.0

33 3.0 89.2 7.8 0.0 0.0

65 2.7 85.4 11.4 0.4 0.0

129 2.6 86.8 7.3 3.3 0.0

257 1.4 86.7 4.9 7.0 0.0

513 -0.3 88.2 5.8 5.6 0.7

1025 -3.4 90.6 3.9 6.9 1.9

2049 -4.5 91.0 4.4 7.2 1.9

3 relaxations combined

17 2.1 97.7 0.2 0.0 0.0

33 2.0 92.8 5.1 0.0 0.0

65 2.0 87.4 10.3 0.3 0.0

129 1.4 87.0 9.2 2.4 0.0

257 1.3 88.7 5.6 4.4 0.0

513 0.6 89.5 5.5 4.2 0.1

1025 -1.4 91.4 4.7 4.1 1.3

2049 -3.0 92.3 5.0 4.0 1.7

4 relaxations combined

17 1.0 98.6 0.3 0.0 0.0

33 -0.5 94.8 5.7 0.0 0.0

65 -2.1 90.6 11.2 0.3 0.0

129 -1.7 82.1 17.5 2.0 0.0

257 5.9 75.2 14.7 4.1 0.0

513 12.6 77.6 6.6 3.1 0.1

1025 9.3 81.2 5.9 2.7 1.0

2049 8.7 81.4 6.1 2.7 1.1

Table 5.14: Memory access behavior of square two–dimensional blocked red–black

Gauss–Seidel after array padding.
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Figure 5.16: MFLOPS for square two–dimensional blocked red–black Gauss–Seidel for

various padding sizes.

impact on the performance as well.

The presented experiments use an exhaustive search to find favorable padding sizes.

In general, however, this is not applicable in a compiler environment. The heuristics

developed by Tseng et al. [RT98a], for example, can be used to calculate padding sizes

within a compiler. Their IntraPad heuristics proved to find reasonable paddings for the

red–black Gauss–Seidel algorithm.

5.1.6 Summary of Performance Results

The runtime performance of all red–black Gauss–Seidel codes after applying the opti-

mization techniques on a Compaq PWS 500au is summarized in Figure 5.17. Although

the array transpose technique is one of the simplest techniques it increases the perfor-

mance for all grid sizes. However, the performance for the larger grids which don’t fit in

the L3 cache of the Compaq PWS 500au is still only about 60 MFLOPS. The fusion and

blocking techniques with three blocked iterations can further improve the performance for

all grid sizes. For the small grids, which fit in the L2 cache, the additional improvement

is only marginal. Nevertheless, the performance of 560 MFLOPS for a 65 � 65 grid is

very impressive. The greatest speedup is achieved for the grids which do no longer fit in

the L2 cache. For the 257� 257 grid the one–dimensional blocking technique achieves a

speedup of 3.8 compared to the standard red–black Gauss–Seidel version and a speedup
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Figure 5.17: MFLOPS for different red–black Gauss–Seidel variants on a Compaq PWS

500au.

of 2.0 compared to the version after array transpose. Although the blocking technique

is able to increase the performance of the algorithm for the very large grids slightly, the

performance is still far away from the achievable peak performance of one GFLOPS. The

skewed and square two–dimensional blocking techniques without array padding are not

performing satisfactorily. For the small grids and for the larger grids, the floating point

performance is equal or even worse than the performance of the standard implementation

after array transpose. The padded version of the skewed approach, however, achieves a

remarkable speedup especially for the large grids. Therefore, only the performance of the

skewed two–dimensional blocking technique after array padding performing four update

sweeps simultaneously is shown in Figure 5.17. For the larger grids the two–dimensional

blocking technique is able to sustain a performance of 260 MFLOPS. Compared to the

standard red–black Gauss–Seidel code this is a speedup of 12.8 and a speedup of 4.7 com-

pared to the code after array transpose. Note, that an improved MFLOPS rate is equivalent

to a similar speedup in runtime since the number of executed floating point operations is

not changed by the optimiaztion techniques.

In summary, the programmer should make sure that an appropriated data layout is

used. Thus, array transpose and array padding is recommended in the early optimiza-

tion phase. The fusion technique is useful when the data set size is relatively small, i.e.

the amount of cache misses is relatively small. The fusion technique will improve hit

rates with relatively low loop overhead. With growing grid size, the one– resp. two–

dimensional blocking technique should be used. The one–dimensional blocking tech-

nique is easier to apply and implies less loop overhead than the two–dimensional blocking

technique. Furthermore, the technique is less vulnerable to self interference. The two–

dimensional blocking technique, however, should be used especially for very large grids
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Grid Pentium 3 960 MHz Pentium 4 1.5 GHz

Size MFlops Speedup MFlops Speedup

17 165.7 201.3 1.2 142.8 205.3 1.4

33 175.4 222.1 1.3 134.6 202.5 1.5

65 396.5 447.8 1.1 331.8 628.2 1.9

129 104.9 385.0 3.7 327.1 565.6 1.7

257 73.3 302.1 4.1 294.6 542.9 1.9

513 71.2 291.4 4.1 312.4 518.2 1.7

1025 72.3 231.7 3.2 314.5 493.4 1.6

2049 70.6 216.3 3.1 307.5 437.8 1.4

Athlon (G75) 700 MHz Athlon (Tbird) 1.2 GHz

MFlops Speedup MFlops Speedup

17 251.0 383.0 1.5 401.2 627.5 1.6

33 261.3 431.4 1.7 425.5 692.1 1.6

65 474.7 504.0 1.1 774.1 802.8 1.0

129 333.7 499.3 1.5 434.6 739.2 1.7

257 111.5 396.5 3.6 103.1 490.8 4.8

513 100.8 325.1 3.2 101.1 483.4 4.8

1025 100.3 270.1 2.7 101.2 460.8 4.6

2049 92.3 231.5 2.6 91.5 271.2 3.0

Table 5.15: 5–point stencil red–black Gauss–Seidel performance on PCs with a 960 MHz

Intel Pentium 3, 1.5 GHz Intel Pentium 4, 700 MHz AMD Athlon (G75 core), resp. a

1.2 GHz AMD Athlon (Thunderbird core). The left MFLOPS column in each block

illustrates the standard red–black Gauss–Seidel performance whereas the right column

shows the highest achieved performance after applying the locality optimizations.

where a small amount of grid lines does no longer fit in the higher levels of the cache to

improve L1 and L2 cache hit rates. To ensure good hit rates, however, additional array

padding may be necessary

The applicability of the techniques described in this thesis is not limited to the ar-

chitecture of the Compaq PWS 500au. Remarkable speedups can also be obtained on

other workstations and PCs based on x86 compatible microprocessors. Table 5.16 and

Table 5.15 compare MFLOPS for a red–black Gauss–Seidel implementations after array

transpose with the best implementation obtained by applying data locality optimizations.

The red–black Gauss–Seidel implementations were executed on a Compaq PWS 500au

(based on a 500 MHz Alpha 21164), a Compaq XP1000 (based on a 500 MHz Alpha

21264), a SUN Ultra60 (based on a 295 MHz UltraSparcII), an SGI Origin 2000 node

(based on a 195 MHz R10000), a HP SPP2200 Convex Exampler node (based on a 200

MHz PA–8200), a HP N–Class node (based on a 440 MHz PA–8500), and Linux PCs

(based on a 960 MHz Intel Pentium 3 Coppermine, 1.5 GHz Intel Pentium 4, 700 MHz
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Grid Alpha 21164 Alpha 21264

Size MFlops Speedup MFlops Speedup

17 347.0 402.6 1.2 491.5 589.8 1.2

33 354.8 458.0 1.3 629.8 699.8 1.1

65 453.9 564.2 1.2 650.3 812.9 1.3

129 205.5 404.3 2.0 330.3 717.7 2.2

257 182.9 402.8 2.2 332.9 755.2 2.3

513 175.9 349.1 2.0 196.6 710.6 3.6

1025 58.8 267.6 4.6 119.6 415.9 3.5

2049 55.9 260.7 4.7 109.9 396.4 3.6

SUN UltraSparc II SGI R10000

MFlops Speedup MFlops Speedup

17 132.2 173.2 1.3 187.0 252.3 1.3

33 152.2 185.2 1.2 207.2 287.3 1.4

65 99.3 169.7 1.7 147.0 260.6 1.8

129 102.4 154.1 1.5 151.9 261.6 1.7

257 102.1 143.2 1.4 173.6 250.3 1.4

513 51.6 113.6 2.2 141.6 195.3 1.4

1025 45.6 113.4 2.5 66.9 163.2 2.4

2049 42.2 112.7 2.7 66.8 150.5 2.3

HP PA–8200 HP PA–8500

MFlops Speedup MFlops Speedup

17 210.7 280.9 1.3 491.5 737.3 1.5

33 286.3 349.9 1.2 629.8 787.3 1.3

65 361.3 427.8 1.2 812.9 1083.8 1.3

129 412.9 480.2 1.2 1101.1 1101.1 1.0

257 416.2 511.2 1.2 665.9 1107.6 1.7

513 52.2 245.7 4.7 107.8 552.7 5.1

1025 49.3 231.7 4.7 108.0 540.7 5.0

2049 43.8 225.6 5.1 104.8 543.2 5.2

Table 5.16: 5–point stencil red–black Gauss–Seidel performance on a Compaq PWS

500au (500 MHz A21164), a Compaq XP1000 (500 MHz A21264), a SUN Ultra60 (295

MHz UltraSparcII), an SGI Origin 2000 node (195 MHz R10000), a HP SPP2200 Con-

vex Exampler node (200 MHz PA–8200), and a HP N–Class node (440 MHz PA–8500).

The left MFLOPS column in each block illustrates the standard red–black Gauss–Seidel

performance whereas the right column shows the highest achieved performance after ap-

plying the locality optimizations.
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Figure 5.18: Data dependences in a 9–point stencil red–black Gauss–Seidel algorithm.

AMD Athlon (G75 core), and a 1.2 GHz AMD Athlon (Thunderbird core)).

The Compaq XP1000 delivers a peak performance of one GFLOPS as the Compaq

PWS 500au does. However, besides the addition of architectural improvements such

as out–of–order execution ability the computer manufacturer significantly improved the

memory throughput of the machine. Consequently, the improvement achieved by the data

locality optimizations is smaller for the newer machine. Both HP machines are equipped

with a single level of a large cache. In the case of the PA–8200 the cache is located off

chip whereas the PA–8500 is equipped with a large on–chip cache. That design implicates

that the cache optimization techniques for the small grid sizes have no significant impact

on the performance of the red–black Gauss–Seidel code. As soon as the data no longer fits

in the cache, however, the performance of the standard code (after array transpose) drops

dramatically. For the same grid sizes the optimized codes are able to sustain 220 MFLOPS

on a HP SPP2200 Convex Exampler node (PA–8200) and remarkable 540 MFLOPS on a

HP N–Class node (PA–8500).

The performance of the red–black Gauss–Seidel codes on the Linux PCs is competi-

tive with that of workstations. Thereby, two interesting facts arise. First, the Pentium 4

system is able to deliver a standard performance for the larger grids which is close to

or even higher than the optimized performance on several workstations. The reason for

this is that the Pentium 4 system uses RDRAM which allows a higher main memory

bandwidth and lower latency than older memory system such as built in the three other

Linux PCs. The performance optimizations are able to further improve the performance,

although the improvement is much smaller then the improvement achieved for the work-

stations or other PCs. Second, both Athlon based systems achieve more or less the same

MFLOPS rates for the standard red–black Gauss–Seidel code (after array transpose) al-

though there is a big difference in peak performance (1.4 GFLOPS to 2.4 GFLOPS). Both

machines are equipped with the same memory system. Thus, the fact that the performance

for the grids larger then 129� 129 is similar on both machines proves that the runtime is

determined by the main memory speed.

5.2 Nine Point Stencil Discretization

All techniques described above were explained while assuming a 5–point stencil dis-

cretization. Using a 9–point stencil discretization (see Figure 5.18) four additional data
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Figure 5.19: Square two–dimensional blocking violates data dependences in the 9–point

stencil case.

dependences to the neighboring nodes in the north west, north east, south west, and south

east must be obeyed. Red points resp. black points are not independent of each other any-

more and have to be updated in certain order. Since the optimization techniques described

in this thesis produce bitwise identical results these additional data dependences must be

obeyed as well.

The optimization techniques fusion and one–dimensional blocking assume that if the

grid is updated from bottom to top a node in row i� 1 can be updated as soon as the node

directly above it in line i is up to date. This assumption is sufficient to obey the addi-

tional data dependences of the 9–point stencil discretization. Thus, the fusion and one–

dimensional blocking technique can be applied to a red–black Gauss–Seidel smoother

based on 9–point discretization without any modifications.

However, matters are more complicated for the two–dimensional blocking techniques.

If the square two–dimensional blocking technique is used to relax a grid as shown in Fig-

ure 5.19 the update of the first tile in the lower left corner already violates data depen-

dences. The first update of the red node (2; 4) is not allowed since the red node (1; 5)
hasn’t been relaxed so far. If the dependence is ignored by the square two–dimensional

blocking technique the value of the node (2; 4)will be incorrect after relaxation and conse-

quently the values of other nodes will be incorrect as well. If the algorithm is modified so

that only nodes are updated which won’t violate a data dependence the nodes are updated

on diagonals in a fashion similar to the skewed two–dimensional blocking approach.

The data dependences within the parallelogram used by the skewed two–dimensional

blocking technique combining two relaxations (B = 2) for a 5–point stencil discretization

are shown in Figure 5.20 on the left side. Each arrow represents a dependence. For

example, node number 4 must be updated before node number 7 or 8 can be updated.

Whereas node number 3 and 4 can be updated in an arbitrary order. Hence, there are many
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Figure 5.20: 5–point stencil and 9–point stencil data dependences within the skewed

block.

possible update orders. E.g. updating all red nodes in arbitrary order in the uppermost

diagonal and then updating all black nodes in the diagonal below and so on. If a 9–point

stencil discretization is used (Figure 5.20 on the right side) the programmer must take

care of an additional data dependence of a node to its neighboring node in the north east.

For example, node 1 can be relaxed as soon as node 2 has been relaxed. Hence, the nodes

on a diagonal can only be updated from bottom to top.

The performance of a standard red–black Gauss–Seidel implementation based on a

9–point discretization of the differential operator after array transpose compared to the

best possible performance obtained by the previously described optimizations on several

workstations and Linux PCs is shown in Table 5.17 and Table 5.184. For most work-

stations the standard performance for the 9–point stencil code is higher than that for the

5–point stencil codes. Only on the Linux based machines the 9–point stencil case per-

forms significantly worse. The data locality optimization techniques are able to speed up

the computation on all machines. The achieved floating point performance after applying

the optimizations is more or less equal to the performance in the 5–point stencil case.

Consequently, the performance gain in the 9–point stencil case is not as high as in the

5–point stencil case.

4The 9–point stencil benchmark results for the HP PA–8200 and HP PA–8500 have been omitted since

the results are not representive due to compiler instabilities during the optimization phase of the program

compilation.
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Grid Alpha A21164 Alpha 21264

Size MFlops Speedup MFlops Speedup

17 408.34 408.34 1.0 530.8 530.8 1.0

33 472.35 515.29 1.1 629.8 629.8 1.0

65 585.25 650.28 1.1 688.5 731.6 1.1

129 330.32 540.26 1.6 457.4 724.7 1.6

257 323.93 534.02 1.6 461.0 747.6 1.6

513 113.51 335.35 3.0 273.5 663.3 2.4

1025 103.04 266.96 2.6 188.4 463.7 2.5

2049 90.06 239.99 2.7 177.5 388.2 2.2

SUN UltraSparc II SGI R10000

MFlops Speedup MFlops Speedup

17 120.65 163.34 1.4 217.56 279.57 1.3

33 138.25 175.30 1.3 230.41 292.47 1.3

65 109.39 165.62 1.5 198.06 290.56 1.5

129 112.19 145.84 1.3 221.03 289.47 1.3

257 112.01 133.17 1.2 195.52 282.35 1.4

513 69.55 119.68 1.7 162.16 251.87 1.6

1025 55.30 119.79 2.1 98.10 221.03 2.3

2049 49.66 118.64 2.4 90.74 216.73 2.4

Table 5.17: 9–point stencil red–black Gauss–Seidel performance on a Compaq PWS

500au (500 MHz A21164), a Compaq XP1000 (500 MHz A21264), a SUN Ultra60 (295

MHz UltraSparcII), an SGI Origin 2000 node (195 MHz R10000), a HP SPP2200 Con-

vex Exampler node (200 MHz PA–8200), and a HP N–Class node (440 MHz PA–8500).

The left MFLOPS column in each block illustrates the standard red–black Gauss–Seidel

performance whereas the right column shows the highest achieved performance after ap-

plying the locality optimizations.
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Grid Pentium 3 960 MHz Pentium 4 1.5 GHz

Size MFlops Speedup MFlops Speedup

17 98.5 112.3 1.1 99.3 162.0 1.6

33 102.6 117.6 1.1 98.7 159.8 1.6

65 219.0 275.5 1.3 406.4 427.8 1.1

129 99.0 203.9 2.1 390.9 410.3 1.0

257 63.8 191.8 3.0 354.2 396.3 1.1

513 71.7 190.6 2.7 363.3 397.9 1.1

1025 70.5 159.6 2.3 362.0 394.0 1.1

2049 68.2 121.1 1.8 228.6 370.4 1.6

Athlon (G75) 700 MHz Athlon (Tbird) 1.2 GHz

MFlops Speedup MFlops Speedup

17 186.1 209.9 1.1 299.4 335.1 1.1

33 195.0 254.0 1.3 310.2 409.0 1.3

65 285.2 293.4 1.0 454.7 478.1 1.1

129 233.4 281.0 1.2 207.8 402.6 1.9

257 78.4 242.5 3.1 75.8 331.9 4.4

513 69.1 212.8 3.1 74.9 305.6 4.1

1025 69.0 189.6 2.7 74.3 292.5 3.9

2049 61.5 172.7 2.8 73.2 201.5 2.8

Table 5.18: 9–point stencil red–black Gauss–Seidel performance on PCs with a 960 MHz

Intel Pentium 3, 1.5 GHz Intel Pentium 4, 700 MHz AMD Athlon (G75 core), resp. a

1.2 GHz AMD Athlon (Thunderbird core). The left MFLOPS column in each block

illustrates the standard red–black Gauss–Seidel performance whereas the right column

shows the highest achieved performance after applying the locality optimizations.
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Figure 5.21: 7–point stencil discretization

5.3 Optimizations for Three–dimensional Methods

Physical phenomena simulated with multigrid methods are often of three–dimensional

nature and a two–dimensional mapping of the problem is not always useful. Solving

three–dimensional problems with similar resolution requires much bigger data structures.

A two–dimensional problem represented by a 1025� 1025 grid will consume 8 Mbyte of

memory for the solution vector of the system of linear equations, for example. A three–

dimensional problem represented by a grid with similar resolution already will consume

8 Gbyte of storage space. Furthermore, more storage space will be required for the ma-

trix coefficients, the right–hand side of the equation, and coarser grids in the multigrid

context. Thus, the storage requirements by far exceed the size of caches in modern mi-

croprocessors even for relatively small three–dimensional grids.

The reuse of data in the cache is further complicated by the fact that the accesses to

the same data are usually too far apart in time. Consequently, data elements have to be

read from main memory several times during one sweep through the grid. The problem

is more grave in the 3D case than in the 2D case as will be explained with the following

3D example. Consider the 7–point stencil placed over a node of a three dimensional grid

in Figure 5.21. For the relaxation of the node in the center of the stencil data from three

different planes of the grid is required. Assume that the relaxation is performed along one

horizontal plane in the grid before nodes in other planes are relaxed.

The situation within the middle plane illustrated in Figure 5.21 is similar to the sit-

uation in the two–dimensional case. A 5–point stencil is moved through the plane and

as explained in Section 3.3 some data locality will be exploited even if no cache opti-

mizations are applied. The data within the upper plain, however, is reused as soon as the

algorithm finished updating all nodes within the middle plain. Thus, the data will only be

cached if the whole data of three planes fit in the cache simultaneously. For reasonably

large grids this requirement will not be fulfilled. Hence, the data of the upper plain will

not be reused and have to be reloaded from main memory once the algorithm relaxes the
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Figure 5.22: Array padding for three–dimensional grids.

nodes within that plain. Similarly, the data will be reloaded a third time once the nodes

within the plain directly above the upper plain are relaxed. Furthermore, the data of dif-

ferent plains is widely spread over memory and can cause conflicts in the data translation

look–aside buffer. Interchanging the loop order or transposing the data structure will not

ease the situation since the new order will cause conflicts in vertical plains.

The solution for both problems are loop blocking techniques. Similar to the two–

dimensional case the data dependences have to be carefully observed. The square two–

dimensional blocking approach can be adopted to the three–dimensional case as follows.

A relatively small cuboid of nodes is moved through the original grid, starting in its

front bottom left corner. First, all red nodes inside the current position of the cuboid

have to be relaxed. Then, it is re–positioned within the original grid so that it is moved

one step towards the left, one step towards the front, and one step towards the bottom

boundary plane of the grid. Of course, the cuboid cannot exceed the boundary planes

of the grid. Therefore, a special handling of grid planes located close to the boundaries

of the original grid structure needs to be implemented. After re–positioning the cuboid,

the black points inside its new position can be updated, before the cuboid is again moved

on to its next position. If several red–black Gauss–Seidel iterations are to be blocked,

the next position is obtained by moving the cuboid once again one plain in each space

dimension. Finally, as soon as all red–black Gauss–Seidel iterations have be processed

with the cuboid, the subsequent position of the cuboid is adjacent to the position it had

before the re–positioning.

However, this technique by itself will not lead to significant speedups on most modern

microprocessors. Similar to the two–dimensional case, interfering data within the blocks

can produce a high amount of conflict misses which easily overcome the performance

improvement by the tiling. For strategies how to automatically choose good tile and

padding sizes for three–dimensional multigrid codes the reader is refered to the work

done be Tseng et al. [RT00] which follows the work presented in this thesis.
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Figure 5.23: MFLOPS for a 3D red–black Gauss–Seidel algorithm on a Compaq PWS

500au and a Compaq XP1000.

A possible array padding technique in the three–dimensional case is illustrated in

Figure 5.22. First, padding in i–direction is introduced in order to avoid cache conflict

misses caused by grid points which are adjacent in dimension j. Note, that this is a sim-

ilar padding as in the two–dimensional case. Second, another padding is added between

neighboring planes of the grid. This kind of padding is illustrated by the box between

the two planes in Figure 5.22. The purpose of the second padding is to avoid conflicting

nodes adjacent in z direction.

A standard array padding will add an inter plane padding by extending the j dimension

of the array. This will add additional rows to each plane. The size of the inter plane

padding is then equal to a multiple of the size of a grid row. In the multigrid context

the size of the new padding will likely be a multiple of a large power of two, so that the

introduced padding will avoid non or at least not all conflicts between planes. Therefore,

a non–standard array padding is required which adds a padding with a size independent

of the size of a grid row. Unfortunately, most languages will not support this kind of array

index calculation, so that compiler support or a hand coded array linearization is required.

As an example the speedups for a three–dimensional red–black Gauss–Seidel code

achieved by applying the blocking and padding techniques described above on a Compaq

PWS 500au and Compaq XP1000 are shown in Figure 5.23.

5.4 Problems with Variable Coefficients

This section summarizes the work done by Pfänder [Pfä00] and Kowarschik [Kow01].

Their research is based on the optimization techniques described in this thesis and extends

them to variable coefficient problems. The focus of their work is on appropriate data
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Figure 5.24: Equation–oriented storage scheme.

layout strategies to avoid conflict misses and to maximize spatial locality.

The main difference of constant and variable coefficient problems can be seen by

means of the equation of a single grid node. If a 5–point discretization of the differential

operator is used the equation for a single inner grid point is:

soi � usoi + wei � uwei + ei � ui + eai � ueai
+ noi � unoi = fi: (5.1)

In the case of constant coefficient problems each coefficient soi, wei, ei, eai, resp.

noi will have a single value for all grid points. Thus, an iterative method needs to store

only five constant values besides the unknown vector u and the right–hand side of the

equation f .

For variable coefficient problems five values must be stored for each grid point. Hence,

the storage space required for the coefficients outnumbers the storage requirement for u
and f . Kowarschik and Pfänder introduced several possible data layouts for u, f and the

coefficients. Among them:

� Equation–oriented storage scheme:

The data value of a grid point and the appendant coefficients of the equation are

stored adjacently as shown in Figure 5.24.

� Band–wise storage scheme:

The unknowns u and the right–hand side of the equation f are stored in separate

arrays in memory. Furthermore, the coefficients for each orientation are stored in a

separate array. The data layout is illustrated in Figure 5.25.

� Access–oriented storage scheme:

The vector u is stored in a separate array. Then, for each grid point the right–hand

side f and the five corresponding coefficients are stored adjacently as illustrated in

Figure 5.26.

The experiments of Kowarschik and Pfänder showed that the equation–oriented stor-

age scheme does not yield good performance for multigrid methods. The reason for this

is an inherent inefficiency of the data layout. Whenever a node i is relaxed the current

approximations of its four neighboring nodes are required. The equation–oriented storage

scheme stores the value of a node, the right–hand side, and the coefficients of that node
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Figure 5.26: Access–oriented storage scheme.

adjacent to each other. Thus, if the value of a node is loaded these values will be loaded

into cache as well. Since for the update of the node i these values are not immediately

needed bandwidth and cache storage is wasted.

Better performance can be achieved with the band–wise and access–oriented storage

scheme. It turned out, however, that the band–wise storage scheme is very vulnerable to

array interference. Hence, on many architectures padding of the arrays is indispensable.

Contrary, array padding does not affect the performance of the access oriented scheme

since the access–oriented storage scheme can be derived from the band–wise storage

scheme when the arrays for f; soi; eai; wei; and noi are merged. Thus, conflict misses

are already avoided by the array merging technique. The access–oriented data layout ag-

glomerates the right–hand side of the equation for a node and its appendant coefficients

in memory. Thus, all values required for the update of a node except the unknowns are

stored close together and will jointly be loaded into cache.

Execution times of the band–wise and access–oriented storage scheme used in a multi-

grid code written in C are shown in Figure 5.27. The code executed ten V(2,2) cycles

starting on a 1025� 1025 grid5.

Kowarschik and Pfänder also demonstrated that the fusion, one–dimensional, and

two–dimensional blocking (square blocked approach) developped in this thesis can be

applied to variable coefficient multigrid codes. In the case of variable coefficients a per-

formance improvement by a factor of two to three was achieved.

5The experiment was performed on a Compaq XP1000 (Alpha 21264, 500 MHz, Compaq cc V5.9),

Compaq PWS 500au (Alpha 21164, 500 MHz, Compaq cc V5.6), an AMD Athlon based PC (700 MHz,

gcc), an Intel Pentium 2 based PC (350 MHz, gcc), and an Intel Celeron based PC (400 MHz, gcc).
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Figure 5.27: CPU times for the multigrid codes based on different data layouts with and

without array padding.

5.5 Summary

Standard data locality optimizations cannot directly be applied to stencil based iterative

methods since they would violate data dependences. In this chapter, new data locality

optimizations have been propsed by means of the red–black Gauss–Seidel method which

can be applied to improve the performance of iterative methods. The new data locality

optimizations include the data access transformations fusion, one–, and two–dimensional

blocking. Furthermore, the application and impact of data layout transformations like

array transpose, array padding, and array merging has been demonstrated.

The effect of the optimizations is pointed out with detailed runtime and memory ac-

cess behavior analysis on a Compaq PWS 500au. Furthermore, the data locality properties

were examined with a focus on aspects involved with the multilevel nature of the memory

hierarchy.

The performance of a two–dimensional red–black Gauss–Seidel code for constant

coefficient problems based on a 5–point discretization of the differential operator can be

improved for all grid sizes. For the small grid sizes a performance of about 40 per cent of

the peak performance of a Compaq PWS 500au can be achieved. For larger grids which

no longer fit in any data cache a performance of about 25 per cent of the peak performance

of a Compaq PWS 500au can be achieved. This equals a speedup of 12.8 compared to a

straightforward red–black Gauss–Seidel implementation and a speedup of 4.7 compared

to a code after array transpose. Comparable speedups have been demonstrated on other

machines as well.

The performance improvement is mainly due to data access transformations. How-

ever, the two–dimensional blocking techniques tend to suffer from cache–interference

phenomena. The impact of the phenomena is especially crucial for multigrid methods

which use standard grid coarsening, since they usually use grid sizes which are multiples
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of large powers of two. In that case adequate array padding is very often able to resolve

most conflicts.

The focus of this chapter is on two–dimensional red–black Gauss–Seidel codes on

structured grids with constant coefficients. The data locality optimizations described for

this restricted case can be applied in the same way to solvers of three–dimensional prob-

lems and solvers for variable coefficients. However, some additional issues arise. Three–

dimensional problems imply larger data structures and the data structures inherently suf-

fer from cache–interference. Thus, blocking techniques are only effective if sophisticated

array padding techniques are applied. Solvers for variable coefficients imply additional

data structures which introduce a higher potential of cache–interference among them-

selves. Thus, sophisticated data layout techniques have to be applied in this case as well

to sustain a high performance.



Chapter 6

DiMEPACK: A Cache–Optimized

Multigrid Library

In order to demonstrate the applicability of the new data locality optimization techniques

described in the previous chapter the optimized red–black Gauss–Seidel smoothers have

been integrated in the DiMEPACK multigrid library [KKRW01, KW01].

DiMEPACK is the result of a joint effort of the Lehrstuhl für Informatik 10, Univer-

sity Erlangen–Nuremberg, Germany, and the Lehrstuhl für Rechnertechnik und Rechner-

organisation (LRR–TUM), Technische Universität München, Germany. It provides a

comfortable C++ user interface which comprises data types for grid functions, opera-

tors, multigrid routines, etc. The computational intensive parts such as the smoother and

inter–grid transfer operations have been developed as part of this thesis and build the core

routines of the library.

The core routines have been implemented in Fortran77 and utilize the data locality

optimizations described in the previous chapter, arithmetic optimizations, and new local-

ity improved inter–grid transfer operations which will be described in Section 6.3.2. In

order to reduce the amount of conflict misses various array padding heuristics have been

integrated within a C++ padding library which is used by DiMEPACK.

DiMEPACK is a C++ library of standard and cache–optimized multigrid implemen-

tations for the numerical solution of elliptic partial differential equations (PDEs) in two–

dimensions. DiMEPACK1 can handle constant–coefficient problems on rectangular do-

mains. An overview of the DiMEPACK library is illustrated in Figure 6.1. The parts of

the library which are dyed grey, are implemented as part of this thesis and utilize the data

locality optimization techniques.

In the following, the functionality of DiMEPACK, arithmetic optimizations, data lo-

cality optimizations for inter–grid transfer operations, and the C++ array padding library

utilized in DiMEPACK will be described.

1DiMEPACK was developed as part of the DiME project (Data local iterative MEthods). The DiME

project was funded in part by the German Science Foundation (Deutsche Forschungsgemeinschaft), re-

search grants Ru 422/7–1,2,3. The library was named after the common practice to add the ending PACK

to the names of numerical libraries.
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Figure 6.1: DiMEPACK library overview

6.1 Functionality of DiMEPACK

This section only gives a brief introduction to the functionality of DiMEPACK. For a

more detailed description see the DiMEPACK User Manual [KKRW01].

DiMEPACK implements both V–cycles and full multigrid (FMG, nested iteration)

based on a coarse–grid correction scheme. Full–weighting as well as half–weighting are

implemented as restriction operators. The prolongation of the coarse–grid corrections

is done using bilinear interpolation. DiMEPACK integrates the optimized Gauss–Seidel

resp. SOR smoothers based on a red–black ordering of the unknowns which have been

developed in Chapter 5.

DiMEPACK can handle constant–coefficient problems based on discretizations us-

ing 5–point or 9–point stencils. DiMEPACK is applicable to problems on rectangular

domains where different mesh widths in both space dimensions are permitted. It can han-

dle bothDirichlet and Neumann boundary conditions. Equations for Neumann boundary

nodes are obtained by introducing second–order central difference formulae for approxi-

mating the external normal derivatives. The arrays containing the boundary data have to

be passed as parameters to the library functions.

The user may specify the total number of grid levels to be used. The linear systems

on the coarsest grid are solved using LAPACK library routines [ABB+99]. For this pur-

pose the corresponding matrix is split into two triangular factors in the beginning of the

computation. If this matrix is symmetric and positive definite, a Cholesky factorization

is computed. Otherwise an LU factorization is determined. In the course of the iterative

process the coarsest systems are then solved using forward–backward substitution steps.

Various stopping criteria for the multigrid iterations have been implemented which can

be specified by the user. In general, the computation stops as soon as either a maximum

number of multigrid cycles have been performed or as soon as the discrete L2 norm or the

maximum norm of the residual has dropped below a prescribed threshold value.

Before the installation of the DiMEPACK library the user may set an environment
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variable in order to specify either single precision or double precision as the type of

floating–point representation to be used. The choice of single precision arithmetic can

significantly speed up code execution. Furthermore, the user may activate or deactivate

all data locality optimizations at installation time. Thus, DiMEPACK can be used as stan-

dard or locality optimized multigrid library. Once DiMEPACK is installed it can be used

like any C++ library. Subroutines which implement appropriate arithmetic resp. data lo-

cality optimizations are chosen according to the input parameters at runtime without the

knowledge of the user of the library.

6.2 Arithmetic Optimizations

Arithmetic optimizations do not aim at enhancing the cache performance, but at minimiz-

ing the number of floating–point operations to be executed, without losing the identity of

the numerical results2. The DiMEPACK library selects specialized Fortran77 subroutines

at runtime according to the specified input parameters. The subroutines are automatically

generated at installation time by a macro processor mechanism from a common code set.

The following arithmetic optimizations are implemented in DiMEPACK:

� DiMEPACK respects that, if both a 5–point stencil and a Gauss–Seidel smoother

are used, the residuals vanish at the black grid nodes. This drastically simplifies the

implementation of the restriction operators saving both floating point instructions

and load operations.

� If the problem is homogeneous, i.e. if the right–hand side of the linear system cor-

responding to the finest grid equals 0, DiMEPACK uses dedicated smoothing func-

tions in order to avoid unnecessary memory accesses.

� In order to save multiply operations, both the relaxation parameter of the smoothing

routine (if different from 1) and the diagonal entries of the matrices are respected

during a preprocessing step for the finest grid and in the course of the residual

restrictions for the coarser grids, respectively.

� DiMEPACK saves multiply operations by factoring out identical stencil coefficients

whenever possible.

� If the matrix to be factorized on the coarsest grid is symmetric and positive definite,

the Cholesky’s method is applied instead of computing an LU decomposition. This

approximately saves 50 per cent of the corresponding floating–point operations.

2Marginal differences in the numerical results may occur due to a reordering of the arithmetic instruc-

tions by the compiler. Note that certain arithmetic rules, like for example the law of associativity, do not

hold for finite–precision floating–point arithmetic.
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6.3 Data Access Transformations

The DiMEPACK library includes a standard multigrid implementation as well as cache–

optimized multigrid implementations. Data locality optimizations have been applied to

the red–black Gauss–Seidel smoother as well as to the inter–grid transfer operations. The

user may specify at installation time whether cache optimized or non–optimized routines

should be used.

6.3.1 Smoother Optimizations

The most time consuming part in a multigrid method is the smoother. To guarantee high

performance DiMEPACK includes cache optimized red–black Gauss–Seidel smoothers

written in Fortran77 which can handle constant–coefficient problems based on discretiza-

tions using 5–point or 9–point stencils. The smoothers described in Chapter 5 are ex-

tended to handle arbitrary rectangular domains and to allow Dirichlet as well as Neumann

boundary conditions. The implemented optimization techniques include the fusion, one–

dimensional blocking, and two–dimensional blocking (based on the skewed approach)

techniques. DiMEPACK automatically selects an appropriate red–black Gauss–Seidel

variant at runtime according to the grid size and basic machine parameters like cache

sizes.

6.3.2 Inter–Grid Transfer Optimizations

Within a multigrid algorithm the following operations are performed:

� Pre–smoothing

� Residual calculation and restriction

� Interpolation

� Post–smoothing

� Direct solver

The direct solver is only applied to the problems on the coarsest grid. The coarsest

grid in the multigrid context is usually small enough to fit in the L1 or L2 cache. Hence,

the direct solver is not discussed in this thesis.

The operations performed in a multigrid context can be divided into pre–coarse grid

and post–coarse grid operations as illustrated in Figure 6.2. Pre–coarse grid operations

include all operations which are performed before the algorithm proceeds to the next

coarser grid whereas the post–coarse grid operations include the operations which are

performed after the correction is determined with the coarser grids.

The pre–smoothing, residual calculation and restriction operation are considered pre–

coarse grid operations. After the multigrid method performed a smoothing phase on the
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Figure 6.2: Pre– and post–coarse grid operations.

grid and the residuals for all grid points have been calculated, an inter–grid transfer oper-

ation is required to transfer the residuals to the next coarser grid. DiMEPACK provides

half injection and full–weighting as restriction operations implemented as Fortran77 sub-

routine. To save an additional global sweep through the finer grid the residual calculation

and restriction operation is combined.

Post–coarse grid operations include the inter–grid transfer operation interpolation

which propagates the correction of the current approximation to the next finer grid and

eventually post-smoothing. DiMEPACK only provides a bilinear interpolation imple-

mented as Fortran77 subroutines. Although post–smoothing is not mandatory usually at

least a small number of post–smoothing steps are performed after applying the correction

to smooth the new approximation on the finer grid.

The pre- and post-smoothing operations perform independently global sweeps through

the grid. Similar, the inter–grid transfer operations involve global sweeps through the fine

grid data structure. In contrary to the (non cache–optimized) smoother each inter–grid

transfer operation, however, only involves a single sweep through the grid. Thus, data

locality optimizations considered for an inter–grid transfer operation individually will

only exploit spatial locality.

Nevertheless, there is some potential to improve data locality. All pre–coarse grid

resp. all post–coarse grid operations perform individually global sweeps through the same

grid. If the grid and the next coarser grid in the case of the pre–coarse grid operations

resp. the next finer grid in the case of the post–coarse grid operations do not fit in the

cache the data which was loaded into the cache in the process of one operation will not be
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Figure 6.3: Data dependences in pre–coarse grid operations.

reused by the global sweep through the data structure by the following operation. Thus,

combining all pre–coarse grid resp. all post–coarse grid operations so that only a single

sweep through the grid is performed for each improves data locality. Of course this must

be done carefully, so that no data dependences of the underlying algorithm are violated.

DiMEPACK implements melted pre– and post–coarse grid operations for all opti-

mized red–black Gauss–Seidel variants. How the pre– resp. post–coarse grid operations

can be combined is explained in the following.

Pre–Coarse Grid Operations

The first pre–coarse grid operation is the smoothing step which includes one or more

iterations of the red–black Gauss–Seidel algorithm. After that the residuals are calculated

for all nodes. Note, that if a 5–point stencil and the Gauss–Seidel smoother is used the

residuals at the black points are guaranteed to be equal to zero. Thus, only the residuals

at the red grid points must be calculated.

If a 5–point stencil is assumed the residual calculation of any red node requires that all

neighboring black nodes are fully relaxed. Consider the red node in row i� 1 of the grid

part illustrated in Figure 6.3. Assume that each grid point is relaxed exactly once then

all neighboring black points will be up to date as soon as the black node in row i directly

above the examined red node is up to date. The black node in turn will be fully relaxed

as soon as the red node in row i + 1 directly above it is fully relaxed. Thus, the residual

calculation can be handled like an additional red–black Gauss–Seidel iteration.

Once a residual is calculated the contribution of that node can be propagated to the

corresponding coarse grid point. The handling of the grid transfer involves a minor coding

difficulty since depending on the restriction operation not all fine grid points contribute

to the right–hand side of the equation on the next coarser grid. For example, the half–

injection operation only uses the residuals of red points on even grid lines (provided the

residual of all black nodes is zero).

In the case of a 9–point stencil discretization all neighboring red points must be fully

relaxed as well besides the black points. Similarly, this will be true once the red node in
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Figure 6.4: Data propagation of the binlinear interpolation.

row i + 1 directly above the red node in row i� 1 is fully relaxed. Thus, the 5–point and

9–point stencil case can be handled equally.

Post–Coarse Grid Operations

The first post–coarse grid operation is the interpolation followed by optional post–smooth-

ing. The correction which is stored in a coarse grid point (i; j)oarse located in the interior

of the grid is propagated to the fine grid point (2 � i; 2 � j)fine which is directly above

it and to the eight neighboring fine grid nodes as illustrated in Figure 6.4. In the case

of Neumann boundaries, for a coarse grid point (i; j)oarse located on a boundary the

correction is propagated to the fine grid boundary point (2 � i; 2 � j)fine directly above

it, the neighboring fine grid boundary points, and to the neighboring inner grid points.

Hence, fine grid nodes in the interior of the grid like the red node in the middle of row

i + 1 in Figure 6.4 receive data from four coarse grid points represented in the Figure by

the thick circle around the fine grid points directly above them.

If a discretization based on a 5–point stencil of the differential operator is used a node

can be relaxed as soon as coarse grid data has been applied by the interpolation subroutine

to the node itself and its four neighboring nodes. Consider one of the red nodes in row

i illustrated in Figure 6.4. The red node can be relaxed as soon as the nodes up to the

black node directly above the red node have received the correction from the coarse gird

points. In the case of a 9–point stencil, four additional points must receive their coarse

grid corrections. Again the red node in row i can be relaxed as soon as all nodes up to

the red node directly north east of it received the coarse grid data. Thus, if both cases are

combined the relaxation of a red node in row i is must be preceeded by the interpolation

of the black node in row i + 1 directly above it and the interpolation of the red node to

the northeast of it. If all red nodes of the grid are processed in that way the black nodes

can be relaxed without further interpolation. Similarly to the red–black Gauss–Seidel

optimizations, however, the boundaries of the grid must be treated separately.
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6.4 Data Layout Transformations

As demonstrated in Chapter 5 the blocked red–black Gauss–Seidel implementations suf-

fer from cache–interference. Array padding proved to be able to reduce the number

of conflict misses dramatically on cache–based architectures. The reduction of conflict

misses, however, depends on a proper selection of the padding size. An exhaustive search

for a decent padding might be applicable if a program is fine tuned for a certain architec-

ture, however, for a library like DiMEPACK or a compiler this approach is not applicable.

Tseng et al. [RT98a, RT98b] introduced several padding heuristics which can be used

in a compiler to identify bad array layouts. The heuristics use information such as array

descriptions, cache size, cache line size, and in some cases information about array refer-

ences. Once a bad array layout is identified by the heuristics the compiler applies array

padding, i.e. the size if the array is changed, and heuristics are used again to check the

new array layout. This process is repeated until a good array padding size is found. The

following intra and inter array padding heuristics have been implemented in a C++ class

library from the descriptions published in [RT98a, RT98b] as part of this thesis:

� Linpad1

� Linpad2

� IntraPadLite

� IntraPad

� InterPadLite

� InterPad

LinPad1, LinPad 2, IntraPadLite, and IntraPad are used for intra array padding. Con-

trary, InterPadLite and InterPad are used for inter array padding. For multigrid methods

intra array padding is sufficient if the sizes of the paddings for the different arrays are

ensured to be different. Therefore, the explanation of the heuristics is restricted to the

intra array padding heuristics used within DiMEPACK.

LinPad1 and LinPad2 are very simple heuristics which only require information about

the array, cache size (Cs), and cache line size (Ls) to determine whether an array size is

likely to produce self interference misses. In principle, they avoid column sizes (Cols)
which have a large power of two as a factor. LinPad1 assumes that array padding is

necessary if (j �Cols mod Cs) < 0 for a small j because only the first Cs=j multiplies of

Cols will be mapped to distinct locations in the cache. The LinPad2 heuristics assumes

that array padding is necessary if (j � Cols mod Cs) < Ls for a small j. Both heuristics

can be applied even if no information about the program behavior is available. However,

they are typically only able to identify pathological cases.

Like the LinPad heuristics IntraPadLite only requires information about the size of the

array and the cache size to determine whether an array size causes conflict misses. The
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accuracy should therefore be similar to LinPad1 and LinPad2. IntraPadLite rejects the

size of a two–dimensional array if (Cols mod Cs) < M or (2 � Cols mod Cs) < M . M
is the minimum distance of separation between nearby columns which should be ensured

by the heuristics. Tseng et al. stated that M = 4 should be sufficient in most cases.

A more sophisticated padding heuristics is IntraPad. In addition to the array and

cache information it also utilizes information about the array references within a loop nest.

Besides severe interference which is detected by the heuristics described so far, IntraPad

is able to detect semi–severe interference, i.e. interference which does not occur in every

loop iteration but in a high percentage of all iterations. IntraPad tests any combination

of two array references within a loop nest. If they access two array elements which are

mapped to the same cache line the current array size is rejected and (different) padding is

applied. To simplify the address calculation for the array references the heuristic requires

uniformly generated array references [GJG88]. Thus, once the two array references are

linearized the array index variable terms cancel leaving only the constants of the array

references.

All heuristics are aimed at one level of the memory hierarchy. DiMEPACK allows

the user to specify the cache level for the array padding heuristics with the help of envi-

ronment variables. The information is taken from the environment variables at runtime to

optimize the layout of the dynamically allocated grid structures.

6.5 DiMEPACK Performance Evaluation

6.5.1 Smoother Performance

The DiMEPACK multigrid code uses the red–black Gauss–Seidel algorithm as smoother

component. In order to demonstrate the applicability of the optimization techniques de-

scribed in this thesis, the DiMEPACK smoothers have been optimized by the fusion, one–

dimensional blocking, and skewed two–dimensional blocking technique.

The red–black Gauss–Seidel algorithms used in DiMEPACK, however, are more gen-

eral than the algorithms used for the demonstration of the concept in Chapter 5. They

allow the handling of both Dirichlet and Neumann boundary conditions as well as rect-

angular grids. The algorithms used in Chapter 5 are restricted to Dirichlet boundary

conditions and square grids. Furthermore, DiMEPACK includes red–black Gauss–Seidel

variants which utilize arithmetic optimizations to reduce the number of floating point and

load operations to be executed. Thus, DiMEPACK includes several specialized red–black

Gauss–Seidel codes which are invoked at runtime according to the input parameters of

the library.

Figure 6.5 illustrates the performance of the standard3 and cache optimized DiME-

PACK red–black Gauss–Seidel smoothers without applying any arithmetic optimizations

3The standard red–black Gauss–Seidel smoother in DiMEPACK is comparable to the red–black Gauss–

Seidel smoother described in Chapter 5 after applying the array transpose technique. Thus, the pathological

case of a very bad data layout is avoided in DiMEPACK.
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Figure 6.5: DiMEPACK red–black Gauss–Seidel smoother performance.

on a Compaq PWS 500au4. The red–black Gauss–Seidel smoothers use a discretization

based on a 5–point stencil and double precision floating point arithmetic. The MFLOPS

rates for the small grid sizes are slightly lower than the MFLOPS rates of the smoothers

described in Chapter 5. The reason for this is that the handling of the grid boundaries

is more complicated. Thus, branch miss predictions and register dependences limit the

performance for the small grid sizes. For the larger grid sizes, however, similar MFLOPS

rates are achieved (compare Figure 5.17 and Figure 6.5). Thus, the execution of the

smoother component is accelerated by almost a factor of four for the large grid sizes on

the Compaq PWS 500au.

The data locality optimization techniques described in this thesis do not change the

amount of floating point operations to be executed by the smoother algorithm. Thus, an

improvement in the MFLOPS rate is equivalent to a reduction in program runtime. How-

ever, this is true for the arithmetic optimizations used within DiMEPACK. The arithmetic

optimizations reduce the number of floating point and load operations to be executed by

exploiting special cases of the input parameters. DiMEPACK includes three arithmetic

optimizations which affect the code of the red–black Gauss–Seidel algorithm. First, if the

problem is homogeneous, i.e. if the right–hand side of the linear system corresponding to

the finest grid equals 0, one load operation and one floating point operation is saved per

relaxation. Thus, the right–hand side of the equation is not required effectively halving

the working set of the smoother algorithm. Second, if the relaxation parameter of the

smoothing routine is equal to one, i.e. a standard Gauss–Seidel and not a successive over

relaxation (SOR) method is used, two floating point operations and eventually one load

4Compaq PWS 500au with 500 MHz Alpha 21164 and 4 Mbyte L3 cache. For compilation the compiler

options “-O5 -fast -tune host -arch host” of the Compaq Fortran77 compiler (version 5.10) were used.
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Figure 6.6: Runtime speedup of standard red–black Gauss–Seidel smoother obtained with

arithmetic optimizations.

operation can be saved per relaxation. Note, however, that the compiler might keep the

value of the relaxed node in a register as described in Section 5.1.2 so that the load op-

eration is not executed even without applying the arithmetic optimization. Third, DiME-

PACK saves multiply operations by factoring out identical stencil coefficients. Thus, in

the 5–point stencil case three and in the 9–point stencil case six floating point multiplies

are saved per relaxation. Finally, combinations of the three optimizations are possible.

Figure 6.6 shows the runtime speedup of the standard red–black Gauss–Seidel algo-

rithm in per cent obtained by applying the three arithmetic optimizations described above

one by one. Only the first optimization achieves a significant runtime speedup for all grid

sizes. The runtime of the red–black Gauss–Seidel codes for most grid sizes after applying

the other arithmetic optimizations is only slightly lower or in some cases even slightly

higher. The first arithmetic optimization is able to improve the performance of the red–

black Gauss–Seidel smoother since it eliminated the accesses to the right–hand side of

the equation. Thus, it reduces the amount of data to be kept in cache simultaneously. The

other two arithmetic optimizations mainly reduce the number of floating point operations

to be executed per relaxation of one nodes. As explained in this thesis, however, the num-

ber of floating point operations to be executed is not the limiting factor but the number

of load and store instructions to be executed. Consequently, no significant performance

improvement is noticeable. Furthermore, the mathematical term to be calculated for the

relaxation of one node contains several multiplies which can be performed concurrently.

Thus, if the microprocessor implements several floating point execution units the calcula-

tion of them will be relatively cheap. After factoring out the identical stencil coefficients,

however, the new mathematical term only contains one (resp. two multiplies in the 9–
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Grid no arithmetic opt. homogeneous (f = 0)

Size Std. Max. Speedup Std. Max. Speedup

17 187.6 216.1 1.15 205.0 240.3 1.17

33 253.9 290.0 1.14 286.9 341.1 1.19

65 323.3 331.3 1.02 361.1 423.1 1.17

129 193.3 352.3 1.82 319.8 490.0 1.53

257 194.9 354.3 1.81 254.4 464.1 1.82

513 104.0 325.2 3.13 258.6 484.0 1.87

1025 61.8 222.1 3.59 88.9 308.8 3.47

2049 56.6 199.3 3.52 78.0 267.0 3.42

Grid ! = 1:0 (no SOR) identical coefficients

Size Std. Max. Speedup Std. Max. Speedup

17 149.3 175.0 1.17 143.4 143.7 1.00

33 194.1 242.0 1.25 178.0 215.9 1.21

65 260.0 311.8 1.20 222.8 242.4 1.09

129 153.5 315.0 2.05 137.0 244.1 1.78

257 157.0 317.7 2.02 137.0 253.7 1.85

513 132.8 290.8 2.19 87.4 240.4 2.75

1025 50.0 182.7 3.65 43.1 174.0 4.04

2049 45.9 158.8 3.46 39.7 157.3 3.96

Table 6.1: Standard DiMEPACK smoother performance (column “Std.”) compared to the

best smoother performance achieved with data locality optimizations (column “Max.”)

for different red–black Gauss–Seidel smoother variants.

point stencil case) which can be performed after all values of the neighboring nodes have

been added up. Thus, in the latter case the potential ILP is lower.

Table 6.1 summarizes the performance of the smoother variants with and without data

locality optimizations. The MFLOPS rates of the red–black Gauss–Seidel variants vary

significantly. However, for all variants the data locality optimizations techniques are able

to achieve comparable performance improvements.

6.5.2 Multigrid Performance

The red–black Gauss–Seidel smoother is the most time consuming component of the

DiMEPACK multigrid code. Typically, the smoother consumes 70 to 90 per cent of the

runtime of the whole multigrid. The percentage depends on the number of pre– and post–

smoothing steps which are applied in the multigrid code. Improving the performance

of the red–black Gauss–Seidel smoother will result in a speedup of the whole multigrid

program which can be calculated with Amdahl’s law.

Figure 6.7 summarizes the MFLOPS rates for a a multigrid algorithm performing V–

cycles with two pre– and two post–smoothing steps (V2,2) on a Compaq PWS 500au.
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Figure 6.7: DiMEPACK multigrid performance with different smoother optimizations.

The multigrid code was configured to use a discretization based on a 5–point stencil, the

full–weighting restriction operation, no arithmetic optimizations, and double precision

floating point arithmetic. The MFLOPS rates of the multigrid code using a standard red–

black Gauss–Seidel smoother is shown in comparison to the multigrid code with data

locality improved red–black Gauss–Seidel smoothers.

To measure the data shown in Figure 6.7 the DiMEPACK multigrid code was forced

to use one data locality optimization technique for all grid sizes. Normally, DiMEPACK

automatically selects the red–black Gauss–Seidel variant obtained by the data locality

optimization which is best for each grid size. Thus, red–black Gauss–Seidel codes which

result from different data locality optimizations will be used for different grid sizes.

Table 6.2 shows the MFLOPS rates for a multigrid code executing two resp. four pre–

and post–smoothing steps with the same configuration (5–point stencil, full–weighting re-

striction operation, no arithmetic optimizations, and double precision floating point arith-

metic) automatic data locality optimization selection on a Compaq PWS 500au. The

MFLOPS rates for the same multigrid code which, however, uses smoothers that utilize

a combination of the second and third arithmetic optimizations are summarized in Ta-

ble 6.2. Both tables show similar speedups for the multigrid code obtained by the data

locality optimizations. Especially for the large grid sizes a remarkable speedup of approx-

imately a factor of two for the whole multigrid algorithm is achieved. The speedups for

V(4,4) multigrid, thereby, is higher since the fraction of the runtime spent in the smoother

component is larger.

To conclude the DiMEPACK performance evaluation the runtime of the DiMEPACK

multigrid code, the execution times (in seconds) of a multigrid code (5–point stencil, full–

weighting, arithmetic optimizations enabled, and double precision arithmetic) performing
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Grid V(2,2) multigrid V(4,4) multigrid

Size Std. Opt. Speedup Std. Opt. Speedup

17 131.2 150.4 1.15 140.4 160.1 1.14

33 197.7 211.7 1.07 204.1 217.4 1.07

65 249.3 275.2 1.10 261.2 300.5 1.15

129 197.2 282.5 1.43 202.5 307.9 1.52

257 194.1 287.2 1.48 195.0 320.7 1.65

513 93.9 179.9 1.92 84.2 228.9 2.72

1025 77.3 151.1 1.95 75.3 183.6 2.44

2049 82.0 142.4 1.74 74.8 168.8 2.26

Table 6.2: MFLOPS rates of a multigrid code using two or four pre– and post–smoothing

steps, respectively. No arithmetic optimizations were applied to the smoother. Columns

“Std.” show the performance with a standard red–black Gauss–Seidel smoother whereas

columns “Opt.” show the performance of the multigrid code with data locality optimized

red–black Gauss–Seidel smoothers.

Grid V(2,2) multigrid V(4,4) multigrid

Size Std. Opt. Speedup Std. Opt. Speedup

17 85.4 92.5 1.08 83.8 95.7 1.14

33 122.1 130.9 1.07 118.8 128.5 1.08

65 147.9 173.5 1.17 149.7 177.0 1.18

129 114.9 170.2 1.48 110.9 175.3 1.58

257 110.7 169.4 1.53 105.9 181.1 1.71

513 56.6 111.3 2.00 48.7 131.9 2.71

1025 51.0 100.5 1.97 45.0 118.3 2.63

2049 61.5 106.6 1.73 50.2 119.6 2.28

Table 6.3: DiMEPACK performance overview with typical arithmetic optimizations.

Grid Size
Machine 17 33 65 129 257 513 1025 2049

Compaq PWS 500au 0.017 0.018 0.021 0.031 0.074 0.278 1.177 4.792

Compaq XP1000 0.010 0.011 0.012 0.019 0.042 0.141 0.605 2.392

Pentium 4 PC 0.010 0.010 0.010 0.010 0.040 0.120 0.500 2.220

Table 6.4: DiMEPACK multigrid runtime in seconds for one V(2,2) V–cycle.
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V(2,2) V(4,4)
Grid Opt. Opt. Opt. Opt.
Size Std. rbGS Inter Std. rbGS Inter

17 131.2 150.4 112.6 140.4 160.1 126.4

33 197.7 211.7 127.1 204.1 217.4 154.1

65 249.3 275.2 175.3 261.2 300.5 237.5

129 197.2 282.5 191.0 202.5 307.9 231.5

257 194.1 287.2 203.9 195.0 320.7 243.4

513 93.9 179.9 157.6 84.2 228.9 191.8

1025 77.3 151.1 123.0 75.3 183.6 130.5

2049 82.0 142.4 113.8 74.8 168.8 117.8

Table 6.5: MFLOPS rates for DiMEPACK V–cycles (two resp. four pre– and post–

smoothing steps) with optimized inter–grid transfer operations compared to a standard

multigrid and a multigrid with optimized red–black Gauss–Seidel smoothers. Arithmetic

optimizations were disabled.

a single V–cycle with two pre– and two post–smoothing step for various grid sizes on a

Compaq PWS 500au (500 MHz), a Compaq XP1000 (500 MHz), and a Pentium 4 PC

(1.5 GHz) are shown in Table 6.4.

6.5.3 Performance Impact of the Inter–Grid Transfer Optimization

The DiMEPACK includes data locality improved inter–grid transfer operations. The op-

timization techniques combine all pre– resp. post–coarse grid operations to a single oper-

ation. Thus, instead of one sweep through the data structure for the (optimized) smoother

and an additional for the inter–grid transfer operation only a single sweep is performed

which combines both operations.

The impact of these optimizations on the MFLOPS rates of a multigrid code is illus-

trated in Table 6.5. For small grid sizes the performance of the whole multigrid method

is actually deteriorated. For the grid sizes larger than 129 � 129 the performance for the

multigrid code is higher than the performance of a standard multigrid code. However, for

all grid sizes the performance of the multigrid code with combined operations is lower

than for the multigrid code with optimized red–black Gauss–Seidel smoothers alone.

The reason for this is that the more complex code of the combined operations slows

down the smoother part due to higher register dependences and branch mispredictions.

Since the smoother part is the most time consuming part of the multigrid the loss in

performance in the smoother component outmatches the slightly better data locality for

the inter–grid transfer operations.
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6.5.4 A Case Study: Chip Placement

In order to test DiMEPACK with a more complex environment, DiMEPACK was inte-

grated into a global cell placement method for VLSI circuits developed at the Institute of

Electronic Design Automation (LEA), Technische Universität München [EJ98].

The different objectives involved in the cell placement can be mapped to a wire length

minimization problem under the constraints that cells are not allowed to overlap. Shorter

wires implicate a better area usage, faster circuit switching, and reduced power consump-

tion. The method developed at LEA is a force–directed iterative algorithm which models

the objectives of the placements with forces and force fields. In each step of the place-

ment algorithm a force field for the current placement is calculated which is described

with a Poisson equation. The forces indicate in which way the current placement must be

changed to obtain a better placement.

The Poisson equation usually requires the solution of a system of linear equations

with several millions of unknowns on rectangular domains. The original solver used by

the chip placement code was based on a fast Fourier transformation. The fraction of

time spent in the FFT solver is approximately 50 per cent of the total runtime. Thus,

according to Amdahl’s law a speedup of at most two can be expected when the FFT

solver is replaced by the DiMEPACK multigrid solvers. In general, multigrid method are

an efficient approach for the solution of such problems. The high memory requirement of

the problem, however, makes the usage of cache–optimized solvers indispensable.

The DiMEPACK multigrid solvers were able to accelerate the solution of the Poisson’s

equation for the three biggest problems of the LayoutSynth92 benchmark set5 by a factor

of 1.19 on average. The chip placement code is further accelerated since less iteration of

the algorithm are required. The reason for this is the larger functionality of the DiME-

PACK multigrid code compared to the FFT code. An integration of the multigrid code

which exploits the full functionality of DiMEPACK as well as further benchmarks is

subject to further research.

6.6 Related Work

With the still growing gap between microprocessor and memory speed, locality optimiza-

tions in general and especially data locality optimizations are considered crucial for good

application performance on modern computer systems. The definition of data locality

stems from an early work by Wolf and Lam [WL91]. Several data access transforma-

tions and data layout transformations have been proposed to optimize simple loop nest

constructs. More information about research done in that area can be found in Chapter 4.

First considerations of data locality optimizations for iterative methods have been pub-

lished by Douglas [Dou96]. They include simple data locality optimizations comparable

to the fusion technique described in this thesis. The discussion of optimizations for an

entire multigrid algorithm, however, is limited to a concept draft. More recent work done

5The LayoutSynth92 benchmark suit is available at http://www.cbl.ncsu.edu/CBL Docs/lys92.html.
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by Douglas et al. and Hu [DHK+00b, Hu00] focuses on optimizations for multigrid meth-

ods on unstructured grids. The focus of data locality optimizations for unstructured grids

is slightly different to optimization on structured grids, since the data structures involved

with unstructured grids are not array based but pointer data structures. Thus, minimizing

the latency involved with accessing data through a chain of pointers becomes dominant.

Hu [Hu00] proposes a relatively inexpensive grid reordering and blocking strategies based

on the new ordering to improve locality.

Research in a similar area has been reported by Keyes et al. [GKKS01]. They used

manually applied data locality optimizations for complex iterative methods on unstruc-

tured grids and achieved a significant performance improvement with array merging,

blocking, and node reordering techniques. They proved the efficiency of their techniques

by presenting detailed miss rates for caches and TLB.

Tseng et al. [RT00] demonstrated how tile size and padding size selection can be

automated for three–dimensional multigrid codes. The work is based on the research

presented in this thesis.

Kowarschik [Kow01] and Pfänder [Pfä00] applied data layout and data locality opti-

mizations for variable coefficient multigrid. The data access transformations are based on

the work in this thesis. However, they demonstrated that an appropriate data layout has to

be ensured by array merging and array padding to ensure high performance.

Genius et al. [GL01] recently proposed an automatable method to guide array merging

for stencil based codes based on a meeting graph method. However, the technique is only

applicable to the innermost loop in a loop nest.

Quinlan et al. [BDQ98] introduced the term temporal blocking for stencil based oper-

ations. Temporal blocking is a loop transformation comparable to the loop transformation

tiling. They applied temporal blocking to the Jacobi method but did not show how tem-

poral blocking can be applied to red–black Gauss–Seidel or multigrid methods.

Finally, recent work by Sellappa et al. [SC01] is based on the temporal blocking idea.

They present a two–dimensional blocking strategy for the Gauss–Seidel method based on

a standard and red–black ordering of the unknowns. The approach is comparable to the

square two–dimensional blocking technique described in this thesis. They do neither con-

sider data locality optimizations for inter–grid operations nor data layout optimizations.

6.7 Summary

The new data locality optimization techniques for the red–black Gauss–Seidel method

build the core routines for the DiMEPACK multigrid library. They provide a cache ef-

ficient implementation of the smoother component of a multigrid method. Furthermore,

new cache–aware inter–grid transfer operations have been introduced and implemented

within DiMEPACK. In order to avoid conflict misses introduced by interference a good

data layout is ensured with padding heuristics. Finally, the robustness and efficiency of

the DiMEPACK multigrid solvers has been demonstrated by means of a chip placement

code.
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The DiMEPACK library provides an easy to use interface to the sophisticated data lo-

cality optimizations developed in this thesis. Thus, existing solver packages for PDEs can

be replaced easily by the more efficient and cache–aware DiMEPACK multigrid codes.

Furthermore, the DiMEPACK routines can be used as efficient core elements to build

more sophisticated PDE solver packages if the functionality of DiMEPACK is not suffi-

cient.



Chapter 7

Tool Support for Data Locality

Optimizations

In this chapter, the tool support for data locality optimizations in the software devel-

opment process is discussed based on the experience gathered during the performance

analysis of multigrid methods. Existing performance analysis tools such as program pro-

filing, hardware counter based tools, simulation tools to detect performance bottlenecks

are described and discussed in respect to data locality issues.

These tools usually aggregate performance data over time into summary information

like miss rates. This type of information, however, is not able to capture the dynamic

nature of caches. Thus, existing cache visualization tools are introduced and new memory

hierarchy visualization techniques are proposed.

Finally, program transformation tools are discussed which assist the programmers

with means to apply cache optimizations to their programs.

7.1 The Software Development Process

There is a large number of existing software development approaches and many of the are

actually in use. Introducing even a part of them is not scope of this thesis. Most of the

software development approaches, however, include an analysis which leads to a more or

less formal specification of the problem. From that specification a design is evolved which

is then implemented in a high level programming language. The program represented in a

high level programming language is then translated to a machine language program which

can be executed on a computer. In most cases the programmers, nowaday, expects that

their programs are automatically translated to efficient machine language programs by a

compiler system. The task of a compiler system, therefore, does not only include a direct

translation of high level constructs to machine instructions but also a transformation of

the code which ensures a fast execution on the target machine.

The transformations traditionally include low level optimizations like reordering and

grouping of machine instructions. However, high level transformations which rearrange

141
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the original high level program become more and more important. The targets of the

transformation are manifold and include the reduction of code size, execution time, mem-

ory requirement, and the number of executed instructions. Among the targets data locality

optimization techniques have become of particular importance for the execution time of

programs on RISC based architectures with deep memory hierarchies. In general, the

programmer expects that such optimizations are applied fully automatically without any

interaction. Unfortunately, the current state of the art in compiler technology does not

allow fully automatic optimization for complex programs, i.e. manual interaction of the

programmer will be necessary to achieve a good data locality. Thereby, the programmer

faces a series of difficult problems.

First, the fact that the program only exploits a fraction of the available peak perfor-

mance of a machine is not directly apparent. Not many programmers actually know how

many operations are executed by their programs nor do they know how many operations

can be executed by the machine in a certain time. Typically, a program will only be

perceived as too slow if certain application dependent real time constraints cannot be met.

Second, once it became apparent that the program is slow the performance bottleneck

must be identified. In many case nowadays the performance is limited by the latency and

bandwidth of the main memory but other issues like register dependences or delays due

to branch mispredictions might be of importance as well. Depending on the performance

bottleneck completely different optimization strategies will be necessary.

As soon as data accesses have been identified as the main performance bottleneck,

the basic cause for the poor memory performance must be determined so that code or

data layout transformations can be chosen which results in a performance improvement.

Applying a loop blocking strategy, for example, will not necessarily lead to a performance

improvement when the data within the block causes conflict misses among themselves.

Similarly, data layout transformations like array padding will not lead to a significant

performance improvement if the majority of the cache misses are capacity or cold misses.

Finally, the code or data layout transformation must be applied to the high level pro-

gram. Even if the code transformations themselves might be easy additional constraints

can make the task for the programmer hard. For example, the transformation should typi-

cally keep the semantics of the program unchanged. The more complex the program, the

harder it will be in general to restructure the program without violating data dependences.

Thus, additional testing or verifying is required after the code has been changed to ensure

that no new bugs were introduced by the transformations.

All of the problems mentioned above make the task for the programmer harder and

consequently more expensive. Thus, the typical solution taken if a program is too slow is

to buy a faster machine instead of spending money for program optimization. If this is not

feasible, typically, a parallel version of the program or a hand tuned machine program is

implemented. Data locality optimizations are rarely applied although they potentially can

speed up the execution of programs by a multiple. The reason for this may be the lack of

appropriate data locality performance analysis and code transformation tools.
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7.2 Performance Analysis Tools

The principle concept of the memory hierarchy hides the existence of the caches within

the hierarchy. Data accesses satisfied by the cache are observed by the programmer, the

user of the program, or by a performance analysis tool as absolutely similar to main

memory accesses except that the time required to deliver the data differs. This makes data

locality optimizations in general difficult and limits the scope of performance analysis

tools.

To allow performance profiling regardless of this fact, many microprocessor manu-

facturers add hardware counters to the CPUs for events like cache accesses, cache hits, or

cache misses. Another approach is based on program instrumentation. The information

gathered by program information, however, is limited to information like address traces or

timing information. Both approaches have the drawback that tools are limited to a certain

platform.

A solution for that problem is offered by cache or machine simulation. Based on ad-

dress traces a virtual machine or a virtual memory hierarchy is simulated. Thus, events

like cache hits, misses, etc. can be gathered. Address traces tend to be very large and sim-

ulation is typically very time consuming compared to a normal program execution. Thus,

the cache resp. machine models are simplified to reduce simulation time. Consequently,

the results are often not precise enough to be useful.

All tools have in common that they provide summarized information about the pro-

gram behavior like hit rates or stall times. Sometimes this information can be attributed

to source code lines. A dynamic presentation of the information with the possibility of a

navigation in the time frame of the program execution, however, is not intended.

Visualization and animation of the program flow offers the possibility to display dy-

namic information. Visualization can also give the programmer more insight into the

cache behavior of his program. Unfortunately, only some experimental tools with limited

functionality are available. In the following, existing performance analysis tools will be

introduced.

7.2.1 Performance Profiling

Program Instrumentation

The traditional performance profiling is based on program instrumentation. Calls to a

monitoring library are inserted into the program to gather information for small regions

of the program. The library routines may include complex programs themselves like

simulators or only modify counters. Instrumentation is used, for example, to determine

the fraction of the CPU time spent in certain subroutines of the program. Since the cache

is not visible for the instrumentation code the information about the memory behavior

which can be gathered by such codes is limited to address traces.

gprof [FS98] and hiprof [Com01] tools offer flat profiles and call graph profiles. The

flat profile shows the total amount of time a program spent executing each function. The
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call graph profile shows how much time was spent in each function and its children. From

this information functions can be identified which themselves do not use much execution

time but called other functions that do use unusual amounts of time. The information

can be used to identify functions which are worth to optimize but do not reveal specific

memory bottlenecks.

A different profiling approach uses the path profiling tool PP [BL96]. A path profile

records the execution frequencies of acyclic paths in a routine instead of measuring the

frequencies of events in basic blocks. Path profiling is able to precisely identify heavily

executed paths in a program. The information can be used to guide compiler optimiza-

tions.

Besides the profiling tools instrumentation tools resp. libraries like Atom [ES95] or

EEL [LS95] offer a relatively simply way to insert additional code into an executable.

The additional code is executed when an event of a certain type happens while executing

the original code like function calls or execution of certain instructions. The inserted

code can for example be used to generate address traces for an external cache simulator

or directly implement a small simulator.

Hardware Counters

Performance counters are part of many modern microprocessors. They gather relevant

events of the microprocessor for performance analysis without affecting the performance

of a program. The information which can be gathered by the performance counters varies

from platform to platform. Typical events are cache misses, cache hits, cache accesses,

cycles, instruction issues to mention some. Unfortunately, many vendors do not provide

tools to access the hardware counters of their microprocessors.

One exception is the Compaq (formerly Digital) Continuous Profiling Infrastructure

(DCPI [ABD+97]) for the Alpha workstations. DCPI is based on periodic sampling of

the whole system using the Alpha performance counter hardware. Tools are provided

to analyze profiles and produce a breakdown of the CPU time spent in each executable

image, and in each procedure within an executable. In addition, detailed information is

produced showing the total time spent executing each individual instruction in a proce-

dure. Additional analysis tools also determine the average number of cycles taken by each

instruction, the approximate number of times the instruction was executed, and the pos-

sible reasons for any cycles spent not executing instructions like for example waiting for

data to be fetched from memory. With the ability to map hardware counter events to indi-

vidual statements in a source code DCPI provides a very useful interface to performance

counters.

A less platform dependent approach is taken by the Performance Counter Library

(PCL [BM00]). PCL allows the access to hardware performance counters on many mi-

croprocessors through a uniform interface with low overhead. The application interface

supports basic start and stop functionality of performance counting and query functional-

ity for hardware counters. The functionality is available through command line tools and

procedure calls in C, C++, Fortran, and Java. The command line tool only provides sum-
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marized information for a complete program execution. No automated tools are provided

to account events to source code lines. In principle, however, the programmer can use

the procedure call interface to realize fine grained profiling. PCL is available for systems

with Compaq, Sun, SGI, IBM, and Intel microprocessors.

A similar approach is pursued by the PAPI project [BDG+00]. The PAPI project

proposed a standard cross–platform library (API) for accessing hardware performance

counters and a standard set of hardware events. The standard API has been implemented

in a library for most of the currently available systems. The library provides two interfaces

to the underlying counter hardware: a high level interface which provides the function-

ality to start, stop, and query hardware counters similar to the PCL interface and a low

level interface which provides the basis for source level performance analysis software.

Furthermore, utility routines layered on top of the PAPI library are provided to allow a

dynamic runtime controlling of the library via socket connections.

7.2.2 Simulation

Cache Simulation

Tycho [Hil87, HS89] is a trace-driven cache simulator that can simulate many alterna-

tive configurations of one cache level like direct–mapped, set–associative, and fully–

associative caches with one pass through an address trace to produce a table of miss

ratios for all caches. The cache parameters which can be varied, however, are severely

restricted. For example all caches must have the same cache line size, do no prefetching,

and use LRU replacement. Tycho and the speed improved version TychoII are part of the

WARTS tool set1.

The DineroIII cache simulator is also part of the WARTS tool set. Furthermore, it

is part of [HP96]. DineroIII is a trace-driven cache simulator which evaluates only one

cache at a time. In exchange it produces more performance metrics like for example traffic

to and from memory and allows more cache design options like write policy, sub block

placement, replacement strategies, or prefetching schemes to be varied.

Cheetah [SA93] is a single–pass cache simulation package which can simulate a range

of cache configurations including direct–mapped, set–associative, and fully–associative

caches. The input to cheetah is a memory address trace. In each simulation run Chee-

tah outputs the miss ratios of several cache configurations. Besides different degrees of

associativity Cheetah can simulate caches under LRU and OPT replacement strategies.

OPT (also known as MIN [Bel66]) uses future knowledge to select a replacement, i.e. the

memory block which will be referenced the furthest in the future is selected for replace-

ment. Thus, the replacement policy is optimal for any set of references. The capabilities

of cheetah are a superset of those of Tycho.

All cache simulators described above assume a relatively conservative cache model

with one unified or split cache per level of the memory hierarchy. A less conserva-

tive cache model is used by the mlCache [TRTD98] simulation tool. mlCache is an

1The WARTS tool set is currently available at http://www.cs.wisc.edu/ larus/warts.html.
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event–driven, timing–sensitive simulator of multi–lateral cache designs [RDC+94, Jou90,

RD96]. The simulator, furthermore, uses the Latency Effects [TD96] cache timing model

to take memory latencies into account when calculating miss rates. Thus, besides regular

hits and misses also delayed hits are simulated. Delayed hits are accesses to data currently

being delivered to the cache because of an earlier miss to the same cache block. The cache

models used by Tycho, DineroIII, and Cheetah assume that data arrives instantly. Con-

sequently, delayed hits are not present in these models. The events for the simulator can

be provided by traces or by a machine simulator like SimOS [RHWG95] or SimpleScalar

[BA97].

The simulation systems described so far produce summarized cache information of

the whole execution of a program (trace). The output typically consists of cache miss

and hit rates statistics. The CPROF [LW94] system couples a trace–based uniprocessor

cache simulator with source code annotation. Thus, CPROF identifies the source lines

and data structures that cause frequent cache misses. Therefore, the source lines and data

structures are annotated with the appropriate cache miss statistics which are displayed

with a graphical user interface. Beside quantitative data the annotations also include a

classification of the cache misses as compulsory, capacity, or conflict.

Machine Simulation

SimOS [RHWG95] is a simulation environment designed for the efficient and accurate

study of both uniprocessor and multiprocessor computer systems. SimOS currently pro-

vides models of the MIPS R4000 and R10000 and Digital Alpha processor families. In

addition to the CPU, caches, multiprocessor memory busses, disk drives, Ethernet, con-

soles, and other devices commonly found in a computer system are simulated. SimOS

simulates the computer hardware in enough detail to boot and run commercial operating

systems. So far, SGI IRIX versions 5.3 (32-bit) and 6.4 (64-bit) as well as and Digital

UNIX can be run. To reduce simulation overhead fast simulation techniques can be used

to scan over the less interesting, time–consuming parts of a workload. Once more inter-

esting sections of a workload’s execution are reached, SimOS can be triggered to change

to more detailed (and consequently slower) levels of simulation. The simulator provides

a programmable TCL and Java interface to simulation events.

SimpleScalar tool set [BA97] is a processor simulation environment for the Sim-

pleScalar architecture. The SimpleScalar architecture is a close derivate of the MIPS

architecture [Pri95]. The tool set includes functional simulation, profiling, cache simula-

tion, and out–of–order processor timing simulation. The functional simulation executes

instructions serially without time accounting and assumes no caches. Furthermore, a

functional simulator is included that produces manifold profile information. For cache

simulation purpose, the tool set includes two cache simulators. The first implements a

straightforward cache simulator for a two level memory hierarchy. The second is based

on the Cheetah cache simulator. Both, however, do not take the latency of the caches into

account. Finally, a simulator is provided which supports out–of–order issue and execu-

tion. This simulator also takes cache and memory latencies into account to measure the
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Figure 7.1: Snapshot of a cache animation

effect of cache organization upon the execution time of real programs.

7.3 Memory Hierarchy Visualization Techniques

Profiling tools and simulators produce data over time which is aggregated into summary

measurements like miss rates, hit rates, or memory traffic information. With precise mea-

surement or simulation cache misses can be classified as cold, capacity, or conflict misses.

Furthermore, when misses are correlated to stall cycles even the total number of cycles

waited for data to arrive from memory can be estimated. While this information is valu-

able to judge the quality of a program in respect to data locality this information is only

of limited use for program optimizations.

Some tools, therefore, allow the events (cache misses, cache hits etc.) to be attributed

to the source code lines. Thus, a programmer is able to identify statements which generate

many misses. In some cases, this informations may be sufficient to guide data locality op-

timizations but in general the programmer will often need a more detailed understanding

of the cache behavior of the program he wants to optimize.

Furthermore, the cache content is permanently changing during the execution of a

program. Both techniques described above fail to capture the dynamic nature of caches

and program traces. Visualization may provide a more intuitive and easy to understand

representation of caches. Either the underlying physical structure of caches or the dy-

namic real–time behavior can be visualized; if necessary step by step. In the following,

we will propose several cache visualization approaches which are useful for computer

science education, software optimizations, and cache hardware design and optimization.

7.3.1 Cache Visualization for Education

In computer architecture lectures caches are usually introduced with block diagrams and

verbal descriptions of the principle of locality and the cache hardware. Cache visualiza-

tions can extend block diagrams and provide a more intuitive representation of caches.

Different cache designs such as different associativity can be demonstrated with step by

step animations using moving data elements.
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Figure 7.1 illustrates a snapshot of hypothetical cache visualization for educational

purpose. The small cache allows the storage of four memory locations. Memory location

5 contains the data represented by “a”. The CPU requested this memory location and

the cache just delivered the data to the CPU. Requests can be illustrated by moving

elements annotated with the corresponding address and “h” for hits resp. “m” for misses,

for example.

The necessary resolution and the low speed of the animation required for educational

purpose, however, prohibits that this kind of visualization is used for software or hardware

optimizations where possibly millions of memory references are performed.

7.3.2 Complete Program Run Visualization

For this kind of application the visualization of complete program runs is more appropri-

ate. The cache behavior of the whole program is illustrated in a single picture and the

human pattern perception ability is exploited to detect abnormal cache behavior, compu-

tation hot spots, or performance bottlenecks. The visualization should allow zooming so

that the programmer can examine the part of interest in more detail. Furthermore, auto-

matic correlation to the source code is desired. Ideally, the visualization tool should be

able to spawn a debugger or a more detailed visualization at the point of execution which

the user determines by means of the visualization. In the following we will propose sev-

eral visualization techniques for complete program runs:

� Strip charts

� Colored address–memory reference plots

� Scatter plots

Strip Charts

Strip charts are a traditional approach to represent statistical data over a long period of

time. They show the changing of a (single) value over time. In the context of cache

visualization the value to be displayed on the y–axis can be for example the aggregated

number of cache misses, cache hits, or memory traffic during a certain period of time.

The period of time can be defined by a certain number of cycles or a certain number of

memory references. The first possibility has the drawback that a high number of cache

misses will introduce data stalls and therefore in turn reduce the number of misses in

a given time (=cycle) interval. Thus, strip charts based on memory references like the

one shown in Figure 7.2 seem to be more reasonably. Figure 7.2 represents the cache

miss distribution of a hypothetical program over time. The program is featured by a

periodic access behavior with a high number of cache misses at the beginning of a period.

Furthermore, the program execution contains two repeated periods with different levels

of cache misses in each period.
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Figure 7.2: A strip chart sample showing cache misses distribution over time.

Zooming can be used to narrow the period of time displayed by the visualization.

However, the misses represented by one pixel will then be aggregated over a smaller

period of time so that the number of misses drawn at the y–axis will be reduced.

Strip charts can be used to identify hot spots in the computation. However, the chart

is highly dependent on the resolution used on the x–axis. If too many memory references

are mapped to one pixel repeatedly appearing memory bottlenecks may not be visible. For

example, the repeated cache behavior of the program execution illustrated in Figure 7.2

will not be visible if the two different periods are mapped to a single point on the x–

axis since the misses in the two periods will be aggregated to a single value. Thus, the

aggregated miss rates shown in the strip chart will be almost constant over time.

Colored Address–Memory Reference Plots

The colored address–memory plot draws memory references versus the memory addresses

of the references. Similar to strip charts memory references are drawn on the x–axis. The

addresses of the memory references are spread over the y–axis. Again several memory

references may be represented by one point on the x–axis, i.e. the plot may include verti-

cal lines. A pixel (x; y) is plotted if one of the memory references to the memory address

y in the memory reference interval x caused a cache miss. To represent additional in-

formation the pixels can be colored. For example, high numbers of cache misses can be

colored black whereas small numbers of cache misses are represented by bright colors.

The address–memory plots can be used to identify abnormal cache behavior of pro-

grams such as a high number of conflict misses due to cross or self interference of arrays.

Figure 7.3 shows the cache behavior of a hypothetical program with three typical cache
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Figure 7.3: Address–memory reference plots

behaviors. In Area 1 the program repeatedly accesses two memory addresses which are

causing a high number of conflict misses. The two memory areas are mapped to the same

cache lines, replacing each other. Thus, severe conflict misses are represented by two

dark horizontal lines located above each other. Furthermore, the visualization exposes a

streaming behavior of the program in Area 2 and a random access pattern in Area 3.

The main disadvantage of the view is that if the interval which is represented by a

point on the x–axis is small the plot will only be sparsely populated. In this case, the

cache lines which are accessed by memory references could be displayed on the y–axis

instead of their main memory addresses.

Scatter Plots

A scatter plot is a plot of the values of y versus the corresponding values of x. The variable

y is usually the response variable and variable x is usually some variable we suspect may

effect the response. A scatter plot reveals relationships or associations between the two

variables. Such relationships manifest themselves by any non–random structure in the

plot.

Scatter plots can be used to visualize the effect of memory references upon the cache.

Therefore, each axis represents the address space of a program execution. For each data

element evicted from the cache a pixel is plotted at the (x; y) coordinate with y being

the memory location (address) which got evicted and x being the memory address which

replaced the data.

In the case of memory address scatter plots a relationship is equivalent to two memory
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Figure 7.4: Memory Address Scatter Plot

regions which interfere in the cache. Thus, scatter plots reveal conflict misses by means

of non–random patterns in the plot.

A hypothetical scatter plot of a program execution is shown in Figure 7.4. Besides

other memory accesses the program alternately accesses two array. The first array is

located from memory address 80K to 240K whereas the second is located from 320K to

480K. The arrays happen to be mapped to the same cache lines. Therefore, they cause

a high number of cross interference misses which is pointed out by two diagonal lines.

In our example, the data of other memory references got replaced as well but since the

pattern for this memory references is random no relationship can be determined.

The drawback of scatter plots is that the correlation to the program flow is not repre-

sented in the visualization. Thus, bad data layouts can be identified but not bad sequences

of the program execution.

7.3.3 Dynamic Cache Visualization

The visualization of complete program executions allows the identification of suspicious

memory access patterns and memory bottlenecks. Once a pattern or bottleneck is identi-

fied the programmer may want to examine this part of the program in more detail. While

zooming functionality for the program execution views can further assist the programmer

in identifying the program part to focus on, all complete program execution visualization

fail to capture the dynamic nature of the caches in enough detail.

For this purpose an animated representation of the cache or memory content is re-
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quired. The representation should allow step by step execution, include navigation ele-

ments such as play, fast forward, rewind, stop etc. and maintain a source code relation.

Memory Content or Memory Reference Visualization

Visualization of memory contents in combination with the animation of misses is able

to give a good overview of the dynamic cache behavior of a small part of the execution.

The difficulty with memory content visualization, however, is that the amount of data to

be visualized may be very large. If a program uses 1 Gbyte of memory approximately a

32000� 32000 picture will be required if each memory location which is actually used is

represented by one pixel. If some unused parts are visualized as well, even larger pictures

will be required. A picture of that size is too large to keep the whole memory behavior in

view. The display may be scaled down significantly if a single pixel is used to represent

a memory block equal to the size of a cache line instead of one memory location. If

this is still insufficient the size of the picture must be reduced further with the loose of

information. A memory content display may be build up as follows.

Memory locations resp. memory blocks which are adjacent in memory are to be dis-

played as horizontally adjacent pixels whereas vertically adjacent pixels represent mem-

ory locations resp. memory blocks which are mapped to the same cache line. Thus, mem-

ory locations visualized in the the same column of the display cause conflicts in the cache.

The pixels are colored to represent additional information. For example memory locations

which recently suffered from many misses are represented by dark red pixels, memory lo-

cation with a few misses are less dark, and memory locations which are not accessed at

all or do not introduce misses are drawn with white pixels.

Cache Content Visualization

Low level information can be observed with a cache content visualization. The cache

content and its evolution is visualized over time. Each cache line can be represented by a

rectangular box or as a pixel if the cache is large. A click on a box resp. pixel may reveal

additional information about the cache line such as the memory address currently cached

by the line or a small access history. The cache lines may be colored to accommodate

further information. For example, the cache lines can be colored so that cache lines

belonging to different arrays have distinct colors. The cache lines may also be colored

according to recent hit or miss rates. Thus, if for a cache line many misses occurred

recently the cache line could be colored red. The color then fades over time when no

additional misses happen. In general, the cache content view can be compared to a low

level source code debugger.

7.3.4 MHVT: A Memory Hierarchy Visualization Tool

The Memory Hierarchy Visualization Tool (MHVT) is a design study for cache simulation

and visualization tools. The tool is implemented in Java and allows the simulation and
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visualization of complete memory hierarchies. The simulation is so far based on trace

files. A simulation based on source code, however, is planed. The simulator allows cache

parameters such as cache type, cache size, cache lines size, associativity, replacement

strategy etc. to be set for each cache level.

Based on the detailed cache simulation visualizations for each level of the memory

hierarchy can be implemented. So far, the tool only includes the complete program run vi-

sualizations strip chart (for cache misses and cache hits) and the colored address–memory

reference plot. All views allow zooming. A correlation of events to source code, however,

is not possible since the simulation is based on trace files.

Besides the implemented complete program views the tool also supports dynamic

cache visualization by means of an event notification and a program navigation system.

The visualization tools can register for a variety of events such as cache misses, cache hits,

etc. for any cache in the system. The navigation system which is also equipped with an

event notification itself allows to control the program trace simulation. Currently, single

step, play, fast forward, rewind, and jump to end actions are supported.

7.3.5 Existing Visualization Tools

Other existing cache visualization tools (CVT , Thor, and CacheViz) are described in the

following.

CVT [vdDTGK97] is a cache visualization system which was developed with the in-

tention to provide some sort of cache debugger. Thus, CVT allows the display of a single

cache level and its evolution during a program execution. Cache lines are visualized as

adjacent rectangular boxes. The boxes are colored during execution to represent the array

which the cache line currently keeps data of. A click on a box reveals further information

like miss rates for the specific cache line, a small history and the current cache line con-

tent. The visualized data is provided by a builtin cache simulator. The cache simulator

allows to set the parameters cache size, cache line size, associativity, and the write policy.

If this is not sufficient another simulator can be plugged into the CVT. Data references

for the simulator can be provided by three different ways. First, loop nest in a specific

source code format can be used. The loop nest may only contain array definitions at the

beginning as well as loop statements and array references. The scope of programs pre-

sentable with the format is limited, however, may be sufficient to study inner kernels of

numerical algorithms such as the red–black Gauss–Seidel algorithm. The advantage of

this input format is that the array base addresses and parameters like block sizes can be

easily modified. The other two input formats are trace based. The first is a source code

trace which contains information about the referenced address, the corresponding array

name and array base. The source code trace file is generated by adding calls to output

routines to the source code of the studied program and running the modified program af-

ter recompiling. The second trace format is a regular trace format which can be generated

by instrumentation tools like Atom. Both formats allow visualization of arbitrary program

runs, the correlation to the source code, however, is limited.

The Thor visualization which is part of the Rivet system [BST+00] presents detailed
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summaries of memory system utilization data collected by FlashPoint, a firmware mem-

ory profiler running on the FLASH multiprocessor. The information available on the

home page2 and in [BST+00], however, is to vague about Thor to present an adequate

survey of the tool functionality besides the fact that it includes some cache and memory

visualization.

Recently, the cache visualization tool CacheViz was released to the public [YBD01].

The focus of the tool is on presenting the cache access behavior of a complete program

execution in a single picture. Within the picture the user, hopefully, will recognize suspi-

cious patterns which result in poor performance. The visualizations include a density, a

reuse distance, and a histogram view. The first two visualizations use one pixel per mem-

ory reference. Horizontally adjacent pixels represent consecutive memory references.

The pixel line is horizontally wrapped. The visualizations use different pixel colorings to

present further information. The density view colors the pixel white if the corresponding

memory reference resulted in a cache hit, blue in case of a cold miss, green in case of a

capacity miss, and red in case of a conflict miss. The reuse distance view colors pixels

according to the reuse distance of the memory reference. The reuse distance is defined as

the distinct number of memory references between two memory references to the same

memory location. Memory references with very short reuse distance are displayed in blue

within the visualization. With growing reuse distance the color of the pixels represent-

ing a memory reference is shifted towards red. Finally, a histogram view represents the

distribution of reuse distances. The drawback of the memory reference plots is that the

program execution is no longer linearly represented. Consequently, the correlation of a

pixel to the corresponding execution time is difficult.

7.4 Program Transformation Tools

The ideal case for a programmer is that the compiler automatically applies data locality

optimizations. Compiler systems which perform automatic parallelization of programs

have been subject to a lot of research. See for example [HAA+96, KLS94, PGH+99,

BCG+95] to mention some. Among them only the SUIF [AL93, AAL95, LLL01] and

the PARADIGM [KCRB98, KCR+98a, KCR+98b] compiler system are able to perform

data locality optimizations.

For complex programs, however, these compiler systems are still not able to apply

data locality without user interaction. The reason for this may be that the series of trans-

formations which leads to an improved locality is too complex or some existing data

dependences prohibit the optimization. In some cases a compiler system might in fact

assume a data dependence for a loop nest which prohibits optimizations although there is

none since compilers have limited knowledge of the program behavior and data. Such sit-

uations frequently occur, for example, in languages like C or C++ which support pointer

arithmetic.

2http://www-graphics.stanford.edu/projects/rivet/



7.5 Summary 155

If the transformation is not applied automatically the programmer needs to modify

his program manually so that the locality is improved and the program semantic is main-

tained. The series of transformations required to be applied to the program to achieve

a good data locality is often complex. Applying the transformation manually is difficult

and requires a lot of testing and debugging. The task is complicated further by the fact

that the behavior of the cache itself and the behavior of a program executed on a memory

hierarchy is not common knowledge.

Consequently, the programmer requires at least some means to securely perform loop

transformations. Unfortunately, the compiler community has not yet provided compiler

directives for data locality optimizations like the OpenMP [DM98] directives for paral-

lelization.

Interactive tools [KMT91, Che92, LDB+99, Lia00] could be an alternative to complex

compilers. They usually provide program transformations such as loop unrolling, loop

interchange, loop fusion, etc. within a menu based user interface. The focus of these

tools, however, is mainly on parallelization and the tools cannot be easily extended.

Furthermore, there are a series of tools [BBG+94, BDE+96, SD00] which provide

an infrastructure to build source–to–source transformation tools. They mainly consist

of parsers, representations of program statements as abstract syntax trees (AST), some

manipulation routines for the AST, and unparsers. While these tools can be valuable for

compiler writers, they are usually to complex for application programmers.

Finally, there are some xcode transformation tools based on pattern–matching avail-

able [HBR96, Keß96, KP93, BMQ98]. Transformations are described with a pattern

matching language and a set of actions to be performed on matches. The main disad-

vantage of such systems is that patterns cannot be easily extended. Research on how to

specify arbitrary pattern is still ongoing [BMQ98, Qui00, QP01].

7.5 Summary

In principle, programmers would like cache optimizations to be applied fully automati-

cally to their programs. Although there are lots of efforts to automate cache optimizations,

the optimization of complex programs is still out of scope for available compiler systems.

Thus, the programmer faces the problem of performance analysis and code transformation

for data locality which tend to be very complex.

Traditional performance analysis tools are only of limited use for the detection of

memory performance bottlenecks. The reason for this is founded in the design principle

of caches: caches are only visible for the microprocessors memory system but not for the

software layer on top of the microprocessor. Thus, the functionality of performance tools

is limited to indirect data locality measurements.

If the cache is not directly observable cache simulation can give some insight in the

cache performance of programs. Unfortunately, cache simulation is often too slow and

too unprecise to be of any value. The tendency to build more and more complex memory

systems will make the simulation of caches either even more expensive or more inaccu-
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rate.

Fortunately, microprocessor manufacturers have realized the fact that caches must

be visible for performance analysis tools. Therefore, they nowadays integrate hardware

counters to measure a variety of hardware events including cache related events. However,

the microprocessor developers typically do not provide ready–to–use tools to utilize the

counters and third party tools for hardware counters are still rare or only available for

a small number of platforms. Note, that there is some effort in providing a platform

independent interface to hardware counters but the functionality of the tools based on top

of the interface is still limited. Nevertheless, hardware counters so far provide the best

means for data locality performance analysis.

All of the tools, however, fail to capture the dynamic nature inherently present in mem-

ory hierarchies. Cache visualization such as the visualizations proposed in this chapter

could assist the programmer with program execution overviews or dynamic animations of

the cache content. Tool writers, however, seem to have neglected cache visualizations so

far. Thus, only a few very limited cache visualization tools are currently available.

To summarize, although there is at least some tool support for data locality optimiza-

tions, the support is still unsatisfying. The functionality of the tools is weak, portability

of the tools among platforms is not guaranteed, and the automation of the optimization

task is not to be expected in the near future. Based on the fact that the importance of good

data locality for program performance is growing tool developers should focus more on

tools for data locality optimizations.



Chapter 8

Conclusion

This thesis presents a detailed study of the runtime and memory behavior of multigrid

methods and proposes and evaluates new optimization techniques to improve the data

locality of multigrid methods on structured grids. This chapter concludes the thesis by

giving a summary of the conducted work and by presenting a brief outlook on future

work.

8.1 Summary

Multigrid algorithms belong to the most efficient methods for the solution of partial differ-

ential equations. On currently available computer systems, however, multigrid methods

only achieve a small fraction of the theoretical peak performance. The increasing gap be-

tween microprocessor and main memory speed is the main cause for the bad performance.

Nowadays, good data locality is crucial for the performance of programs on RISC micro-

processors with deep memory hierarchies. As conventional multigrid methods have bad

data locality properties, they will perform badly.

Starting from the observation that multigrid methods perform badly on computer sys-

tems with deep memory hierarchies, the runtime and memory behavior of multigrid meth-

ods has been systematically analyzed in this thesis. The results prove that the runtime of

multigrid programs is dominated by delays implied by main memory accesses. In fact,

microprocessors executing multigrid programs with large grid sizes are idle for over 50

per cent of all cycles, waiting for data to arrive from main memory. Multigrid methods

repeatedly process large data structures, but the size of the data structures prevents the

data to be cached. Thus, multigrid methods inherently possess good data locality, but the

cache sizes of available or forecasted systems are too small to exploit it.

The study also reveals that besides the data locality issue the instruction mix involved

with multigrid methods prevents that these kinds of algorithms exploit more than 50 per

cent of the peak performance of typical microprocessors, even if a perfect memory sys-

tem (with no latency and unlimited bandwidth) is assumed. The reason for this is that

multigrid methods do not perform enough operations on the data once it is delivered to
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the CPU. Additional hardware resources within the microprocessor for executing load

and store operations are required to overcome this limitation.

The core of the thesis is based on the detailed runtime and memory behavior study. In

this thesis, new data locality optimizations for the smoother and inter–grid transfer opera-

tions of multigrid methods for structured grids are proposed and evaluated. The optimiza-

tion techniques are able to significantly reduce the number of main memory references

that occur in the smoother component which is typically the most time consuming part of

a multigrid method. Furthermore, the techniques improve the utilization of higher levels

of the memory hierarchy . Consequently, more than 80 per cent of the data is fetched from

registers and the L1 cache even for large grid sizes. The locality optimizations are able

to improve the performance of a red–black Gauss–Seidel code with constant coefficients

on two–dimensional structured grids by factors of two to five for large grid sizes on many

current computer systems.

The optimized smoother and inter–grid transfer routines have been integrated in the

multigrid library DiMEPACK to demonstrate their applicability. The library provides an

easy interface to several multigrid algorithms which can be used as building blocks for

more complex algorithms. Thus, existing solvers in complex algorithms can be replaced

by DiMEPACK routines and thereby significantly speed up their execution.

Finally, the role of data locality optimization tools is discussed based on the experi-

ence gained during the analysis of multigrid methods. Currently, the functionality and

portability of existing performance analysis tools is limited in respect to data locality op-

timizations: profiling tools do not provide cache related information, cache simulation

is too slow or too unprecise, hardware counter tools are not portable, and most of the

program transformation tools are designed for parallelization and not adequate for data

locality optimizations.

Cache visualization tools may overcome some problems involved with cache perfor-

mance analysis, but these kinds of tools seem to be neglected by tool developers. In fact,

only some research tools with limited functionality currently exist. Therefore, several

new cache visualization techniques for complete program runs have been proposed in this

thesis and implemented in the experimental visualization tool MHVT.

8.2 Applicability

The data locality optimization techniques described in this thesis have been integrated

in the multigrid library DiMEPACK. DiMEPACK is able to solve problems with con-

stant coefficients on two–dimensional structured grids. It has been demonstrated that

DiMEPACK can be used to replace an existing solver for the Poisson equation in a chip

placement code. However, the requirement that the coefficients are constant limits the

applicability of DiMEPACK.

Although the description of the fundamental optimization techniques in this thesis fo-

cuses on optimization techniques for multigrid methods on structured grids with constant

coefficients for two–dimensional problems, also issues involved with generalizations for



8.3 Outlook 159

variable coefficient and three–dimensional problems have been discussed. Based on the

work described in this thesis, other researchers [Kow01, Pfä00, RT00] have demonstrated

that the optimization techniques are able to accelerate the execution of more general meth-

ods as well. The inclusion of efficient solvers with variable coefficients into DiMEPACK

is therefore just a coding issue.

The major drawback of the techniques is that their automated application is not yet

ensured by appropriate tool or compiler support, respectively. Some issues involved with

the automation have been discussed in this thesis by means of the fusion technique and by

[RT00]. However, the integration of these techniques in compiler systems is still ongoing

research.

8.3 Outlook

The work described in this thesis can be extended in three different research directions:

Firstly, the tool support for data locality performance analysis and code transformation

can be investigated further. Data locality optimizations are rarely used to improve the

performance of a program, as the knowledge of the cache structure, memory, and cache

behavior of algorithms is still limited to experts. Cache visualization techniques are a

promising approach to make knowledge about cache and memory behavior of algorithms

accessible to a wider audience.

Secondly, based on this thesis new multigrid methods which have inherently good data

locality could be developed. The new methods could be based on optimization techniques

which, in contrast to the techniques described in this thesis, do not produce bitwise iden-

tical results but utilize completely new approaches such as patch–wise adaptive multigrid

methods [Löt97, LR97].

Thirdly, the data locality optimization techniques described in this thesis can be ex-

tended to architectures with multiple microprocessors on a chip. Several approaches —

often based on domain decomposition techniques — have already been investigated to

parallelize multigrid methods. The techniques usually assume communication to happen

via shared memory or message passing. However, the new upcoming architectures with

several microprocessor cores on a single chip, such as implemented in the MAJC–5200 or

the announced Power 4 microprocessor support communication through on–chip caches.

Thus, data locality optimization techniques which improve the locality in such an envi-

ronment will significantly improve performance.

Fourthly, it has to be demonstrated that the techniques described in this thesis are able

to improve the data locality of other iterative methods beside multigrid methods as well.
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[KRWK00] M. Kowarschik, U. Rüde, C. Weiß, and W. Karl. Cache-Aware Multigrid

Methods for Solving Poisson’s Equation in Two Dimensions. Computing,

64(4):381–399, 2000.

[KW01] M. Kowarschik and C. Weiß. DiMEPACK — A Cache–Optimized Multi-

grid Library. In H. R. Arabnia, editor, Proceedings of the International

Conference on Parallel and Distributed Processing Techniques and Ap-

plications (PDPTA 2001), volume I, pages 425–430, Las Vegas, Nevada,

USA, June 2001. CSREA, CSREA Press.

[LDB+99] S.-W. Liao, A. Diwan, R.P. Bosch, A. Ghuloum, and M.S. Lam. SUIF Ex-

plorer: An Interactive and Interprocedural Parallelizer. In Proceedings of



BIBLIOGRAPHY 171

the 7th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPOPP’99), pages 37–48, May 1999.

[LGH94] J. Laudron, A. Gupta, and M. Horowitz. Interleaving: A Multithreading

Technique Targeting Multiprocessor and Workstations. In Proceedings of

the 6th Symposium on Architectural Support for Programming Languages

and Operating Systems, pages 308–318, October 1994.

[LH97] G. Lesartre and D. Hunt. PA–8500: The Continuing Evolution of the PA–

8000 Family. In Proceedings of COMPCOM’97, March 1997.

[Lia00] S.-W. Liao. SUIF Explorer: An Interactive and Interprocedural Paral-

lelizer. PhD thesis, Department of Computer Science, Stanford University,

Stanford, California, USA, August 2000.

[LL97] A. LaMarca and R.E. Ladner. The Influence of Cache on the Performance

of Sorting. In Proceedings of the 8th Annual ACM SIAM Symposium on

Discreate Algorithms, pages 370–379, New Orleans, Louisiana, USA, Jan-

uary 1997.

[LLL01] A.W. Lim, S.-W. Liao, and M.S. Lam. Blocking and Array Contraction

Across Arbitrarily Nested Loops Using Affine Partitioning. In Proceedings

of the Eighth ACM SIGPLAN Symposium on Principles and Practices of

Parallel Programming, pages 103–112, Snowbird, Utah, USA, June 2001.
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