
Data mining: a database perspective.

M. S. Sousa, M. L. Q. Mattoso & N. F. F. Ebecken

COPPE, Federal University of Rio de Janeiro

P.O. Boa: &%̂ 7, #w (fe Janeiro, AJ, Braẑ ̂ ĝ J-

EMail: mauros, marta @cos.ufrj.br, & nelson@ntt.ufrj.br

Abstract

Data mining on large databases has been a major concern in research com-

munity, due to the difficulty of analyzing huge volumes of data using only

traditional OLAP tools. This sort of process implies a lot of computa-

tional power, memory and disk I/O, which can only be provided by parallel

computers. We present a discussion of how database technology can be

integrated to data mining techniques. Finally, we also point out several ad-

vantages of addressing data consuming activities through a tight integration

of a parallel database server and data mining techniques.

1 Introduction

Data mining techniques have increasingly been studied̂ '̂ , espe-

cially in their application in real-world databases. One typical prob-

lem is that databases tend to be very large, and these techniques

often repeatedly scan the entire set. Sampling has been used for a

long time, but subtle differences among sets of objects become less

evident.

This work provides an overview of some important data mining

techniques and their applicability on large databases. We also spot

several advantages of using a database management system (DBMS)

to manage and process information instead of conventional flat files.

This approach has been a major concern of several researches, be-

cause it represents a very natural solution since DBMSs have been

successfully used in business management and currently may store

valuable hidden knowledge.

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

One requirement of data mining is efficiency and scalability of

mining algorithms. It makes the use of parallelism even more relevant

to provide a way of processing long running tasks in a timely manner.

In this context, parallel database systems come to play an important

role, because they can offer, among other advantages, transparent

and painless implementation of parallelism to process large data sets.

It is important to notice that, when we mention the use of large

amounts of information in data mining, we are not referring to usual

large DBMSs, which can reach more than one terabyte of data. As

data mining methods often repeatedly scan the data set, mining in

such a large database is not cited in the literature yet.

The remainder of this work is organized as follows. Section 2

presents some important mining techniques currently implemented

in data mining systems. Section 3 describes how these techniques

can be applied to both flat files and DBMSs, enforcing advantages of

the latter approach, and Section 4 presents important advantages to

be analyzed when considering the use of parallel databases to mine

knowledge. Section 5 describes a case study and an implementation

using a well-known classifier algorithm with a tightly-coupled inte-

gration with a database system. Section 6 points out some related

data mining systems, whereas Section 7 presents our conclusions and

final observations.

2 Data Mining Techniques

Data mining is a step in knowledge discovery in databases (KDD)

that searches for a series of hidden patterns in data, often involving

a repeated iterative application of particular data mining methods.

The goal of the whole KDD process is to make patterns understand-

able to humans in order to facilitate a better interpretation of the

underlying data**.

We present four classes of data mining techniques typically used

in a variety of well-known applications and researches currently cited

in the database mining community. They certainly do not represent

all mining methods, but are a considerable portion of them when a

large amount of data is considered.

414

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

2.1 Classification

Classification is a well-known data mining operation and it has been

studied in machine learning community for a long timê '̂ '̂ '̂ . Its

aim is to classify cases into different classes, based on common prop-

erties (attributes) among a set of objects in a database. After the

construction of the classification model, it is used to predict classes

of new cases that are going to be inserted in the database. Adequate

applications for classification include medical diagnosis, credit risk

assessment, fraud detection and target marketing.

Among classification algorithms, there are two methods that are

widely used for data mining purposes: decision trees and neural net-

works.

2.1.1 Decision Trees

Decision tree methods are a kind of machine learning algorithm that

uses a divide-and-conquer approach to classify cases using a tree-

based representation^'^. They usually use a greedy algorithm that

recursively subdivides the training set until reaching a partition that

represents cases totally belonging to the same class or until a criteria

is reached (pre-pruning). When deciding what attribute is going to be

used by each subdivision, a statistical test is adopted as the splitting

criteria.

After the growing phase, we may have an overspecialized tree

that overfits data, providing more structure than necessary. Pruning

comes to play an important role in producing smaller trees with better

accuracy when considering new caseŝ .

Even after pruning, trees can represent a complex, difficult to

understand structure. Rule extraction is the final phase used to get

smaller and less complex rules with similar accuracy. A greedy cov-

ering algorithm is often used to select a minimal subset of rules that

covers the examples^.

The main problem with trees is that they need extensive data

to uncover complex structures. On the other hand, they can be con-

structed considerably faster than other machine learning algorithms

producing results with similar accuracy^.

There are many implementations using decision tree learning al-

gorithms, such as CART*, ID3 and its successor C4.5̂ , and SPRINT

(SLIQ's parallel implementation)^'^.

415

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

2.1.2 Neural Networks

Methods based on artificial neural networks^ provide a general arid

practical method for learning functions, which are represented by

continuous attributes, discrete or vectors. One important character-

istic of the algorithm is its robustness when dealing with errors in

the training set. Basically, neural networks have been used to in-

terpret visual scenes, voice recognition, and they are not only used

for classification (e.g. neural networks are widely used for prediction

purposes).

Neural networks typically require more time to finish than, say,

decision trees algorithms^*. Training times vary depending on the

number of training cases, the number of weights in the network, and

the settings of many learning algorithm parameters. Finally the abil-

ity to understand learned target function is not important. Learned

neural networks are less easily communicated to humans than learned

rules.

2.2 Association Rules

Mining association rules^ is particularly important when trying to

find relevant associations among items in a given customer transac-

tion. An example of the output of such mining is the statement that

80% of transactions that purchase diapers and milk also purchase

milk bottles. The number 80% is the rule confidence factor.

A formal depiction of the problem is presented in Agrawal et al^.

Let / = {ii, 12, is,.., im} be a set of binary attributes called items and

let T be a database of transactions. Each transaction t is represented

by a binary vector, with t[k] = 1 if t bought the item i&, and t[k] — 0

otherwise. It is interesting to notice that we are not, at this moment,

worried about quantities, that is, how many items were bought in

each transaction.

Now let X be a set of items, such that X is a subset of /. We may

say that a transaction t satisfies X if, for all items in X, t[k] — 1.

An association rule is an implication of the form X => V, where

X is a subset of /, Y is a subset of 7, and X f}Y = 0. If c% of

transactions in D that contain X also contain V, thus c% represents

the rule confidence factor. The rule X -4> Y has a support s% if s%

of transactions in D contain X => Y.

The problem of mining association rules can be decomposed into

416

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

two parts:

• Generate all combinations of items that a have a transaction

support above an informed minimum threshold (large item sets).

This phase is considered the most time consuming task of the

algorithm.

• For all large item sets, generate association rules for the trans-

action database, which is done in a straightforward manner.

2.3 Clustering

Clustering algorithms^, also called unsupervised classification, is the

process of grouping physical or abstract objects into classes of similar

objects. Clustering analysis helps to construct meaningful partition-

ings of a large set of objects based on a divide and conquer methodol-

ogy, which decomposes a large-scale system into smaller components

to simplify design and implementation.

2.4 Sequential Patterns

The discovery of sequential patterns^ has been motivated by appli-

cations in retailing industry, including attached mailing and add-on

sales, and in the medical domain, for example.

The input data is typically a list of sequential transactions and

there is often a transaction-time associated with each of them. The

primary goal is to find all sequential patterns with a pre-defined mini-

mum support, that is, the percentage of data sequences that contains

the pattern is greater than a given threshold.

Thus, sequential pattern algorithms are useful for discovering

trends in data, such as:

The number of sports magazines sold to customers with credit

20,000 mW 20,000 /mm# m c% 2 z

3 Using Large Databases

One important characteristic of the data mining process is that it can

use data that has been gathered during many years and transform

it in valuable knowledge. The larger the database, the better and

the more accurate the knowledge. An important observation is that,

when we refer to the use of large amounts of information in data

417

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

mining, we are not referring to usual large DBMSs, which can reach

terabytes. As data mining methods often repeatedly scan the data

set, mining in such a large database is far from being a reality.

Data mining applications often work with two kinds of data

sources, and each one has its own advantages: flat files or a database

management system.

3.1 Flat Files

Flat files have been largely used as the data source of information used

by data mining algorithms. Even when operational data is stored in

a DBMS, many systems extract a portion of them to be used during

the mining process, working only with data that fits in main memory,

which limits the total amount of information to be used. Implemen-

tations using flat files offer some advantages related to performance

results.

3.2 Data Mining and DBMSs

Database technology has been successfully used in traditional busi-

ness data processing. Companies have been gathering a large amount

of data, using a DBMS system to manage it. Therefore, it is desirable

that we have an easy and painless use of database technology within

other areas, such as data mining.

DBMS technology offers many features that make it valuable

when implementing data mining applications. For example, it is pos-

sible to work with data sets that are considerably larger than main

memory, since the database itself is responsible for handling informa-

tion, paging and swapping when necessary. Besides, a simplified data

management and a closer integration to other systems are available

(e.g. data may be updated or managed as a part of a larger oper-

ational process). Moreover, as emerging object-relational databases

are providing the ability to handle image, video and voice, there is

a potential area to exploit mining of complex data types. Finally,

after rules are discovered, we can use ad-hoc and OLAP queries to

validate discovered patterns in an easy way. We must not forget

that information used during mining processing is often confidential.

Thus, DBMSs can also be used as a means of providing data security,

which is widely implemented in commercial databases, avoiding the

need of using encryption algorithms to process information.

418

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

3.2.1 Loosely-coupled Integration

Even when using databases, most of the current data mining ap-

plications have a loose connection with them. They treat database

simply as a container from which data is extracted directly to the

main memory of the computer responsible for running the data min-

ing algorithm, just before the main execution begins. This approach

limits the amount of data that can be used, forcing applications to

filter information, and use only a part of it to discover patterns.

Alternatively, some applications dynamically perform queries to the

database, but work in a client / server architecture. It means that,

depending on the amount of data being transferred, unnecessary

network traffic is generated. Moreover, they are often written in

programming languages that do not have any integration with the

database system.

3.2.2 Tightly-coupled [14]

The idea of executing user-defined computation within databases,

thus avoiding unnecessary network traffic, has been a major concern

in many DBMS systems. One example of this sort of implementation

is the stored procedure in commercial databases. For instance, Oracle

provides the possibility of implementing procedural code in PL/SQL

and storing it within the data dictionary, in a pre-compiled form

(PL/SQL is an interpreted language).

Some authors have developed a methodology for tightly-coupled

integration of data mining applications with database systems^, se-

lectively pushing parts of the application program into them. They

have performed some practical experiments with a relational database

system and propose that, whenever possible, computation should be

included within SQL statements.

4 Data Mining and Parallel DBMSs

Given that it is desirable that a data mining process handles a large

volume of data, parallel algorithms are needed to provide scalability,

in order to end the process in a timely manner. Classification and

discovery of association rules are two data mining techniques that

have been extensively studied for parallelization

419

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

It can be explained by several reasons, such as the importance of

these methods for commercial use, and their scalability.

There are a variety of data mining algorithms constructed to run

in parallel, taking advantage of parallel architectures using specific

programming routines. Alternatively, parallel database systems can

provide parallelization in a transparent, painless manner to the ap-

plication. There are many advantages of using parallel DBMSs:

• The implementation becomes simpler. There is no need to use

parallel routines such as MPI libraries. The parallel DBMS is

responsible itself for parallelizing queries that are issued against

it. We have to structure our queries so that they can fully

exploit parallelism offered by a particular DBMS.

• DBMS can choose between serial and parallel execution plans

transparently to application. Depending on the data mining al-

gorithm and technique used, it is clear that parallelism is more

useful in the beginning and intermediate phases of the pro-

cess. In the construction of decision trees, for example, the

training set is recursively partitioned and processed. Thus, at

some point of the processing, parallelism may not be useful

because the communication overhead between coordinator and

slave processes dominates the processing time, because there are

not many training examples being searched. Based on statis-

tics about data, the DBMS can evaluate the cost of parallel

and serial queries and decide which one is more advantageous,

depending on available machine resources.

• Opportunity for database fragmentation.

Database fragmentation^'^ provides many advantages related

to the reduced number of page accesses necessary for reading

data. Irrelevant data could be just ignored depending on the

filter specified by SQL statements. Furthermore, some DBMSs

can process each partition in parallel, using different execution

plans when applicable^. In general, DBMS systems provide

automatic management of such functionality.

However, some drawbacks have to be considered, such as:

• Less control of how parallelization will occur. Although there

is the possibility of some customizations, such as setting the

420

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

nodes that will participate in the process, the DbMb itselt is in

charge for parallelization.

• The algorithm may become dependent on some characteristic of

the parallel DBMS used. In a parallel database system, we have

some chance to direct the optimizer to use a specific execution

plan, but our algorithm may be dependent on some character-

istic of this DBMS.

• Overhead of the database system kernel. A kernel of a database

system is designed to handle a large set of operations, such as

OLTP transactions, OLAP queries, etc. Although it is possible

to minimize the overhead and customize the environment to

take the best available advantages of the corresponding archi-

tecture, there will always exist some functionality implemented

that is not applicable to the data mining algorithm, which can

degrade performance when compared to access to flat files.

5 A Classification Case Study

To study and identify problems related to database mining on a large

amount of data, we have implemented a classification algorithm (de-

cision tree) with a tightly-coupled integration to a parallel database

server. We have constructed a set of stored procedures that are stored

within Oracle Server data dictionary in a pre-compiled form. We have

been using a multiprocessor IBM RS/6000 SP2 system with Oracle

Parallel Server 7.3 installed!̂ .

We have decided to base our implementation on decision tree

algorithms because they are well-suited classifiers for data mining

problems, producing similar accuracy when compared to other meth-

ods for classification. Besides, they represent one of the most widely

used and practical methods for inductive inference, and they can

be built considerably faster than other machine learning methods.

It is an important characteristic when focusing on handling a large

amount of data. Moreover, decision trees can be easily constructed

from and transformed into SQL statements*, which can be used to

query a parallel database system.

Another important consideration about our implementation is

that it does not have any memory dependency, that is, it will wok

no matter how large the data set is. If data does not fit in memory,

421

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

the DBMS itself is responsible for the paging and swapping when

necessary. We do not propose any new data mining algorithm, but

a different approach of implementing a data mining system. Our

work is based on C4.5̂ and SPRINT^, adapting them to use a

database system instead of flat files. A more detailed discussion of

database technology features appears in [26], while the description

of the implemented decision tree algorithm in Oracle Parallel Server

may be found in [27].

5.1 Problem Statement

The data set used during the classification process is based on a

life insurance system, which controls information about customers,

insurance contracts and components of insurance tariffs. People in

management positions use this database in a data,-warehousing en-

vironment in order to help decision making. Information about cus-

tomers and their dependents includes year of birth, job, sex, marital

status, and household income data. Besides, the system holds data

about contracts, such as the year when contract begins and ends,

modus of payment, name of the agent responsible for the contract,

and type of insurance. Finally, the database keeps information about

price of each tariff that is associated to an insurance contract.

Although a series of normalized tables were available, we have

constructed a single relation because of performance problems re-

lated to join operations. Oracle offers a variety of methods to per-

form joins in parallel, namely nested loops, hash joins and star joins.

However, even when performed in parallel, joins represent a time con-

suming task. This single relation is a relatively small one that fits

in memory, with about 50Mb, 200.000 tuples and 70 attributes. For

data mining purposes, this relation represents a considerable large

one when compared to others that appear in current literature.

We handle attributes with different characteristics, namely: dis-

crete attributes with very few distinct values, discrete attributes with

a reasonable number of distinct values, continuous attributes with

only some distinct attributes and continuous attributes with a lot of

distinct values.

422

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

5.2 Typical Queries in Rule Induction Algorithms

Most of queries issued in decision tree algorithms, or in rule induc-

tion ones in general, deals with two kinds of operations: grouping

(GROUP BY) and sorts (ORDER BY), when working with continu-

ous attributes^. These kinds of queries represent the time consuming

tasks obtained during the implemented algorithm.

Select maritaLstatus, class, count(*)

From mine.relation

Group By maritaLstatus, class

Parallel database servers can easily process this sort of query,

and it is possible to take advantage of parallel machine resources. In

Massively Parallel Processing architectures (MPP), for example, each

node can independently compute counts on the records stored locally.

In the next phase, a coordinator process can consolidate these counts,

and then return the result back to the

5.3 Tightly-coupled Implementation

Due to the importance of database technology, we have focused on

implementing most of classification algorithm within database. This

approach offers a tightly-coupled integration with the database sys-

tem and its query language and also avoids network traffic between

a client and the server. All processing is done in the server and in-

termediate and final results are also stored within it in the form of

tables. The client only issues a command (a stored procedure call)

and the DBMS is responsible for extracting results. Moreover, it

decreases the number of calls to the database, makes our code con-

siderably simpler, and pushes memory consideration problems into

the database system.

Our implementation involves the use of embedded routines writ-

ten PL/SQL (Oracle native procedural language), which are, when-

ever possible, called within SQL statements.

5.3.1 Tree Growing Phase

The following query presents an example of SQL statement used dur-

ing the growing phase of a decision tree, and it is used to calculate

the best splitting point of an internal node using gini index statistical

25 The inner SQL statement groups the training set based on

423

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

attribute values. The GROUP BY clause is used instead of a simple

ORDER BY to count the number of occurrences for each pair at-

tribute/class, since we cannot split cases having the same attribute

value. Hence, the splitting criteria is computed faster than before,

using only one database call per attribute in each phase. When the

attribute has too many distinct values, a discretization would be ad-

visable.

Select min(giniSplit(salary, class, num))

From (Select salary, class, count(*) num

From mine-relation

Group By salary, class)

5.3.2 Tree Pruning Phase

During the pruning step, a user-defined function is created based on

the original tree. It is used to classify test cases in parallel.

Select class, Classify(maritaLstatus, year.contract-end, salary)

From, mine.relation .test

We have randomly divided the data set into two parts: one for

the tree growing phase, and the other for tree pruning. This task

was carefully performed to generate relations with the same class

distribution. Test data is represented by mine_relation_test, which is

used to predict error rates associated with each tree node.

In the above SQL statement, the first column returns actual case

classification, while Classify returns the classification generated by

the algorithm. Function Classify is used to find out the number of

hits and misses during classification, which will guide tree pruning.

5.3.3 Rule Extraction Phase

Once the classification model is constructed, a set of rules can be

derived reading the tree, from top to bottom, until reaching each leaf

node. The n rules originally defined (where n represents the number

of leaf nodes) are generalized, and some of them may be simplified

or even eliminated. Rule generalization process is a time consuming

task, since we examine many possibilities in order to eliminate irrel-

evant expressions in rules, producing a simpler subset. This process

issues many SQL statements, in which WHERE conditions repre-

sent rules discovered in previous phases. These statements, each one

424

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

processed in parallel, return the number of false positives and false

negatives examples that are going to be used in conjunction with a

well-known method called Minimum Description Length (MDL), as

it is done in C4.5̂ .

As in the pruning case, this rule set is transformed into a PL/SQL

function, which can be called from within a SQL statement, enabling

the classification of new cases in parallel. This function receives the

attributes used during the data mining algorithm and returns the

predicted classification.

5.4 Performance Considerations

Depending on the database size and the complexity of applications,

the data mining process may represent a long running task. In our

case study, a tree with over 38.000 nodes was generated, what shows

that it is not a trivial problem to be solved. Most of parallelization

occurs when handling decision nodes that are on the top of tree, so

that more data is going to be analyzed. For these phases, we noticed a

significant performance speedup when additional processors are used.

Although ad-hoc file processing algorithms often outperform the

ones based on DBMSs, there are many advantages of implementing

the latter approach. In our study, code simplicity proved to be one

of the most valuable advantages to be considered.

Performance improvements could be achieved through data frag-

mentation techniques. One characteristic of SQL that can degrade

the performance of a Rule Induction algorithm is that its structure re-

quires a separate query to construct the histogram for each attribute.

Thus, it is not possible to perform a single SQL statement that can

bring us the result reading data just once. Fragmentation techniques

tend to eliminate irrelevant information during query execution, min-

imizing such problem. Vertical fragmentation can be used to break a

big relation into smaller pieces, whereas horizontal partitioning func-

tions can be carefully defined in order to diminish the amount of

information that needs to be scanned in each decision node.

All implemented modules do not rely on any specific Oracle

Server feature. They use general functionality, which is currently

available in most of commercial parallel database systems. More-

over, this implementation can be easily used by another application,

since the constructed stored procedures / functions are just ready to

be used in a parameterized, flexible form.

425

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

6 Overview of Data Mining Systems

In this section we present some currently implemented data mining

systems and some other interesting works in the area. They all have

in common the fact that they were implemented taking large amounts

of data into account.

6.1 Quest

The Quest data mining system^ has been addressing the development

of fast, scalable algorithms. Implemented algorithms include associ-

ation rules, generalization, sequential patterns, time-series clustering

and classification. Quest algorithms have been parallelized to run

on IBM's shared-nothing multiprocessor SP2. They have been work-

ing with parallel implementation of the mining of association rules

(APRIORI^ algorithm) and the SPRINT^ classification algorithm -

an evolution of SLIQ^ - where multiple processors are able to work

together to construct a classification model, namely a decision tree.

These algorithms run against data in flat files as well as DB2 family

of database products, but databases are accessed in a loosely-couple

mode using dynamic SQL.

6.2 DBMiner

'is integrates data mining with relational database sys-

tems and provides a SQL-like knowledge discovery interface for re-

lational operation-based data generalization, and thus facilitates its

integration with the existing commercial relational database systems.

It has been designed with emphasis on simplicity and extensibility.

Its modules include multiple-level characterization and association,

discovery of discriminant rules, classification, and prediction.

6.3 SKICAT

The SKICAT system™ (Sky Image Cataloging Analysis Tool) was

implemented to process images resulting from the Second Palomar

Observatory Sky Survey (POSS-II). It uses a variety of classifica-

tion supervised learning techniques to automating the reduction and

analysis of a large astronomical data set, integrating methods for im-

age processing, data classification and database management. Thus,

the purpose of SKICAT is to enable and maximize the extraction

426

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

of meaningful information from such a large database in an efficient

and timely manner. Some learning algorithms (GID3*, O-BTree, and

RULER) are used to produce decision trees and classification rules

from training data consisting of astronomer-classified sky objects.

6.4 Other Works

Freitas and Lavington^'^ have presented a series of primitives for

rule induction (RI), after analyzing many KDD algorithms of the RI

paradigm. Core operations of their candidate rule evaluation proce-

dure are depicted considering performance characteristics and paral-

lelization. Primitives can be translated to usual GROUP BY / OR-

DER BY clauses in SQL statements, which often provide a potential

degree of parallelism in parallel DBMSs.

Holshemeir et al^ implemented a two-level architecture for con-

structing decision trees. A DBMS server (Monet Database Server)

was used in the experiments, and Quinlan's IDS algorithm was used

as a baseline. Results are presented using a case study with 100k

cases (2.6Mb compressed). In parallel execution, a 25k relation was

used with 4 nodes.

7 Conclusions

Data mining and its application on large databases have been ex-

tensively studied due to the increasing difficulty of analyzing large

volumes of data using only OLAP tools. This difficulty pointed out

the need of an automated process to discover interesting and hidden

patterns in real-world data sets. The ability to handle large amounts

of information has been a major concern in many recent data mining

applications. Parallel processing comes to play an important role in

this context, once only parallel machines can provide sufficient com-

putational power, memory arid disk I/O.

We described some important data mining techniques, present-

ing brief descriptions about them and showing how each one can con-

tribute to the pattern discovery process. Furthermore, we presented

several advantages of implementing a data mining method using a

DBMS instead of conventional flat files. Our practical work exploited

many specific characteristics of DBMSs, providing a tightly-coupled

integration of a data mining technique with a parallel database server

using a complex application. We have exercised adverse situations

427

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

such as large number of attributes, discrete and continuous attributes

with many distinct values, observing problems and solutions during

the whole process.

Experimental results have shown performance bottlenecks when

using a DBMS when compared to flat files, due to the nature of

current SQL offered by most commercial databases. However, if we

assume that data mining of large databases is going to become in

the future a routine task and DBMS vendors are going to implement

new features that could help the data mining process, then database

servers will play an important role in this context. It is possible

that changes to current DBMSs and SQL language could enable data

mining operations to be performed more efficiently. Besides, through

emerging object-relational technology, a potential area must be ex-

ploited. Other interfaces, such as those for integrating with indexing

and optimization mechanisms will be available in a near future, which

can offer a means of interfering in the parallel optimization process.

428

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

References

[1] Agrawal, R., Ghosh, S., Imelinski, T., Iyer, B., & Swami, A.,

An Interval classifier for database mining applications, Proc. of

VLDB Conference, Vancouver, Canada, pp. 560-573, 1992.

[2] Agrawal, R., Imielinski, T., fc Swami, A., Mining association rules

between sets of items in large databases, Proc. of Int. Conf. ACM

SIGMOD, Washington D. C. pp. 207-216, 1993.

[3] Agrawal, R., Gehrke, J., Gunopulos, & D., Raghavan, P., Auto-

matic Subspace Clustering of High Dimensional Data for Data

Mining Applications, Proc. of the ACM SIGMOD Int. Conf. on

Management of Data, Seattle, Washington, 1998.

[4] Agrawal, R., Metha, M., Shafer, J., & Srikant, R., The Quest

Data Mining System, Proc. of the 2nd Int. Conf. on Knowledge

Discovery in Databases and Data Mining, Portland, Oregon, 1996.

[5] Agrawal, R., & Shim, K., Developing Tightly-Coupled Data Min-

ing Applications on a Relational Database System, Proc. of 2nd

Int. Conf. on Knowledge Discovery in Databases and Data Min-

ing, Portland, Oregon, 1996.

[6] Agrawal, R., & Srikant, R., Fast Algorithms for mining associa-

tion rules, Proc. of the 20th VLDB Int. Conf., Santiago, Chile,

1994.

[7] Bigus, J. P., Data Mining with NeuralNetworks, McGraw-Hill,

1996.

[8] Breiman, L., Friedman, J., Olshen, R., & Stone, C., Classification

and Regression Trees, Wadsworth International Group, 1984.

[9] Chen, M. S., Han, J., & Yu, P. S., Data Mining: An Overview

from Database Perspective, IEEE Trans, on Knowledge and Data

m̂ , Vol. 8, No. 6, pp. 866-883, 1996

[10] Fayyad, U, Djorgovski, S., & Weir, N.. Automating the Anal-

ysis and Cataloging of Sky Surveys. In Advances in Knowledge

Discovery and Data Mining, pp. 471-493, AAAI Press, 1996.

429

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

[11] Fayyad, U., Piatesky-Shapriro, G., & Smyth, P., From Data

Mining to Knowledge Discovery: An Overview, In Advances in

Knowledge Discovery and Data Mining, pp. 1-34, AAAI Press,

1996.

[12] Freitas, A., Generic, Set-oriented Primitives to Support Data-

parallel Knowledge Discovery in Relational Database Systems,

Phd diss., 1997,

http://cswww.essex.ac.uk/SystemsArchitecture/DataMining

/alex/thesis.html.

[13] Freitas, A., & Lavington, S. H., Mining Very Large Databases

With Parallel Processing, Kluwer Academic Publishers, 1998.

[14] Hallmark, G., Oracle Parallel Warehouse Server, Proc. of ICDE,

pp. 314-320, 1997.

[15] Han, J., Fu, Y,, Koperski, K., Melli, G., Wang, W., & Zaane,

O., Knowledge Mining in Databases: An Integration of Machine

Learning Methodologies with Database Technologies, Canadian

AI Magazine, 1995.

[16] Han, J., Fu, Y., Wang, W., Chiang, J., Gong, W., Koperski, K.,

Li, D., Lu, Y., Raj an, A., Stefanovic, N., Xia, B., & Zaiarie, O.,

DBMiner: A System for Mining Knowledge in Large Relational

Databases. Proc. Int. Con}, on KDD, Portland, Oregon, 1996.

[17] Holsheimer, M., Kersten, & M. L., Siebes, A., Data Surveyor:

Searching the Nuggets in Parallel. In Advances in Knowledge Dis-

covery and Data Mining, pp. 447-467, AAAI Press, 1996.

[18] Kufrin, R., Decision Trees on Parallel Processors, Proc. of the

IJCAI Workshop on Parallel Processing for Artificial Intelligence,

pp. 87-95, 1995.

[19] Metha, M., Agrawal, R., & Rissanen, J., SLIQ: A Fast Scalable

Classifier for Data Mining, Proc. of the 5th Int'l Conference on

Extending Database Technology (EDBT), Avignon, France, 1996.

[20] Metha, M., & DeWitt, D.J., Data Placement in shared-nothing

parallel database systems. VLDB Journal, Springer-Verlag 1997.

[21] Mitchell, T. M., Machine Learning. McGraw-Hill, 1997.

430

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

[22] Navathe, S. B., & Ra, M., Vertical Partitioning for Database

Design: A Graphical Algorithm. Proc. of SIGMOD Int. Con/.,

pp. 440-450, 1989.

[23] Oracle Corporation. Oracle Parallel Server Concepts & Admin-

istration Rel. 7.3. Oracle Technical Manual.

[24] Quinlan, J., C4.5: Programs for Machine Learning. Morgan

Kaufman, 1993.

[25] Shafer, J., Agrawal, R., & Metha, M., SPRINT: A Scalable Par-

allel Classifier for Data Mining, Proc. of the 22th Int. Con}, on

VLDB, Mumbi, India, 1996.

[26] Sousa, M. S., Mattoso, M.L.Q., Ebecken, & N.F.F., Data Min-

ing: A Tightly-Coupled Implementation using a Parallel Database

Server. Proc. Int. Con/, on DEXA Workshop Parallel Databases:

innovative applications and new architecture, IEEE CS, Viena,

Austria, 1998.

[27] Sousa, M. S., Mattoso, M.L.Q., Ebecken, & N.F.F., Data Mining

on Parallel Database Systems. Proc. Int. Con/, on PDPTA: Spe-

cial Session on Parallel Data Warehousing, CSREA Press, Las

Vegas, 1998.

[28] Srikant, R., & Agrawal, R., Mining Sequential Patterns: Gen-

eralizations and Performance Improvements, Proc. of the 5th

W. Con/, on EzZendmg IWoWe Tec/mofogi/ ("EDBT̂ , Avignon,

France, 1996.

431

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

