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Abstract. Decentralized data management has been addressed durireattdy
means of several technical solutions, ranging from disteitddBMSs, to mediator-
based data integration systems. Recently, such an issueé&agiestigated in the
context of Peer-to-Peer (P2P) architectures. In this enapé focus on P2P data
integration systems, which are characterized by variousnamous peers, each
peer being essentially an autonomous information systemhthlds data and is
linked to other peers by means of P2P mappings. P2P data ititeegtlaes not rely
on the notion of global schema, as in traditional mediatoedatata integration.
Rather, it computes answers to users’ queries, posed to @myop¢he system,
on the basis of both local data and the P2P mappings, thuscmaerg the main
drawbacks of centralized mediator-based data integratistesis and providing
the foundations of effective data management in virtual degdions.

In this chapter we first survey the most significant approaphgsosed in the lit-
erature for both mediator-based data integration and P2Pndahagement. Then,
we focus on advanced schema-based P2P systems for which thees@imantic in-
tegration of data, and analyze the commonly adopted apprdacterpreting such
systems using a first-order semantics. We show some weaknéssissapproach,
and compare it with an alternative approach, based on multairemistemic se-
mantics, which reflects the idea that each peer is conceivadaonal agent that
exchanges knowledge/belief with other peers. We consilaral central proper-
ties of P2P data integration systems: modularity, generalitg decidability. We
argue that the approach based on epistemic logic is supeitlorespect to all the
above properties.
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1. Introduction

Data management systems have been continuously evolviimgdbe years to respond
to customer demand and the new market requirements. $tdrtim the late 80s, cen-
tralized systems, which had often produced huge, monojiind generally inefficient
databases, have been replaced by decentralized systerh&mdata are maintained in
different sites with autonomous storage and computatipalaiéities. All such systems
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are characterized by an architecture in which data retumacuser query might not be
physically stored at the site queried by the user. In disted databases, decentralization
of data is generally achieved to enhance system performandeis precisely designed
and controlled. However, such an architecture is not abkufiport the integration of
previously existing systems, where data dispersed overaksources are required to be
accessed in a centralized and uniform way. Database féuletabls enable data from
multiple heterogeneous data sources to appear as if it wagined in a single federated
database. Such tools provide mechanisms which mask the éiracteristics of each
source and represent it in a common format, thus enablingtaatized and transparent
data access. Mediator-based data integration systenesnfstized in Figure 1) provide
in addition the capability of defining a (virtual) global srha representing the unified
view of the application domain, which is related to the searthrough a suitable map-
ping establishing a semantic relationship between theme e integration can be per-
formed in a declarative way, and query answering, i.e., thblpm of providing answers
to users’ queries posed on the virtual global schema, is merg a form of reasoning
with incomplete information, and is achieved by means ofgrdw mechanisms and ad-
vanced techniques. More recently, the issue of cooperatitagration, and coordination

Answer(Q) < - - - - Query

— = Global schema

- = Sources

Figure 1. Mediator-based Data Integration System

between data nodes in open distributed systems has beetigated in the context of
Peer-to-Peer (P2P) data management [50]. In short, a P2&hrsischaracterized by a
structure constituted by various autonomous nodes (csdlectes, sites, agents, or peers,
depending on the context in which such systems are studiatihold data and that are
linked to other nodes by means of mappings. Differently fiahthe above mentioned
architectures, P2P systems do not require a centralizedgeament and are not devel-
oped under the control of central authority. Each peer plespart of the overall infor-
mation available from a distributed environment, and aoth las a client and as a server
in the system. The result is a completely decentralizedit@atire, flexible and able to
handle dynamic changes in the system, which peers can joégaee at run-time. Then,
favored by its characteristics, P2P computing is expedeton penetrate the world of
information technology, leveraging the growth of virtuaganizations willing to share
information on the network, as well as supporting the etettrbusiness. As for this last
kind of applications, new forms of electronic brokerageereerging, where each broker
is a peer offering goods or services either directly on Hedfa producer, or through an-
other broker, i.e., through a peer to which a percentagesfdee in case of a transaction.
In many cases, for example, in the electronic commerce ®tdahrism domain, such
P2P applications are very data intensive as each peer noustiatge amounts of travel
and hotel data or query such data across a heterogeneous®@&ikn Furthermore, they
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are characterized by a potentially huge number of peerggilb access to such a busi-
ness. At the same time, mobile end consumer devices sucll pbaees and PDAs are

becoming more powerful as their processing power and datags capacities approach
the speed and memory of workstations. This opens a pergpextdata intensive P2P

applications for participants in mobile networks.

Nowadays, apart from the basic structure and algorithm®&# information inte-
gration systems, research and technology on advancedrdeggadtion is at an embry-
onic state, and an in-depth investigation on the field i$ is&ieéded in order to achieve
powerful, human level P2P data integration. Recent rebdarmevoted to provide tech-
niques for evolving from basic P2P networks supporting ditdyexchanges using sim-
ple filenames as metadata [32,68], to more complex syst&msdhema-based P2P net-
works [50,6,37,20]. In particular, inB2P data integration systefd0] each peer is es-
sentially a mediator-based data integration system,ii.exanages a set of local data
sources semantically connected, vileal mappingto a (virtual) global schema called
the peer scheman addition, the specification of a peer includes a s&®2® mappings
that specify the relationships with the data exported bgopleers, as shown in Figure 2.
Information in such systems can geeriedto any peer (by external users or other peers).
The queried peer, by exploiting its P2P mappings, can mageithe data in the other
peers for providing the answer.

() Pee

Bl ree schema ., Locd mapping
@ Locd source - » P2P mapping

Figure 2. Peer-to-Peer Data Integration System

In this chapter, we survey the most significant approachepgsed in the litera-
ture for both mediator-based data integration and P2P dategement. In particular,
our analysis on P2P data management ranges from first syg@mbped for content
sharing in a networking environment, to advanced schemsaeb®2P data integration
systems. Then, focusing on P2P data integration, we antdgzeommonly adopted ap-
proach for interpreting P2P systems using a first-order (F$@imantics. We show some
weaknesses of this approach, and compare it with an altegrsatproach, based on epis-
temic semantics. We consider several central propertie2Bfdata integration systems:
modularity, generality, and decidability. We show that @&pproach based on epistemic
logic is clearly superior to the usual approaches based strdiider logic with respect
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to all the above properties. In particular, we show thatystems in which peers have
decidable schemas and conjunctive mappings, but areailyitinterconnected, possi-
bly presenting cycles in the network of peers, the first-oeggroach may lead to un-
decidability of query answering, while the epistemic apgto always preserves decid-
ability. This is a fundamental property, since the actusdriconnections among peers are
not under the control of any actor in the system. In this respair formalization nicely
models the modularity of P2P architectures, i.e., the faat ¢ach peer is autonomous,
without resorting to any assumptions such as acyclicitythertopology of the P2P sys-
tems. To this aim, we formalize a P2P data integration systeerms of the multi-modal
epistemic logicS5,,, according to which each peer is modeled as a rational abant t
exchanges knowledge/belief with other peers. This is iith the idea of modeling a
distributed information system in terms of multi-agent mbldgic [34].

The rest of this chapter is organized as follows. In SectioveZeview approaches
to both mediator-based data integration and P2P data maesgieln Section 3 we pro-
vide a formal framework for P2P data integration, and in ®ect we describe classi-
cal FOL semantics for interpreting such a framework. Thergéction 5 we discuss the
main limitations of FOL approaches and motivate the needdifferent semantic char-
acterization based on epistemic logic, which is then pedgidescribed in Section 6. In
Section 7 we discuss the issues of modularity, generalitydaeidability under the two
semantics. Finally, in Section 8 we highlight some opendssand challenging research
directions.

2. State of the art

The main scientific base for P2P data integration is in ti@ulit mediator-based data
integration. The goal of mediator-based data integratjstesns is to provide clients with
the access to data stored in heterogeneous and autonomwosssavithout the need to
know the physical characteristics of such sources and #wga location of the data.

As shown in Figure 1, a mediator-based data integratioresysixports to the user
a global reconciled view of the data, callgtbbal schemain terms of which the user
formulates his/her queries, and the system maintains amivle specification (i.e., a
mapping of the interrelationships between the global schema aaddhirces, often in
turn represented throughsaurce schemps7,58,55]. Two basic approaches for specify-
ing the mapping have been proposed in the literature. Theafifgroach, calledlobal-
as-view(GAV), requires that a view, i.e., a query, over the soureeasisociated with
every element of the global schema, so that its meaning figgkin terms of the data
residing at the sources. This is, for example the approalttwied in [41,66,44,11].
Conversely, the second approach, caltezhl-as-viewm(LAV), requires the sources to be
defined as views over the global schema, i.e., it requiresalguery over the global
schema is associated to every source element. Examplespafgais following such an
approach are [53,33,19]. More recently, a further apprdechbeen considered, which
allows for specifying mapping assertions in which a quergrdiie global schema is put
in correspondence with a query over the source schema [6&h & approach, which is
calledglobal-local-as-view(GLAV), since it generalizes both the LAV and the GAV ap-
proach [55], as so far received little attention in medidtased data integration (whereas
it has been recently investigated in P2P data integrat®meawill see in the following
sections).



D. Calvanese et al. / Data Management in Peer-to-Peer Datieghation Systems 5

Among the various problems related to data integration ptisblem of answering
queries posed over the global schema is the one that has t@@&ssed most intensively.
First proposals, developed in the middle 90s, faced sucblalem in a procedural way,
thus not providing the users with any declarative suppattta integration. Systems like
TSIMMIS (The Stanford-IBM Manager of Multiple InformatiodBources) [28], or Gar-
lic [24] can be essentially considered as (simple) hieliaschf wrappers and mediators
(and therefore can be both considered a primitive form of Ggstems). Wrappers are
modules that hide the real nature of a data source, and piieaad its data in a suitable
format adopted within the system. Each wrapper managesctiessto a single source
and is in charge of translating queries over such a sourdeiggecific language it uses,
taking the answer the source returns, and providing thetretatediators. Each mediator
is in charge of performing actual integration, by trigggrthe right wrappers, putting to-
gether the data that they return, and providing the final antowsers’ requests (or feed-
ing in turn other mediators). It has to be stressed that iMMIIS and Garlic no global
integration is ever performed, since each mediator worlesimdependent manner.

Systems like Information Manifold (IM) [59,60], or INFOMAIER [43,2,33] fol-
low instead a more declarative approach. Such systems #dlothe specification of a
global schema, a source schema (both schemas are assuregeltational), and a map-
ping between them, which for both systems is specified acugtd the LAV approach,
whereas both queries in the mapping and user’s queries posethe global schema are
conjunctive queries, i.e., SQL select-project-join gegrkor query processing, the Infor-
mation Manifold system makes use of a procedure callethticket algorithmwhereas
the INFOMASTER system uses thwverse rules algorithmBoth algorithms solve query
answering via query rewriting: a user query posed over tbbajlschema is first suit-
ably reformulated in a new query specified over the sourcermsahand then evaluated
over the source extension in order to obtain the final ansvgeral extensions have
been proposed for both the algorithms. For example, in [38]iiverse rules algorithm
is extended in order to handle users’ queries specified irse® Datalog, the presence
of functional dependencies over the global schema, andrésepce of limitations in
accessing the sources (binding patterns), whereas in {6#itaresting optimization of
the bucket algorithm has been proposed which significaptgds up query processing.

A recent intensive investigation has been addressed thy @nswering problem
for those cases in which integrity constraints (ICs) arecigel over relational global
schemas. ICs allow for enriching the representation ofritegration domain, therefore
constitute a powerful feature from a modeling point of viétowever, they strongly
affect the query answering process, since data stored abtivees may be in general
incomplete or inconsistent with respect to such conssaiis for the first issue, query
answering turns out to be a form of reasoning in the presehice@mplete information,
suitably supported by a first-order interpretation of thetegn. This is the case of [49],
which considers (limited combinations of) inclusion anddtional dependencies in LAV
data integration systems, or [10], where an algorithm fargwanswering in GAV sys-
tems, in the presence of key and foreign key constraintsasiged, or [13] where a
completely intensional procedure based on query rewrisrdefined for all decidable
cases in which key and inclusion dependencies are speciiedtioe global schema.
However, in those cases in which data may contradict glatiafrity constraints, the
problem arises of how to obtain significative answers froooirsistent systems. Tradi-
tionally, the approach adopted to remedy to this problembess through data clean-
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ing [7]. This approach is procedural in nature, and is basedomain-specific transfor-
mation mechanisms applied to the data retrieved from thecesuOnly very recently
first academic prototype implementations have appeareidhvgnovide declarative ap-
proaches to the treatment of inconsistency of data, in tleedf the studies on consis-
tent query answering [4]. In such approaches the commort e is that the incon-
sistency might be eliminated by modifying the databaseesmting the extension of
the system, and reasoning on the “repaired” database. D#geon the semantic as-
sumption adopted for the system, several forms of repairiag be possible. Recently,
several approaches to formalize repair semantics by usgig programs have been pro-
posed [46,13,8]. The common idea is to encode the condraiithe global schema into
a logic program, using unstratified negation or disjunctesuch that the stable models
of this program [42] yield the repairs of the global databasmong the most interest-
ing proposals for managing inconsistency in data integmative mention the INFOMIX
system [56]. INFOMIX provides solutions for GAV data intatjon of heterogeneous
data sources (e.g., relational, XML, HTML) accessed throwgational global schemas
over which powerful forms of integrity constraints can bsuisd (e.g., key, inclusion,
and exclusion dependencies), and user queries are spétidigdwerful query language
(e.g., Datalog). The query answering technique proposetdh a system is based on
query rewriting in Datalog enriched with negation and disjion, under stable model
semantics [13,48].

A setting similar to the one considered in INFOMIX is the onele basis of the
DIS@DIS system [14]. Even if limited in its capability of adrating sources with differ-
ent data formats (the system actually considers only oglatidata sources), DIS@DIS
however provides mechanisms also for integration of inisbeist data in LAV. In [9,8]
an approach similar to the one followed in INFOMIX is follotkebut a different repair
semantics is adopted, which, to some extent, does not seequa® to capture also
incompleteness of data. Other interesting proposals osistemt query answering are
the Hippo system [31,30], and the ConQuer system [38,40lveder, such proposals
have been essentially developed in the context of a singébdse system, and therefore
do not deal with all aspects of a complex data integratiorireninent. Furthermore,
w.r.t. classes of constraints and query language considgre Hippo and the ConQuer
systems are to some extent orthogonal to the INFOMIX and tB&IDIS systems. They
are geared towards highly efficient query answering fori§pepolynomial-time classes
of queries, whereas INFOMIX and DIS@DIS, instead, aim apsujng more general,
highly expressive classes of queries (including also gséritractable under worst case
complexity).

Many other studies have considered the query answeringgundh data integration
systems in various settings. For example, in [45,58] thatimial setting under various
assumptions on the languages used for the mapping and thegjbas been analyzed,
whereas in [18,19] query answering has been studied foretti@g in which the global
schema is formulated in an expressive conceptual data mAtsel, query answering
in the presence of semistructured data sources and gldiainss has been the subject
of [21,23,22], and is still the subject of intensive invgations.

A different approach in mediator-based semantic interagéty looks at data man-
agement under the perspective of exchanging data betweesothrces and the global
schema. Sources are again connected by means of mappirngsdtobal schema, but
in this case, the focus is on materializing the data flowigifthe sources to the global
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schema. This problem is addressed in particular by the efuoih Data Exchange. In
short, Data Exchange is the problem of taking data strudtuneler a source schema and
creating an instance of a target schema (called solutien)aflects the source data as ac-
curately as possible. Among several papers produced inglie We mention [35,36,3],
where data exchange is considered also in the presence refssij@ constraints speci-
fied over the target schema, and powerful forms of mappintygdsa the source and the
target schema.

More recently, the issue of data integration, has been figagsd in the more dy-
namic context of Peer-to-Peer (P2P) data management fo@hel last years, the P2P
paradigm has been imposing in different contexts wherestheei of cooperation, integra-
tion, and coordination between information nodes in a netedenvironment assumes a
crucial role, including the Semantic Web [51], Grid compgtiservice oriented comput-
ing and distributed agent systems [63,52]. In all theseesys} the problem of interop-
erability still needs deep investigation. In the following review the main approaches
proposed so far in the literature.

P2P systems have recently become popular for content gharid a number of dif-
ferent approaches have been studied to perform conteigvadtin such networks (e.g.,
adaptation, deterministic placement of contents) [32 8particular, the P2P paradigm
was made popular by Napster, which employed a centralizeabdse with references
to the information items (files) on the peers. Gnutella, heotvell-known P2P system,
has no central database, and is based on a communicatensive search mechanism.
More recently, a Gnutella-compatible P2P system, calledeBa [1], has been pro-
posed, which follows the so-called Peer-Grid (P-Grid) apph. A P-Grid is a virtual
binary tree that distributes replication over communitypetrs and supports efficient
search. P-Grid’s search structure is completely decérgrhlsupports local interactions
between peers, uses randomized algorithms for access arahsand ensures robust-
ness of search against node failures. As pointed out in BUffent P2P systems fo-
cus strictly on handling semantic-free, large-granufartquests for objects by identi-
fier, which both limits their utility and restricts the tedhunes that might be employed to
distribute the data. These current sharing systems arelyalithited to applications in
which objects are described by their name, and exhibit gtliomtations in establishing
complex links between peers. To overcome these limitatidata-oriented approaches
to P2P have been proposed recently [5,50,6,47]. Some of, theere.g., [69,5], are de-
veloped according to a super-peer based topology. A swgmTip a special node which
manages a subset of client nodes. Such nodes interact ahlyheisuper-peer to which
they are connected and receive results from it, whereag-pages are also connected
one another and communicate with other super-peers onflighthakir clients. In such
systems, P2P computing is actually performed at the suparipvel, whereas commu-
nication between the super-peer and its clients is managemding to more traditional
mediator-based techniques.

Conversely, other schema-based P2P systems do not raegijpesisence of a super-
peer. This is for example the case of the Piazza system fhich data origins serve
original content, peer nodes cooperate to store matexthzews and answer queries,
nodes are connected by bandwidth-constrained links andrésly their materialized
views to share resources with other peers. On the other Istnothg limitations on the
topology of the mappings among peers are imposed by thensysterder to allow for
effective query answering.
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However, apart from basic structure and algorithms, trestili a fundamental lack
of understanding behind the basic issues of data integrati®2P systems, both from
the point of view of modeling the system and characterizisgémantics, and from the
point of view of computing answers to queries posed to a peer.

As for the modeling problem, it needs to be investigated tviethe usual approach
of resorting to a first-order logic interpretation of P2P mpiags (followed, e.g., by [26,
50,6]), is still appropriate in the presence of an arbitstrycture of the system, possibly
involving cycles among various nodes, or whether alteveaemantic characterizations
should be adopted [15]. As for the computational perspectie basic task of computing
query answers in P2P systems is still largely uninvestiydefficulties arise from the
necessity of distributing the overall computation to thegi nodes, exploiting their
local processing capabilities and the underlying techgiold framework. Furthermore,
qguery answering is in general related to the problem of figidinvay to obtain answers
relying only on the query answering services availableapiers. Each peer of the P2P
system provides the service of answering queries expresssdts exported schema,
and in general such services are the only basic serviceséhean rely upon in order to
answer queries.

The problem is even more complex when peers export an ontdtagher than a
simple relational schema) [65,16]. Here, the problem of tmexploit the mappings be-
tween peers in order to answer queries posed to one peeraséna hard to solve, even
in very simple settings (e.g., when the whole system is domstl by two interoperating
peers as in [16]). Indeed, query answering in this settiragtsally a complex form of
query reformulation. Notice that this problem is crucialsiveral contexts, as, for ex-
ample mediator-based data integration, in particularénctise where the global schema
is expressed as an ontology. Also, recent studies on queritirey under integrity con-
straints, some of that [13,10] we discussed before, arelgtrelated to such a form of
query rewriting. Then, this problem is of clear relevancetf® Semantic Web, even if
research on the Semantic Web has focused more on the problemiotogy matching
(i.e., finding the mapping between peers).

Analogously to the case of mediator-based data integratiathe P2P architecture
a different approach to achieve cooperation between diftepeers can be the one of
exchanging data between peers. Peers are again intertedgcmeans of mappings,
but in this case, the focus is on materializing the data flgviiom one peer to another.
Whereas traditional Data Exchange has been the subjectafdegcent investigations,
P2P Data Exchange has so far received little attention.9htf& problem of deciding
the existence of a solution and establishing computatioo@lplexity of such a decision
process is addressed in Peer Data Exchange, a setting ih atiiz two peers interact
that have different roles and capabilities. However, Datehiange in a full-fledged P2P
setting remains still unexplored.

3. Formal framework for peer-to-peer data integration sysems

In our work, we use the framework for P2P data integratiorsg@méed in [20], which is
briefly described in this section.

We refer to a fixed, infinite, denumerable debf constants. Such constants are
shared by all peers, and denote the data items managed bgéhéoPPeer Data Inte-
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gration System (P2PDIS). Moreover, given a relational alfigh A, we denote withC 4
the set of function-free first-order logic formulas whoskatien symbols are i and
whose constants are In

We also consider conjunctive queries, i.e., SQL selegeptgoin queries. Formally,
aconjunctive queryCQ) of arityn over A is a query written in the form

{x| 3y body..,(x,y)}

wherebody ., (x,y) is a conjunction of atoms of 4 involving the free variables (also
called thedistinguishedvariables of the queryy = x4, .. ., z,,, the existentially quanti-
fied variables (also called thmn-distinguishedariables of the queryy = y1, - - ., ¥m,
and constants from.

A P2P data integration systefd = { Py, ..., P, } is constituted by a set of peers.
Each peelP; € P (cf. [50]) is defined as a tupl®;, = (id, G, S, L, M, L), where:

id is a symbol that identifies the peBr within P, called the identifier of’;.

G is theschemaf P;, which is a finite set of formulas & 4, (representing local
integrity constraints), wherd is a relational alphabet (disjoint from the other
alphabets irP) called thealphabetof P;. Intuitively, the peer schema provides an
intensional view of the information managed by the peer.

S is the(local) source schemaf P;, which is simply a finite relational alphabet
(again disjoint from the other alphabets/), called thelocal alphabetof P;.
Intuitively, the source schema describes the structur@efdata sources of the
peer (possibly obtained by wrapping physical sources)the sources where the
real data managed by the peer are stored.

L is a set of(local) mapping assertionsetweenGG and .S. Each local mapping
assertion is an expression of the form

CGs ~ g,

wherecq g andcg; are two conjunctive queries of the same arity, respectvedy
the source schem$ and over the peer schenda The local mapping assertions
establish the connection between the elements of the ssahmama and those
of the peer schema if;. In particular, an assertion of the forngg ~ c¢qq
specifies that all the data satisfying the queyy over the sources also satisfy the
concept in the peer schema represented by the qyeryin the terminology used
in data integration, the combination of peer schema, soscbema, and local
mapping assertions constitutes a GLAYta integration systerfb5] managing a
set of sound data sourceglefined in terms of a (virtual) global scherGa

e )M is a set ofP2P mapping assertionsvhich specify the semantic relationships
that the peel’; has with the other peers. Each assertioiins an expression of
the form

cq' ~ cq,

where ¢q, called theheadof the assertion, is a conjunctive query over the peer
(schema of)P;, while ¢¢’, called thetail of the assertion, is a conjunctive query
of the same arity agq over (the schema of) one of the other peer®irA P2P
mapping assertiong’ ~ cq from peerP; to peerP; expresses the fact that the
P;-concept represented hy’ is mapped to the?;-concept represented hy;.
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Py I o P3 ) o
Personq (name, livesin, citizenship) — = 23 Ll Persong (name, livesln, citizenship)
L — I I

S (name, livesin) ! !
l l
(*Joe" , " Rome" ) ‘ ‘
— !
I I
| |
I I
T T
Py . . o Py . ) N
Citizeno (name, birthDate, citizenship) Citizen4 (name, livesIn, citizenship)
So (name, birthDate, citizenship) S4 (name, livesln, citizenship)
("Joe","24/12/ 70" , " Canadi an" ) ("Joe", "Rone" , " Canadi an" )

Figure 3. The P2P Data Integration System of Example 3.1

From an extensional point of view, the assertion specifias ¢kery tuple that
can be retrieved fron®; by issuing queryq’ satisfiescg in P;. Observe that no
limitation is imposed on the topology of the whole set of P2&pping assertions
in the systen, and hence, as in [20], the set of all P2P mappings may beccycli

e L is a relational query language specifying the class of gsetiat the peeP;
can process. We assume thais some fragment of FOL that accepts at least
conjunctive queries. We say that the querieg iare thoseccepted byP;. Notice
that this implies that, for each P2P mapping assertign~» cq from another
peerP; to peerP; in M, we have thatq’ is accepted byP;.

An extensiorfor a P2PDISP = {P,...,P,}isasetD = {D,,...,D,}, where
eachD; is an extension of the predicates in the local source schémpeeol;.

A P2PDIS, together with an extension, is intended to be qddry external users.
A user enquires the whole system by accessing any BexrP, and by issuing guery
qto P. The queryy is processed by if and only if ¢ is expressed over the schemarof
and is accepted b¥.

Example 3.1 Let us consider the P2PDIS in Figure 3, in which we have 4 pBgr$,
P3, and Py (in the following, we assume that each pégiis identified byi).

The global schema of peerP; is formed by a relation schema
Person; (name, livesIn, citizenship), wherename is the key (we underline the key of a
relation). P; contains a local sourc®,; (name, livesin), mapped to the global view by
the assertiodz,y | Si(z,y)} ~ {z,y | 3z.Personi(x,y,2)}. Moreover, it has a
P2P mapping assertiofx, z | Jy. Citizena(z,y,2)} ~ {x,z | Jy.Persony(z,y,2)}
relating information in peef; to those in peep; .

P, hasCitizens(name, birthDate, citizenship) as global schema, and a local source
So(name, birthDate, citizenship) mapped to the global schema through the local map-
ping{z,y,z | Sa(x,y,2)} ~ {x,y,z | Citizeny(z,y, z)}. P» has no P2P mappings.

P; has Personz(name, livesIn, citizenship) as global schema, contains no lo-
cal sources, and has a P2P mappingy,z | Personi(z,y,2)} ~ {z,y,z |
Persons(z, vy, z)} with P;, and a P2P mappinge, y, z | Citizena(x,y, 2)} ~ {z,y,z |
Persons(z,y, z)} with Py.

Py has Citizens(name, livesIn, citizenship) as global schema, and a local source
S4(name, livesin, citizenship) mapped to the global schema through the local mapping
{z,y,2 | Sa(z,y,2)} ~ {x,y, 2z | Citizens(z,y, ) }. P4 has no P2P mappings.
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Finally, Figure 1 shows also an extension of the P2P datayratien system,
which includesS; (" Joe" ," Rone" ), So(" Joe" ," 24/ 12/ 70" ," Canadi an" ), and
S4("Joe" " Rome" " Canadi an"). n

4. Classical semantics for P2P data integration systems

In this section we present a logical formalization of P2Radategration systems based
on classical first-order logic. Such a formalization is thstfone that has been proposed
for P2P data integration [26,54,50].

We assume that the peers are interpreted over a fixed infioiteaith A. We also
fix the interpretation of the constantslin(cf. previous section) so that: (i) eache T’
denotes an elemendte A; (ii) different constants if® denote different elements a;
(iii) each element imA is denoted by a constant In' It follows thatT is actually iso-
morphic toA, so that we can use (with some abuse of notation) constahts/lrenever
we want to denote domain elements.

4.1. Semantics of one peer

We focus first on the semantics of a single pBer (id, G, S, L, M, L). Let us callpeer

theory of P the FOL theoryT'» defined as follows. The alphabet 6% is obtained as
union of the alphabetl; of G and the alphabet of the local sourcesf P. The axioms
of T» are the formulas it plus one formula of the form

vx. (Jy. body ., (x,y) D Jz. body., ., (x,2))

for each local mapping assertiopg ~ cqq in L.

Observe that the P2P mapping assertion8 afe not considered ifip, and thatl'p
is an “open theory”, since for the sourcesinwe only have the schem&, and not the
extension. We callocal source databastor P, a databasé for the source schemé,
i.e., a finite relational interpretation of the relation gyots in.S. An interpretatioriZ of
Tp is amodel of P based onD if it is a model of the FOL theor{'» such that for each
relational symbok € S, we have that? = sP.

Finally, consider a query of arity n, expressed in the query languag@ccepted by
P. Given an interpretatiofi of T, we denote withy” the set ofr-tuples of constants in
I" obtained by evaluatingin Z (viewed as a database over the relation&)paccording
to the semantics of. We define thecertain answersANS(q, P, D) to ¢ (accepted by
P) based on a local source datab#éséor P, as the set of tuplesof constants if” such
that for all model<Z of P based oD, we have that € ¢~.

4.2. Semantics for P2P data integration systems
Based on the above logical formalization of a peer, we nowenethe “classical” ap-

proach to providing a semantics to the whole P2P data irtiegraystem. The classical
approach is what we may call the FOL approach, followed by52&0]. In this ap-

1In other words the constants Ihact asstandard namef57].



12 D. Calvanese et al. / Data Management in Peer-to-Peer Datieghation Systems

proach, one associates to a P2P data integration syBtarsingle (open) FOL theory
Tp, obtained as the disjoint union of the various peer theqP&P mappings are not
considered iff’p).

By following the approach used for a single peer, we consadgrurce databas®
for P, simply as the (disjoint) union of one local source databader each peer” in
P. We callFOL model ofl’» based orD an interpretatiod of the FOL theoryl’» such
that for each relational symbelof the source schemas in the peersPpfwe have that
sT = sP. Then we calFOL model ofP based or® a modelZ of T based orD that is
also a model of the formula

vx. (Jy. body ., (x,y) D Jz. body,,, (x,2))

for each P2P mapping assertian ~» cq, in the peers of.

Finally, given a queryy over one of the peer® in P (assuming that the iden-
tifier of P is id) and a source databage for P, we define thecertain answers
ANS01(g, id, P, D) to ¢ in P based orD under FOL semantics, as the set of tupgled
constants if” such that for every FOL modél of P based orD, we have that < ¢~.

5. Limitations of first-order approaches

Although correct from a formal point of view, the usual apgarb of resorting to a first-
order logic interpretation of P2P mappings, which we hawdbed in the above sec-
tion, has several drawbacks, both from the modeling and fftencomputational per-
spective. Consider, for example, three central desiratolpgties of P2P systems:

e Modularity: i.e., how autonomous are the various peers in a P2P systdmmewi
spect to the semantics. Indeed, since each peer is autostniuilt and man-
aged, it should be clearly interpretable both alone and vitertved in intercon-
nections with other peers. In particular, interconnediasith other peers should
not radically change the interpretation of the conceptsesged in the peer.

e Generality i.e., how free we are in placing connections (P2P mappibgsyeen
peers. This is a fundamental property, since actual interections among peers
are not under the control of any actor in the system.

e Decidability. i.e., are sound, complete and terminating query answenecha-
nisms available? If not, it becomes critical to establiskidguality assurance of
the answers returned by the system.

Actually, these desirable properties are weakly suppdstedpproaches based di-
rectly on FOL semantics. Indeed, such approaches es$gcbalsider the P2P system
as a single flat logical theory. As a result, the structurenefgystem in terms of peers
is lost and remote interconnections may propagate contdrhiat have a deep impact
on the semantics of a peer. Moreover, under arbitrary P2Zciomnections, query an-
swering under the first-order semantics is undecidabley edeen the single peers have
an extremely restricted structure. Motivated by these miasiens, several authors pro-
posed suitable limitations to the form of P2P mappings, fchcyclicity, thus giving
up generality to retain decidability [50,54,35].

To overcome the above drawbacks, we propose a new semantie2P systems,
with the following aims:
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e \We want to take into account that peers in our context are tcobgidered au-
tonomous sites that exchange information. In other worelstgpare modules, and
the modular structure of the system should be explicitheréd in the definition
of its semantics.

e We do not want to limit a-priori the topology of the mappingeadions among
the peers in the system. In particular, we do not want to irpasyclicity of
assertions.

e \We seek for a semantic characterization that leads to agettihere query an-
swering is decidable, and possibly, polynomially tractabl

We base our proposal of a new semantics for P2P systems derefadogic, and we
show that the new semantics is clearly superior to the usbalsemantics with respect
to all three properties mentioned above.

6. Multi-modal epistemic formalization

In this section we present a logical formalization of P2Radategration systems. Al-
though one possible choice for formalizing such systemsassical first order logic, it
was argued in [20] that using epistemic logic brings sevadaiantages. In particular,
we adopt anulti-modalepistemic logic, based on the premise that each peer in te sy
tem can be seen as a rational agent. More precisely, the ligatian we provide in this
section is based d$b,,, the multi-modal version of the modal logs® [29,57].

6.1. The logicS5,

The language£(S5,,) of S5, is obtained from first-order logic by adding a set
K,,..., K, of modal operators, for the forming rule:dfis a (possibly open) formula,
then alsoK;¢ is so, forl < i < n for a fixedn. In S5,,, each modal operator is used
to formalize the epistemic state of a different agent. Imfalty, the formulaK;¢ should
be read as¢ is known to hold by the agert. The semantics 085,, is such that what
is known by an agent must hold in the real world: in other wptlds agent cannot have
inaccurate knowledge of what is true, i.e., believe somethd be true although in re-
ality it is false. MoreoverSs,, states that the agent has complete information on what it
knows, i.e., if agent knows¢ then it knows of knowingp, and if agent does not know
¢, then it knows that it does not knoyv In other words, the following assertions hold
for everyS5,, formula¢:

Ki¢ D¢ known as the axiom schema T
Ki¢ D Ki(K;¢) known as the axiom schema 4
-K;¢ D K;(—K;¢) known as the axiom schema 5

To define the semantics 66,,, we start from first-order interpretations. As done in
Section 4, we restrict our attention to first-order intetatiens that share a fixed infinite
domainA and assume that constants of thelsatt as standard names f&t

Formulas ofS5,, are interpreted ove$5,,-structures. AS5,,-structureis a Kripke
structureE of the form (W, {Ry,... R,}, V), where:W is a set whose elements are
calledpossible worldsV is a function assigning to eaeh € W a first-order interpreta-
tion V(w); and eachR;, called theaccessibility relatiorfor the modalityK;, is a binary
relation overlV, with the following constraints:
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if w e W then(w,w) € R;, i.e.,R; is reflexive
if (w1, ws) € R; and(ws, w3) € R; then(wy,ws) € R;, i.e., R; is transitive
if (wy,wy) € R; and(wy,ws) € R; then(ws, ws) € R;, 1.€., R; is euclidean

An S5, -interpretationis a pairE, w, whereE = (W,{Ry,...R,},V) is anS5,,-
structure, andv is a world inT/. We inductively define when a sentence (i.e., a closed
formula) ¢ is true in an interpretation®, w (or, is true on worldw € W in E), written
E,w = ¢, as follows?

E.wlE P(er,...,c,) iff V(w)EPler,...,cn)

E,w=¢1 Ao iff E,wl=¢andE,w = b

E,wl= - iff  E,wp~ ¢

E,w=3z.¢ iff E,w |=? for some constant

E,w = K;¢ ifft E,w' = ¢ foreveryw’ such thafw,w’) € R;

We say that a sentencgis satisfiableif there exists ar5,,-modelfor ¢, i.e., an
S5, -interpretationF, w such that?, w |= ¢, unsatisfiableotherwise. Amodelfor a set
Y of sentences is a model for every sentencE.iA sentence is logically impliedby a
set of sentences, writteR |=s5, ¢, if and only if in everyS5,,-model £, w of X, we
have thatl, w = ¢.

Notice that, since each accessibility relation 853 -structure is reflexive, transitive
and Euclidean, all instances of axiom schemas T, 4 and 5 &isfieh in everyS5,,-
interpretation.

6.2. Epistemic semantics for P2P data integration systems

Due to the characteristics mentioned ab®&, is well-suited to formalize P2PDISs of
the kind presented in Section 3. LBt= { Py, ..., P,} be a P2PDIS in which each peer
P; has identifieri. For each peeP; = (i, G, S, L, M, L) we define the theor§ (P;) in
S5,, as the union of the following sentences:

e Global schemd of P;: for each sentenc¢in GG, we have
Ki¢
Observe thab is a first-order sentence expressed in the alphabg},ofrhich is
disjoint from the alphabets of all the other peer$in
e Local mapping assertions betweenG and the local source schenSafor each

mapping assertiofxx | Jy. body .., (x,y)} ~ {x | 3z. body., (x,2)} in L, we
have

Ki(vx.Jy. body.,_(x,y) D Jz. body ., (x,2))

e P2P mapping assertionsl/: for each P2P mapping assertiofix |
Jdy. body ., (x,¥)} ~ {x | 3z. body.,, (x,2)} between the pegrand the peer
in M, we have

vx. K;(3y. body ., (x,y)) D K;i(3z. body,.,, (x,2)) 1)

2We have used? to denote the formula obtained fragnby substituting each free occurrence of the variable
x with the constant.
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In words, this sentence specifies the following rule: forheuple of valueg,
if peer j knows the sentencey. body, (t,y), then peer knows the sentence
J

Jz. body.,, (t,z) holds.

We denote by7x (P) the theory corresponding to the P2PDFS i.e., 7k (P) =
Ui:l,“.,n TK(Pl)

Example 6.1 We provide now the formalization of the P2PDIS of Example. 3ie
theory7x (P;) modeling peerP; is the conjunction of:

Ki(Va,y,y, 2, 2'. Persony (x,y, 2) A Persony (z,y',2") Dy=y' Nz=2')
K (Va,y.S1(x,y) D Jz. Persony (z,y, 2))
Vz, z. Ka(3y. Citizena (z, v, 2)) D K1 (3y. Persony (z, vy, 2))

The theory7x (P,) modeling peet?; is the conjunction of:

Ko (Va,y,y, z, 2. Citizena (x, y, 2) A Citizena (2, ¢/, 2") Dy =y Az =2")
K2 (Vz,y, 2. Sao(x, y, 2) D Citizena(z, v, 2))

The theory7x (P3;) modeling peet; is the conjunction of:

Ks(Vz,y,y, z, 2. Persons(z, y, 2) A Persons(z,y',2') Dy =9y Az =2')
Va,y. K1 (3z. Persony (z, z,y)) D Kg3z. Persons(x, z,y)
Va,y, z. Kq(Citizeny(z,y, 2)) D KzPersons(z, vy, z)

The theory7x (P4) modeling peetP, is the conjunction of:

Ka(Va,y,y, 2, 2. Citizeny (z,y, 2) A Citizeng(x,y',2") Dy =9y ANz =2')
Kya(Va,y, z.S4(x,y, 2) D Citizeng(z,y, 2))

The extensiorD = {Dy,...,D,} of a P2PDISP is modeled as a sentence con-
stituted by the conjunction of all facts corresponding t® tilples stored in the sources,
i.e., DB(D) = N\, DB(D;) whereDB(D;) = K;i(/\,c,n, 7(t)).

A client of the P2PDIS interacts with one of the peers, say pgeposing aquery
to it. A querygq is an open formula(x) with free variables expressed in the language
accepted by the peér; (we recall that such a language is a subset of first-ordec)ogi
The semantics of a query € L posed to a peeP;, = (i,G, S, L, M, L) of P with
respect to an extensidn is defined as the set of tuples

ANSss, (q,i, P, D) = {t | Tx(P) U DB(D) |=ss, Kiq(t)}

whereq(t) denotes the sentence obtained from the open forgiada by replacing all
occurrences of the free variablessirwith the corresponding constantstin

6.3. Query answering in P2PDISs under the epistemic sensnti

Finally, we point out that query answering in P2P data irgggn systems under the
epistemic semantics described above has been studied,R0[15 particular, it has
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Figure 4. Interactions between two mappings

been proved that, under very general assumptions aboutrttotuse of the single peers
and the query language, query answering in a P2PDIS undeptkemic semantics is
decidable and, in many cases, tractable in data compléxeityqueries can be answered
in polynomial time with respect to the size of the data statthe peers.

In the above epistemic setting, two different query answgestrategies have been
explored. In the first one, described in [15], a bottom-updtgm has been defined,
which is able to answer a query by incrementally collectimg ¢ertain answers to suit-
able queries that are iteratively computed at the varioesspéollowing the topology of
the mappings among the peers. The second approach, pkgerfig®], adopts a top-
down technique that is heavily based on query reformulafioparticular, the peer to
which the initial query is posed incrementally collects tiebal reformulation of the
query, which is computed by a distributed algorithm thatleitg both the mappings
among the peers and a local query reformulation ability chgzeer. We refer the inter-
ested reader to [15,20] for more details.

7. Comparison between the two semantics

In this section, we compare the epistemic and FOL semartid®ZP systems presented
above. The comparison is guided by three principles, namelyularity, generality, and
decidability of query answering. To highlight the diffecars between the two semantics,
we will consider the simplest setting in which interactianay occur, namely systems
containing only two P2P mappings. The three types of systeewiscuss in the follow-
ing are depicted in Figure 4, and represent respectivelgdise of parallel, sequential,
and cyclic composition, where each circle represents g pedran arrow from a peét’

to a peerP represents a mapping assertion whose head is a CQPoaad whose tail is

a CQ overP’.

We first need to provide some definitions. For the sake of saitylin the fol-
lowing we slightly simplify the formalization, and denotepaer P, by a quadruple
P, = (G,S,L, M), i.e., with respect to the notation used above, we omit tisé dom-
ponentid (the identifier of P), and the last componettt (the class of queries that the
peer P can process), and assume that: (i) the identifier of p&eés the subscripi of
the peer symbol; (ii) all peers accept the same query laregdagnd such arC is the
language of conjunctive queries.

Given a peel? = (G, S, L, M), we denote as(P) the peer(G, S’, L', M) such
that:
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1. S’ is obtained fromS by adding a new source predicate symbobf the same
arity ascq’, for each P2P mapping assertiafi ~ cq in M between a peeP’
andP. We also denote a3(r) the queryeq’ in the tail of the corresponding P2P
mapping assertion, and denotefag-) the peerP”’, i.e., the peer over which the
queryQ(r) is expressed.

2. L' is obtained fromZL by adding the local mapping assertifr | r(x)} ~ cq
for each P2P mapping assertiajf ~ cq in M.

Furthermore, for a P2P systef we denote as(P) the P2P systerir(P) | P € P}.
For each peeP, we callauxiliary alphabebf P, denoted agwuxAlpH P), the set of new
source predicate symbols thus defined. Informally, in eadr the additional sources
corresponding to the predicates in the auxiliary alphateetisaed to “simulate” the effect
of the P2P mapping assertions with respect to contributiribe data of the peer.

7.1. Modularity: Parallel composition

We consider a P2P systefd,,, with the structure depicted in Figure 4(a), and to
highlight the interdependence between mappings, we fugbsume thaf; does not
contain local sources (and local mappings). Herg,. is constituted by two peers
P = (Gl, @,@, {ml,mg}), andP2 = (Gg, SQ, Lo, @)

Informally, in the context of parallel composition, we camnsider a semantics for
P2P systems as modular, if for every quergver P;, and for every source database
D, for P, the certain answers t@ in P,,, with respect toD, under the consid-
ered semantics can be computed by first populattpgvith the data retrieved by in-
dependently applying the two mappings and then evaluatimyer such data. For-
mally, letm; be c¢} ~ cqq, letmg be cg, ~ cq,, and consider the peet(P;) =
(Gy, {r1,ro}, {mi, ms}, {m1,ma}), wherem} is {x | ri(x)} ~ ecq; andm) is
{x | r2(x)} ~ cq,. For a local source databag® for P, let 6(P;, D3) be the lo-

cal source database faiP;) such thatrf(P 1:D2) coincides with the certain answers

ANS(cq}, P2, Dy) over the single peeP,, andrg(Pl’Dz) coincides with the certain an-
swersANS (cqh, Py, Do) over P». Now, semanticsX is modular if for every query;

to P, and for every source databaBg for P,, we have thad NS x (¢, 1, P,{D2}) co-
incides with the certain answersNS (¢, 7(P1), d( Py, D2)) overr(P;). The following
theorems show that a P2P system as simpfe,asis sufficient to separate the epistemic

and the FOL semantics with respect to modularity.

Theorem 7.1 There is a P2P systerf?,,, = {P:,P.} of the form as above, a
source databasé, for P», and a queryg to P; such thatANS,(q,1,P,{D2}) #
ANS(q,7(P1),0(P1, D2)).

Proof (sketch). We exhibit P,,. = {P1, P2}, D2, and ¢ such that the claim
holds. LetP; = ({u/l}, @, @, {ml,mg}) and P, = (GQ, {8/1}, {62}, @), with Gy =
{Va (uz(z) D ui(x) Vuz(x))}, and

by ={x | s(x)} ~ {z|us(z)}
mi = {z | ui(2)} ~ {m\u(x){

(z)
mo = {z | uz(z)} ~ {z | u(z)
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Consider the source databaBe = {s(a)} for P;. It is easy to see that for the query
q = {z | u(z)} we have thad NS¢,,(¢,1,P,{D2}) = {a}, while §(P;, D) = 0, and
henCEANS(q7T(P1),5(P1, Dg)) = 0. [

For the epistemic semantics, from the results in [20], wellgefollowing theorem.

Theorem 7.2 Let P, and D, be as above. Then, for every querpver P, we have
thatANSSF,n (q, 1, P, {DQ}) = ANS(q, T(Pl), (5(1:)17 DQ))

7.2. Modularity: Sequential composition

We consider a P2P systef\., with the structure depicted in Figure 4(b). Again, to
highlight the interaction between the mappings, we asstatebiothP; and P, do not
contain local sources. Hencg,., is constituted by three peef§ = (G1,0,0,{m1}),

Py = (GQ, @, @7 {mg}), andP3 = (Gg, 53, L3, (Z))

Informally, in the context of sequential composition, we @@nsider a semantics
for P2P systems as modular, if for every queryver Py, and for every source database
D4 for Ps, the certain answers t@in P, with respect toD3; under the considered
semantics can be computed by (i) populatifigwith the data retrieved by applying
the mappingns, (ii) using such data to populat®, by applying the mapping.;, and
(iii) evaluatingq over P;. Formally, letm, be cqg, ~ cqq, letms be cg; ~ ¢, and
consider the peers(Py) = (G1,{ri},{mi},{mi}) withm}| = {x | (%)} ~ cq;
and7(Py) = (Ga,{ra}, {mb},{ma}) with m}, = {x | r2(x)} ~ cgb. For a local
source databag®; for Ps, letd(P», D3) be the local source database f¢i,) such that

rg(Pz’DS) = ANS(cqs, P53, D3) and letdé(Py, P», D3) be the local source database for
7(Py) such thavf(Pl’P2’D3) = ANS(cqq, Ps,0(P2, D3)). Now, semanticsX is mod-
ular if for every queryg to P, and for every source databagy for Ps;, we have that
ANSX(q7 LP, {D3}> = ANS(q> T(P1)7 6(P17 P, DJ))

We show that also in the context of sequential compositidmjenthe epistemic
semantics for P2P systems is modular, the FOL semantic$ &ono

Theorem 7.3 There is a P2P syste®,., = {Pi, P, P} of the form as above, a
source databas®s for P;, and a queryy over P; such thatANS (¢, 1, P, {Ds}) #
ANS(q, T(Pl), 5(P1, PQ, Dd))

Proof (sketch).Exploiting a result in [61], we exhibiP,., = { P, P, Ps}, D3, and
g such that the claim holds. L&, = ({u/2},0,0,{m1}), P = ({v/2},0,0,{m2}),
andPs = ({w/2},{s/2},{l=2},0), with

my =,y | 321, 2 (v(w, 21) Ao(21, 20) Ao(22,9))} ~ {2,y [ u(e,y)}
my =A{z,y | w(z,y)} ~ {z,y |32 (v(z,2) Av(z,9))}
b =A{z,y [ s(@,9)} ~ {z,y [ w(z,y)}

Consider the source databd3e = {s(a;,a;+1) | 1 < i < 7} for P». Itis easy to see that
for the queryg = {z,y | 3z (u(x, 2) Au(z,y))} we have thad NS, (¢, 1, P, {D3}) =
{(a1,a7)}, while ANS(q, 7(P1),0(Py, P2, D3)) = 0. O

For the epistemic semantics, from the results in [20], wetlgefollowing theorem.
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Theorem 7.4 Let P, and D3 be as above. Then, for every querpver P, we have
that ANSss, (¢,1,P,{Ds}) = ANS(q, 7(P1),0(P1, P2, D3)).

7.3. Decidability: Cycle between two peers

We consider a P2P systef,,. with the structure depicted in Figure 4(c). The presence
of a cycle between two peers suffices to make query answeridgaidable under the
FOL semantics.

Theorem 7.5 There is a P2P systefd.,. = {Pi, P»} of the form as above, a source
databaseD for P.,., such that computing the certain answers to queries ovesitigle
peersP; and P, is decidable, while computing the certain answers to queireP.,.
based orD under the FOL semantics is undecidable.

Proof (sketch).The undecidability result follows by a reduction from unidiedility
of query answering under inclusion and functional depeoi@sr{62,27,12].

Consider a relational schenfa with inclusion and functional dependencies. We
construct the pea?; = (G4, 51, L1, M) as follows:G; contains the relations &, plus
two additional relationgnc andfun, both containing one attributeA for each attribute
A in a relationr of R. G contains all inclusion assertion &, plus one inclusion
assertion[A, B] C inc[r.A,r.B] and one functional dependengyn : r.A — r.B,
for each functional dependeney: A — B in R (we have denoted by A the tuple of
attributes corresponding #). S; contains a source relation for each relation in R,
and L; maps such relations to the corresponding relatiors in)/; contains a single
P2P mapping assertidix | inc(x)} ~ {x | rem(x)}.

Then we construct the pe&s = (G, (), 0, M,), whereG, contains only the relation
rem (of the same arity ag.c andfun), andM, contains a single P2P mapping assertion
{x | rem(x)} ~ {x | fun(x)}.

Notice that query answering iR, is decidable, since all functional dependencies are
on the relatiorfun, which is not related through inclusion dependencies tmther re-
lations inG'1, and the implication problems and query answering probl@misclusion
and functional dependencies separately are decidab®EqRB\Iso, P; is trivially decid-
able. On the other hand, under the FOL semantics, the P2Rmgaggopagate the func-
tional dependencies ofun to inc, and hence in turn to the relations . Therefore,
the whole set of dependenciesfhare reflected i1, thus making query answering in
the P2P system as a whole undecidable. O

Notice that, since”; and P, are in general designed independently of each other,
even if care is taken to retain decidability of query ansmgfor each of them separately,
when interconnected in a P2P system, under the FOL sem#miesis no way to ensure
decidability of query answering in the whole system, sinegingle actor has the control
on all the P2P mappings. This is a further indication of tloé laf modularity in systems
based on the FOL semantics. Observe also that the only wayein idecidability would
be to trade it with generality, by restricting the topolodyhe P2P mappings [50,54,35].
In practice this may even be unfeasible, again since no astior control of all P2P
mappings.

On the other hand, under the epistemic semantics we can t&ith generality and
decidability for P2P systems witlirbitrary structure, as shown in [15,20].
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Theorem 7.6 For each P2P systerR of the form as above and a source datab@sfor

‘P such that computing the certain answers to queries overittggespeers is decidable,
computing the certain answers to querieFibased orD under the epistemic semantics
is decidable.

8. Future research directions and conclusions

In this chapter we have provided a formal framework for P2fa d@egration, and we
have proposed a new semantics for such a framework basedstarie logic. We have
compared such a semantics with the commonly adopted sarwdnatsed on first-order
logic, and we have shown that the epistemic approach is suerthe first-order one
with respect to three central properties for P2P systermelyg modularity, generality,
and decidability. We have also devised polynomial time gaeswering algorithms that
are sound and complete for the problem of computing certaswars to user queries
accepted by peers in the system (i.e., computing thed$éfss ). The details of the
algorithms are described in [15] and in [20] .

We point out that our formalization and our query answerilgpiithm are among
the first results on advanced P2P data integration, anddekatarch and technology on
such field is still at an embryonic state. Actually, a numkeissues need to be investi-
gated and resolved in order to facilitate powerful, humaell®2P information integra-
tion. Among them, we consider the following ones the mostiehging and important:

e Inconsistency tolerance, i.e., developing suitable meishas for the management
of data inconsistency. Inconsistency in P2P data integraystems may arise for
different reasons: a peer may be locally inconsistent kecits data (possibly
coming from local sources) violate integrity constrainteafied on its schema;
data coming into a peer from other peers may contradict caing$ when com-
bined with data locally managed by the peer; data comingarpeer from dif-
ferent peers may result mutually inconsistent, i.e., comtbitogether may violate
integrity constraints of the peer schema. Hence, the msireis to deal appropri-
ately with inconsistencies, in order to avoid trivializedeay results. First results
on this issue recently appeared in [17].

e Preferences and trust management, i.e., choosing froncdatang from differ-
ent peers on the basis of preferences/trust specificafiof®2P data integration
systems, each peer may want to specify information on homstg peers, with
respect to certain kind of data, to which it is connected,, dng assigning dif-
ferent quality values (e.g., reliability, availabilitytoe) to data coming from dif-
ferent peers. Obviously, the "best" data should be preddoéhe others. Prefer-
ence/trust specifications can be used both to solve datasistencies and to rank
data belonging to query answers. Indeed, when dealing wittuatly inconsis-
tent data coming from different peers, a peer may chooseist only those data
coming from the preferred peer (e.g., the most reliable .dagthermore, a peer
may choose to select which data have to be first returned iartbeer to a query,
on the basis of preference/trust assertions, in order tedspp query processing.
Also, preference specifications can be used during the qureswering process to
avoid or delay access to peers that have a low preferencealegr
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e Authorization and privacy management, i.e., controllihg aiccessibility of the
data in the peers. In general, each peer in the system waatkvo only con-
trolled accesses to its data, i.e., the peer needs theyaifikpecifying privacy or
confidentiality for (a portion of) its data, or guaranteedigclosure of certain in-
formation from particular users. An interesting approadticl follows a logical
perspective has been recently proposed in [70] in the coafexsingle database.
The proposed method is based on the idea of specifying, fr eser, a set of
authorized views, representing the information that ther issallowed to access.
We think that this idea nicely captures the logical esseffieecess control, and
might be somehow transferred in the context of P2P dataratieq, where it is
crucial that each peer is able to specify data privacy patig/declarative way.

e Model management, i.e., methods for dealing with the dynawi a P2P data in-
tegration system, in which peers may join and leave at ang,tombe temporarily
unavailable. This requests for both advanced meta-datageament and handling
partial and incomplete information.

e Data exchange, i.e., dealing with the materialization ¢d dawing from one peer
to another. Materialized data can be profitably used in P2® mianagement in
several ways, e.g., can be exploited to reduce the numbarcesaes to remote
peers during query processing. Notice that whereas toaditidata exchange has
been the subject of several recent investigations (se@8exfor a brief descrip-
tion), P2P data exchange has so far received little attengind it still remains
largely unexplored.

All these issues are unresolved to date and require majortefind advances in
future research in the field.
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