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Abstract. Decentralized data management has been addressed during the years by
means of several technical solutions, ranging from distributed DBMSs, to mediator-
based data integration systems. Recently, such an issue has been investigated in the
context of Peer-to-Peer (P2P) architectures. In this chapter we focus on P2P data
integration systems, which are characterized by various autonomous peers, each
peer being essentially an autonomous information system thatholds data and is
linked to other peers by means of P2P mappings. P2P data integration does not rely
on the notion of global schema, as in traditional mediator-based data integration.
Rather, it computes answers to users’ queries, posed to any peer of the system,
on the basis of both local data and the P2P mappings, thus overcoming the main
drawbacks of centralized mediator-based data integration systems and providing
the foundations of effective data management in virtual organizations.

In this chapter we first survey the most significant approachesproposed in the lit-
erature for both mediator-based data integration and P2P data management. Then,
we focus on advanced schema-based P2P systems for which the aimis semantic in-
tegration of data, and analyze the commonly adopted approach of interpreting such
systems using a first-order semantics. We show some weaknesses of this approach,
and compare it with an alternative approach, based on multi-modal epistemic se-
mantics, which reflects the idea that each peer is conceived asa rational agent that
exchanges knowledge/belief with other peers. We consider several central proper-
ties of P2P data integration systems: modularity, generality, and decidability. We
argue that the approach based on epistemic logic is superior with respect to all the
above properties.
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1. Introduction

Data management systems have been continuously evolving during the years to respond
to customer demand and the new market requirements. Starting from the late 80s, cen-
tralized systems, which had often produced huge, monolithic, and generally inefficient
databases, have been replaced by decentralized systems in which data are maintained in
different sites with autonomous storage and computation capabilities. All such systems
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are characterized by an architecture in which data returnedto a user query might not be
physically stored at the site queried by the user. In distributed databases, decentralization
of data is generally achieved to enhance system performance, and is precisely designed
and controlled. However, such an architecture is not able tosupport the integration of
previously existing systems, where data dispersed over several sources are required to be
accessed in a centralized and uniform way. Database federation tools enable data from
multiple heterogeneous data sources to appear as if it was contained in a single federated
database. Such tools provide mechanisms which mask the native characteristics of each
source and represent it in a common format, thus enabling a centralized and transparent
data access. Mediator-based data integration systems (schematized in Figure 1) provide
in addition the capability of defining a (virtual) global schema representing the unified
view of the application domain, which is related to the sources through a suitable map-
ping establishing a semantic relationship between them. Here, the integration can be per-
formed in a declarative way, and query answering, i.e., the problem of providing answers
to users’ queries posed on the virtual global schema, is in general a form of reasoning
with incomplete information, and is achieved by means of powerful mechanisms and ad-
vanced techniques. More recently, the issue of cooperation, integration, and coordination

Global schema

Sources

Query Answer(Q)

Figure 1. Mediator-based Data Integration System

between data nodes in open distributed systems has been investigated in the context of
Peer-to-Peer (P2P) data management [50]. In short, a P2P system is characterized by a
structure constituted by various autonomous nodes (calledsources, sites, agents, or peers,
depending on the context in which such systems are studied) that hold data and that are
linked to other nodes by means of mappings. Differently fromall the above mentioned
architectures, P2P systems do not require a centralized management and are not devel-
oped under the control of central authority. Each peer provides part of the overall infor-
mation available from a distributed environment, and acts both as a client and as a server
in the system. The result is a completely decentralized architecture, flexible and able to
handle dynamic changes in the system, which peers can join orleave at run-time. Then,
favored by its characteristics, P2P computing is expected to soon penetrate the world of
information technology, leveraging the growth of virtual organizations willing to share
information on the network, as well as supporting the electronic business. As for this last
kind of applications, new forms of electronic brokerage areemerging, where each broker
is a peer offering goods or services either directly on behalf of a producer, or through an-
other broker, i.e., through a peer to which a percentage fee is due in case of a transaction.
In many cases, for example, in the electronic commerce for the tourism domain, such
P2P applications are very data intensive as each peer must store large amounts of travel
and hotel data or query such data across a heterogeneous P2P network. Furthermore, they
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are characterized by a potentially huge number of peers willing to access to such a busi-
ness. At the same time, mobile end consumer devices such as cell phones and PDAs are
becoming more powerful as their processing power and data storage capacities approach
the speed and memory of workstations. This opens a perspective of data intensive P2P
applications for participants in mobile networks.

Nowadays, apart from the basic structure and algorithms forP2P information inte-
gration systems, research and technology on advanced data integration is at an embry-
onic state, and an in-depth investigation on the field is still needed in order to achieve
powerful, human level P2P data integration. Recent research is devoted to provide tech-
niques for evolving from basic P2P networks supporting onlyfile exchanges using sim-
ple filenames as metadata [32,68], to more complex systems like schema-based P2P net-
works [50,6,37,20]. In particular, in aP2P data integration system[50] each peer is es-
sentially a mediator-based data integration system, i.e.,it manages a set of local data
sources semantically connected, via alocal mapping, to a (virtual) global schema called
thepeer schema. In addition, the specification of a peer includes a set ofP2P mappings
that specify the relationships with the data exported by other peers, as shown in Figure 2.
Information in such systems can bequeriedto any peer (by external users or other peers).
The queried peer, by exploiting its P2P mappings, can make use of the data in the other
peers for providing the answer.

P1

Local mapping

P2

P5

P3

P4

Peer schema

Local source P2P mapping

Peer

Figure 2. Peer-to-Peer Data Integration System

In this chapter, we survey the most significant approaches proposed in the litera-
ture for both mediator-based data integration and P2P data management. In particular,
our analysis on P2P data management ranges from first systemsdeveloped for content
sharing in a networking environment, to advanced schema-based P2P data integration
systems. Then, focusing on P2P data integration, we analyzethe commonly adopted ap-
proach for interpreting P2P systems using a first-order (FOL) semantics. We show some
weaknesses of this approach, and compare it with an alternative approach, based on epis-
temic semantics. We consider several central properties ofP2P data integration systems:
modularity, generality, and decidability. We show that theapproach based on epistemic
logic is clearly superior to the usual approaches based on first-order logic with respect
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to all the above properties. In particular, we show that, in systems in which peers have
decidable schemas and conjunctive mappings, but are arbitrarily interconnected, possi-
bly presenting cycles in the network of peers, the first-order approach may lead to un-
decidability of query answering, while the epistemic approach always preserves decid-
ability. This is a fundamental property, since the actual interconnections among peers are
not under the control of any actor in the system. In this respect, our formalization nicely
models the modularity of P2P architectures, i.e., the fact that each peer is autonomous,
without resorting to any assumptions such as acyclicity, onthe topology of the P2P sys-
tems. To this aim, we formalize a P2P data integration systemin terms of the multi-modal
epistemic logicS5n, according to which each peer is modeled as a rational agent that
exchanges knowledge/belief with other peers. This is in line with the idea of modeling a
distributed information system in terms of multi-agent modal logic [34].

The rest of this chapter is organized as follows. In Section 2we review approaches
to both mediator-based data integration and P2P data management. In Section 3 we pro-
vide a formal framework for P2P data integration, and in Section 4 we describe classi-
cal FOL semantics for interpreting such a framework. Then, in Section 5 we discuss the
main limitations of FOL approaches and motivate the need of adifferent semantic char-
acterization based on epistemic logic, which is then precisely described in Section 6. In
Section 7 we discuss the issues of modularity, generality and decidability under the two
semantics. Finally, in Section 8 we highlight some open issues and challenging research
directions.

2. State of the art

The main scientific base for P2P data integration is in traditional mediator-based data
integration. The goal of mediator-based data integration systems is to provide clients with
the access to data stored in heterogeneous and autonomous sources, without the need to
know the physical characteristics of such sources and the precise location of the data.

As shown in Figure 1, a mediator-based data integration system exports to the user
a global reconciled view of the data, calledglobal schema, in terms of which the user
formulates his/her queries, and the system maintains a declarative specification (i.e., a
mapping) of the interrelationships between the global schema and the sources, often in
turn represented through asource schema[67,58,55]. Two basic approaches for specify-
ing the mapping have been proposed in the literature. The first approach, calledglobal-
as-view(GAV), requires that a view, i.e., a query, over the sources is associated with
every element of the global schema, so that its meaning is specified in terms of the data
residing at the sources. This is, for example the approach followed in [41,66,44,11].
Conversely, the second approach, calledlocal-as-view(LAV), requires the sources to be
defined as views over the global schema, i.e., it requires that a query over the global
schema is associated to every source element. Examples of proposals following such an
approach are [53,33,19]. More recently, a further approachhas been considered, which
allows for specifying mapping assertions in which a query over the global schema is put
in correspondence with a query over the source schema [55]. Such an approach, which is
calledglobal-local-as-view(GLAV), since it generalizes both the LAV and the GAV ap-
proach [55], as so far received little attention in mediator-based data integration (whereas
it has been recently investigated in P2P data integration, as we will see in the following
sections).
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Among the various problems related to data integration, theproblem of answering
queries posed over the global schema is the one that has been addressed most intensively.
First proposals, developed in the middle 90s, faced such a problem in a procedural way,
thus not providing the users with any declarative support todata integration. Systems like
TSIMMIS (The Stanford-IBM Manager of Multiple InformationSources) [28], or Gar-
lic [24] can be essentially considered as (simple) hierarchies of wrappers and mediators
(and therefore can be both considered a primitive form of GAVsystems). Wrappers are
modules that hide the real nature of a data source, and present it and its data in a suitable
format adopted within the system. Each wrapper manages the access to a single source
and is in charge of translating queries over such a source in the specific language it uses,
taking the answer the source returns, and providing them to the mediators. Each mediator
is in charge of performing actual integration, by triggering the right wrappers, putting to-
gether the data that they return, and providing the final answer to users’ requests (or feed-
ing in turn other mediators). It has to be stressed that in TSIMMIS and Garlic no global
integration is ever performed, since each mediator works inan independent manner.

Systems like Information Manifold (IM) [59,60], or INFOMASTER [43,2,33] fol-
low instead a more declarative approach. Such systems allowfor the specification of a
global schema, a source schema (both schemas are assumed to be relational), and a map-
ping between them, which for both systems is specified according to the LAV approach,
whereas both queries in the mapping and user’s queries posedover the global schema are
conjunctive queries, i.e., SQL select-project-join queries. For query processing, the Infor-
mation Manifold system makes use of a procedure called thebucket algorithm, whereas
the INFOMASTER system uses theinverse rules algorithm. Both algorithms solve query
answering via query rewriting: a user query posed over the global schema is first suit-
ably reformulated in a new query specified over the source schema, and then evaluated
over the source extension in order to obtain the final answers. Several extensions have
been proposed for both the algorithms. For example, in [33] the inverse rules algorithm
is extended in order to handle users’ queries specified in recursive Datalog, the presence
of functional dependencies over the global schema, and the presence of limitations in
accessing the sources (binding patterns), whereas in [64] an interesting optimization of
the bucket algorithm has been proposed which significantly speeds up query processing.

A recent intensive investigation has been addressed the query answering problem
for those cases in which integrity constraints (ICs) are specified over relational global
schemas. ICs allow for enriching the representation of the integration domain, therefore
constitute a powerful feature from a modeling point of view.However, they strongly
affect the query answering process, since data stored at thesources may be in general
incomplete or inconsistent with respect to such constraints. As for the first issue, query
answering turns out to be a form of reasoning in the presence of incomplete information,
suitably supported by a first-order interpretation of the system. This is the case of [49],
which considers (limited combinations of) inclusion and functional dependencies in LAV
data integration systems, or [10], where an algorithm for query answering in GAV sys-
tems, in the presence of key and foreign key constraints is provided, or [13] where a
completely intensional procedure based on query rewritingis defined for all decidable
cases in which key and inclusion dependencies are specified over the global schema.
However, in those cases in which data may contradict global integrity constraints, the
problem arises of how to obtain significative answers from inconsistent systems. Tradi-
tionally, the approach adopted to remedy to this problem hasbeen through data clean-
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ing [7]. This approach is procedural in nature, and is based on domain-specific transfor-
mation mechanisms applied to the data retrieved from the sources. Only very recently
first academic prototype implementations have appeared, which provide declarative ap-
proaches to the treatment of inconsistency of data, in the line of the studies on consis-
tent query answering [4]. In such approaches the common basic idea is that the incon-
sistency might be eliminated by modifying the database representing the extension of
the system, and reasoning on the “repaired” database. Depending on the semantic as-
sumption adopted for the system, several forms of repairingmay be possible. Recently,
several approaches to formalize repair semantics by using logic programs have been pro-
posed [46,13,8]. The common idea is to encode the constraints of the global schema into
a logic program, using unstratified negation or disjunction, such that the stable models
of this program [42] yield the repairs of the global database. Among the most interest-
ing proposals for managing inconsistency in data integration, we mention the INFOMIX
system [56]. INFOMIX provides solutions for GAV data integration of heterogeneous
data sources (e.g., relational, XML, HTML) accessed through relational global schemas
over which powerful forms of integrity constraints can be issued (e.g., key, inclusion,
and exclusion dependencies), and user queries are specifiedin a powerful query language
(e.g., Datalog). The query answering technique proposed insuch a system is based on
query rewriting in Datalog enriched with negation and disjunction, under stable model
semantics [13,48].

A setting similar to the one considered in INFOMIX is the one at the basis of the
DIS@DIS system [14]. Even if limited in its capability of integrating sources with differ-
ent data formats (the system actually considers only relational data sources), DIS@DIS
however provides mechanisms also for integration of inconsistent data in LAV. In [9,8]
an approach similar to the one followed in INFOMIX is followed, but a different repair
semantics is adopted, which, to some extent, does not seem adequate to capture also
incompleteness of data. Other interesting proposals on consistent query answering are
the Hippo system [31,30], and the ConQuer system [38,40]. However, such proposals
have been essentially developed in the context of a single database system, and therefore
do not deal with all aspects of a complex data integration environment. Furthermore,
w.r.t. classes of constraints and query language considered, the Hippo and the ConQuer
systems are to some extent orthogonal to the INFOMIX and the DIS@DIS systems. They
are geared towards highly efficient query answering for specific, polynomial-time classes
of queries, whereas INFOMIX and DIS@DIS, instead, aim at supporting more general,
highly expressive classes of queries (including also queries intractable under worst case
complexity).

Many other studies have considered the query answering problem in data integration
systems in various settings. For example, in [45,58] the relational setting under various
assumptions on the languages used for the mapping and the queries has been analyzed,
whereas in [18,19] query answering has been studied for the setting in which the global
schema is formulated in an expressive conceptual data model. Also, query answering
in the presence of semistructured data sources and global schemas has been the subject
of [21,23,22], and is still the subject of intensive investigations.

A different approach in mediator-based semantic interoperability looks at data man-
agement under the perspective of exchanging data between the sources and the global
schema. Sources are again connected by means of mappings to the global schema, but
in this case, the focus is on materializing the data flowing from the sources to the global
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schema. This problem is addressed in particular by the studies on Data Exchange. In
short, Data Exchange is the problem of taking data structured under a source schema and
creating an instance of a target schema (called solution) that reflects the source data as ac-
curately as possible. Among several papers produced in the field, we mention [35,36,3],
where data exchange is considered also in the presence of expressive constraints speci-
fied over the target schema, and powerful forms of mappings between the source and the
target schema.

More recently, the issue of data integration, has been investigated in the more dy-
namic context of Peer-to-Peer (P2P) data management [50]. In the last years, the P2P
paradigm has been imposing in different contexts where the issue of cooperation, integra-
tion, and coordination between information nodes in a networked environment assumes a
crucial role, including the Semantic Web [51], Grid computing, service oriented comput-
ing and distributed agent systems [63,52]. In all these systems, the problem of interop-
erability still needs deep investigation. In the followingwe review the main approaches
proposed so far in the literature.

P2P systems have recently become popular for content sharing, and a number of dif-
ferent approaches have been studied to perform content retrieval in such networks (e.g.,
adaptation, deterministic placement of contents) [32,68]. In particular, the P2P paradigm
was made popular by Napster, which employed a centralized database with references
to the information items (files) on the peers. Gnutella, another well-known P2P system,
has no central database, and is based on a communication-intensive search mechanism.
More recently, a Gnutella-compatible P2P system, called Gridella [1], has been pro-
posed, which follows the so-called Peer-Grid (P-Grid) approach. A P-Grid is a virtual
binary tree that distributes replication over community ofpeers and supports efficient
search. P-Grid’s search structure is completely decentralized, supports local interactions
between peers, uses randomized algorithms for access and search, and ensures robust-
ness of search against node failures. As pointed out in [47],current P2P systems fo-
cus strictly on handling semantic-free, large-granularity requests for objects by identi-
fier, which both limits their utility and restricts the techniques that might be employed to
distribute the data. These current sharing systems are largely limited to applications in
which objects are described by their name, and exhibit strong limitations in establishing
complex links between peers. To overcome these limitations, data-oriented approaches
to P2P have been proposed recently [5,50,6,47]. Some of them, see e.g., [69,5], are de-
veloped according to a super-peer based topology. A super-peer is a special node which
manages a subset of client nodes. Such nodes interact only with the super-peer to which
they are connected and receive results from it, whereas super-peers are also connected
one another and communicate with other super-peers on behalf of their clients. In such
systems, P2P computing is actually performed at the super-peer level, whereas commu-
nication between the super-peer and its clients is managed according to more traditional
mediator-based techniques.

Conversely, other schema-based P2P systems do not require the presence of a super-
peer. This is for example the case of the Piazza system [47], in which data origins serve
original content, peer nodes cooperate to store materialized views and answer queries,
nodes are connected by bandwidth-constrained links and advertise their materialized
views to share resources with other peers. On the other hand,strong limitations on the
topology of the mappings among peers are imposed by the system in order to allow for
effective query answering.
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However, apart from basic structure and algorithms, there is still a fundamental lack
of understanding behind the basic issues of data integration in P2P systems, both from
the point of view of modeling the system and characterizing its semantics, and from the
point of view of computing answers to queries posed to a peer.

As for the modeling problem, it needs to be investigated whether the usual approach
of resorting to a first-order logic interpretation of P2P mappings (followed, e.g., by [26,
50,6]), is still appropriate in the presence of an arbitrarystructure of the system, possibly
involving cycles among various nodes, or whether alternative semantic characterizations
should be adopted [15]. As for the computational perspective, the basic task of computing
query answers in P2P systems is still largely uninvestigated. Difficulties arise from the
necessity of distributing the overall computation to the single nodes, exploiting their
local processing capabilities and the underlying technological framework. Furthermore,
query answering is in general related to the problem of finding a way to obtain answers
relying only on the query answering services available at the peers. Each peer of the P2P
system provides the service of answering queries expressedover its exported schema,
and in general such services are the only basic services thatwe can rely upon in order to
answer queries.

The problem is even more complex when peers export an ontology (rather than a
simple relational schema) [65,16]. Here, the problem of howto exploit the mappings be-
tween peers in order to answer queries posed to one peer is in general hard to solve, even
in very simple settings (e.g., when the whole system is constituted by two interoperating
peers as in [16]). Indeed, query answering in this setting isactually a complex form of
query reformulation. Notice that this problem is crucial inseveral contexts, as, for ex-
ample mediator-based data integration, in particular in the case where the global schema
is expressed as an ontology. Also, recent studies on query rewriting under integrity con-
straints, some of that [13,10] we discussed before, are strictly related to such a form of
query rewriting. Then, this problem is of clear relevance for the Semantic Web, even if
research on the Semantic Web has focused more on the problem of ontology matching
(i.e., finding the mapping between peers).

Analogously to the case of mediator-based data integration, in the P2P architecture
a different approach to achieve cooperation between different peers can be the one of
exchanging data between peers. Peers are again interconnected by means of mappings,
but in this case, the focus is on materializing the data flowing from one peer to another.
Whereas traditional Data Exchange has been the subject of several recent investigations,
P2P Data Exchange has so far received little attention. In [39] the problem of deciding
the existence of a solution and establishing computationalcomplexity of such a decision
process is addressed in Peer Data Exchange, a setting in which only two peers interact
that have different roles and capabilities. However, Data Exchange in a full-fledged P2P
setting remains still unexplored.

3. Formal framework for peer-to-peer data integration systems

In our work, we use the framework for P2P data integration presented in [20], which is
briefly described in this section.

We refer to a fixed, infinite, denumerable setΓ of constants. Such constants are
shared by all peers, and denote the data items managed by the Peer-to-Peer Data Inte-
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gration System (P2PDIS). Moreover, given a relational alphabetA, we denote withLA

the set of function-free first-order logic formulas whose relation symbols are inA and
whose constants are inΓ.

We also consider conjunctive queries, i.e., SQL select-project-join queries. Formally,
aconjunctive query(CQ) of arityn overA is a query written in the form

{x | ∃y. bodycq(x,y)}

wherebodycq(x,y) is a conjunction of atoms ofLA involving the free variables (also
called thedistinguishedvariables of the query)x = x1, . . . , xn, the existentially quanti-
fied variables (also called thenon-distinguishedvariables of the query)y = y1, . . . , ym,
and constants fromΓ.

A P2P data integration systemP = {P1, . . . , Pn} is constituted by a set ofn peers.
Each peerPi ∈ P (cf. [50]) is defined as a tuplePi = (id , G, S, L,M,L), where:

• id is a symbol that identifies the peerPi within P, called the identifier ofPi.
• G is theschemaof Pi, which is a finite set of formulas ofLAG

(representing local
integrity constraints), whereAG is a relational alphabet (disjoint from the other
alphabets inP) called thealphabetof Pi. Intuitively, the peer schema provides an
intensional view of the information managed by the peer.

• S is the(local) source schemaof Pi, which is simply a finite relational alphabet
(again disjoint from the other alphabets inP), called thelocal alphabetof Pi.
Intuitively, the source schema describes the structure of the data sources of the
peer (possibly obtained by wrapping physical sources), i.e., the sources where the
real data managed by the peer are stored.

• L is a set of(local) mapping assertionsbetweenG andS. Each local mapping
assertion is an expression of the form

cqS ; cqG,

wherecqS andcqG are two conjunctive queries of the same arity, respectivelyover
the source schemaS and over the peer schemaG. The local mapping assertions
establish the connection between the elements of the sourceschema and those
of the peer schema inPi. In particular, an assertion of the formcqS ; cqG

specifies that all the data satisfying the querycqS over the sources also satisfy the
concept in the peer schema represented by the querycqG. In the terminology used
in data integration, the combination of peer schema, sourceschema, and local
mapping assertions constitutes a GLAVdata integration system[55] managing a
set of sound data sourcesS defined in terms of a (virtual) global schemaG.

• M is a set ofP2P mapping assertions, which specify the semantic relationships
that the peerPi has with the other peers. Each assertion inM is an expression of
the form

cq ′
; cq ,

wherecq , called theheadof the assertion, is a conjunctive query over the peer
(schema of)Pi, while cq ′, called thetail of the assertion, is a conjunctive query
of the same arity ascq over (the schema of) one of the other peers inP. A P2P
mapping assertioncq ′

; cq from peerPj to peerPi expresses the fact that the
Pj-concept represented bycq ′ is mapped to thePi-concept represented bycq .
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Citizen4(name, livesIn, citizenship)

S4(name, livesIn, citizenship)

("Joe", "Rome", "Canadian")

Person3(name, livesIn, citizenship)
P1

Person1(name, livesIn, citizenship)

S1(name, livesIn)

("Joe", "Rome")

P2
Citizen2(name, birthDate, citizenship)

S2(name, birthDate, citizenship)

("Joe", "24/12/70", "Canadian")

P3

P4

Figure 3. The P2P Data Integration System of Example 3.1

From an extensional point of view, the assertion specifies that every tuple that
can be retrieved fromPj by issuing querycq ′ satisfiescq in Pi. Observe that no
limitation is imposed on the topology of the whole set of P2P mapping assertions
in the systemP, and hence, as in [20], the set of all P2P mappings may be cyclic.

• L is a relational query language specifying the class of queries that the peerPi

can process. We assume thatL is some fragment of FOL that accepts at least
conjunctive queries. We say that the queries inL are thoseaccepted byPi. Notice
that this implies that, for each P2P mapping assertioncq ′

; cq from another
peerPj to peerPi in M , we have thatcq ′ is accepted byPj .

An extensionfor a P2PDISP = {P1, . . . , Pn} is a setD = {D1, . . . ,Dn}, where
eachDi is an extension of the predicates in the local source schema of peerPi.

A P2PDIS, together with an extension, is intended to be queried by external users.
A user enquires the whole system by accessing any peerP of P, and by issuing aquery
q toP . The queryq is processed byP if and only if q is expressed over the schema ofP
and is accepted byP .

Example 3.1 Let us consider the P2PDIS in Figure 3, in which we have 4 peersP1, P2,
P3, andP4 (in the following, we assume that each peerPi is identified byi).

The global schema of peerP1 is formed by a relation schema
Person1(name, livesIn, citizenship), wherename is the key (we underline the key of a
relation).P1 contains a local sourceS1(name, livesIn), mapped to the global view by
the assertion{x, y | S1(x, y)} ; {x, y | ∃z.Person1(x, y, z)}. Moreover, it has a
P2P mapping assertion{x, z | ∃y.Citizen2(x, y, z)} ; {x, z | ∃y.Person1(x, y, z)}
relating information in peerP2 to those in peerP1.

P2 hasCitizen2(name, birthDate, citizenship) as global schema, and a local source
S2(name, birthDate, citizenship) mapped to the global schema through the local map-
ping{x, y, z | S2(x, y, z)} ; {x, y, z | Citizen2(x, y, z)}. P2 has no P2P mappings.

P3 has Person3(name, livesIn, citizenship) as global schema, contains no lo-
cal sources, and has a P2P mapping{x, y, z | Person1(x, y, z)} ; {x, y, z |
Person3(x, y, z)} with P1, and a P2P mapping{x, y, z | Citizen4(x, y, z)} ; {x, y, z |
Person3(x, y, z)} with P4.

P4 has Citizen4(name, livesIn, citizenship) as global schema, and a local source
S4(name, livesIn, citizenship) mapped to the global schema through the local mapping
{x, y, z | S4(x, y, z)} ; {x, y, z | Citizen4(x, y, z)}. P4 has no P2P mappings.
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Finally, Figure 1 shows also an extension of the P2P data integration system,
which includesS1("Joe","Rome"), S2("Joe","24/12/70","Canadian"), and
S4("Joe","Rome","Canadian").

4. Classical semantics for P2P data integration systems

In this section we present a logical formalization of P2P data integration systems based
on classical first-order logic. Such a formalization is the first one that has been proposed
for P2P data integration [26,54,50].

We assume that the peers are interpreted over a fixed infinite domain∆. We also
fix the interpretation of the constants inΓ (cf. previous section) so that: (i) eachc ∈ Γ
denotes an elementd ∈ ∆; (ii) different constants inΓ denote different elements of∆;
(iii) each element in∆ is denoted by a constant inΓ.1 It follows thatΓ is actually iso-
morphic to∆, so that we can use (with some abuse of notation) constants inΓ whenever
we want to denote domain elements.

4.1. Semantics of one peer

We focus first on the semantics of a single peerP = (id , G, S, L,M,L). Let us callpeer
theory ofP the FOL theoryTP defined as follows. The alphabet ofTP is obtained as
union of the alphabetAG of G and the alphabet of the local sourcesS of P . The axioms
of TP are the formulas inG plus one formula of the form

∀x. (∃y. bodycqS
(x,y) ⊃ ∃z. bodycqG

(x, z))

for each local mapping assertioncqS ; cqG in L.
Observe that the P2P mapping assertions ofP are not considered inTP , and thatTP

is an “open theory”, since for the sources inP we only have the schema,S, and not the
extension. We calllocal source databasefor P , a databaseD for the source schemaS,
i.e., a finite relational interpretation of the relation symbols inS. An interpretationI of
TP is amodel ofP based onD if it is a model of the FOL theoryTP such that for each
relational symbols ∈ S, we have thatsI = sD.

Finally, consider a queryq of arityn, expressed in the query languageL accepted by
P . Given an interpretationI of TP , we denote withqI the set ofn-tuples of constants in
Γ obtained by evaluatingq in I (viewed as a database over the relations inG), according
to the semantics ofL. We define thecertain answersANS (q, P,D) to q (accepted by
P ) based on a local source databaseD for P , as the set of tuplest of constants inΓ such
that for all modelsI of P based onD, we have thatt ∈ qI .

4.2. Semantics for P2P data integration systems

Based on the above logical formalization of a peer, we now present the “classical” ap-
proach to providing a semantics to the whole P2P data integration system. The classical
approach is what we may call the FOL approach, followed by [26,54,50]. In this ap-

1In other words the constants inΓ act asstandard names[57].
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proach, one associates to a P2P data integration systemP a single(open) FOL theory
TP , obtained as the disjoint union of the various peer theories(P2P mappings are not
considered inTP ).

By following the approach used for a single peer, we considera source databaseD
for P, simply as the (disjoint) union of one local source databaseD for each peerP in
P. We callFOL model ofTP based onD an interpretationI of the FOL theoryTP such
that for each relational symbols of the source schemas in the peers ofP, we have that
sI = sD. Then we callFOL model ofP based onD a modelI of TP based onD that is
also a model of the formula

∀x. (∃y. bodycq1
(x,y) ⊃ ∃z. bodycq2

(x, z))

for each P2P mapping assertioncq1 ; cq2 in the peers ofP.
Finally, given a queryq over one of the peersP in P (assuming that the iden-

tifier of P is id ) and a source databaseD for P, we define thecertain answers
ANS fol(q, id ,P,D) to q in P based onD under FOL semantics, as the set of tuplest of
constants inΓ such that for every FOL modelI of P based onD, we have thatt ∈ qI .

5. Limitations of first-order approaches

Although correct from a formal point of view, the usual approach of resorting to a first-
order logic interpretation of P2P mappings, which we have described in the above sec-
tion, has several drawbacks, both from the modeling and fromthe computational per-
spective. Consider, for example, three central desirable properties of P2P systems:

• Modularity: i.e., how autonomous are the various peers in a P2P system with re-
spect to the semantics. Indeed, since each peer is autonomously built and man-
aged, it should be clearly interpretable both alone and wheninvolved in intercon-
nections with other peers. In particular, interconnections with other peers should
not radically change the interpretation of the concepts expressed in the peer.

• Generality: i.e., how free we are in placing connections (P2P mappings)between
peers. This is a fundamental property, since actual interconnections among peers
are not under the control of any actor in the system.

• Decidability: i.e., are sound, complete and terminating query answeringmecha-
nisms available? If not, it becomes critical to establish basic quality assurance of
the answers returned by the system.

Actually, these desirable properties are weakly supportedby approaches based di-
rectly on FOL semantics. Indeed, such approaches essentially consider the P2P system
as a single flat logical theory. As a result, the structure of the system in terms of peers
is lost and remote interconnections may propagate constraints that have a deep impact
on the semantics of a peer. Moreover, under arbitrary P2P interconnections, query an-
swering under the first-order semantics is undecidable, even when the single peers have
an extremely restricted structure. Motivated by these observations, several authors pro-
posed suitable limitations to the form of P2P mappings, suchas acyclicity, thus giving
up generality to retain decidability [50,54,35].

To overcome the above drawbacks, we propose a new semantics for P2P systems,
with the following aims:
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• We want to take into account that peers in our context are to beconsidered au-
tonomous sites that exchange information. In other words, peers are modules, and
the modular structure of the system should be explicitly reflected in the definition
of its semantics.

• We do not want to limit a-priori the topology of the mapping assertions among
the peers in the system. In particular, we do not want to impose acyclicity of
assertions.

• We seek for a semantic characterization that leads to a setting where query an-
swering is decidable, and possibly, polynomially tractable.

We base our proposal of a new semantics for P2P systems on epistemic logic, and we
show that the new semantics is clearly superior to the usual FOL semantics with respect
to all three properties mentioned above.

6. Multi-modal epistemic formalization

In this section we present a logical formalization of P2P data integration systems. Al-
though one possible choice for formalizing such systems is classical first order logic, it
was argued in [20] that using epistemic logic brings severaladvantages. In particular,
we adopt amulti-modalepistemic logic, based on the premise that each peer in the sys-
tem can be seen as a rational agent. More precisely, the formalization we provide in this
section is based onS5n, the multi-modal version of the modal logicS5 [29,57].

6.1. The logicS5n

The languageL(S5n) of S5n is obtained from first-order logic by adding a set
K1, . . . ,Kn of modal operators, for the forming rule: ifφ is a (possibly open) formula,
then alsoKiφ is so, for1 ≤ i ≤ n for a fixedn. In S5n, each modal operator is used
to formalize the epistemic state of a different agent. Informally, the formulaKiφ should
be read as “φ is known to hold by the agenti”. The semantics ofS5n is such that what
is known by an agent must hold in the real world: in other words, the agent cannot have
inaccurate knowledge of what is true, i.e., believe something to be true although in re-
ality it is false. Moreover,S5n states that the agent has complete information on what it
knows, i.e., if agenti knowsφ then it knows of knowingφ, and if agenti does not know
φ, then it knows that it does not knowφ. In other words, the following assertions hold
for everyS5n formulaφ:

Kiφ ⊃ φ known as the axiom schema T
Kiφ ⊃ Ki(Kiφ) known as the axiom schema 4
¬Kiφ ⊃ Ki(¬Kiφ) known as the axiom schema 5

To define the semantics ofS5n, we start from first-order interpretations. As done in
Section 4, we restrict our attention to first-order interpretations that share a fixed infinite
domain∆ and assume that constants of the setΓ act as standard names for∆.

Formulas ofS5n are interpreted overS5n-structures. AS5n-structure is a Kripke
structureE of the form (W, {R1, . . . Rn}, V ), where:W is a set whose elements are
calledpossible worlds; V is a function assigning to eachw ∈W a first-order interpreta-
tion V (w); and eachRi, called theaccessibility relationfor the modalityKi, is a binary
relation overW , with the following constraints:
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if w ∈W then(w,w) ∈ Ri, i.e.,Ri is reflexive
if (w1, w2) ∈ Ri and(w2, w3) ∈ Ri then(w1, w3) ∈ Ri, i.e.,Ri is transitive
if (w1, w2) ∈ Ri and(w1, w3) ∈ Ri then(w2, w3) ∈ Ri, i.e.,Ri is euclidean

An S5n-interpretationis a pairE,w, whereE = (W, {R1, . . . Rn}, V ) is anS5n-
structure, andw is a world inW . We inductively define when a sentence (i.e., a closed
formula)φ is true in an interpretationE,w (or, is true on worldw ∈ W in E), written
E,w |= φ, as follows:2

E,w |= P (c1, . . . , cn) iff V (w) |= P (c1, . . . , cn)
E,w |= φ1 ∧ φ2 iff E,w |= φ1 andE,w |= φ2

E,w |= ¬φ iff E,w 6|= φ
E,w |= ∃x.ψ iff E,w |= ψx

c for some constantc
E,w |= Kiφ iff E,w′ |= φ for everyw′ such that(w,w′) ∈ Ri

We say that a sentenceφ is satisfiableif there exists anS5n-modelfor φ, i.e., an
S5n-interpretationE,w such thatE,w |= φ, unsatisfiableotherwise. Amodelfor a set
Σ of sentences is a model for every sentence inΣ. A sentenceφ is logically impliedby a
setΣ of sentences, writtenΣ |=S5n

φ, if and only if in everyS5n-modelE,w of Σ, we
have thatE,w |= φ.

Notice that, since each accessibility relation of aS5n-structure is reflexive, transitive
and Euclidean, all instances of axiom schemas T, 4 and 5 are satisfied in everyS5n-
interpretation.

6.2. Epistemic semantics for P2P data integration systems

Due to the characteristics mentioned above,S5n is well-suited to formalize P2PDISs of
the kind presented in Section 3. LetP = {P1, . . . , Pn} be a P2PDIS in which each peer
Pi has identifieri. For each peerPi = (i, G, S, L,M,L) we define the theoryTK(Pi) in
S5n as the union of the following sentences:

• Global schemaG of Pi: for each sentenceφ in G, we have

Kiφ

Observe thatφ is a first-order sentence expressed in the alphabet ofPi, which is
disjoint from the alphabets of all the other peers inP.

• Local mapping assertionsL betweenG and the local source schemaS: for each
mapping assertion{x | ∃y. bodycqS

(x,y)} ; {x | ∃z. bodycqG
(x, z)} in L, we

have

Ki(∀x.∃y. bodycqS
(x,y) ⊃ ∃z. bodycqG

(x, z))

• P2P mapping assertionsM : for each P2P mapping assertion{x |
∃y. bodycqj

(x,y)} ; {x | ∃z. bodycqi
(x, z)} between the peerj and the peeri

in M , we have

∀x.Kj(∃y. bodycqj
(x,y)) ⊃ Ki(∃z. bodycqi

(x, z)) (1)

2We have usedψx
c to denote the formula obtained fromψ by substituting each free occurrence of the variable

x with the constantc.
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In words, this sentence specifies the following rule: for each tuple of valuest,
if peer j knows the sentence∃y. bodycqj

(t,y), then peeri knows the sentence
∃z. bodycqi

(t, z) holds.

We denote byTK(P) the theory corresponding to the P2PDISP, i.e., TK(P) =⋃
i=1,...,n TK(Pi).

Example 6.1 We provide now the formalization of the P2PDIS of Example 3.1. The
theoryTK(P1) modeling peerP1 is the conjunction of:

K1(∀x, y, y′, z, z′.Person1(x, y, z) ∧ Person1(x, y
′, z′) ⊃ y = y′ ∧ z = z′)

K1(∀x, y.S1(x, y) ⊃ ∃z.Person1(x, y, z))
∀x, z.K2(∃y.Citizen2(x, y, z)) ⊃ K1(∃y.Person1(x, y, z))

The theoryTK(P2) modeling peerP2 is the conjunction of:

K2(∀x, y, y′, z, z′.Citizen2(x, y, z) ∧ Citizen2(x, y
′, z′) ⊃ y = y′ ∧ z = z′)

K2(∀x, y, z.S2(x, y, z) ⊃ Citizen2(x, y, z))

The theoryTK(P3) modeling peerP3 is the conjunction of:

K3(∀x, y, y′, z, z′.Person3(x, y, z) ∧ Person3(x, y
′, z′) ⊃ y = y′ ∧ z = z′)

∀x, y.K1(∃z.Person1(x, z, y)) ⊃ K3∃z.Person3(x, z, y)
∀x, y, z.K4(Citizen4(x, y, z)) ⊃ K3Person3(x, y, z)

The theoryTK(P4) modeling peerP4 is the conjunction of:

K4(∀x, y, y′, z, z′.Citizen4(x, y, z) ∧ Citizen4(x, y
′, z′) ⊃ y = y′ ∧ z = z′)

K4(∀x, y, z.S4(x, y, z) ⊃ Citizen4(x, y, z))

The extensionD = {D1, . . . ,Dn} of a P2PDISP is modeled as a sentence con-
stituted by the conjunction of all facts corresponding to the tuples stored in the sources,
i.e.,DB(D) =

∧n
i=1 DB(Di) whereDB(Di) = Ki(

∧
t∈rDi r(t)).

A client of the P2PDIS interacts with one of the peers, say peer Pi, posing aquery
to it. A queryq is an open formulaq(x) with free variablesx expressed in the language
accepted by the peerPi (we recall that such a language is a subset of first-order logic).
The semantics of a queryq ∈ L posed to a peerPi = (i, G, S, L,M,L) of P with
respect to an extensionD is defined as the set of tuples

ANSS5n
(q, i,P,D) = {t | TK(P) ∪ DB(D) |=S5n

Kiq(t)}

whereq(t) denotes the sentence obtained from the open formulaq(x) by replacing all
occurrences of the free variables inx with the corresponding constants int.

6.3. Query answering in P2PDISs under the epistemic semantics

Finally, we point out that query answering in P2P data integration systems under the
epistemic semantics described above has been studied in [15,20]. In particular, it has
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Figure 4. Interactions between two mappings

been proved that, under very general assumptions about the structure of the single peers
and the query language, query answering in a P2PDIS under theepistemic semantics is
decidable and, in many cases, tractable in data complexity,i.e., queries can be answered
in polynomial time with respect to the size of the data storedat the peers.

In the above epistemic setting, two different query answering strategies have been
explored. In the first one, described in [15], a bottom-up algorithm has been defined,
which is able to answer a query by incrementally collecting the certain answers to suit-
able queries that are iteratively computed at the various peers, following the topology of
the mappings among the peers. The second approach, presented in [20], adopts a top-
down technique that is heavily based on query reformulation: in particular, the peer to
which the initial query is posed incrementally collects theglobal reformulation of the
query, which is computed by a distributed algorithm that exploits both the mappings
among the peers and a local query reformulation ability of each peer. We refer the inter-
ested reader to [15,20] for more details.

7. Comparison between the two semantics

In this section, we compare the epistemic and FOL semantics for P2P systems presented
above. The comparison is guided by three principles, namelymodularity, generality, and
decidability of query answering. To highlight the differences between the two semantics,
we will consider the simplest setting in which interactionsmay occur, namely systems
containing only two P2P mappings. The three types of systemswe discuss in the follow-
ing are depicted in Figure 4, and represent respectively thecase of parallel, sequential,
and cyclic composition, where each circle represents a peer, and an arrow from a peerP ′

to a peerP represents a mapping assertion whose head is a CQ overP and whose tail is
a CQ overP ′.

We first need to provide some definitions. For the sake of simplicity, in the fol-
lowing we slightly simplify the formalization, and denote apeerPi by a quadruple
Pi = (G,S,L,M), i.e., with respect to the notation used above, we omit the first com-
ponentid (the identifier ofP ), and the last componentL (the class of queries that the
peerP can process), and assume that: (i) the identifier of peerPi is the subscripti of
the peer symbol; (ii) all peers accept the same query language L, and such anL is the
language of conjunctive queries.

Given a peerP = (G,S,L,M), we denote asτ(P ) the peer(G,S′, L′,M) such
that:
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1. S′ is obtained fromS by adding a new source predicate symbolr, of the same
arity ascq ′, for each P2P mapping assertioncq ′

; cq in M between a peerP ′

andP . We also denote asQ(r) the querycq ′ in the tail of the corresponding P2P
mapping assertion, and denote asP (r) the peerP ′, i.e., the peer over which the
queryQ(r) is expressed.

2. L′ is obtained fromL by adding the local mapping assertion{x | r(x)} ; cq

for each P2P mapping assertioncq ′
; cq in M .

Furthermore, for a P2P systemP, we denote asτ(P) the P2P system{τ(P ) | P ∈ P}.
For each peerP , we callauxiliary alphabetof P , denoted asAuxAlph(P ), the set of new
source predicate symbols thus defined. Informally, in each peer the additional sources
corresponding to the predicates in the auxiliary alphabet are used to “simulate” the effect
of the P2P mapping assertions with respect to contributing to the data of the peer.

7.1. Modularity: Parallel composition

We consider a P2P systemPpar with the structure depicted in Figure 4(a), and to
highlight the interdependence between mappings, we further assume thatP1 does not
contain local sources (and local mappings). Hence,Ppar is constituted by two peers
P1 = (G1, ∅, ∅, {m1,m2}), andP2 = (G2, S2, L2, ∅).

Informally, in the context of parallel composition, we can consider a semantics for
P2P systems as modular, if for every queryq over P1, and for every source database
D2 for P2, the certain answers toq in Ppar with respect toD2 under the consid-
ered semantics can be computed by first populatingP1 with the data retrieved by in-
dependently applying the two mappings and then evaluatingq over such data. For-
mally, letm1 be cq ′

1 ; cq1, let m2 be cq ′
2 ; cq2, and consider the peerτ(P1) =

(G1, {r1, r2}, {m
′
1,m

′
2}, {m1,m2}), wherem′

1 is {x | r1(x)} ; cq1 andm′
2 is

{x | r2(x)} ; cq2. For a local source databaseD2 for P2, let δ(P1,D2) be the lo-
cal source database forτ(P1) such thatrδ(P1,D2)

1 coincides with the certain answers

ANS (cq ′
1, P2,D2) over the single peerP2, andrδ(P1,D2)

2 coincides with the certain an-
swersANS (cq ′

2, P2,D2) overP2. Now, semanticsX is modular if for every queryq
to P1 and for every source databaseD2 for P2, we have thatANSX(q, 1,P, {D2}) co-
incides with the certain answersANS (q, τ(P1), δ(P1,D2)) over τ(P1). The following
theorems show that a P2P system as simple asPpar is sufficient to separate the epistemic
and the FOL semantics with respect to modularity.

Theorem 7.1 There is a P2P systemPpar = {P1, P2} of the form as above, a
source databaseD2 for P2, and a queryq to P1 such thatANS fol(q, 1,P, {D2}) 6=
ANS (q, τ(P1), δ(P1,D2)).

Proof (sketch). We exhibit Ppar = {P1, P2}, D2, and q such that the claim
holds. LetP1 = ({u/1}, ∅, ∅, {m1,m2}) andP2 = (G2, {s/1}, {ℓ2}, ∅), with G2 =
{∀x (u3(x) ⊃ u1(x) ∨ u2(x))}, and

ℓ2 = {x | s(x)} ; {x | u3(x)}
m1 = {x | u1(x)} ; {x | u(x)}
m2 = {x | u2(x)} ; {x | u(x)}
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Consider the source databaseD2 = {s(a)} for P2. It is easy to see that for the query
q = {x | u(x)} we have thatANS fol(q, 1,P, {D2}) = {a}, while δ(P1,D2) = ∅, and
henceANS (q, τ(P1), δ(P1,D2)) = ∅.

For the epistemic semantics, from the results in [20], we getthe following theorem.

Theorem 7.2 Let Ppar andD2 be as above. Then, for every queryq overP1 we have
thatANSS5n

(q, 1,P, {D2}) = ANS (q, τ(P1), δ(P1,D2)).

7.2. Modularity: Sequential composition

We consider a P2P systemPseq with the structure depicted in Figure 4(b). Again, to
highlight the interaction between the mappings, we assume that bothP1 andP2 do not
contain local sources. Hence,Pseq is constituted by three peersP1 = (G1, ∅, ∅, {m1}),
P2 = (G2, ∅, ∅, {m2}), andP3 = (G3, S3, L3, ∅).

Informally, in the context of sequential composition, we can consider a semantics
for P2P systems as modular, if for every queryq1 overP1, and for every source database
D3 for P3, the certain answers toq in Pseq with respect toD3 under the considered
semantics can be computed by (i) populatingP2 with the data retrieved by applying
the mappingm2, (ii) using such data to populateP1 by applying the mappingm1, and
(iii) evaluatingq overP1. Formally, letm1 becq2 ; cq1, letm2 becq3 ; cq ′

2, and
consider the peersτ(P1) = (G1, {r1}, {m

′
1}, {m1}) with m′

1 = {x | r1(x)} ; cq1

andτ(P2) = (G2, {r2}, {m
′
2}, {m2}) with m′

2 = {x | r2(x)} ; cq ′
2. For a local

source databaseD3 for P3, letδ(P2,D3) be the local source database forτ(P2) such that
r

δ(P2,D3)
2 = ANS (cq3, P3,D3) and letδ(P1, P2,D3) be the local source database for

τ(P1) such thatrδ(P1,P2,D3)
1 = ANS (cq2, P2, δ(P2,D3)). Now, semanticsX is mod-

ular if for every queryq to P1 and for every source databaseD3 for P3, we have that
ANSX(q, 1,P, {D3}) = ANS (q, τ(P1), δ(P1, P2,D3)).

We show that also in the context of sequential composition, while the epistemic
semantics for P2P systems is modular, the FOL semantics is not so.

Theorem 7.3 There is a P2P systemPseq = {P1, P2, P3} of the form as above, a
source databaseD3 for P3, and a queryq overP1 such thatANS fol(q, 1,P, {D3}) 6=
ANS (q, τ(P1), δ(P1, P2,D3)).

Proof (sketch).Exploiting a result in [61], we exhibitPseq = {P1, P2, P3},D3, and
q such that the claim holds. LetP1 = ({u/2}, ∅, ∅, {m1}), P2 = ({v/2}, ∅, ∅, {m2}),
andP3 = ({w/2}, {s/2}, {ℓ2}, ∅), with

m1 = {x, y | ∃z1, z2 (v(x, z1) ∧ v(z1, z2) ∧ v(z2, y))} ; {x, y | u(x, y)}
m2 = {x, y | w(x, y)} ; {x, y | ∃z (v(x, z) ∧ v(z, y))}
ℓ2 = {x, y | s(x, y)} ; {x, y | w(x, y)}

Consider the source databaseD3 = {s(ai, ai+1) | 1 ≤ i ≤ 7} forP2. It is easy to see that
for the queryq = {x, y | ∃z (u(x, z)∧ u(z, y))} we have thatANS fol(q, 1,P, {D3}) =
{(a1, a7)}, while ANS (q, τ(P1), δ(P1, P2,D3)) = ∅.

For the epistemic semantics, from the results in [20], we getthe following theorem.
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Theorem 7.4 Let Pseq andD3 be as above. Then, for every queryq overP1 we have
thatANSS5n

(q, 1,P, {D3}) = ANS (q, τ(P1), δ(P1, P2,D3)).

7.3. Decidability: Cycle between two peers

We consider a P2P systemPcyc with the structure depicted in Figure 4(c). The presence
of a cycle between two peers suffices to make query answering undecidable under the
FOL semantics.

Theorem 7.5 There is a P2P systemPcyc = {P1, P2} of the form as above, a source
databaseD for Pcyc , such that computing the certain answers to queries over thesingle
peersP1 andP2 is decidable, while computing the certain answers to queries in Pcyc

based onD under the FOL semantics is undecidable.

Proof (sketch).The undecidability result follows by a reduction from undecidability
of query answering under inclusion and functional dependencies [62,27,12].

Consider a relational schemaR with inclusion and functional dependencies. We
construct the peerP1 = (G1, S1, L1,M1) as follows:G1 contains the relations ofR, plus
two additional relationsinc andfun, both containing one attributer.A for each attribute
A in a relationr of R. G1 contains all inclusion assertion ofR, plus one inclusion
assertionr[A,B] ⊆ inc[r.A, r.B] and one functional dependencyfun : r.A → r.B,
for each functional dependencyr : A → B in R (we have denoted byr.A the tuple of
attributes corresponding toA). S1 contains a source relationsr for each relationr in R,
andL1 maps such relations to the corresponding relations inG1. M1 contains a single
P2P mapping assertion{x | inc(x)} ; {x | rem(x)}.

Then we construct the peerP2 = (G2, ∅, ∅,M2), whereG2 contains only the relation
rem (of the same arity asinc andfun), andM2 contains a single P2P mapping assertion
{x | rem(x)} ; {x | fun(x)}.

Notice that query answering inP1 is decidable, since all functional dependencies are
on the relationfun, which is not related through inclusion dependencies to theother re-
lations inG1, and the implication problems and query answering problemsfor inclusion
and functional dependencies separately are decidable [25,12]. Also,P2 is trivially decid-
able. On the other hand, under the FOL semantics, the P2P mappings propagate the func-
tional dependencies onfun to inc, and hence in turn to the relations inG1. Therefore,
the whole set of dependencies inR are reflected inG1, thus making query answering in
the P2P system as a whole undecidable.

Notice that, sinceP1 andP2 are in general designed independently of each other,
even if care is taken to retain decidability of query answering for each of them separately,
when interconnected in a P2P system, under the FOL semanticsthere is no way to ensure
decidability of query answering in the whole system, since no single actor has the control
on all the P2P mappings. This is a further indication of the lack of modularity in systems
based on the FOL semantics. Observe also that the only way to retain decidability would
be to trade it with generality, by restricting the topology of the P2P mappings [50,54,35].
In practice this may even be unfeasible, again since no actoris in control of all P2P
mappings.

On the other hand, under the epistemic semantics we can retain both generality and
decidability for P2P systems witharbitrary structure, as shown in [15,20].
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Theorem 7.6 For each P2P systemP of the form as above and a source databaseD for
P such that computing the certain answers to queries over the single peers is decidable,
computing the certain answers to queries inP based onD under the epistemic semantics
is decidable.

8. Future research directions and conclusions

In this chapter we have provided a formal framework for P2P data integration, and we
have proposed a new semantics for such a framework based on epistemic logic. We have
compared such a semantics with the commonly adopted semantics based on first-order
logic, and we have shown that the epistemic approach is superior to the first-order one
with respect to three central properties for P2P systems, namely, modularity, generality,
and decidability. We have also devised polynomial time query answering algorithms that
are sound and complete for the problem of computing certain answers to user queries
accepted by peers in the system (i.e., computing the setANSS5n

). The details of the
algorithms are described in [15] and in [20] .

We point out that our formalization and our query answering algorithm are among
the first results on advanced P2P data integration, and that research and technology on
such field is still at an embryonic state. Actually, a number of issues need to be investi-
gated and resolved in order to facilitate powerful, human level P2P information integra-
tion. Among them, we consider the following ones the most challenging and important:

• Inconsistency tolerance, i.e., developing suitable mechanisms for the management
of data inconsistency. Inconsistency in P2P data integration systems may arise for
different reasons: a peer may be locally inconsistent because its data (possibly
coming from local sources) violate integrity constraints specified on its schema;
data coming into a peer from other peers may contradict constraints when com-
bined with data locally managed by the peer; data coming intoa peer from dif-
ferent peers may result mutually inconsistent, i.e., combined together may violate
integrity constraints of the peer schema. Hence, the main issue is to deal appropri-
ately with inconsistencies, in order to avoid trivialized query results. First results
on this issue recently appeared in [17].

• Preferences and trust management, i.e., choosing from datacoming from differ-
ent peers on the basis of preferences/trust specifications.In P2P data integration
systems, each peer may want to specify information on how it trusts peers, with
respect to certain kind of data, to which it is connected, e.g., by assigning dif-
ferent quality values (e.g., reliability, availability, etc.) to data coming from dif-
ferent peers. Obviously, the "best" data should be preferred to the others. Prefer-
ence/trust specifications can be used both to solve data inconsistencies and to rank
data belonging to query answers. Indeed, when dealing with mutually inconsis-
tent data coming from different peers, a peer may choose to trust only those data
coming from the preferred peer (e.g., the most reliable one). Furthermore, a peer
may choose to select which data have to be first returned in theanswer to a query,
on the basis of preference/trust assertions, in order to speed up query processing.
Also, preference specifications can be used during the queryanswering process to
avoid or delay access to peers that have a low preference degree.
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• Authorization and privacy management, i.e., controlling the accessibility of the
data in the peers. In general, each peer in the system wants toallow only con-
trolled accesses to its data, i.e., the peer needs the ability of specifying privacy or
confidentiality for (a portion of) its data, or guaranteeingdisclosure of certain in-
formation from particular users. An interesting approach which follows a logical
perspective has been recently proposed in [70] in the context of a single database.
The proposed method is based on the idea of specifying, for each user, a set of
authorized views, representing the information that the user is allowed to access.
We think that this idea nicely captures the logical essence of access control, and
might be somehow transferred in the context of P2P data integration, where it is
crucial that each peer is able to specify data privacy policyin a declarative way.

• Model management, i.e., methods for dealing with the dynamics of a P2P data in-
tegration system, in which peers may join and leave at any time, or be temporarily
unavailable. This requests for both advanced meta-data management and handling
partial and incomplete information.

• Data exchange, i.e., dealing with the materialization of data flowing from one peer
to another. Materialized data can be profitably used in P2P data management in
several ways, e.g., can be exploited to reduce the number of accesses to remote
peers during query processing. Notice that whereas traditional data exchange has
been the subject of several recent investigations (see Section 2 for a brief descrip-
tion), P2P data exchange has so far received little attention, and it still remains
largely unexplored.

All these issues are unresolved to date and require major efforts and advances in
future research in the field.
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