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Abstract

An enormous proliferation of databases in almost every area of human endeavrenteas
a great demandfor new, powerful tools for turning data into useful, task-oriented
knowledge. In efforts to satisfy this need,researchersiave beenexploring ideas and
methodsdevelopedn machinelearning,patternrecognition,statisticaldata analysis,data
visualization, neurahets,etc. Theseefforts haveled to the emergencef a new research
area, frequently called data mining and knowledge discovery. The first phis paperis
a compendiunof ideason the applicability of symbolic machinelearningmethodsto this
area. The second part describesa multistrategy methodology for conceptual data
exploration by which we mean the derivation of high-leeehceptsand descriptiondrom
datathrough symbolic reasoninginvolving both dataand backgroundknowledge. The
methodology,which has beenimplementedin the INLEN system,combinesmachine
learning, databaseand knowledge-basedtechnologies. To illustrate the system’s
capabilities, we present resuftem its applicationto a problemof discoveryof economic
and demographic patterns in a database containing facts and staltistitthe countriesof
the world. The presented results demonstrate a high potential utility of the methddology
assisting a user in solving practical data mining and knowledge discovery tasks.

Keywords: Multistrategy Learning, Integrated Learning, Knowledge Discovery,
Conceptual Clustering, Inductive Generalization. Constructive Induction, Temporal
Reasoning, Structured Data
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1 Introduction

The current information age ¢haracterizedy an extraordinaryexpansiorof datathat are
being generated and stored aboukalbs of humanendeavors.An increasingproportion
of thesedatais recordedin the form of computerdatabasesin order that the computer
technologymay easilyaccesst. The availability of very largevolumesof suchdatahas
created a problem of how to extract from them useful, task-oriented knowledge.

Data analysis techniques that have been traditionaty for such taskacluderegression
analysis, cluster analysis, numerical taxonomy, multidimensional analysis, other
multivariate statistical methods, stochastic models, time series analysis, nonlinear
estimation techniques,and others (e.g., Daniel and Wood, 1980; Tukey, 1986;
Morganthaler and Tukey, 1989; Diday, 1989; Sharma, 1996). Teeseiquedhavebeen
widely used forsolving many practicalproblems.They are, however, primarily oriented
towardthe extractionof quantitativeand statisticaldata characteristicsand as suchhave
inherent limitations.

For example,a statistical analysis can determinecovariancesand correlationsbetween
variablesin data. It cannot, however, characterizethe dependenciest an abstract,
conceptuallevel, and producea causalexplanationof reasonswhy thesedependencies
exist. Nor canit developa justification of theserelationshipan the form of higher-level
logic-style descriptionsand laws. A statistical data analysis can determinethe central
tendency and variance of given factors, and a regreas@lysiscanfit a curveto a setof
datapoints. Thesetechniquescannot,however, producea qualitative descriptionof the
regularitiesand determinetheir dependencen factorsnot explicitly providedin the data,
nor can they draw an analogy betweendiseoveredegularityanda regularityin another
domain.

A numerical taxonomy techniquecan createa classificationof entities, and specify a
numerical similarityamongthe entitiesassemblednto the sameor different categories. It
cannot, however, build qualitative descriptionsof the classescreatedand hypothesize
reasons for the entities beingtire samecategory. Attributesthat define the similarity, as
well as the similarity measures, mustdefinedby a dataanalystin advance. Also, these
techniquesannotby themselvesdraw uponbackgrounddomain knowledgein order to
automatically generate relevant attributes and determine their changing rekevdifiezent
data analysis problems.

To address such tasks above, a data analysissystem has to be equippedwith a
substantial amourdf backgrouncknowledge,andbe ableto perform symbolicreasoning
tasksinvolving that knowledgeand the data. In summary, traditional data analysis
techniques facilitate usefdatainterpretationsand canhelp to generatemportantinsights
into the processedehindthe data. Theseinterpretationsand insights are the ultimate
knowledgesought bythosewho build databases.Yet, suchknowledgeis not createdby
these tools, but instead has to be derived by human data analysts.

In efforts to satisfythe growing needfor new data analysistools that will overcomethe
abovelimitations, researchersiave turnedto ideas and methodsdevelopedin machine
learning. The field of machinelearningis a natural sourceof ideasfor this purpose,
becausethe essenceof researchin this field is to develop computationalmodels for
acquiring knowledgefrom facts and backgroundknowledge. Theseand related efforts
haveled to the emergenceof a new researcharea, frequently called data mining and



knowledgediscovery, (e.g., Michalski, Baskin and Spackman,1982; Zhuravlev and
Gurevitch, 1989; Michalski, 1991; Michalski et al, 1992; Van Mechelenet al, 1993;
Fayyad et al, 1996; Evangelos and Han, 1996).

The first part of this paperis a compendiumof ideas on the applicability of symbolic
machinelearning methodsto datamining and knowledgediscovery. The secondpart
describes a methodology foonceptual data exploratioiby which we meanthe derivation
of high-levelconceptsand descriptionsfrom data. The methodology,stemmingmainly
from various efforts in machine learning, applies diverse methods and tod&td¢amining
task-orienteddata characterizationsand generalizations. These characterizationsare
expressed in the form ddgic-style descriptionswhich canbe easily interpretedand used
for decision-making. The tertask-orientecemphasizeshe fact that an explorationof the
samedatamay producedifferent knowledge;therefore,the methodologytries to connect
the task at hand with the way of exploring the data. Such task-orientation natgalhes
a multistrategy approach,becausedifferent tasks may need to employ different data
exploration and knowledge generation operators.

The aim of the methodologyis to produceknowledgein a form that is close to data
descriptionsthat an expertmight produce. Such a form may include combinationsof
differenttypesof descriptionse.g., logical, mathematicalstatistical,and graphical. The
main constraint ishat thesedescriptionsshouldbe easyto understandand interpretby an
expertin the givendomain,i.e., they should satisfy the “principle of comprehensibility”
(Michalski, 1993). Our first efforts in developinga methodologyfor multistrategydata
explorationhave beenmplementedin the systemINLEN (Michalski et al, 1992). The
system combines a range of machine learmeghodsandtools with more traditional data
analysis techniques. These tools provide a wabrthe capabilityto makedifferentkinds
of data explorations and to derive different kinds of knowledge from a database.

The INLEN methodologyfor intelligent data explorationdirectly reflects the aims of the
current research on data mining and knowledge discovery. In this context,bemsgful
to explain the distinction between the concepts of data miningraowlledgediscovery,as
proposed in (Fayyad, Piatetsky-Shapra Smyth, 1996). Accordingto this distinction,
data mining refers to the application of machine learning methods, as well as other
methods, to the “enumeration of patterns over the data,” and knovdestgeeryrefersto
the processncompassinghe entire dataanalysislifecycle, from the identificationof data
analysisgoals and the acquisition and organizationof raw data to the generationof
potentially useful knowledge, its interpretation and testiAgcordingto thesedefinitions,
the INLEN methodology incorporatesboth data mining and knowledge discovery
techniques.

2 Machine Learning and Multistrategy Data Exploration

This sectionshowsa closerelationshipbetweenideasand methodsdevelopedn the field

of machine learning to thgoalsof datamining and knowledgediscovery. Specifically, it

describes how methods of symbolic macHesningcanbe used forautomatingor semi-
automatinga wide rangeof tasksconcernedwith conceptualexploration of data and a
generatiorof task-orientecknowledgefrom them. Let us briefly review someof these
methods.



2.1 Determining General Rules from Specific Cases

A major class of tools fomultistrategydataexplorationis basedon methodsfor symbolic
inductive learning from examples. Given collectionsof examplesof different decision
classes(or casesof a relationship), and problem-relevantknowledge (“background
knowledge”), an inductive learning method hypothesizesa generaldescriptionof each
class. Somemethodsuse a fixed criterion for choosingthe descriptionfrom a large
numberof possibilities,and someallow the user to define a criterion that reflects the
problemat hand. A descriptioncanbe in the form of a set of decisionrules, a decision
tree, a semantic net, etc. A decisrafe canalsotake on manydifferentforms. Herewe
will assume the following form:

CLASS O CONDITION

where CLASS is a statement indicating a class, decisioaconceptnameto be assigned
to an entity (an object or situation) that satisfies CONDITION; CONDITION is a
conjunctionof elementaryconditionson the valuesof attributescharacterizinghe objects;

andl] denotes implication.

We will alsoassumehatif CLASS requiresa disjunctive description,then severalsuch
(conjunctive)rulesrelateto the sameCLASS. To illustratethis point, Figure 1 gives an
exampleof a disjunctive descriptionof a classof robot-figuresin EMERALD (a large
systemfor demonstratingmachine learning and discovery capabilities—Kaufmanand
Michalski, 1993).

Rule A: Class 1 [J Jacket Color is Red, Green or Blue &
Head Shape is Round or Octagonal

Rule B: Class 1 [ Head Shape is Square &
Jacket Color is Yellow

Figure 1. A two-rule description of Class 1.

To paraphrasehis description,a robot belongsto Class1 if the color of its jacketis red,
greenor blue, andits headis round oroctagonalor, alternatively,its headis squareand
the color of its jacket is yellow.

The EMERALD system,mentionedabove,combinesfive programsthat display different

kinds oflearningcapabilities(Kaufmanand Michalski, 1993). Thesecapabilities include
rule learning from examples (using program AQ15), learning distinctions between

structures (INDUCE), conceptual clustering (CLUSTER/2), prediaifoobjectsequences
(SPARC), and derivation of equationsand rules characterizingdata about physical

processe$ABACUS). Eachof theseprogramsis directly applicableto conceptualdata

exploration.For example the rulesin Figure 1 were generatedy the AQ15 rule module

[MMHLB86], [HMM86] from a setof “positive” and “negative” examplesof Class 1 of
robot-figures.

AQ15 learnsattributional descriptionsof entities,i.e., descriptionsinvolving only their
attributes. More generaldescriptions,structural or relational, also involve relationships
among components of the entities, the attribofethe componentsand quantifiers. Such
descriptionsare produced for example,by the INDUCE moduleof EMERALD (Larson,
1977; Bentrup, Mehleand Riedesel 1987). Constructingstructuraldescriptiongequires



a more complex description language that includali-argumentpredicatesfor example,
PROLOG, orAnnotatedPredicateCalculus (Michalski, 1983; Bratko, Muggleton and
Karalic, 1997).

For database exploration, attributional descriptions appdse ttte mostimportantandthe
easiesto implement,becauseypical databasesharacterizeentitiesin termsof attributes,
not relations. One simple and popularform of attributional descriptionis a decisionor
classification tree. In such a tree, nodesespondo attributes,branchestemmingfrom
the nodes correspond to attribute values,laeadescorrespondo individual classeqe.g.,
Quinlan, 1986). A decisiotree canbe transformednto a setof decisionrules(a ruleset)
by traversingall pathsfrom the root to individual leaves. Suchrules can be often
simplified by detecting superfluous conditions in them (e.g., Quinlan, 1993)opusite
process of transforming a ruleset into a decision tree is not so direct (98§), because
a rule representationis more powerful than a tree representation. The term “more
powerful” means in this context that a decision tree representing a given nisseuire
superfluous conditions (e.g., Michalski, 1990).

The input to an attributionallearningprogramconsists ofa set of examplesof individual
classesand“backgroundknowledge”(BK) relevantto the given learning problem. The
examples (cases dkcisions)arein the form of vectorsof attribute-valuepairs associated
with somedecisionclass. Backgroundknowledgeis usually limited to informationabout

the legal valuesof the attributes their type (the scaleof measurement)and a preference
criterion for choosing among possible candidate hypotheses. Such a critayoefer to,

for example,the computationalsimplicity of the description,and/or an estimateof its
predictive accuracy. In additionto BK, a learning methodmay have a representational
bias i.e., it may constrainthe form of descriptiongo only a certaintype of expressions,
e.g., single conjunctions, decision trees, sets of conjunctive rules, or DNF expressions.

In some methods, BK may include more information, e.g., constraints on the
interrelationship between various attributes, rules for generating Hegletconcepts, new
attributes, as well asomeinitial hypothesigMichalski, 1983). Learnedrulesareusually
consistenandcompletewith regard to the input data. Thiseansthat they completelyand
correctly classifyall the original “training” examples. Sections5 and8 presentconsistent
and complete example solutions from the inductive conceptlearning program AQ15c
(Wneketal, 1995). In someapplicationsespeciallythoseinvolving learning rules from
noisy data or learninfiexible concepts (Michalski, 1990it, may be advantageouto learn
descriptions that are incomplete and/or inconsistent (Bergadano et al, 1992).

Attributional descriptions can be visualized by mapping them iplarzarrepresentatiof
a discrete multidimensional space (a diagram) spannedre/given attributes(Michalski,
1978), (Wnek et al, 1990)For example Figure 2 showsa diagrammatiovisualizationof
the rules from Figure 1. The diagramin Figure 2 was generatedby the concept
visualization program DIAV (Wnek et al, 1990; Wnek, 1995).

Eachcell in the diagramrepresentsone specific combinationof valuesof the attributes.
For example, the cell marked by an X representsthe vector: (HeadShapeSquare,
Holding=Sword, JacketColorRed, IsSmiling=False). The four shadedareas marked
Classl (A) represent rule A, and the shaded area markedlG|B3sepresentsule B. In

sucha diagram,conjunctiverules correspondo certainregulararrangementsf cells that
are easy to recognize (Michalski, 1978).

The diagrammatiwisualizationcanbe used fordisplayingthe target concept (the concept
to belearned) the training exampleqthe examplesand counter-examplesf the concept),



andthe actual conceptlearnedby a method. Bycomparingthe targetconceptwith the
learned concept, one can determinectiner areg i.e., the areaontainingall exampleghat
would beincorrectly classifiedby the learnedconcept. Sucha diagrammaticvisualization
method can illustrate any kind of attributional learning process (Wnek et al, 1990).

.4
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Figure 2. A diagrammatic visualization of rules from Figure 1.

Two typesof dataexplorationoperatorscan be basedon methodsfor learning concept
descriptions from examples:

» Operatorsfor determininggeneralsymbolic descriptionsof a designated
group orgroupsof entitiesin a dataset. Suchdescriptionsexpressthe
commonpropertiesof the entitiesin eachgroup. The operatorscan use
abstract concepts that are not present in the origataivia the mechanism
of constructiveinduction (see below). These operatorsare basedon
programs for learningharacteristic concept descriptisn

» Operatordor determiningdifferencesbetweendifferent groupsof entities.
Suchdifferencesare expressedn the form of rules that define properties
that characterize one group but not the other. Topseatorsare basedon
programs for learnindiscriminant concept descriptions



Section5 will illustrate thesetwo types of descriptions. For more details and their
definitions see (Michalski, 1983). Basic methodsfor conceptlearning assumethat
examplesdo not haveerrors, that all attributeshave a specifiedvalue in them, that all
examplesarelocatedin the samedatabaseandthat conceptdo be learnedhave a precise
(“crisp”) descriptionthat doesnot changeovertime. In many situationsone or more of
these assumptions may not hold. This leads to a variety ofecapmelexmachinelearning
and data mining problems:

» Learningfrom incorrectdata, i.e., learning from examplesthat containa
certain amount of errors or noise (e.g., Quinlan, 1990; Michalski,
Kaufmanand Wnek, 1991). Theseproblemsare important to learning
from complex real-world observations,where there is always some
amount of noise.

» Learningfrom incompletedata i.e., learningfrom examplesn which the
values of some attributes are unknown (e.g., Dontas, 1988;
Lakshminarayan et al, 1996).

» Learningfrom distributeddata i.e., learningfrom separatecollectionsof
datathat must be broughttogether ifthe patternswithin them are to be
exposed (e.g., Ribeiro, Kaufman and Kerschberg, 1995).

» Learning driftingor evolvingconceptsi.e., learningconceptghat are not
stablebut changingover time, randomlyor in a certain generaldirection.
For example the “areaof interest”of a user isoften an evolving concept
(e.g., Widmer and Kubat, 1996).

* Learningconceptdrom dataarriving overtime, i.e., incrementallearning
in which currently held hypothesebaracterizingonceptanay needto be
updated to account for the new data (e.g., Maloof and Michalski, 1995).

» Learning from biaseddata i.e., learning from a data set that does not
reflect the actual distribution of events (e.g., Feelders, 1996).

» Learning flexible concepts i.e., conceptsthat inherently lack precise
definition and whoseneaningis context-dependensomeideasconcerned
with this topic includefuzzy sets(e.g., Zadeh,1965; Dubois, Pradeand
Yager,1993), two-tiered conceptrepresentationge.g., Michalski, 1990;
Bergadancet al, 1992), and rough sets(e.g., Pawlak, 1991; Slowinski,
1992; Ziarko, 1994).

* Learning concepts at different levels of generality i.e., learning
descriptionsthat involve conceptsfrom different levels of generalization
hierarchies representingbackground knowledge (e.g., Kaufman and
Michalski, 1996).

* Integrating qualitative and quantitativediscovery i.e., determiningsets of
equationghatfit a given setof datapoints, and qualitative conditionsfor
the application of these equations(e.g., Falkenhainerand Michalski,
1990).

» Qualitative predictionj.e., discoveringpatternsin sequencesr processes
and using these patterns to qualitatively prettiefpossiblecontinuationof
the given sequencesr processesge.g., Davis, 1981; Michalski, Ko and
Chen, 1985; 1986; Dieterrich and Michalski, 1986).

Each of these problenis relevantto the derivationof usefulknowledgefrom a collection
of data(staticor dynamic). Therefore,methodsfor solving theseproblemsdevelopedin



the area of machine learning alieectly relevantto datamining and knowledgediscovery,
in particular, to conceptual data exploration.

2.2 Conceptual Clustering

Another class of machine learning methodsrelevant to data mining and knowledge
discoveryconcernghe problemof building a conceptualclassificationof a given set of
entities. The problemis similar to that consideredn traditional cluster analysis,but is
definedin a different way. Given a set of attributional descriptionsof someentities, a
description languagor characterizingslassef suchentities,and a classificationquality
criterion, the problem is to partition entities into classesin a way that maximizesthe
classification quality criterion, and simultaneouslyto determine general (extensional)
descriptionsof theseclassesin the given description language. Thus, a conceptual
clusteringmethodseeksnot only a classificationstructureof entities (a dendrogram) put
also a symbolic description of the proposed classes (clusters). An important,
distinguishing aspectof conceptualclustering is that, unlike in cluster analysis, the
propertiesof classdescriptionsaretakeninto considerationn the process ofdetermining
the classes (clusters).

To clarify the differencebetweenconceptuatlusteringand conventionaklustering,notice
that a conventionalclustering method typically determinesclusters on the basis of a
similarity measure that is a function solelytloé properties(attributevalues)of the entities
being compared, and not of any other factors:

Similarity(A, B) = f(properties(A), properties(B))
where A and B are entities being compared.

In contrast,a conceptuaktlusteringprogramclustersentitieson the basis ofa conceptual
cohesivenessvhich is a function of not only propertiesof the entities, but also of two
other factors: thdescription languagé, which the systemusesfor describingthe classes
of entities, and of thenvironmentE, which is the set of neighboring examples:

Conceptual cohesivenéss B) = f(properties(A), properties(B), L, E)

Figure 3. An illustration of the difference between closeness and conceptual cohesiveness.

Thus, two objectsmay be similar, i.e., closeaccordingto somedistance(or similarity)
measurewhile havinga low conceptuatohesivenesgr vice versa. An exampleof the
first situationis shownin Figure3. The points(black dots) A andB are*“close” to each



other; theythereforewould be placedinto the sameclusterby any techniquebasedsolely
upon the distancesbetweenthe points. However, these points have small conceptual
cohesivenesslue to the fact that they belong to configurations representingdifferent
concepts. A conceptualclusteringmethod,if equippedwith an appropriatedescription
language would clusterthe pointsin Figure 3 into two “ellipses,” as people normally
would.

A classificationquality criterion usedin conceptualclusteringmay involve a variety of
factors, such as tHe of a cluster description time data(called sparseness}he simplicity
of the description,and other propertiesof the entities or the conceptsthat describethem
(Michalski, Stepp and@iday, 1981). An exampleof conceptuaktlusteringis presentedn
Section 5.

Somenew ideason employing conceptualclustering for structuring text databasesand
creating concept lattices for discovering dependenciesn data are in (Carpineto and
Romano, 1995a1995b). The conceptscreatedthroughthe clusteringarelinked in lattice
structures that can be traversed to represent generalization and specialization relationships.

2.3 Constructive Induction

Most methods for learning rules decisiontreesfrom examplesassumehat the attributes
used for describing examples are sufficiently relevant to the learning problem atTasd.
assumption does nalwayshold in practice. Attributesusedin the examplesnay not be
directly relevant,and someattributesmay be irrelevant or nonessential An important
advantageof symbolic methodsover statisticalmethodsis that they can relatively easily
determineirrelevantor nonessentiabttributes. An attributeis nonessentialf thereis a
completeand consistendescriptionof the classesor conceptgo be learnedthat doesnot
usethis attribute. Thus, a nonessentiattribute maybe either irrelevantor relevant,but
will by definition be dispensable.Inductive learning programssuch asthe rule-learning
programAQ, or the decisiontree-learningID3, can cope relatively easily with a large
number of nonessential attributes in their input data.

If there are verynany nonessentiahttributesin the initial descriptionof the examplesthe
complexity of a learningprocessmay significantly increase. Sucha situation calls for a
methodthat can efficiently determinethe most relevantattributesfor the given problem
from amongall thosegiven initially. Only the mostrelevantattributeswill be usedin the
description learning process. Determinthg mostrelevantattributesis thereforea useful
dataexplorationoperator. Suclan operatorcanalso be usefulfor the dataanalyston its
own merit, asit may be importantto know which attributesare mostdiscriminatoryfor a
given set of classes. By removing less relevant attributes, the representatiorspaceis
reduced, and the problem becomes simpler. Thus, such a processmaveoas a form
of improving the representatiorspace. Some methodsfor finding the most relevant
attributes are described in (Zagoruiko, 1972; Baim, 1982).

In many applications,the attributesoriginally given may be only weakly or indirectly
relevantto the problemat hand. In such situationsthereis a needfor generatingnew,
more relevantattributesthat may be functionsof the original attributes. Thesefunctions
may be simple, e.g., a produmt sum ofa setof the original attributes,or very complex,
e.g., a Boolean attributeasedon the presenceor absencef a straightline or circle in an
image(Bongard,1970). Finally, in somesituations,it will be desirableto abstractsome
attributes, that is, tgroup someattributevaluesinto units, andthusreducethe attribute’s



range of possible values. A quantization of continuous attribuéeseisampleof suchan
operation.

All the above operations—removingess relevant attributes, adding more relevant
attributes, and abstracting attributes—aredifferent forms of improving the original

representatiospacefor learning. A learning processthat consists of two(intertwined)
phasespne concernedwith the constructionof the “best” representatiorspace,and the
secondconcernedwith generatingthe “best” hypothesisin the found spaceis called
constructive inductionMichalski, 1978;1983; Wnek and Michalski, 1994). An example
of a constructiveinduction programis AQ17 (Bloedorn, Wnek and Michalski, 1993),
which performsall threetypesof improvementsof the original representatiorspace. In

this program, the process ofgeneratingnew attributesis done by combining initial

attributesby mathematicabnd/orlogical operatorsand selectingthe “best” combinations,
and/or by obtaining advice from an expert(Bloedorn, Wnek and Michalski, 1993;
Bloedorn and Michalski, 1996).

2.4 Selection of the Most Representative Examples

When a database is very large, determining general pattene®characterizinglifferent
conceptamay be very time-consuming. To makethe processmore efficient, it may be
useful to extract from the database the most representaiivpartantcasegexamples)f
given classesor concepts.Most suchcasesare thosethat are either mosttypical or most
extreme (assumingthat there is not too much noise in the data). One method for
determiningthe latter ones, the so-called “method of outstandingrepresentatives,’is
described in (Michalski and Larson, 1978).

2.5 Integration of Qualitative and Quantitative Discovery

In a databasehat containsnumericalattributes,a useful discoverymight be anequation
binding theseattributes. For instance,from a table of planetarydataincluding planets’
massesgdensities distancedrom the sun, periodsof rotation,andlengthsof local years,
one could automatically derive Kepler's Law that the cobtihe planet'sdistancefrom the
sun is proportional to the square of the length of its year. This is an exangpigntifative
discovery. The application of machine learningjt@ntitativediscoverywas pioneeredoy
the BACON system(Langley, Bradshawand Simon, 1983), andthen exploredby many
systemssince, such asCOPER (Kokar, 1986), FAHRENHEIT (Zytkow, 1987), and
ABACUS (Falkenhainerand Michalski, 1990). Similar problemshave beenexplored
independently by Zagoruiko (1972) under the name of empirical prediction.

Someequationsmay not apply directly to data, becauseof an inappropriatevalue of a
constant, ordifferent equationsmay apply under different qualitative conditions. For
example,in applying Stoke’sLaw to determinethe velocity of a falling ball, if the ball is
falling through a vacuum, its velocity dependstioalength of time it hasbeenfalling and
on the gravitationalforce being exerteduponit. A ball falling throughsomesort of fluid
will reach a terminal velocity dependent on the radius and mass lodltteand the viscosity
of the fluid.

A program ABACUS (Greene, 1988; Falkenhaiaad Michalski, 1990; Michalski, 1991)
is able to determine quantitative laws under different qualitative conditibpsrtitionsthe
datainto examplesets, eachof which adherego a different equationdeterminedby a
guantitative discovery module. The qualitative discovery module can then determine



conditions/ruleghat characterize eadcbf theseexamplesets(in the caseof Stoke’sLaw,
the rules would be based on the medium of descent).

2.6 Qualitative Prediction

Most programsthat determinerules from examplesdeterminethem from instancesof
various classes of objects. An instanéa conceptexemplifiesthat conceptregardlesf
its relationshipto otherexamples. Contrastthat with a sequenceprediction problem,in
which a positive example of a concepdirectly dependenbn the position of the example
in the sequence. For example, Figure 4 shows a seqaeseeenfigures. Onemay ask
what object plausibly follows in the eighth position? To answer such a questiamgexte
to searchfor a patternin the sequenceand then use the patternto predict a plausible
sequenceontinuation. In qualitative prediction the problemis not to predict a specific
value of a variable (as in time seriesanalysis),but to qualitatively describea plausible
future object, that is, to describe plausible properties of a future object.

LIRS (7

Figure 4. An example of a sequence prediction problem.

In the example in Figure 4, one may observe that the sequence consists of Thghaged
with black tips and I-shaped figures with white tipehe figures may be white or shaded,
and may be rotated in different orientations at 45-degree intef8atss therea consistent
pattern?

To determinesucha pattern,one canemploy different descriptivemodels and instantiate
the modelsto fit the particularsequence.The instantiatednodelthat best fitsthe datais
then used for prediction. Suamethodis describedn (Dieterrichand Michalski, 1986).
The method employs three descriptive models—periodic, decomposition and DNF.

Theperiodic models used to detect repeating patterns sgquence.For example, Figure

4 depicts a recurring pattern that alternates T-shaped and I-shaped objects. Inthereeral,
can also be periodisequencewvithin the periodicsequences.In the figure, the T-shaped
objects form a subsequence in which individual objects rotate leftward by 45 degrees.

The second model, tllecomposition modek used to characterize a sequenceddyjision
rulesin the following generalform: “If one or more of the previous elementsof the
sequence havegven setof characteristicsthenthe next elementwill havethe following
characteristics.” Onsuchrule that appliesto the sequencen Figure4 would statethat if
an element in the sequence has a vertioaliponentthenthe next elementin the sequence
will have a shaded component; otherwise it will have no shaded components.

The third model,the DNF (disjunctivenormalform) or “catch-all” model, tries to capture
generalpropertiescharacterizinghe whole sequence. For example,for the sequencen
Figure4, it could instantiateto a statementsuch as‘all elementsin the sequencere T-
shaped or I-shaped, they have white or shaded interiors, white or black tips, etc.
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The programSPARC/G(Michalski, Ko and Chen, 1986) employsthesethreedescriptive
modelsto detectpatternsin a sequencef arbitrary objects,andthen usesthe patternsto
predict a plausible continuation for the sequence. Fasdbfjgencen Figure4, SPARC/G
found the following strong pattern based on the periodic model:

Period< [Shape=T-shape] & [orientation(i+1)=orientation(i) - 45],
[Shape = I-shape] & [orientation(i+1)=orientation(i) + 45] &
[shaded(i+1)=unshaded(i)]>

The pattern can be paraphrasedThere are two phasesin a repeating period (their
descriptionsare separatedby a comma). Thefirst phaseinvolvesa T-shapedigure, and
the secondphasean I-shapedfigure. The T-shapedfigure rotatesto the left, and the I-

shapedigure rotatesto the right by 45 degreesn relation to its predecessor.l-shaped
figures are alternatinglyshadedand unshaded. Basedon this pattern, a plausible next
figure in the sequence would be amshaded-shapedfigure rotatedclockwise45 degrees
in relation to the previous I-shaped figure.

The qualitative prediction capabilities describedabove can be useful for conceptual
exploration of temporal databasesn many application domains, such asagriculture,
medicine, robotics, economic forecasting, etc.

2.7 Summarizing the Machine Learning-Oriented Approach

To help the reader tdevelopa rough sense ofvhatis differentandnew in the above,let

us summarizeoperationstypically performed by traditional multivariate data analysis
methods. Theseinclude computingmean-correctedr standardizedvariables,variances,
standarddeviations,covariancesand correlationsamong attributes; principal component
analysis(determiningorthogonallinear combinationsof attributesthat maximally account
for the given variance); factor analygdetermininghighly correlatedgroupsof attributes);
cluster analysis (determining groups of data points that are close according Wistanme
measure); regression analysis (fitting an equation of an assumed fgrrer@atapoints);

multivariate analysisof variance;and discriminantanalysis. All thesemethodscan be

viewed as primarily oriented toward a numerical characterization of a data set.

In contrastthe machinelearningmethodsdescribedaboveare primarily orientedtoward
developingsymboliclogic-style descriptionsof data,which may characterizeone or more
sets of data qualitatively, differentiate between different classes (défyndifferent values
of designated output variables), createonceptual’classificationof data,selectthe most
representative cases, qualitatively predict sequertes;Thesetechniquesare particularly
well suited for developing descriptions that involve nominal (categorical) and/ssialbles
in data.

Another important distinction between the tajpproacheso dataanalysisis that statistical
methods are typically used for globally characterizing a class of objects (a table dutata),
not for determininga descriptionfor predictingclassmembershipof future objects. For
example,a statisticaloperatormay determinethat the averagdifespanof a certaintype of
automobile is 7.3 years. Knowledge of the average lifespan of automobiles in algssen
does not allow one to recognize tigpe of a particularautomobilefor which one obtained
informationabouthow long this automobileremaineddriveable. In contrast,a symbolic
machinelearning approachmight createa descriptionsuch as“if the front height of a
vehicle is between 5 andféet, andthe driver’s seatis 2 to 3 feetabovethe ground, then
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the vehicleis likely to be a minivan.” Such descriptionsare particularly suitable for
assigning entities to classes on the basis of their properties.

The INLEN methodologyintegratesa wide range of strategiesand operatorsfor data
exploration based on machine learning research, as well as statistical opdita¢aesason
for such a multistrategy approachlist a dataanalystmay be interestedn many different
types of information about the data. Different types of questionsrequire different
exploratory strategies and different operators.

3 Classification of Data Exploration Tasks

The problemsdescribedabovecanbe simply illustratedby meansof a general data table
(GDT). Sucha tableis a generalizationof a standarddatatable usedin data analysis
(Figureb). It consists ofa collectionof relational tables(datatables)arrangedin layers
orderedby the time instanceassociatedvith eachtable. A GDT is usedto representa
sequenceof entities as they changeover time. Examplesof a GDT are a sequenceof
medicalrecordsof a patient(wheneachrecordis representea@s a table of testresults),a
sequencef descriptionsof a crop as it developsin the field, a sequenceof datatables
characterizing the state of a company during selected time instances, etc.

Original Attributes Generated Attributes
Tlm% II II II II II II II II I|
Ap | A1 Aj An An+1 [An+2
— [t
— It Class
— [ -Examples of Class =1 Ml | Ao=1
extension
T
[V —
p
|
e
s
N Class
i Examples of Class g = k Ag=k
extension
Selecting .
most representative Selecting most relevant
examples attributes

Figure 5. A GDT illustrating the role of different symbolic operators.

Columns inthe tablescorrespondo attributesusedto characterizeentitiesassociatedvith
the rows. Thesemay be initial attributes,given a priori, or additional ones generated
through a process ofconstructiveinduction (e.g., Wnek and Michalski, 1994). Each
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attribute is assigned domainandatype The domainspecifiesthe setof all legal values
that the attribute can be assigned intdd@de. The type definesthe ordering(if any) of the
valuesin the domain. For example the AQ15 learning program(Michalski et al, 1986)
allows four typesof attributes:nominal (no order), linear (total order), cyclic (cyclic total
order), and structured(hierarchical order; see Kaufman and Michalski, 1996). The
attribute typedetermineghe kinds of operationghat are allowed on this attribute’svalues
during a learning process.

Entriesin eachrow are valuesof the attributesfor the entity associatedwith the row.
Typically, eachrow correspondgo a single entity. However, in large databasesvhose
records represent common, repeatable transactions, a codurba addedto representhe
numberof occurrencef that particulartransaction. With suchinformation, discovery
tools can incorporate a bias based on the frequency of instances.

Entriesin the various columnsof the table can be specificvaluesof the corresponding
attributes, thesymbol“?,” meaningthat a value of this attributeis unknownfor the given

entity, or the symbol N/A, if an attributtoesnot apply to a specificentity. For example,
“number of legs” usually applies to an animal, but would not apply to a plant.

An important problemof conceptualdata explorationis to determinewhich attribute or
attributesin a table functionally dependon other attributes. A related problem is to
determinea generalform of this relationshipthat would enableone to predict valuesof
someattributesfor future entities. For instance,whenit is known that a nominal-scale
attribute depends on other (independent) attribthegroblemis to hypothesizea general
description of this relationshigo that one can predictvaluesof the nominal-scaleattribute
for future combinations of values of the independent attributéss problemis equivalent
to the problemof conceptlearning from examples,so methodsdevelopedin machine
learningdirectly apply. In such a case, the columtheadatatablethat correspondso the
dependentttributerepresentshe outputattribute. The valuesof thatvariable are classes
whose descriptions are to be learnedFilgure 5, for illustration, it was assumedhatthe
first_column (attribute A ) representsaluesof the outputvariable. Whenthereareno a
priori classedo which entitiesbelong,thereis no suchdesignatecolumn. Inthis case,
methods of conceptual clustering can be applied to determine a classification of entities.

Below we usethe GDT (Figure5) to relatemachinelearning techniquesdescribedin the
previous section to data exploration problems.

Learning rules from examples:

Suppose that one discretttributein the GDT hasbeendesignateds the outputattribute,
and all or some of the remaining attributes as iipgkependentattributes. A setof rows
in the tablefor which the outputattributetakesthe samevalue canbe viewed as a set of
training examplesof the decisionclass(concept)symbolizedby this value. Any of the
conventionalconceptlearning techniquescan be directly applied for determininga rule
relating the outputattributeto the input attributes. For a generalanalysisof the dataset,
every discrete attribute (and continuous attributes as well after quantization)can be
consideredas an output attribute, and a machine learning method can be applied to
determinea relationshipbetweenthat attributeand other attributes. The determinationof
suchrelationships(rules) can be guided by different rule quality criteria, for example,
simplicity, cost, predictiveaccuracyetc. Inthe INLEN system,the AQ learningmethod
was applied due to the simplicity and the high comprehensibilityof decision rules it
generates (Wnek et al, 1995; Bloedorn and Michalski, 1996).
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Determining time-dependent patterns:

This problemconcernsthe detectiorof temporal patternsin sequence®f dataarranged
along the time dimensionin a GDT (Figure 5). Among the novel ideas that could be
appliedfor analyzingsuchtime-dependentatais a multi-model method for qualitative
prediction (Dieterrich and Michalski, 1986; Michalski, Ko and Chen, 1985; 1986).
Anothernovelideais a temporalconstructiveinduction techniquethat can generatenew
attributes that ardesignedo capturetime-dependenpatterns(Davis, 1981; Bloedornand
Michalski, 1996).

Example selection:

The problemis to selectrows from the table that correspondo the most representative
examples of different classes. When a datatable islasgg, isit importantto concentrate
the analysison a representativesample. The “method of outstandingrepresentatives”
selectsexampleqtuples)that are most different from the other examples(Michalski and
Larson, 1978).

Attribute selection:

Whenthereare many columns(attributes)in the GDT, it is often desirableto reducethe
data table by removing columnsthat correspondto the least relevant attributes for a
designated learning task. This can be dopapplyingone of many methodsfor attribute
selection, such as Gain Ratio(Quinlan, 1993) or Promise level (Baim, 1982).

Generating new attributes:

The problems to generateadditionalcolumnsthat correspondo new attributesgenerated
by a constructiveinduction procedure. Thesenew attributesare createdby using the
problem’s backgroundknowledge and/or special heuristic proceduresas describedin
papers on constructive induction (e.g., Bloedorn, Wnek and Michalski, 1993).

Clustering:

The problem is t@utomaticallypartition the rows of the tableinto groupsthat correspond

to “conceptual clusters,” that is, sets of entities with high conceptual cohesiveness
(Michalski, Stepp and Diday, 1981). Such a clustering opewaliogeneratean additional

column in the tabléhat corresponds$o a new attribute”cluster name.” The valuesof this
attribute for eachtuple in the table indicate the assignedclassof the entity. Rulesthat
describe clusters are stored separatethi@kKnowledgeBaseandlinked to the entitiesvia
knowledge segments (see Section 4). An example of a clustering is presented in Section 5.

Determining attribute dependencies:

The problemis to determinerelationships,such ascorrelations, causal dependencies,
logical or functional dependencies among the attrib{g@lsimns)in the given GDT, using
statistical and logical methods.

Incremental rule update:

The problem is to update working knowledge (in particular, rulesets characterizing
relationships among attributes in the GDTatwommodat@ew instancer time slicesin
the table. To do so, an incrementallearning programmust be appliedto synthesizethe
prior knowledge with the new informationThe incrementalearningprocessmay be full-
memory, partial-memory, or no-memoxependingon how much of the original training
data is maintained in the incremental learning process (Hong, Mozet\ienalski, 1986;
Reinke and Michalski, 1988; Maloof and Michalski, 1995).
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Searching for approximate patterns in (imperfect) data:

For some GDTs, it may not be possible (or useful) to find complete and consistent
descriptions. In suckases,it is importantto determinepatternsthat hold for a large
numberof casesput notnecessarilyffor all. An importantcaseof this problemis when
some entries in the table are missing or incorrect. The problem is then to dethahiest
(i.e., the most plausible) hypothesis that accounts for most of the available data.

Filling in missing data:

Given a datatable in which someentriesare missing, determineplausiblevaluesof the
missing entrieson the basis ofanalysisof the currently known data. An interesting
approacho this problemis to apply a multi-line reasoning,basedon the core theory of
human plausible reasoning (Collins and Michalski, 1981; 1989; Dontas, 1988).

Determining decision structures from declarative knowledge (decision rules):

Supposehat a setof generaldecisionrules (a declarativeform of knowledge)hasbeen
hypothesizedor a given dataset(GDT). If this rulesetis to be used forpredicting new
caseqby a computerprogram,or by an expert),it may be desirableto convertit into the

form of a decisiontree (or a more generalform, a decisionstructure)that is tailoredto a

given decision-makingituation(e.g., by taking into consideratiorthe cost of measuring
attributes). A methodologyfor doing this and argument$or and againstusing suchan

approach(as opposedo the traditionalmethodof learningof decisiontreesdirectly from

examples) are discussed in (Imam and Michalski, 1993; Imam ,1A8Balski and Imam,

1997).

Methodsfor performingthe aboveoperationson datatableshave beenmplementedin
variousmachinelearningprograms(e.g., Michalski, Carbonelland Mitchell, 1983;1986;
Forsythand Rada,1986; Kodratoff, 1988; Kodratoff and Michalski, 1990). Below we
describethe INLEN systemthat aimsat ultimately incorporatingall of theseprogramsas
operators in one integrated system for the generation of knowledge from data.

4 Integration of Many Operators in INLEN

To make the dataxplorationoperationsdescribedaboveeasily availableto a dataanalyst,
and applicabléen sequenceg which the outputfrom one operationis aninput to another
one, programsperformingtheseoperationmeedto be integratedinto one system. This
ideaunderliesthe INLEN system(Kaufman,Michalski and Kerschberg,1991; Michalski
et al, 1992). The nameINLEN is derivedfrom inferenceand leaming. The system
integrates machine learning programs, statistical data analysis tools, a database,a
knowledgebase,inferenceproceduresand varioussupportingprogramsunder a unified
architecture and graphical interface. The knowledge isassed forstoring, updatingand
applying rules and other forms of knowledgethat may be employedfor assistingdata
exploration, and for reporting results from it.

The generalarchitectureof INLEN is presentedn Figure 6. The systemconsists of a
database (DB) connected to a knowledge base (KB), aatih operators. The operators
are divided into three classes:

» DMOs: Data ManagementOperators,which operateon the database.
These are conventional data managemeniperatorsthat are used for
creating, modifying and displaying relational tables.
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« KMOs: Knowledge ManagementOperators, which operate on the
knowledgebase. Theseoperatorsplay a similar role to the DMOs, but
apply to the rules and other structures in the knowledge base.

* KGOs Knowledge Generatio®peratorswhich operateon both the data
andknowledgebases. Theseoperatorsperform symbolic and numerical
dataexplorationtasks. They are basedon various machinelearningand
inferenceprograms,on conventionaldata explorationtechniquesand on
visualization operators for displaying graphically theultsof exploration.
The diagrammaticvisualizationmethodDIAV (Wnek ,1995) is used for
displaying the effects of symbolic learning operations on data.

KNOWLEDGE GENERATION OPERATORS KNOWLEDGE

DATA MANAGEMENT MANAGEMENT

OPERATORS OPERATORS
RANSFOR

é

INSERT INSERT

Q DB |« KB

CHANGE CHANGE

DL

O

= gbgég\ﬁ

KNOWLEDGE GENERATION OPERATORS

Figure 6. An architecture of the INLEN system for multistrategy data exploration.

The KGOs arethe heartof the INLEN system. To facilitate their use, the conceptof a
knowledgesegmentwas introduced (Kaufman, Michalski and Kerschberg,1991). A
knowledge segment is a structure that linoke or more relationaltablesfrom the database
with one or more structuredrom the knowledgebase. KGOs canbe viewed as modules
that perform someform of inferenceor transformatioron knowledgesegmentsand, as a
result, createnew knowledgesegments. Knowledge segmentsare both inputs to and
outputs from the KGOs. Thus, they facilitate the passadataind knowledgefrom one
knowledge generation operator to another.

The executiorof a KGO usually requiressomebackgroundknowledge,andis guidedby
control parametergif some parametersare not specified,default valuesare used). The
backgroundknowledge may contain some general knowledge as well as knowledge
specifically relevant to a given application domaach asa specificationof the value sets
and typesof attributes,the constraintsand relationshipsamong attributes, initial rules
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hypothesized by an expert, etc. The KGOs can be classified into groups, b#sedype
of operationthey perform. Eachgroup includesa numberof specific operatorsthat are
instantiated by a combination of parameters. The basic operator groups are as follows:

* GENRULE operatorggenerateifferentkinds of decisionrules from given facts. A
specific operator may generaterules characterizinga set of facts, discriminating
betweengroups of facts, characterizinga sequenceof events, and determining
differences between sequences, based on prognachsasAQ15c (Wnek et al, 1995)
and SPARC/G (Michalski, Ko and Chen, 1986). A KGO for learning rules can
usually workin eitherincrementalor batchmode. In the incrementaimode, it triesto
improve or refine the existing knowledge,while in the batchmode, it tries to create
entirely new knowledgebasedon the facts in the databaseand knowledgein the
knowledge base.

» GENTREE operators build a decision structure from a given siadionrules(e.qg.,
Imam and Michalski, 1993), or from examples(e.g., Quinlan, 1993). A decision
structureis a generalizationof the conceptof a decisiontree in which nodescan be
assigned an attribute or a function of attributes. Individuahchesnay be assigneda
set of attribute values. Leaves may be assigneda set of decisions(Imam and
Michalski, 1993; Imam, 1995).

» GENEQ operators generate equations characterizing numerical data sets and
qualitatively describing the conditions under which these equations apply (e.g.,
Falkenhainer and Michalski, 1990).

* GENHIER operatorsbuild conceptuatlustersor hierarchies. They are basedon the
programCLUSTER methodology(Michalski, Steppand Diday, 1981). The operator
in INLEN is basedon the reimplementationn C of the programCLUSTER/2(Stepp,
1984).

» TRANSFORM operators perform various transformations orkiiesvledgesegments,
e.g., generalizatioror specializationabstractionor concretion,optimizationof given
rules, etc. accordingp user-providectriteria. For instance ,one suchoperatorclimbs
an attribute’sgeneralizatiorhierarchyto build more generaldecisionrules (Kaufman
and Michalski, 1996).

GENATR operatorggeneratenew attribute sets bycreatingnew attributes(Bloedorn
and Michalski, 1996), selectingthe mostrepresentativattributesfrom the original set
(Baim, 1982), or by abstracting attributes (Kerber, 1992).

* GENEVE operatorgyenerateevents,factsor exampleghat satisfy given rules, select
the most representativeevents from a given set (Michalski and Larson, 1978),
determine examples thate similar to a given example(Collins and Michalski, 1989),
or predict the value of a given variableusing an expertsystemshell or a decision
structure.

 ANALYZE operatorsanalyze various relationshipsthat exist in the data, e.g.,
determiningthe degreeof similarity betweentwo examples,checking if thereis an
implicative relationshipbetweentwo variables,etc. Statisticaland symbolicoperators
alike may perform these tasks.
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» TEST operators test the performance of a given set of onles assumedsetof facts.
The outputfrom theseoperatorss a confusion matrix—a table whose (i,j)th element
shows how many examples from the class i were classified by the rilestolass;.
These operators can also be used to apply the rules to any given sttudtterminea
decision. The TEST operator implemented in INLENasedon the ATEST program
(Reinke, 1984).

* VISUALIZE operatorsare usedto presentdata and/or knowledgeto the userin a
convenient, easy-to-understand format (Wnek, 1995).

SummarizingJNLEN integratesa large setof operatorsfor performing various types of
operationson the database,on the knowledgebase,or the data and knowledge bases
combined.

5 lllustration of Clustering and Learning Operators

Among the most important knowledge generation operatptementedn INLEN arethe

operatorfor creatinga classificationof data (clustering), and the operatorfor learning
generalrulesrelatinga designatecconcept(attribute) to other designatedttributes. The

first operatoris realizedby the CLUSTER/2 programfor conceptualclustering (Stepp,
1984). The secondoperatoris realizedby the AQ15c rule learningprogram(Wnek et al,

1995). This sectionillustrates these operatorsthrough an application to a datatable
characterizingharddrives (Figure 7). The datatablds basedon information publishedin

the October, 1994 issue llacUser

In the table presented in Figure 7, each row (except for th@fiegtdescribesa hard drive
in terms of the attributesspecifiedin the first row. Supposethat the task of data
exploration is to develop a classification of the hard drives into some meaningful
categories. For this task, the operatorCLUSTER is applied. Let us assumethat the
operatorwill seeka clusteringthat maximizes theguality of classification,as defined by
two criteria: the simplicity of the descriptions of generatatégoriesand the cohesiveness
of the descriptions(measuredoy the ratio of the number of instancesin the datatable
coveredby a given descriptionto the number of possible instancescovered by the
description). The input to the conceptualclustering operatoris the table in Figure 7
(without the rightmost column, which, for tisakeof savingspace representalreadythe
result of clustering).

The result of applying the clustering operatoris a knowledge segmentcontaining two
components—a new, extended data table, and a set of rules. Thableswm comparison
to_the input table, has an additional column—therightmost columnin Figure 7, labeled
“Group,” which representghe category assignmentsof the drives by the clustering
operator. The secondcomponentis the set of rules describingthe categorieshat were
generated. Here are the rules describing the categories created by the operator:

[Class 1] 0 [Toll_free_Support is yesk [FCC_Class-Bis yes]& [Encryptionis
no] & [SCSI_50-Pin is yes or no] & [Guarantee is yes or by dealer]

[Class 2] 0 [Toll_free_Supporis no] & [SCSI_50-Pinis yes]& [5yr_Warranty
is yes] & [Guarantee is yes or no] & [Loaners is yes or noj

[Class 3]0 [Toll_free_Supporis no] & [FCC_Class-Bis yes] & [AC outletis

yes] & [Passwd_Protect is yes] & [5yr_Warrantynig & [Guarantee
is not by dealer] & [Loaners is yes or if available]
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AC |[ScCsl | FCC |Passwd Syr Toll-freq
Hard Drive Outlet/50-Pin|Class H ProtecfEncrypfWarranty] SupporfGuaranteg oanergCapacity| Group
Apple 1050 no yes yes yes no no yes by by low 1
dealer | dealer
Micropolis no yes | yes yes yes yes no no no low 2
SLMO 1000 no yes |Class | yes no yes no no yes low 2
A
Focus 1G yes yes | yes yes no no yes yes yes low 1
GHD 1200S no yes | yes no no yes no no no low 2
Joule 1080 yes no yes yes no yes yes yes no low 1
Liberty 1GB no | 25 pin| yes yes no no no yes yes low 3
Spitfire 1GB yes yes | yes yes no yes no yes no low 2
PowerUser no yes | yes no no no yes yes no Tow 1
1070
P1000 no yes | yes yes no no yes yes no Tow 1
Seagate 1075 Yyes yes | yes yes no no yes yes no low 1
Minipak 1000| no yes | yes yes no no no yes yes low 3
PowerCity yes yes | yes yes no on yes yes no low 1
1GB mech.
Spin 1021 no yes | yes yes no yes yes yes no Tow 1
APS MS 1.7 no yes | yes yes no yes yes yes no high 1
Seagate 2GB| no yes yes yes yes yes no no no high 2
SLMO 2000 no yes no yes no yes no no yes high 2
Focus 2G yes yes yes yes no no yes yes yes high 1
FWB 1760MH no 68 pin| yes yes yes no no no if high 3
SCSI2) avail.
Liberty 2GB no no yes yes no no no yes yes high 3
Loviel L2000 yes yes yes yes no yes no yes yes high 2
Seagate 2.1 yes yes yes yes no yes no yes no high 2
PowerUser no yes yes no no no yes yes no high 1
801
MacP Sg 28 no yes yes yes no yes no yes no high 2

Figure 7. A datatable characterizing hard drives.

Thus, the operator created three categories of hard drives and described each cdtegory in
form of rules. Eachrule showsall characteristic€ommonto a given category thatis, it
represents eharacteristic descriptionf a category(Michalski, 1983). (Note that someof

the conditions in these rules appear to be redundantexaanple the last condition of the
Class 2rule saysthat Loanersis yes omo. This canbe explainedby the presenceof a

third value, “by dealer,” that neither guarantees,nor rules out a loaner.) These
characterizations do not point out the most significant distinctions begigan category

and other categories.

To create a description thabints out the mostsignificantdistinctions,one needsto apply
the operator that createsdiscriminant descriptions (Michalski, 1983). The operator
(GENRULE) isappliedto the extendeddatatablein Figure 7, usingthe “Group” column
as its output attribute. The result is a set of new decision rules:

[Class 1] 0 [Toll_free_Support is yes]
[Class 2] 0 [Toll _free_Support is no] & [Syr_Warranty is yes]
[Class 3]0 [Toll_free_Support is no] & [Syr_Warranty is no]
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The obtained rules amauchsimplerandeasierto interpretthanthe rules generatedy the

CLUSTER operatorthat inventedthe three classes. The reasonis that a discriminant
descriptionlists only those characteristicsthat are necessaryto discriminate a given

categoryfrom the other categories. Discriminantdescriptionsare designedo provide the

minimum information neededfor distinguishingbetweenentities of different categories.
Both characteristi@nd discriminantdescriptionsare completeand consistentwith all the

examples in Figure 7, i.e., they classify all examples in the same way.

6 Data and Rule Visualization

It is desirablefor dataanalyststo be ableto visualizethe resultsof different operatorsin
order to relate visuallthe input datato the rulesthathave beerearnedfrom them,to see
which datapointsvould corroborateor contradicttheserules, to identify possibleerrors,
etc. To thisend, INLEN supportsthe visualizationof dataand knowledgethroughthe
diagrammaticvisualizationmethodimplementedin the DIAV program(Michalski, 1978;
Whnek, 1995).
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Figure 8. A visualization of theharacteristic descriptiocreated by the conceptual
clustering operator.

Let us illustrate the method with the hard disk classification problem presentedin the
previoussection. The representatiorspace,projectedonto six attributes,is pictured in
Figure 8. To simplify the visualization, the attributes used to span the diagram,
Toll_free_Support(tf), Loaners(lo), SCSI_50-Pin(sc), FCC_Class-B(fc), Guarantee
(gu), and 5yr_Warranty (wa), are only those that appearedmost frequently in the
characteristidlescriptionscreatedby the conceptualclusteringoperator. Eachcell in the
diagram corresponds to one combination of attribute values, speciftad dgnotationsof
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the columns and rows. Thus the upper-leftmost cell corresponds to a datapdiitthiraill
six of these attributes have the value yes (y).

The 24 examples from Figure 7 have been projected onto this space, eqtesentedy

placing their classnumberin the correspondingcells. The shadedareasrepresentthe

characteristiclescriptionsof the classesgeneratedy the clusteringoperator;the lightest

color indicatesClass1, the intermediateshaderepresentlass2, and the darkestone

indicatesClass3. As can be seenin the diagram, the descriptionsgeneratedby the

clusteringoperatorare generalization®f the input instances, athey also cover instances
that have not yet been observed (shaded areas without a number).

For comparisonFigure9 is a visualizationof the discriminantdescriptionsgeneratedoy

the rule_learningoperatorfrom the input examplesclassifiedaccordingto the previously
generated clustering. The organization of the diagram in Figure 9 is the same as i8 Figure
with regard to the labeling of examples, classe®s and columns. Becausediscriminant
descriptions focus onlgn featuresthat distinguishamongthe classesthey coverbroader
sections of the representation spad&ws, they are much more generalthan characteristic
descriptions.
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Figure 9. A visualization of thaliscriminant rulesreated by the inductive generalization
operator.

The obtained discriminandlescriptiongdivide the representatiorspaceinto four sections,
threecorrespondingdo the rulesfor the threeclasses,and the fourth to the indeterminate
portion of the event space, containing noh¢he known instanceof the threecategories.
This latter section is defindaly the combinationof characteristicsToll_free_Support no
and 5yr_Warranty = on_mechanism.
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Note also that due to the greater generality of the discriminant descriptions, the
indeterminate area is much smalleanin the caseof characteristiadescriptiongthe blank
area in Figure 8).

As can be seen from the diagram, the generated discriminant descriptioossaséentand
complete with regardto all of the presentedexamples,that is, they preservethe
classificationof casescreatedby the clusteringoperator. Summarizing,the visualization
method presented above makegeity easyto seehow generatediescriptiongelateto the
cases from which they were generated.

7 Learning Rules with Structured Attributes

In addition to conventional symbolic and numerical attributes, INIskpportsa new kind
of attribute, called structured Suchattributes have value sets orderedinto hierarchies
(Michalski, 1980). In orderto take advantagef the propertiesof structuredattributesin
executing inductive learning, new inductive generalization rules have been defined.

An inductive generalizatiorrule (or transmutationfakesan input statementand relevant
backgroundknowledge, and hypothesizesa more general statement(Michalski, 1980;
1983; 1994). Foexample removinga conditionfrom the premiseof a decisionrule is a
generalization transmutation (this is calledf@pping conditiorgeneralization rule), sinaé
the premise has fewer conditions, a larger set of instances can satisfy it.

A powerful inductive generalizationoperatorusedin the AQ learning programsis the
extension-againstperator. If ruleR1: C O [x,= A] & CTX1 characterizes subset of

positive concept examples;, of the concep€, andrule R2: C O [x,= B] & CTX2

characterizes negative examples(whereA andB represent disjoint subsets of teues
of x,, and the CTXstandfor any additionalconditions),thenthe extensiorof R1 against
R2 along dimension x

CO R10O|R2 K,

produces a new rulR3: [x; # B o €], which is aconsistent generalizatioof R1, thatis,
a generalization that does not intersect logically WHMichalski and McCormick, 1971,

Michalski, 1983). The value of the parametee controlsthe degreeof generalization. If

€is g (the empty set), then R3 is the maximal consistentgeneralizationof R1. If €is
D(x;) \ (A o B) (whereD(x) is the domainof x,), then R3 is the minimal consistent
generalization oR1 involving only X. In AQ programs the extension-againsiperatoris

typically used witle = @.

By repeatingthe extension-againsbperatoruntil the resultingrule no longer coversany
negative examples, a consistent concept descriptiortifaheoversno negativeexamples)
can be generated. Such a proazssbe appliedin orderto generatea description(cover)
that is complete and consistent with regard to all the training examples.

By applying the extension-against operator with different values of the paraneiecan

generate descriptions with different degrees of generality. For instance, in AQaEder
to learn a characteristic rule, the outputheff operatorwith € initially setto g is maximally
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specialized in such a way that it continues to cover all of the positive exaheglathedoy
the initial extension. Ifdiscriminantrules are desired,the extensionwill be maximally
generalized so long as it continues not to cover any negative examples of the concept.

In order to effectively apply the extension-againsbperatorto structuredattributes,new
generalizatiorrules needto be defined. Let us illustrate the problem by an examplethat
usesa structuredattribute “Food” shownin Figure 10. Eachnon-leaf node denotesa
concept that isnore generalthanits childrennodes. Theserelationshipseedto be taken
into consideration when generalizing given facts. Suppose thebticeptto be learnedis
exemplified by statements: “John eats strip steak” and “doksn’teatvanilla ice cream.”
There are many consistentgeneralization®of thesefacts, for example,“John eats strip
steak,” “Johneats steak,” “Johneats cattle,”*John eats meat,” “John eats meat or
vegetables,br “Johneatsanythingbut vanilla ice cream.” The first statementepresents
the maximally specific description(no generalization)the last statementrepresentshe
maximally generaldescription,and the remaining ones representintermediatelevels of
generalization. A problemarisesin determiningthe generalizationof most interestfor a
given situation. We approach this problem by drawing insights from human reasoning.

Food
Meat Vegetable Dessert
Cattle Pi gs @Aeartss Fr & eccoli Pies
Harmbur ger Steak Veal G een Pi nt o Hakedream  Sher bet Cherry

+pﬂ: :Q/\ Vanill a F

Anchor nodes are shown in bold. Nodes marked+bwnd — are values
occurring in positive and negative examples, respectively.

Figure 10. The domain of a structured attribute “Food.”

Cognitive scientistshave noticed that people prefer certain nodesin a generalization
hierarchy (concepts) over other nodes when creating descriptions (e.g., Ralsd9&6).

Factorsthatinfluencethe choiceof a concept(node) include the concepttypicality (how

common are a concept's features amongikibng concepts)andthe contextin which the

conceptis beingused. For instanceupon seeinga robin (a typical bird), we may say,

“There is a bird,” rather than “There is a robiagsuminghat the given situationdoesnot

requirea specificationof the type of bird. Onthe otherhand,when weseea penguin,a

much less typical bird, we are more likely to say “There is a penguin,” rathefTihewne is

abird”. This way a listener(who is not an observer)will not assignto the unseenbird

characteristicgypical to a bird, but ratherthe specialcharacteristicof a penguin. This

facilitatescommunication. Contextalso comesinto play; at a gatheringof bird watchers,
the robin will not likely be called simply a bird, but rather will be referredto by its

taxonomic name.
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To provide somemechanisnmfor capturing such preferences)JNLEN allows a user to

defineanchornodesin a generalizatiorhierarchy. Such nodes shoulgflect the interests
of a given application(Kaufman and Michalski, 1996). To illustrate this idea, consider
Figure 10 again. In this hierarchy, vanilla and rocky road are kinide ofeam;ice cream
is a frozen dessertwhich is a dessertwhich is a type of food. In everydayusage,
depending orthe context,we will typically describevanilla or rocky road asice creamor

dessert, but less likely as frozen dessefbod. Hence,we candesignatalessertandice

creamas anchornodesin the Food hierarchy. Using information aboutanchornodes,
differentrule preferencecriteria can be specified,such asselectingthe rule with the most
generalanchornodes,or the one that generalizespositive examplesto the next higher
anchor node(s).

INLEN supports the use of structured attributes lastimdependentinput) and dependent
(output) variables. Structured independent attributes represent hierarchies ofhadlares
usedto characterizeentities. Structured dependentattributes representhierarchiesof
decisions or classifications that can be made about an entity. Thieugge ofstructured
output attributes, INLEN’s learning module can determinerules at different levels of
generality.

While dependentttributes like independenbnes,cantakeon in principle different types
(nominal, linear, cyclic or structured),jn practical applications theyare frequently either
nominal or linear. A nominal outputattributeis mostfrequentlyusedin conceptlearning;
its valuesdenoteconceptsor classeso be learned. A linear output attribute (which is
typically a measurement on a ratio scale) is used to demodasurementvhosevaluesare
to be predicted on the basis of the past data.

In manyapplicationsijt is desirableto usea structuredattribute as a dependentariable.
For example when deciding which personalcomputerto buy, one may first decidethe
generaltype of the computer—whetheit is to be IBM PC-compatibleor Macintosh-
compatible. After deciding the type, one can focus speific modelof the chosentype.
The above two-level decision process is easier to execute thraglevelprocessn which
one has to directly decide which computer to select from a large set.

When a dependent variable is structured, the learning operator fdicsisea the top-level
values (nodes), and createsrules for them. Subsequently,t createsrules for the
descendant nodes in the context of their ancesidrs procedureproducesdecisionrules
that are simpler andasierto interpretthanruleslearnedwith a flat (nominal) organization
of the decision attribute.

8 Learning Decision Structures from Decision Rules

Oneof the mainreasons fodataexplorationis to learnrulesor patternsin datathat will
enable a data analyst to predict future cases. Thus, whenuseshre learned,one needs
a method for efficiently applyinthe rulesfor predlctlon Sincea convenientstructurefor
implementinga decision process isa decision tree, the problem of how to transfer
knowledgeto a decisiontree arises. In the conventionalmachine learning approach,
decisiontreesare learneddirectly from training examplesthus avoiding the step of first
creating rules (Hunt, Marin and Stone, 1966; Quinlan, 1986; 1993).

Learning a decision tree directly from examples, howewes, haveseriousdisadvantages

in practice. A decisiontree is a form of proceduralknowledge. Once it has been
constructedit is not easyto modify it to accommodatehangesn the decision-making
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conditions. For example,if an attribute (test) assignedo a high-levelnodein the tree is
impossible or too costly to measure, texisiontree offers noalternativecourseof action
other than probabilistic reasoning (Quinlan, 1986).

In contrasta humanmaking the decisionwould probably searchfor alternativeteststo
perform. People can do this becausethey typically store decision knowledgein a
declarativeform. Froma declarativeform of knowledge,such asa setof decisionrules,
one can usually constructmany different, but logically equivalent,or nearly equivalent,
decisiontrees. Onesuchdecisiontree may be preferableto anotherin a given decision-
making situation. Therefore, it is desirablestoreknowledgedecorativelyandto transfer
it only whenthe needarisesto the proceduralform that is most appropriateto the given
situation.

Another weakness ofdecision trees is that they may become unwieldy and

incomprehensible because of their limited knowledge representational powevertome
the above limitations, a new approachhas been developedthat createstask-oriented
decisionstructuresfrom decisionrules (Imam, 1995, Michalski and Imam, 1997). A

decision structure is a generalization of a decisionitr@éhich testsassociateavith nodes
can refer not only tsingle attributes but alsoto functionsof multiple attributes;branches
may beassociatedhot only with single values/result®f thesetests,but alsowith a setof

suchvalues;and leavescan be assignednot only a single decision, but also a set of

alternative decisions with appropriate probabilities.

This approachhasbeenimplementedn the AQDT-2 program,and employsan AQ-type

learning algorithm (AQ15c andQ17-DCI) for determiningdecisionrulesfrom examples.
Among its advantages are the ability to generateasionstructurethatis mostsuitableto

a particulartask and the ability to avoid or delay measuringcostly attributes. Different

usersmay wantto generatelifferent decisionstructuresdrom a given setof rules, so that
the structuresare tailored to their individual situations. Furthermoraf an attribute is

difficult to measure, or cannot lmeeasuredt all, the programcan be instructedto build a

decisionstructurefrom rules that tries to avoid this attribute,or measureit only when

necessary.

Anotheradvantagef this methodologyis that oncea rule setis determined,a decision
structurecanbe generatedrom it far more rapidly thanif it hasto be determinedfrom
examples henceprocessingtime is very small. Also, a setof rules will take up less
storage space than the data set from which it was learned.

Experiments with AQDT-2 indicate that decision structures learned from dexissiend
to be significantly simplerthandecisiontreeslearnedfrom the samedata, and frequently
also have a higher predictive accuracy. For example,a decision structure learned by
AQDT-2 for awind bracingdesignproblemhad5 nodesand 9 leaves,with a predictive
accuracy of 88.7% when tested against a newfseata,while the decisiontree generated
by the popularprogramC4.5 had17 nodesand 47 leaveswith a predictive accuracyof
84% (Michalski andlmam, 1997). In anotherexperiment,a decisiontree learnedfrom
decisionrules by AQDT to analyzeCongressionaboting patternshad 7 nodesand 13
leaves,with a predictive accuracyof 91.8% (when AQDT built an equivalentdecision
structure by combining some branches,thenberof leaveswas reducedto 8), while the
decision tredearnedby C4.5 from the samesetof training exampleshad8 nodesand 15
leaves, with a predictive accuracy of 85.7% (Imam and Michalski, 1993).
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This methodologydirectly fits the philosophyof INLEN. A rule basemay be provided
either from an expert or through the use of a rule learning operator, thereby allowtrey for
generation of decision structures from rules.

9 Automatic Improvement of Representation Spaces
9.1 Determining Most Relevant Attributes

In alargedatabasemany attributesnay be usedto characterizegiven entities. For any

specific problemof determiningrules characterizinghe relationshipbetweena designated
output attribute and other attributes, it may be desirable to limihtiependenattributesto

the most relevant ones. To this end, one msgmany different criteriafor evaluatingthe

relevanceof an attributefor a given classificationproblem, such again ratio (Quinlan,

1993), gini index (Breiman et al, 1984), PROMI@aim, 1982), and chi-squareanalysis
(Hart, 1984; Mingers, 1989).

Thesecriteria evaluateattributeson the basis oftheir expectedglobal performancewhich
meansthat those attributeswith the highestability to discriminateamongall classesare
selected as the most relevant.

When determining a declarative knowledgeresentationsuch asdecisionrules, the goal
is somewhat different. Here, each class is described independentlgtfrerslassesand
the simplest and most accurate rules for each class are dddeade,if an attributehas a
single value that characterizes very well josé specific class,the attributewith this value
will be used effectively in a corresponding decision rule. In contrast,asuatiributemay
have a lowglobal discriminatingvalue,andis thusignoredin building a decisiontree. It
follows that the determination of attributes for decision trees and for deoiggmneeds$o
follow different criteria.

To illustrate this point, considerthe problem of recognizingthe upper-casdetters of the
English alphabet. Two dhe attributesto be considerednight be whetherthe letter has a
tail andwhetherit is madeup exclusivelyof straightlines. In a rule-baseddeclarative)
representatiorthe letter Q canbe distinguishedrom the restof the alphabetby a simple
and concise propertif,the letter has a tall, it is a QConversely, the straight lireondition
is alone insufficient to discriminate any specific letter, but is useful overall.

Thus, the attributbas-tailis very usefulfor learningone specific class,althoughnot very
usefulfor characterizingpther classes. It is thusappropriatefor usein rule learning. In
decision-tredearning, however, it may be evaluatedas having a relatively low overall
utility andreplacedby otherattributes. This will mostlikely happenif Qs are relatively
rare. Hence,testingthe letter for atail will be consideredh wastedoperation,asit only
servesto eliminate the possibility of it being a Q, without making any progressin
distinguishingbetweenthe other 25 letters. Meanwhile,testingthe condition all-straight-
linesimmediately bisects theearchspace. It is betterto paredown the setof hypotheses
morerapidly, andonly checkfor atail asa last stepwhen the set of possiblelettershas
beenreducedto O and Q. This way, the recognitionof Q will require more teststhan
necessary, but at no expense to the recognition of other letters.

INLEN supportsboth global and local attribute evaluationcriteria for selectingthe most
relevantattributes. The former is basedon the PROMISE methodology(Baim, 1982),
while the latter employsa variation of PROMISE that is orientedtoward the maximum
performance of some attribute value, rather than on the attribute’s global performance.
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9.2 Generating New Attributes

Whenthe original representatiospaceis weakly relevantto the problemat hand, or the
concept to be learned difficult to expressn the from of attributionaldecisionrulessuch
as those employed in INLEN, there is a need to generate new attributes that are fahctions
the original onesand bettersuitedto the given problem. This is done by a constructive
inductionoperator based on the program AQ17-DCI (Bloedorn and Michalski, 1996).

In the case of a database that contains information on objects changing over tineedme

a mechanisnfor constructiveinductionthat cantake advantageof the time dataordering.

For example, the database may contain information on the maxiemperatureat a given
locationeachday, with a field in eachrecordindicatingthe day on which its temperature
wasrecorded. Inherentin a timestampedepresentatiorare many attributeghat can be
generated through constructive induction, for exangaéof the highesttemperaturethe
minimum population growth rate during some period, weediness on date of planting, etc.

CONVART (Davis, 1981) uses user-provided and default system suggdstseschfor
useful time-dependent attributes that are added to the representation spacehdtiieses
on the suggestion list to generatew attributesandto testthemfor likely relevanceo the
problem. Ifthey exceeda relevancehreshold,it addsthemto the representatiorspace,
repeatingthis procedureuntil a desirednumberof new attributeshave beerconstructed.
As part of its attribute constructiaapability, INLEN will incorporatesuchtechniquedor
the generation of time-dependent attributes.

10 Exemplary Application: Discovery in Economic and
Demographic Data

10.1 Motivation

Economic analysis is one domain in which conceptual data exploration todds caigreat
value. The following example illustrates ttae anintelligent dataexplorationsystemcan
play in the extraction of knowledge from data.

The United Stategiovernmenmmaintainsrecordsof the import and export of goods
from various countriesof the world. The different productsand raw materials are
divided and subdivided into different categories. In the early 1980s thehiatzeda
sharp declinan the import of trucksfrom Japanand a correspondingncreasein the
import of auto parts from Japan. It took several years before analgstedthat fact
and concludedthat Japanwas shippingthe chassisand truck bedsseparatelyto the
US, where they would be subsequently assemthletbyavoidinga high US tariff
on importedtrucksthat was directedprimarily at Europeand hadbeenon the books
sinceWorld War Il. WhenUnited Statesnalystsinferred this explanation,the US
and Japan commenced trade negotiations pertaining to the import of trucks.

How muchsooner wouldhat trendhave beemoticed had a conceptualdata exploration
programbeenappliedto the dataand pointed out the opposite changesin two related
categories to an analyst? How much revenue did the undiscovered trutte¢dStbefore
they could finally work out a new agreementvith Japan?Noticing economictrendsand
patterns like the one above is a difficult task, as humansasily get overwhelmedoy the
amount of data.
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Based on such motivation, the analysis of economic and demogdahiasbecomeone
of the focus domainsfor INLEN developmentand testing. We illustrate some of its
discoverycapabilitiesthroughexperimentsnvolving two similar datasets: one provided
by the World Bank consistingof informationon 171countriesfor the period of 1965 to
1990 (in terms of 95 attributes),and oneextractedfrom the 1993 World Factbook
(published by the CentrételligenceAgency) containingseveraldatabasesf information
on 190 countries (in terms of 17 attributes).

10.2 Experiment 1: Integration of Multiple Operators

The World Bank dataenabledus to conducta numberof experimentsor testing INLEN
capabilities. One experimentfocusedon distinguishingbetweendevelopmeniatternsin
EasternEuropeand EastAsia, first by identifying such patternsand then by generating
discriminant rules (Kaufman, 1994).

A conceptualclusteringoperatordetermineda way of groupingthe countries,basedon
eachcountry’schangein the percentagef its populationin the labor force between1980
and 1990. Irthis classification the typical EasternEuropeancountry andthe typical East
Asian country fell into separatgoups. Most of the Europeancountries hadh labor force
change below a threshold determinedtferregion by the clusteringprogram,while most
of the Asian countries hadchangesin labor force participation above the threshold
determined for their region.

Basedon this grouping, the rule learning operator(using the AQ15c inductive learning
program) was called upon first in characteristicmode to characterizethe Asian-like
countries(those abovetheir regional thresholds)and the European-likecountries (those
below their regional thresholds), and then in discriminant rule-optimizing mode to
condensehose characterizationgto simple discriminantrules. The discriminantrules
obtained were:

Country is Asian-Like if:

A.1  Change in Labor Force Participatiarslight_gain, (9 countries)
or
B.1 Life Expectancy is in 60s, and
2  Working Age Populatiog 64%, (2 countries)

Country is European-Like if:
A.1  Change in Labor Force Participation is near O or decreasing, and

2  Life Expectancy is not in 60s, (7 countries)
or
B.1 Percentage of Labor Force in IndustrO. (1 country)

Therulesshowthat of the 10 attributesin the original dataset, only four attributesare

instrumentalin distinguishingbetweenthe European-styleand Asian-style development
patterns,namely Changein Labor Force Participation Life Expectancy Working Age

PopulationandPercentageof Labor Forcein Industry. In boththe Asian- and European-
Like_casesthefirst rule accountedor most of the countriesfitting the class, while the

second one described the remainder.

This experimentdemonstratesbne of the cornerstondeaturesof the methodology- an

integration of different learning and discovery strategiesthat allows knowledge to be
passed from one operator to another in a seamlesdeaaingto conclusionsunreachable
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by any one individual program. It also shows thatrtlies createdoy the systemare easy
to understand and interpret.

10.3 Experiment 2: Detecting Anomalies in Subgroups

Another experimentwith INLEN investigatedthe problem of detecting interesting
regularities within the subgroups it creates. While the subgliaupdemographicdomain
may indicate that member countries or regions have somethingin common, notable
exceptions may bexposedvhena memberof theseconstructedsubsetsshowsa marked
dissimilarity to the rest of the group. Theseexceptionsin turn may prove to be a
springboard for further discovery.

INLEN discovered several rules from the World Factbook PEOPLE datebasgcterizing
the 55 countries with low (less thafo per year) populationgrowth ratesby invoking the

rule learning operator in characteristic modne of the characteristialescriptiongFigure

11) had three conditiorthat togethercharacterized 9 low growthcountries ananly one

with higher population growth rates.

Characteristic Description of Countries with Population Growth Rate

below 1 per 1000 people: Pos Neg SuppComm

1 Birth Rate = 10 to 20 or Birth Rate50 46 20 69% 84%

2 Predominant Religion is Orthodox or 40 68 37% 73%
Protestant or Hindu or Shinto

3 Net Migration Rate< +20 32 104 23% 58%

All 3 conditions: 19 1 95% 35%

Figure 11. A characterization of countries with low population growth.

In the characterization shown in Figure 11, the columns Pos and Neg respeepvesent
the numberof positive and negativeexamplessatisfyingthe condition. The supportlevel
(Supp)is definedasPos/ (Pos + Neg), giving an indication of how much supportthe
condition lends to the suggestion that a country’s Popul&ionvth Rateis lessthan1%.
Thecommonality levelComm) is defined aBos /Total_Pos giving anindicationof how
commonlythe conditionoccursin countrieswith PopulationGrowth Ratesbelow 1% (in
this example, Total Pos = 55).

The first condition (andthusthe strongesin termsof supportlevel) statesthat countries
with population growth rate below 1% haséow (under20 per 1000 population)or very
high (over 50 per 1000 population)birth rate. The presenceof a very high birth rate in

countrieswith low populationgrowth is highly counterintuitive; examinationof the 19
countriescoveredby the descriptionpointedout that 18 had birth ratesbelow 20, while

only one, Malawi, had the high birth rate. When furthgentionwas focusedon Malawi,

the explanation was clear. Malawi had a massive outward net migratiar cater 30 per
1000 population, by far the most extreme migration rate in the world. INLEN thus
facilitated a discovery of a surprising exception to a normal pattern.

10.4 Experiment 3: Utilizing Structured Attributes

The rule shownin the previousexamplecontainedan attribute “predominantreligion.”
This attribute was presented as a nominal attribute in the initial datasetiehto examine
how the structuringof attributes affects knowledge discovery, INLEN was applied to
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identical datasetswith andwithout the Religion attribute being structured(Kaufmanand
Michalski, 1996). A portion of the attribute domain structure is shown in Figure 12.

Onestrongargumentfor structuringis thatif the PredominanReligion attributehas been
set up in an unstructured(nominal) manner, the statementPredominantReligion is
Lutheran” would be regarded as being as antithetical to “Predominant Redigibmistian”
as it is to thestatementPredominantReligionis Buddhist,” since“Lutheran,” “Christian”
and “Buddhist” are all considerestjually differentin a “flat” domain. This would leadto
the possibility that some contradictions such as “PredomRelmjion is Lutheran,but not
Christian” might be generated.

Predominant Religion

Muslim Jew sh Buddhi st Sh| nto Christian
Sunni Shi'a I badh| Theravada Pr ot est ant
Lut h%gel i cal /m%l gar
Angl i can Tuval u

Figure 12. Part of the structure of the PEOPLE databaRelgyionattribute.

Experimentsusing INLEN-2havelent supportto this and other hypothesesegardingthe

use of structured and non-structured attributésong the findings regardingtheir use as
independenvariableswas that structuringattributesleadsto simpler rules than when not
structuring them. For example, when INLE®rnedrulesto distinguishthe 55 countries
with low populationgrowth rate (lessthan 1%) from othercountries,in a versionof the
PEOPLE database in which the attribute “Predominant Religion” was not structurexf, one
the rules it found was:

Population Growth Rate < 1% if: (20 examples)

1 Literacy = 95% to 99%,

2 Life Expectancy is 70 to 80 years,

3 Predominant Religion is Roman Catholic or Orthodox or Romanian or Lutheran or
Evangelical or Anglican or Shinto,

4 Net Migration Rate< +20 per 1000 population.

This rule was satisfiedby 20 ofthe 55 countrieswith low growth rates. When the same
experimentwas run with “Religion” used asa structuredattribute, a simpler patternwas
discovered:

Population Growth Rate < 1% if: (21 examples, 1 exception)
1 Literacy = 95% to 99%,

2 Life Expectancy is 70 to 80 years,

3 Predominant Religion is Christian or Shinto,

4 Net Migration Rate< +10 per 1000 population.
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This rule hasone exception(the United States,whose 1993 populationgrowth rate was
betweenl% and 2%). If full consistencyis required,the third condition could still be
expressedn a simpler form than in an unstructuredreligion domain by performing a
minimal specializationoperationon the node Christian so that the rule would cover the
same positive examples, but not the exception.

Similar differences were obtained by structuring dependent attribBigsrrangingevents
into different levels of generality,rules classifiedthem accordingly, which reducedthe
complexity andincreasedhe informationalsignificanceof the rules at different levels of
generalization.

These effects were especially visible at the lower levels of the hierarchy. In the
unstructuredatasetfive rules, eachwith two to five conditions,wererequiredto define
the 11 SunniMuslim countries. The only one to describemore than two of the 11
countries was a rule with quite fragmented conditions:

Predominant Religion is Sunni_Muslim if: (4 examples)
1 Literacy# 30% to 99%,

2 Infant Mortality Rate is 25 to 40 or greater than 55 per 1000 population
3 Fertility Rate is 1to 2 or 4 to 5 or 6 to 7 per 1000 population,
4 Population Growth Rate is 1% to 3% or greater than 4%.

The valuerangesin theseconditionsare divided into multiple segmentssuggestingthat
this is not a strongpattern. In contrast, using structuredreligion attribute, the learning
operator producedtwo simple and easily understood patterns, each with one only
condition:

Predominant Religion is Sunni_Muslim if: (10 examples, 1 exception)
1 Infant Mortality Rate= 40 per 1000 population.

Predominant Religion is Sunni_Muslim if: (4 examples)
1 Birth Rate is 30 to 40 per 1000 population.

As describedabove, theserules apply only in the context of predominantly Islamic
countries, and are based on the assumption that that determination has already been made.

10.5 Experiment 4: Applying Constructive Induction Operators

An experimentchronicledby Bloedorn and Michalski (1996) demonstrateshe power of
utilizing constructiveinduction as a knowledge discoverypperator. Working from 11

economic attributes sampled over eaclive consecutiveyears,1986-1990 (fora total of

55 availableattributesper record), the learning program attemptedto discover rules to

predictcountries’changesn grossnationalproductover the 5-yearperiod. By applying
three data-drivegonstructiveinduction operators—generatingew attributesbasedon the

existing attributeset, removingattributeslessrelevantto the goal concept,andabstracting
numerical attributes inta small numberof intervals—thepredictiveaccuracyon newdata
increased by nearly half (from 41.7% to 60.5%).

Among the newly constructed highly relevant attributes were Change in Energy

ConsumptionBetween 1986 and 1988 Ratio of Birth Rate in 1989 to Energy
Consumption in 199@&ndAverage Annual Energy Consumption Over the 5-year Period
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Theseresults demonstratedhat constructiveinduction can be a very useful tool for
analyzing data, asit can build more adequaterepresentationspacesfor knowledge
discovery.

11 Summary

The main thesisof this paperis that modern methodsdevelopedin symbolic machine
learninghavea direct and importantapplicationto the developmeniof new operatorsfor
conceptual data exploration. A wide rangedafason the applicability of variousmachine
learning methods to this area were presented.

Two highly importantoperatorsare the constructionof conceptuahierarchies(conceptual
clustering),and the inductive derivation of generalrules characterizingthe relationship
between designatedoutput and input attributes. These rules represent high-level
knowledgethat can be of greatvalue to a data analystand directly usablein human
decision-making. Otherimportantoperatoranclude constructionof equationsalong with

logical preconditiondor their application,determinatiorof symbolic descriptionsof time

sequencesselection of most relevant attributes, generation of new, more relevant
attributes, and selection of representative examples.

In contrastto many data mining approachesthe presentedmethodologyrequires a
considerableamount of backgroundknowledge regardingthe data and the domain of
discourse. This backgroundcknowledgemay include, for example,a specificationof the
domain andhe type of the attributes,the relationshipsamongthem, causaldependencies,
theoriesaboutthe objectsor processethat generatedhe data, goals of the dataanalysis
and other high-levelknowledge. An importantaspectof the methodologyis its ability to
take advantage of this knowledge.

The machinelearning techniquesimplementedin the INLEN system allow a user to
perform easily a wide range of symbolic data manipulationand knowledge generation
operations. The illustrative examplesdemonstratea significant potential utility of the
describedmultistrategymethodologyin solving problemsof datamining and knowledge
discovery.
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