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Abstract 
In asynchronous collaborative applications, users usually 

collaborate accessing and modifying shared information 

independently. We have designed and implemented a 

replicated object store to support such applications in 

distributed environments that include mobile computers. 

Unlike most data management systems, awareness support is 

integrated in the system. To improve the chance for new 

contributions, the system provides high data availability. The 

development of applications is supported by an object 

framework that decomposes objects in several components, 

each one managing a different aspect of object “execution.” 

New data types may be created relying on pre-defined 

components to handle concurrent updates, awareness 

information, etc. 

Keywords 
Asynchronous groupware, mobile computing, awareness, 

object framework, development support. 

INTRODUCTION 
The ubiquity of the Internet has opened opportunities for 

collaboration among people on different geographical 

locations. Several general-purpose services, such as e-mail 

and news, have been used to support basic interaction and 

collaboration. However, enhanced support for groups of users 

collaboratively seeking common goals requires specialized 

applications such as multi-user editing tools, cooperative 

schedulers and calendars, workflow-based applications, 

conferencing systems and others [8]. Most of these 

applications rely heavily on a data storage sub-system to 

enable information sharing, distribution and composition. 

Some support systems have been implemented, either, for 

general use (e.g. Lotus Notes [16]), for specific domains (e.g. 

Vortex [11] for workflow) or for specific applications (e.g. 

Iris [15] for document editors). 

In asynchronous groupware, users usually collaborate 

accessing and modifying shared information without 

immediate knowledge about the actions of other users (either 

because users work at different times or simply because they 

do not have access to each other’s actions). To improve the 

chance for asynchronous collaboration, users should be 

allowed to perform their contributions independently without 

restrictions (besides coordination and access control 

restrictions). To accomplish this requirement, a replicated 

data management system with a “read any/write any” model 

of data access is often used. The increasing popularity of 

mobile and disconnected computing, with its inherent 

characteristics [21], seems to further strength the above 

approach - mobile users expect to be able to access and 

modify shared information even while disconnected. Using 

this model, users may execute concurrent updates. To 

synchronize these concurrent streams of activity [5] 

adequately, it is often necessary to rely on application-

specific semantic information [12,14,7]. 

Awareness information is often essential to the success of 

collaborative activities [4]. In asynchronous groupware, 

although users have no immediate knowledge of each other’s 

actions, overall information about the evolution of the 

collaborative activity (e.g. evolution of the shared data, users’ 

actions,…) may improve each user’s contributions. Different 

collaborative activities, applications and users will demand 

different forms of awareness information (e.g. a scheduler 

application may actively notify users of new appointments 

while a collaborative writing system may simply maintain a 

log of modifications).  

In this paper we present the data management approach of the 

DAgora project [1] to support asynchronous groupware. It 

has two main components: (1) a replicated object store that 

integrates awareness mechanisms; and (2) a framework that 

eases the creation of new data types that are specially tailored 

to be used in collaborative applications. 

The DAgora distributed object store (named DOORS) is 

based on a group of servers that replicate sets of related 

objects with a “read any/write any” model of data access. It 

also includes a client caching mechanism that allows clients 

to cache frequently used objects. The combination of these 

mechanisms provides high data availability even in the 

presence of voluntary disconnection and network and/or 

server failures. To maximize the semantic information 
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available to synchronize divergent streams of activity, the 

system propagates operations instead of data values. 

DOORS objects are structured according to an object 

framework that decomposes object “operation” in different 

aspects: concurrency control, awareness-support, etc. This 

framework eases the development of collaborative 

applications because it allows programmers to define new 

shared data types using, in each data type, the adequate pre-

defined components for each aspect of data sharing. 

The remainder of this paper is organized as follows: section 2 

discusses requirements and design choices; section 3 outlines 

the DOORS architecture; section 4 presents the object 

framework; section 5 describes our experience using the 

DOORS system and section 6 discusses related work; section 

7 concludes the paper with some final remarks. 

REQUIREMENTS AND DESIGN CHOICES 
In this section we present the requirements and design choices 

that lead to the DAgora data management approach to 

support asynchronous collaborative activities. To illustrate 

some of the requirements of asynchronous groupware we will 

use examples from three well understood applications: a 

conferencing system, a group scheduler and a multi-user 

editing tool.  

In an asynchronous conferencing system, users collaborate 

through the exchange of messages posted in a shared space 

(newsgroups are a simple example). These messages create 

threads of discussion related with different subjects. Users 

should be allowed to independently post new messages, 

which should be displayed in a consistent way (at least, 

message dependencies should be taken into account - a reply 

should not be displayed before the original message). 

In a group scheduler, multiple users should be allowed to 

request new appointments independently. These new 

appointments should be considered tentative [7] until being 

committed by some form of automatic global agreement. If 

requested, users should be notified when their requests are 

committed or aborted. 

A multi-user editing tool allows a group of users to 

collaboratively edit some structured document (for example, 

this paper). Different users should be allowed to 

independently modify the document (e.g. two users can 

modify different sections). Concurrent modifications should 

be merged taking into consideration all changes (e.g. the final 

document must include the new versions of the two sections). 

Syntactic consistency1 [5] should be preserved even when 

handling semantic conflicts (e.g. if two users modify the same 

section, two versions of that section should be created and 

maintained). 

From the previous brief descriptions we note that users 

collaborate through the access and modification of shared 

                                                           
1 A system is syntactically consistent if the underlying data store is 

structurally sound, allowing the activity to proceed.  

information. Therefore, data management plays an important 

role in the support of groupware. In this paper we restrict our 

discussion to the data-management support. However, in the 

DAgora project [1] we are also addressing other problems, 

such as the coordination of collaborative activities [3], the 

support of synchronous applications [23] and the 

dissemination of awareness information relative to the 

collaborative activity [6]. 

High data availability 
One important requirement to enable collaboration is to allow 

users to access shared information. In distributed settings, it is 

impossible to guarantee the permanent reachability of a single 

storage site (due to network and machine failures). Therefore, 

systems that intend to provide high data availability usually 

rely on data replication - data can be accessed if some replica 

is available. In DOORS, the information associated with a 

collaborative activity is grouped in a volume [14] that is 

replicated by a group of servers. 

Mobile users are frequently disconnected from the network, 

either due to economical factors, energy saving or unavailable 

connectivity. Disconnected users have to rely on local data 

replicas to access the shared information. However, as it is 

often impossible and/or undesirable to allow all disconnected 

computers to manage a full unit of replication, clients usually 

rely on a caching mechanism. In DOORS, clients cache a set 

of key objects to allow disconnected users to continue their 

work. 

From the previous examples we note that users contribute to a 

collaborative activity through the modification of the shared 

information. Therefore, to promote collaboration, users 

should be allowed to modify data without restrictions. In a 

distributed setting that includes mobile/disconnected 

computers, pessimistic concurrency control mechanisms 

based on locks or tokens lead to low write availability (for 

example, to allow a single disconnected client to modify data 

it may be necessary to prevent all other clients from updating 

it). In DOORS, we have adopted an optimistic replication 

strategy with a “read any/write any” model of data access — 

all clients are allowed to modify data independently. We have 

also adopted an epidemic scheme of update propagation [2], 

where every server eventually receives all updates from every 

other, either directly or indirectly. This scheme requires only 

occasional pair-wise communication between computers, thus 

imposing minimum connectivity requirements among 

computers. The DOORS architecture is detailed in the next 

section. 

Multiple concurrency-control strategies 
In the optimistic replication scheme adopted in DOORS, as in 

other systems previously presented in literature [7,16,14,15], 

users may independently perform their updates. This situation 

leads to the need to handle concurrently performed updates. 

Moreover, due to the lazy replication strategy, updates are not 

propagated to all servers at the same time — different servers 

may have received different subsets of the performed updates. 

Although similar approaches have been identified as 
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necessary to support large-scale distributed environments that 

include mobile computers [7,9,14], they pose an important 

data management problem - how to handle the concurrently 

performed updates? 

Consider the following examples from the previously 

presented applications. In a conferencing system messages 

should be displayed taking into consideration their 

dependencies. However, there is no need to display all 

messages in the same order in all replicas - a causal order is 

sufficient. On the other hand, in a scheduler application all 

appointments must be committed in the same order in all 

replicas - all updates should be applied using a total order. 

Uncommitted updates may be presented as tentative. 

Many algorithms have been proposed to handle concurrent 

updates (based on undo-redo techniques [13], operation 

transformations [24], exploitation of data types semantic 

properties [12],…). However, it seems that no single method 

is adequate to all situations. Instead, different groups of 

applications will use different mechanisms. Nevertheless, the 

use of semantic information has been identified [7,14,18] as a 

key element to merge the concurrent streams of activity. 

In DOORS we allow each application to define its own 

concurrency control method (see “application development 

support” for reuse support). To maximize the flexibility in the 

handling of concurrent updates, we have based our system in 

the propagation of updates as operations. Consequently, the 

concurrency control mechanism may use not only the 

semantic information associated with the data type but also 

the semantic information associated with each performed 

operation.  

Integrated awareness support 
Awareness has been identified as important in the 

development of collaborative activities because individual 

contributions may be improved by the understanding of the 

activities of the whole group [4,19]. To this end, it is 

important to have information about the evolution of shared 

data, users’ actions and motivations,… In asynchronous 

collaborative activities, awareness information plays a central 

role in collaboration allowing each user to take notice of new 

contributions from other users. 

Consider the previously presented multi-user editing tool: it is 

important that each user takes notice of updates performed to 

the shared document. To this end, information about updates 

should be automatically collected and maintained with the 

document. This information may be displayed to users using 

different user interface metaphors (log of changes, multiple 

colors in the document,…). This form of awareness is usually 

called shared feedback [4]. Consider now the group scheduler 

application: it seems interesting to allow the affected persons 

to be notified of the commitment or abortion of any requested 

appointment (a log with the results of requests may also be 

maintained). In our architecture, updates are processed 

asynchronously by the data management system and users 

will usually not be connected to the system when their 

updates are committed2. Consequently, we believe that the 

support for handling awareness information relative to the 

evolution of the shared data should be tightly integrated with 

the data management system. This integration allows each 

processed update to produce the adequate awareness 

information (and eventual notifications to be propagated 

immediately). 

In DOORS, we have made this integration. Each processed 

update may produce a piece of awareness information. Each 

data type may define the way this information is handled, thus 

supporting different awareness models (e.g. awareness data 

may be stored with the data object or/and may be 

immediately propagated to users). We will detail the 

awareness support in the next sections. 

Application development support - reusing pre-defined 
base solutions 
In the previous subsections we have presented some of the 

data management requirements that lead to the DAgora 

approach to support asynchronous collaborative appli-

cations. It is important to notice that the fulfillment of those 

requirements demands type-specific solutions. The DOORS 

design choices attempt to offer the maximum flexibility in the 

implementation of different solutions - different groups of 

applications require different solutions. However, to fulfill the 

objective of providing support for the development of new 

applications, this flexibility is not sufficient — application 

programmers should be assisted in the implementation of 

their specific data types. To this end, we have created a data 

management object framework that decomposes each object 

in several components, each one responsible for a different 

aspect of the object “operation.” 

Moreover, we have implemented a set of pre-defined 

components that execute different policies, notably related 

with concurrency control and awareness support. Using the 

DOORS open object framework, application programmers 

may create new data types composing these pre-defined 

components with regular object classes. If necessary, 

programmers may create new components or extend any pre-

defined one. The DOORS object framework does not restrict 

reuse to concurrency control and awareness support. For 

example, we have defined a base component that acts as a 

surrogate of a relational database system. This component 

allows programmers to store their data using a relational 

model while relying on DOORS facilities. We will detail the 

object framework and some of the implemented base 

components in the section “object framework.” 

As it has already been mentioned, the DOORS replication 

mechanism is based on the propagation of the operations 

performed by users. To this end, the invocation of operations 

                                                           
2 Note that this operational pattern (updates being processed when 

users are no longer connected to the system) is common in many 

data management systems that support disconnected users 

[7,12,14].  
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should be logged in clients. In DOORS, we use a 

preprocessor that transforms the object classes implemented 

by the application programmer so that the invocation of 

operations could be logged transparently when user 

applications call object methods. 

ARCHITECTURE 
DOORS is a distributed object store based on a “extended 

client/replicated server” architecture. It manages objects 

structured according to the DOORS object framework 

(named coobjects — from collaborative objects). These 

coobjects may represent rather complex data objects, such as 

documents or calendars, and be implemented as arbitrary 

compositions of common objects. Sets of related coobjects 

are grouped in volumes that represent collaborative 

workspaces and store the data associated with a given 

workgroup and/or collaborative project.  

The DOORS architecture is composed by servers and clients, 

as depicted in Figure 1 — any machine may act as both a 

client and a server. Servers replicate volumes of coobjects to 

mask network and/or server failures. Clients cache key 

coobjects to allow users to continue their work, even while 

disconnected. Applications that use DOORS to store their 

data run on client machines and modify coobjects through the 

invocation of coobjects’ methods - users collaborate through 

the modification of shared coobjects. 

Key

        Server

         Client

 Coobject

Application

epidemic
propagation

coobjects

updates

epidemic
propagation

 
Figure 1 – DOORS architecture composed by four 

computers with different configurations. Coobjects are 

replicated by servers, cached by clients and manipulated 

by users’ applications. 

Applications usually use a “get/modify locally/put changes” 

model of data access. When an application requests a 

coobject, if it is not available in the local cache, it is fetched 

from any server (if connectivity is available). A private copy 

of the coobject is created in the client component and it is 

handed over to the application. Applications use coobjects as 

common objects, i.e., applications invoke coobjects’ methods 

to query and modify their state. Updates performed by 

applications are logged internally by coobjects without any 

intervention of the DOORS system. These updates are 

recorded as sequences of method invocations (properties of 

operations are used to compress these sequences - for 

example, only the last operation that sets new text to a section 

is recorded). Finally, if the user chooses to save her changes, 

the logged sequence of updates is transferred to the client, 

where it is persistently stored until it is propagated to a server. 

Alternatively, DOORS supports a remote invocation 

mechanism that immediately processes on a server any 

method invocation performed on a coobject (if connectivity is 

available). This mechanism is mainly used to support access 

to large coobjects that can not be instantiated in clients, in 

particular coobjects that act as surrogates of RDBMS (see 

next section). 

Upon arrival of updates from a client machine, the server 

hands them over to the coobject local replica. It is up to the 

coobject replica to store and process these updates - updates 

are propagated from clients to servers and among servers as 

sequences of method invocations. Servers propagate new 

updates among them in an epidemic way [2] - pairs of servers 

establish occasional communications to synchronize received 

updates. Therefore, all servers will eventually receive all 

updates, either directly or indirectly. DOORS allows pair-

wise communications to be established over multiple 

transports, including asynchronous ones such as e-mail. This 

property, combined with the epidemic strategy of update 

propagation, imposes minimum connectivity requirements 

among servers. As a consequence of the lazy strategy of 

update propagation, multiple replicas may differ at a given 

moment, but they will eventually converge (at least all 

replicas will reflect the same set of updates). These temporary 

inconsistencies may be reduced by increasing the frequency 

of epidemic propagation sessions. 

The group of servers that replicate each volume may vary as a 

result of users (system administrators) explicit orders. The 

protocols implemented for membership management are 

light-weight and impose only pair-wise communications. To 

support push-based awareness models, each server contains 

an “awareness service.” This “awareness service” is 

responsible to propagate messages through the defined 

mechanisms — e-mail, SMS/pager gateways or other (to cope 

with temporary impossibilities of propagation, several retries 

may be necessary). To support coobjects that act as database 

surrogates, each server may have an associated database 

system to maintain local replicas. 

OBJECT FRAMEWORK 
In the previous section we have outlined the DOORS system. 

As it has been described, the responsibilities of the system 

core are almost restricted to provide high data availability: it 

should maintain updated copies of coobjects in clients and 

propagate updates between clients and servers and among 

servers. The rationale behind this design is to allow flexible 

support of collaborative activities: “operational” aspects of 

data management, such as concurrency control and awareness 

support, are controlled in a type-specific way and are defined 

in the implementation of the shared data types (coobjects). 

Therefore, the system core is limited to minimal services that 

represent the common aspects of data management. 
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On the other hand, a heavy burden is imposed on the 

implementation of coobjects, which must handle several 

aspects that are usually managed by the system. To alleviate 

programmers from much of this burden and to allow the reuse 

of “good” solutions in multiple data types, we have defined 

an object framework that decomposes coobjects in several 

components that handle different operational aspects. In this 

section we will present the object framework and some of the 

reusable pre-defined base components that have been 

implemented. In the applications presented in the next section 

we will exemplify the use of this object framework. 

The DOORS object framework structures each coobject in 

six components, each one with a well defined function and 

interface (see figure 2). We will now briefly present these 

components and outline (with some simplifications) how they 

work together in the clients and in the servers. The capsule 

aggregates the other components of the coobject and serves 

as an interface to the DOORS system. The "attributes" 

component stores general-purpose information about the 

coobject. The log stores the updates performed by users. The 

concurrency control component is responsible to execute the 

logged updates. The data component defines the 

conventional data type represented by the coobject, with its 

internal state and operations. The awareness component 

handles the awareness information. 
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Figure 2 – DOORS open object framework. 

In clients, applications manipulate coobjects using the 

methods defined in the data component. Updates performed 

are transparently logged (in the log) and executed. When the 

user decides to save her changes, the system extracts the 

sequences of updates performed from the log, and later 

propagates these updates to a server. 

In servers, the updates received from clients and from other 

servers are stored in the log — during epidemic sessions 

these stored updates are propagated among replicas. The 

concurrency control component is responsible for executing 

logged updates according to the defined strategy. When an 

update is executed some awareness information may be 

produced: this information is handled by the awareness 

component. Next, we will detail the components of the 

DOORS open object framework and present some pre-

defined base solutions. 

Capsule component 
The capsule component defines the composition of the 

coobject and aggregates its components. It implements the 

interface used by the system core to interact with coobjects 

and coordinates coobjects’ operation. Commonly, coobjects 

are composed by one instance of each component and work 

as it has been described. However, we have defined a two-

version capsule that allows programmers to implement 

coobjects that maintain two data versions relying on common 

object classes. Usually one version stores the committed state 

(result of the execution of all stable updates) and the other 

stores a tentative state (reflecting all known updates). In the 

next section, we present the example of a scheduler 

application that uses this capsule to allow users to observe 

both the tentative and committed appointments — this 

behavior has been identified as interesting for applications 

that use replicated data in large-scale settings that include 

mobile computers [7]. 

The two-version capsule contains two data components, two 

awareness components and two concurrency control 

components. Each data component stores a different version 

of the data. These versions are easily maintained executing 

the stored updates resorting on different concurrency control 

policies — the committed (tentative) version is obtained 

using a pessimistic (optimistic) strategy. The two awareness 

components allow programmers to handle stable and unstable 

awareness information in different ways. 

"Attributes" component 
The “attributes” component is used to store general-purpose 

information relative to the coobject, such as creation and 

modification dates, owner, etc. It also stores meta-information 

about the coobject state and the replication process, such as 

summaries (timevectors) of received, executed, discarded and 

delivered updates [20]. Two base implementations are 

available: a simple and an extended one. The extended 

implementation maintains additional information about a 

primary replica and defines methods to modify it. This 

information can be used by other components in their 

operation - e.g. concurrency control mechanisms based on a 

sequencer use this information (see “concurrency control 

component” for details). These base classes may be extended 

to define type-specific attributes. 

Log component 
The log component stores the updates performed by users. In 

clients, these updates are temporarily logged until they are 

requested by the system (when the user saves his changes) to 

be propagated to a server. In servers, updates are permanently 

stored (until they are discarded) and they are propagated 

during epidemic synchronization sessions. The log adds, to 

each sequence of updates, the necessary information to order 

them and to trace their dependencies, i.e., to identify the 

multiple streams of activity. 

Two base implementations are available: a simple one and an 

extended one. The extended one should be used with 

concurrency control components based on a sequencer (see 

details in the next subsection). The sequence of updates 

produced in clients is automatically compressed if operations’ 

properties are available — e.g. if multiple consecutive 
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updates (performed in the same session by the same user) set 

a new value to the same section of a document, only the last 

update needs to be recorded. 

Concurrency control component 
The concurrency control component is responsible for 

executing the updates stored in the log. In clients, intercepted 

updates are usually immediately executed to allow users to 

observe the expected results from their actions. In servers, 

multiple strategies may be used to synchronize the concurrent 

streams of activity depending on the semantics of the shared 

data-type. Two inter-related problems must be taken into 

consideration: how to guarantee that all data replicas evolve 

as expected and how to guarantee that users’ intentions are 

respected. 

The first problem can be handled constraining the execution 

order of updates. For example, executing all (deterministic) 

updates by the same order in all replicas leads all replicas to 

the same state. However, as different replicas may have 

received different subsets of updates, it is usually necessary to 

postpone the execution of some updates to guarantee that 

property. In some applications it is not necessary to achieve 

exactly the same state or due to semantic properties it is 

possible to rely on weaker orderings to achieve the same 

state. We have implemented several components with 

different policies (in the next section we present examples of 

their usage). 

The no order component executes updates as soon as they are 

received for the first time — therefore, different replicas may 

apply the same updates in a different order. The causal order 

component executes updates in a causal order (when a user 

performs a new update, he observes a coobject state that 

reflects a given set of previous updates - causal order 

guarantees that the new update is executed in all replicas after 

that set of updates). Due to the DOORS epidemic 

propagation model, this constraint does not usually impose 

any delay on the execution of updates - therefore, replicas 

usually reflect all known updates. 

We have also implemented several components that execute 

updates in the same order in all replicas using different 

techniques - all components rely uniquely in information 

propagated during normal epidemic sessions. The stability-

based total order component implements a fully distributed 

algorithm to establish the total order (based on the 

ReplicatedStateMachine algorithm, see [17]). As this 

algorithm relies on information gathered in all replicas, a 

permanently disconnected computer may prevent new 

updates from being executed. The sequencer-based total 

order component uses a replica designated as sequencer to 

order updates. These updates are executed in all replicas in 

the order defined by the sequencer. The identity of the 

sequencer may be modified using the methods defined in the 

"attributes" component. This component allows new updates 

to be (ordered and) executed if they can be propagated to the 

sequencer replica (even in the presence of multiple 

permanently disconnected computers). 

Both total order components postpone the execution of 

updates until the order of updates can be positively 

established. However, in some situations it is preferable to 

use an optimistic approach - updates are immediately applied 

assuming that no previous updates are unknown. This allows 

users to observe the expected results from all known updates. 

Subsequently, if some previous update is received the updates 

executed in the wrong order are undone and later redone in 

their correct position. We have implemented versions of the 

previous total order components that use this undo-redo 

optimistic strategy [13]. 

The second problem is to guarantee that users' intentions are 

respected when concurrent streams of activity are 

synchronized. To tackle this problem, three main approaches 

have been proposed in literature. First, the use of transactions 

— an update is committed if data values are equal to those 

observed by the user, otherwise it is aborted. This model is 

too restrictive because the strict identity of values is not 

necessary in many situations — some transactions could be 

executed if data honors a weaker condition. Moreover, the 

abortion of users’ contributions is not usually acceptable in 

asynchronous groupware where contributions may represent 

large amounts of work (in synchronous groupware several 

systems have used this approach successfully — e.g. [22]). 

Second, updates are transformed taking into consideration the 

updates executed after the state observed by the user [24]. 

Third, semantic information is used in synchronization [7,12]. 

Although we have extended the optimistic stability-based 

total order component to execute update transformations (that 

must be specified by programmers), we expect that most 

applications will rely on semantic information to guarantee 

the fulfillment of users’ intentions. As updates are applied in 

servers executing coobjects’ methods, it is possible to express 

the expected semantics in the code of operations - pre and 

post-conditions can be checked and alternative actions may 

be executed depending on the state of the coobject (see the 

next section for examples). 

Awareness component 
The awareness component is used to handle the awareness 

information generated in the execution of updates. Two main 

implementations are available. The notification-based 

component propagates information to users using their 

preferred transport - e-mail messages, SMS/pager messages, 

etc. The shared-feedback component stores the awareness 

information, so that it can be presented to users in 

applications - e.g. a multi-user editor may present the log of 

updates. We have also implemented some wrappers that 

guarantee the expected semantics despite the multiple 

concurrency control policies (e.g. awareness information may 

not be propagated as the result of unstable updates in 

optimistic concurrency control strategies, although updates 

are executed in all servers only one message is 

propagated,…). 

In the future, we expect to provide an enhanced notification-

based component that propagates information to users 
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through our new event-dissemination architecture (see [6] for 

a preliminary design). This architecture will allow users to 

specify the way awareness information is propagated to 

themselves — for example, some user may request to be 

immediately notified using SMS/pager messages for 

important information, daily digests for information about 

activities that he is not directly involved on, and e-mail for 

other messages. 

Data component 
The data component implements the data type being created, 

with its associated state and operations. It is implemented as a 

common class that is preprocessed, so that updates performed 

by users can be transparently logged. We have implemented 

some base components that can be extended to easily create 

data types with specific approaches. The structured multi-

version component defines a hierarchy of sub-objects that 

may have multiple versions. Two types of operations are 

available: operations that modify the sub-objects and 

operations that manage the hierarchic organization. 

Concurrent modifications of the same sub-object are 

automatically detected and solved creating multiple versions - 

the information added to the operations by the log component 

is used to detect concurrent modifications without the need 

for any special concurrency control component (as in 

[14,16]). Programmers may define automatic merge 

procedures or let this work to users. Concurrent modifications 

of the hierarchic organization are automatically merged in a 

coherent way. This component is suitable for situations where 

it is impossible to automatically solve conflicts but syntactic 

consistency must be maintained to enable users to continue 

their work (e.g. in a structured document two versions should 

be created when the same section is concurrently modified by 

two users). We have used this component to implement 

several structured documents (as it is detailed in the next 

section). 

The database surrogate component implements a surrogate 

of a database. It provides basic methods to query and update 

the database using a Java JDBC-like interface (i.e. queries 

and updates may be performed using SQL). To allow 

different servers to hold local data replicas using different 

database systems, only SQL standard statements must be 

used. This component may be extended to create new data 

types that use the relational data model - these new data types 

should define high-level operations that use those basic 

methods. Coobjects that use such data-types are structured as 

all other coobjects and rely on the same DOORS mechanisms 

(e.g. updates are propagated and executed in all replicas using 

the common mechanism). Similarly, we have also defined a 

file-system surrogate that allows programmers to store their 

data in files. 

EXPERIENCE 
In the previous sections we have described the DOORS 

system. In this section we will present some applications that 

illustrate the DOORS support for asynchronous groupware. 

In particular, we will focus on the use of the DOORS object 

framework to ease the development of new applications. The 

applications presented in this section have used a DOORS 

prototype implemented in Java 1.2. The DOORS pre-

processor has been implemented using the JavaCC parser 

generator.  

Scheduler 
The scheduler application enables users to manage a shared 

calendar. This calendar may be used to schedule the 

reservation of a shared resource (e.g. meeting room) or as a 

personal date book managed by more than one person (e.g. 

the owner and his secretary). In this application multiple users 

may independently request reservations, thus imposing a high 

data availability requirement. As only a single reservation 

may be granted for the same period of time, a global 

agreement mechanism must be used to commit requests and 

decide possible conflicts. However, users must be able to 

observe not only committed requests but also those that have 

not been committed yet. As these tentative updates represent 

the expected state of the shared calendar, users should also 

avoid conflicts with those updates. To reduce the likelihood 

of having rejected requests, users may provide alternative 

periods of time for their requests. Additionally, users may 

want to be notified when the results of their requests are 

determined. 

To develop this application using DOORS it was necessary to 

implement the shared calendar as a new coobject (and then to 

implement the application that manipulates this coobject). 

First, we have implemented the coobject’s data component — 

we have used a common calendar class, as it would be 

implemented for a local application. In figure 3 we present 

the method that processes new requests. As it can be seen, 

this method sequentially checks the possibility to schedule the 

appointment in alternative periods. The result of the operation 

is reported using the method newAwarenessMsg (and it will 

be processed by the awareness component). 

Next, this data component has been composed with some pre-

defined components to create the shared calendar coobject. In 

this application we wanted to be able to present the 

committed and tentative updates using different colors. In 

DOORS, we can maintain two data versions using normal 

data classes relying on the two-version capsule. The 

committed state is maintained executing the stored updates by 

a pessimistic total order (e.g. the sequencer-base total order) 

- therefore all replicas will execute all updates in the same 

order, thus deciding possible conflicts in concurrently 

performed requests. The tentative state is maintained 

executing all other updates by any order to a copy of the 

committed state (or executing updates by the correspondent 

optimistic total order). To provide notifications of the final 

result of requests, we have associated the notification-based 

awareness component to the committed data (and a wrapper 

so that a single notification is propagated for each request). 

With the tentative data version we have associated a null 

awareness component, so that no notification is propagated as 

the result of tentative updates. Finally, we have also used a 
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log and a "attributes" components (the extended versions 

must be used with the sequencer-based total order 

concurrency control). 

public update void processRequest(RequestInfo request){

      for( int i = 0; i < request.period.length; i++) {

            if( availablePeriod( request.period[i]) {

                  insertRequest( request, request.period[i]);

                  newAwarenessMsg( request.user,

                        "Reservation confirmed at " +

                        request.period[i] + "\nDetails:\n" +

                        request.detailedInfo() );

                  return;

             }

      }

      newAwarenessMsg( request.user,

                        "Impossible request.\nDetails:\n" +

                        request.detailedInfo() );

}  

Figure 3 – Method processRequest for scheduler coobject. 

The method newAwarenessMsg is defined in the base data 

component class and it is a simple redirection to the 

awareness component. The “update” keyword is used by 

the DOORS preprocessor. 

As outlined, the shared calendar coobject was implemented 

using a simple calendar class and relying on several pre-

defined components to manage the complexity associated 

with data sharing among multiple users. High data availability 

is provided by the core of the DOORS system. 

Multi-user document editor 
The editor application allows users to produce structured 

documents collaboratively. A document is a hierarchical 

composition of two types of elements: containers and leaves. 

Containers are sequences of other containers and/or leaves. 

Leaves represent atomic units of data that may have multiple 

versions and that may be of different types. In figure 4, we 

present an example of a LaTeX document. Users are allowed 

to change the same document independently and the system 

must manage these changes. If two users modify the same 

atomic element, two versions of that element should be 

created, thus maintaining syntactic consistency - the system 

can not decide which version is the best one and no work 

should be discarded by the system. Users should merge both 

versions later. Concurrent modifications of the document 

structure should be merged applying both modifications in the 

same way in all replicas - for example, if two users are adding 

a new section they are probably adding different sections. 

Additionally, the application should provide awareness 

information to users presenting the modifications performed 

by other users. 

To create a shared document coobject in DOORS, we have 

used the structured multi-version data component to 

automatically manage the document structure and multi-

versioning of atomic document elements. This component 

had to be extended to define the allowed configuration of 

elements and the type of atomic elements. To guarantee that 

Figure 4 – Multi-user editor with a LaTeX document. 

all modifications in the structure of a shared document are 

executed in the same way in all replicas we have used an 

optimistic total order concurrency control component. This 

component guarantees, not only, that the shared document 

replicas will converge, but also that users can immediately 

observe all contributions performed by users. 

We have used the shared-feedback awareness component to 

store awareness information about all updates performed. 

This information is used by the editor application to provide 

shared-feedback awareness information to users. The shared 

document coobject has also used a simple capsule 

component, a log component and a "attributes" component. 

As outlined, we have used and extended DOORS pre-defined 

components to create multiple shared document coobjects - 

data-management problems related with data sharing are 

managed by the pre-defined components. 

Musical shared database 
The musical shared database is an application that manages 

information about music. Multiple users are allowed to 

introduce information about new albums, their songs, authors, 

producers, on-line pointers, etc. Associated with each album 

there is a discussion board where users may produce their 

comments on the album and reply to previous comments. 

Users may also classify albums regarding several 

characteristics. Additionally, users may request to be notified 

when albums with specific characteristics are introduced. As 

usual in database applications, a set of possible queries is also 

provided to users. 

This application has been developed using DOORS to 

manage data distribution — multiple database replicas may 

be distributed in different computers and may be accessed 

independently (e.g. different intranets may have different 

database replicas that are synchronized during e-mail-based 

epidemic sessions, a portable computer may hold a replica, 

etc). The data component has been implemented extending 

the database surrogate - application-level operations (such as 

insert a new album and insert a comment) have been defined 

using basic SQL statements. The causal order concurrency 
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control component has been used to guarantee that the 

dependencies among operations are respected (e.g. replies are 

always posted after the original comments) - this property is 

sufficient in this case. This coobject relies on the notification-

based awareness component to implement notifications to 

users. As usual, a log and a "attributes" components have 

been used. 

RELATED WORK 
Several systems have been designed to manage data in large-

scale distributed environments. Notably, database systems 

usually rely on transactions to manage concurrency control. 

However, as we have already discussed, we believe that 

transactions are too restrictive for asynchronous groupware. 

Distributed file systems, such as Coda [14], support data 

sharing among distributed and disconnected users. Coda 

supports automatic conflict detection and resolution relying 

on application-defined programs to merge multiple file 

versions. As these programs have no information about 

executed operations, their task is difficult and sometimes 

impossible. This is not a problem in the targeted environment 

where conflicts are expected to be the exception — however 

this problem is important for general groupware support. 

Lotus Notes [16] is a replicated document database based on 

epidemic update propagation. Documents have a record-like 

structure composed by typed fields defined in forms. Notes 

propagates field values, handling concurrent updates by the 

creation of multiple field versions that must be manually 

merged. Although this approach is suitable in some 

circumstances, automatic merging of concurrent streams of 

activity is often possible and desirable. 

Bayou [7] is a replicated database system based on epidemic 

operation-based update propagation. Bayou updates (writes) 

include information to allow generic automatic conflict 

detection and resolution through dependency checks and 

merge procedures. Bayou data presents two values: tentative 

and committed. A primary replica scheme is used to fasten 

update commitment. This set of data management 

characteristics is interesting for many collaborative 

applications, as we have already discussed when we have 

presented similar DOORS features. DOORS differs from 

Bayou in three main aspects. First, DOORS includes 

integrated awareness support about data evolution, which is 

important for many asynchronous groupware applications. 

Second, as DOORS allows specific data types definition it 

does not impose data to fit the relational model (as in Bayou). 

DOORS also allows the implementation of applications that 

use the relational data model extending the database 

surrogate data component. However, these applications must 

define high-level operations in Java using a JDBC-like 

interface, while Bayou applications may use a higher-level 

mechanism (based on TCL). Third, the DOORS object 

framework allows the reuse of different strategies (such as 

update transformations) - this situation may allow better and 

simpler solutions for some applications, without imposing 

additional complexity for programmers. 

Several groupware systems are based on a traditional 

client/server architecture. Sync [18], a framework for mobile 

collaborative applications, presents a model of concurrent 

update merging based on the definition of merge matrixes. 

These matrixes define the operations that must be executed in 

the server and in clients for each pair of operations. The 

Prospero toolkit [5] presents a model for data management 

based on the synchronization of divergent streams of activity 

- divergence may be constrained using promises and 

guarantees (an extension of locks). It allows type-specific 

customization through its open implementation (e.g. 

synchronization procedures may be redefined). However, the 

lack of server replication makes these systems less suitable 

for large-scale settings. Additionally, they do not present 

integrated awareness support (e.g. no mechanism is defined to 

notify users of the result of their action — a desirable 

characteristic in some applications designed for mobile 

environments). 

Shared workspace systems (such as BSCW [10]) allow 

multiple users to share a common workspace where they can 

store documents. They usually use simple concurrency 

control mechanisms based on locking (check-in/check-out) or 

version management. We believe that it is often possible and 

desirable to automatically merge concurrent updates. 

Awareness information is usually pull-based (users must log 

to the system and poll for new information). 

CONCLUDING REMARKS 
The DOORS replicated object store provides data 

management support for asynchronous groupware. Asyn-

chronous collaborative applications, as illustrated in the 

applications reported in this paper, require high (read and 

write) data availability to maximize the opportunity for 

collaboration among users — users perform their con-

tributions modifying shared information. To this end, 

DOORS combines server replication and client caching to 

provide high data availability in a distributed environment 

that includes mobile computers. While DOORS shares goals 

and approaches with several other systems, it also stresses 

several different directions that look very promising 

according to our experience. 

First, DOORS is fully built around the notion of operation-

based update propagation. This approach maximizes the 

flexibility in the synchronization of divergent streams of 

activity relying on both data type and operation semantic 

information. According to our experience, this flexibility is 

essential to create specially tailored solutions. 

Second, DOORS provides integrated support for handling 

awareness information that is generated in the execution of 

operations during the synchronization process. 

Third, the DOORS system core is almost restricted to the 

common functions of data management: propagate updates 

between clients and servers and among servers. DOORS 

delegates on coobjects most of the aspects related with the 

management of data sharing, such as concurrency control, 
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handling of awareness information, etc. Additionally, 

DOORS defines an object framework that decomposes 

coobject “operation” in several components that handle those 

different aspects. This framework eases application 

development allowing programmers to create new data types 

relying on several pre-defined solutions to organize data, to 

manage concurrency control, to handle awareness 

information, etc. - the applications reported in this paper 

illustrate its use. Due to this model and to the open 

implementation of the object framework, DOORS provides 

the necessary flexibility to manage different collaborative 

applications. 

Some problems also need more attention and further research. 

First, we intend to enhance our support for small mobile 

devices introducing support for partial replication and 

adequate mechanisms to handle variable connectivity. 

Second, we intend to research more advanced tools to support 

our component-based object framework. Third, we intend to 

pursue our research in the event-dissemination architecture 

and use it to propagate awareness information. 

More information about the DAgora project (including 

DOORS) is available from [1].  
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