

Data Management for Multimedia Retrieval

Multimedia data require specialized management techniques because the representations of color, time, semantic concepts, and other underlying information can be drastically different from one another. The user's subjective judgment can also have significant impact on what data or features are relevant in a given context. These factors affect both the performance of the retrieval algorithms and their effectiveness. This textbook on multimedia data management techniques offers a unified perspective on retrieval efficiency and effectiveness. It provides a comprehensive treatment, from basic to advanced concepts, that will be useful to readers of different levels, from advanced undergraduate and graduate students to researchers and professionals.

After introducing models for multimedia data (images, video, audio, text, and web) and for their features, such as color, texture, shape, and time, the book presents data structures and algorithms that help store, index, cluster, classify, and access common data representations. The authors also introduce techniques, such as relevance feedback and collaborative filtering, for bridging the "semantic gap" and present the applications of these to emerging topics, including web and social networking.

K. Selçuk Candan is a Professor of Computer Science and Engineering at Arizona State University. He received his Ph.D. in 1997 from the University of Maryland at College Park. Candan has authored more than 140 conference and journal articles, 9 patents, and many book chapters and, among his other scientific positions, has served as program chair for ACM Multimedia Conference'08, the International Conference on Image and Video Retrieval (CIVR'10), and as an organizing committee member for ACM SIG Management of Data Conference (SIGMOD'06). In 2011, he will serve as a general chair for the ACM Multimedia Conference. Since 2005, he has also been serving as an associate editor for the *International Journal on Very Large Data Bases (VLDB)*.

Maria Luisa Sapino is a Professor in the Department of Computer Science at the University of Torino, where she also earned her Ph.D. There she leads the multimedia and heterogeneous data management group. Her scientific contributions include more than 60 conference and journal papers; her services as chair, organizer, and program committee member in major conferences and workshops on multimedia; and her collaborations with industrial research labs, including the RAI-Crit (Center for Research and Technological Innovation) and Telecom Italia Lab, on multimedia technologies.

DATA MANAGEMENT FOR MULTIMEDIA RETRIEVAL

K. Selçuk Candan

Arizona State University

Maria Luisa Sapino

University of Torino

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9780521887397

© K. Selçuk Candan and Maria Luisa Sapino 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2010

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data

Candan, K. Selçuk (Kasim Selçuk)

Data management for multimedia retrieval / K. Selçuk Candan, Maria Luisa Sapino.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-521-88739-7 (hardback)

1. Multimedia systems. 2. Database management. I. Sapino, Maria Luisa. II. Title.

QA76.575.C287 2010

005.74-dc22 2009043206

ISBN 978-0-521-88739-7 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface		page ix
1	Introduction: Multimedia Applications and Data Management Requirements	1
	1.1 Heterogeneity	1
	1.2 Imprecision and Subjectivity	8
	1.3 Components of a Multimedia Database Management System	12
	1.4 Summary	19
2	Models for Multimedia Data	20
	2.1 Overview of Traditional Data Models	21
	2.2 Multimedia Data Modeling	32
	2.3 Models of Media Features	34
	2.4 Multimedia Query Languages	92
	2.5 Summary	98
3	Common Representations of Multimedia Features	99
	3.1 Vector Space Models	99
	3.2 Strings and Sequences	109
	3.3 Graphs and Trees	111
	3.4 Fuzzy Models	115
	3.5 Probabilistic Models	123
	3.6 Summary	142
4	Feature Quality and Independence: Why and How?	143
	4.1 Dimensionality Curse	144
	4.2 Feature Selection	145
	4.3 Mapping from Distances to a Multidimensional Space	167
	4.4 Embedding Data from One Space into Another	172
	4.5 Summary	180

٧

vi Contents

5	Indexing, Search, and Retrieval of Sequences	181
	5.1 Inverted Files	181
	5.2 Signature Files	184
	5.3 Signature- and Inverted-File Hybrids	190
	5.4 Sequence Matching	191
	5.5 Approximate Sequence Matching	195
	5.6 Wildcard Symbols and Regular Expressions	202
	5.7 Multiple Sequence Matching and Filtering	204
	5.8 Summary	206
6	Indexing, Search, and Retrieval of Graphs and Trees	208
	6.1 Graph Matching	208
	6.2 Tree Matching	212
	6.3 Link/Structure Analysis	222
	6.4 Summary	233
7	Indexing, Search, and Retrieval of Vectors	235
	7.1 Space-Filling Curves	238
	7.2 Multidimensional Index Structures	244
	7.3 Summary	270
8	Clustering Techniques	271
	8.1 Quality of a Clustering Scheme	272
	8.2 Graph-Based Clustering	275
	8.3 Iterative Methods	280
	8.4 Multiconstraint Partitioning	286
	8.5 Mixture Model Based Clustering	287
	8.6 Online Clustering with Dynamic Evidence	288
	8.7 Self-Organizing Maps	290
	8.8 Co-clustering	292
	8.9 Summary	296
9	Classification	297
	9.1 Decision Tree Classification	297
	9.2 k-Nearest Neighbor Classifiers	301
	9.3 Support Vector Machines	301
	9.4 Rule-Based Classification	308
	9.5 Fuzzy Rule-Based Classification	311
	9.6 Bayesian Classifiers	314
	9.7 Hidden Markov Models	316
	9.8 Model Selection: Overfitting Revisited	322
	9.9 Boosting	324
	9.10 Summary	326
LO	Ranked Retrieval	327
	10.1 k-Nearest Objects Search	328
	10.2 Top-k Queries	337

	Contents	vi
10.3 Skylines	360	
10.4 Optimization of Ranking Queries	373	
10.5 Summary	379	
11 Evaluation of Retrieval	380	
11.1 Precision and Recall	381	
11.2 Single-Valued Summaries of Precision ar	nd Recall 381	
11.3 Systems with Ranked Results	383	
11.4 Single-Valued Summaries of Precision-R	ecall Curve 384	
11.5 Evaluating Systems Using Ranked and G	Graded Ground Truths 386	
11.6 Novelty and Coverage	390	
11.7 Statistical Significance of Assessments	390	
11.8 Summary	397	
12 User Relevance Feedback and Collaborative	Filtering 398	
12.1 Challenges in Interpreting the User Feed	lback 400	
12.2 Alternative Ways of Using the Collected		
Processing	401	
12.3 Query Rewriting in Vector Space Models	s 404	
12.4 Relevance Feedback in Probabilistic Mod		
12.5 Relevance Feedback in Probabilistic Lan	guage Modeling 408	
12.6 Pseudorelevance Feedback	411	
12.7 Feedback Decay	411	
12.8 Collaborative Filtering	413	
12.9 Summary	425	
Bibliography		
Index		

Color plates follow page 38

Preface

Database and multimedia systems emerged to address the needs of very different application domains. New applications (such as digital libraries, increasingly dynamic and complex web content, and scientific data management), on the other hand, necessitate a common understanding of both of these disciplines. Consequently, as these domains matured over the years, their respective scientific disciplines moved closer. On the media management side, researchers have been concentrating on media-content description and indexing issues as part of the MPEG7 and other standards. On the data management side, commercial database management systems, which once primarily targeted traditional business applications, today focus on media and heterogeneous-data intensive applications, such as digital libraries, integrated database/information-retrieval systems, sensor networks, bio-informatics, e-business applications, and of course the web.

There are three reasons for the heterogeneity inherent in multimedia applications and information management systems. First, the semantics of the information captured in different forms can be drastically different from each other. Second, resource and processing requirements of various media differ substantially. Third, the user and context have significant impacts on what information is relevant and how it should be processed and presented. A key observation, on the other hand, is that rather than being independent, the challenges associated with the semantic, resource, and context-related heterogeneities are highly related and require a common understanding and unified treatment within a multimedia data management system (MDMS). Consequently, internally a multimedia database management system looks and functions differently than a traditional (relational, object-oriented, or even XML) DBMS.

Also acknowledging the fact that web-based systems and rich Internet applications suffer from significant media- and heterogeneity-related hurdles, we see a need for undergraduate and graduate curricula that not only will educate students separately in each individual domain, but also will provide them a common perspective in the underlying disciplines. During the past decade, at our respective institutions, we worked toward realizing curricula that bring media/web and database educations closer. At Arizona State University, in addition to teaching a senior-level

x Preface

"Multimedia Information Systems" course, one of us (Prof. Candan) introduced a graduate course under the title "Multimedia and Web Databases." This course offers an introduction to features, models (including fuzzy and semistructured) for multimedia and web data, similarity-based retrieval, query processing and optimization for inexact retrieval, advanced indexing, clustering, and search techniques. In short, the course provides a "database" view of media management, storage, and retrieval. It not only educates students in media information management, but also highlights how to design a multimedia-oriented database system, why and how these systems evolve, and how they may change in the near future to accommodate the needs of new applications, such as search engines, web applications, and dynamic information-mashup systems. At the University of Torino, the other author of this book (Prof. Sapino) taught a similar course, but geared toward senior-level undergraduate students, with a deeper focus on media and features.

A major challenge both of us faced with these courses was the lack of an appropriate textbook. Although there are many titles that address different aspects of multimedia information management, content-based information retrieval, and query processing, there is currently no textbook that provides an integrated look at the challenges and technologies underlying a multimedia-oriented DBMS. Consequently, both our courses had to rely heavily on the material we ourselves have been developing over the years. We believe it is time for a textbook that takes an integrated look at these increasingly converging fields of multimedia information retrieval and databases, exhaustively covers existing multimedia database technologies, and provides insights into future research directions that stem from media-rich systems and applications. We wrote this book with the aim of preparing students for research and development in data management technologies that address the needs of rich media-based applications. This book's focus is on algorithms, architectures, and standards that aim at tackling the heterogeneity and dynamicity inherent in real data sources, rich applications, and systems. Thus, instead of focusing on a single or even a handful of media, the book covers fundamental concepts and techniques for modeling, storing, and retrieving heterogeneous multimedia data. It includes material covering semantic, context-based, and performance-related aspects of modeling, storage, querying, and retrieval of heterogeneous, fuzzy, and subjective (multimedia

We hope you enjoy this book and find it useful in your studies and your future endeavors involving multimedia.

K. Selçuk Candan and Maria Luisa Sapino