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Abstract

An enormous proliferation of databases in almost every area of human endeavor has created
a great demand for new, powerful tools for turning data into useful, task-oriented
knowledge.  In efforts to satisfy this need, researchers have been exploring ideas and
methods developed in machine learning, pattern recognition, statistical data analysis, data
visualization, neural nets, etc.  These efforts have led to the emergence of a new research
area, frequently called data mining and knowledge discovery.  The first part of this paper is
a compendium of ideas on the applicability of symbolic machine learning methods to this
area.  The second part describes a multistrategy methodology for conceptual data
exploration, by which we mean the derivation of high-level concepts and descriptions from
data through symbolic reasoning involving both data and background knowledge.  The
methodology, which has been implemented in the INLEN system, combines machine
learning, database and knowledge-based technologies.  To illustrate the system’s
capabilities, we present results from its application to a problem of discovery of economic
and demographic patterns in a database containing facts and statistics about the countries of
the world.  The presented results demonstrate a high potential utility of the methodology for
assisting a user in solving practical data mining and knowledge discovery tasks.
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1 Introduction

The current information age is characterized by an extraordinary expansion of data that are
being generated and stored about all kinds of human endeavors.  An increasing proportion
of these data is recorded in the form of computer databases, in order that the computer
technology may easily access it.  The availability of very large volumes of such data has
created a problem of how to extract from them useful, task-oriented knowledge.

Data analysis techniques that have been traditionally used for such tasks include regression
analysis, cluster analysis, numerical taxonomy, multidimensional analysis, other
multivariate statistical methods, stochastic models, time series analysis, nonlinear
estimation techniques, and others  (e.g., Daniel and Wood, 1980; Tukey, 1986;
Morganthaler and Tukey, 1989; Diday, 1989; Sharma, 1996).  These techniques have been
widely used for solving many practical problems. They are, however, primarily oriented
toward the extraction of quantitative and statistical data characteristics, and as such have
inherent limitations.

For example, a statistical analysis can determine covariances and correlations between
variables in data.  It cannot, however, characterize the dependencies at an abstract,
conceptual level, and produce a causal explanation of reasons why these dependencies
exist.  Nor can it develop a justification of these relationships in the form of higher-level
logic-style descriptions and laws.  A statistical data analysis can determine the central
tendency and variance of given factors, and a regression analysis can fit a curve to a set of
datapoints.  These techniques cannot, however, produce a qualitative description of the
regularities and determine their dependence on factors not explicitly provided in the data,
nor can they draw an analogy between the discovered regularity and a regularity in another
domain.

A numerical taxonomy technique can create a classification of entities, and specify a
numerical similarity among the entities assembled into the same or different categories.  It
cannot, however, build qualitative descriptions of the classes created and hypothesize
reasons for the entities being in the same category.  Attributes that define the similarity, as
well as the similarity measures, must be defined by a data analyst in advance.  Also, these
techniques cannot by themselves draw upon background domain knowledge in order to
automatically generate relevant attributes and determine their changing relevance to different
data analysis problems.

To address such tasks as above, a data analysis system has to be equipped with a
substantial amount of background knowledge, and be able to perform symbolic reasoning
tasks involving that knowledge and the data.  In summary, traditional data analysis
techniques facilitate useful data interpretations, and can help to generate important insights
into the processes behind the data.  These interpretations and insights are the ultimate
knowledge sought by those who build databases.  Yet, such knowledge is not created by
these tools, but instead has to be derived by human data analysts.

In efforts to satisfy the growing need for new data analysis tools that will overcome the
above limitations, researchers have turned to ideas and methods developed in machine
learning.  The field of machine learning is a natural source of ideas for this purpose,
because the essence of research in this field is to develop computational models for
acquiring knowledge from facts and background knowledge.  These and related efforts
have led to the emergence of a new research area, frequently called data mining and
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knowledge discovery, (e.g., Michalski, Baskin and Spackman, 1982; Zhuravlev and
Gurevitch, 1989; Michalski, 1991; Michalski et al, 1992; Van Mechelen et al, 1993;
Fayyad et al, 1996; Evangelos and Han, 1996).

The first part of this paper is a compendium of ideas on the applicability of symbolic
machine learning methods to data mining and knowledge discovery.  The second part
describes a methodology for conceptual data exploration, by which we mean the derivation
of high-level concepts and descriptions from data.  The methodology, stemming mainly
from various efforts in machine learning, applies diverse methods and tools for determining
task-oriented data characterizations and generalizations.  These characterizations are
expressed in the form of logic-style descriptions, which can be easily interpreted and used
for decision-making.  The term task-oriented emphasizes the fact that an exploration of the
same data may produce different knowledge; therefore, the methodology tries to connect
the task at hand with the way of exploring the data.  Such task-orientation naturally requires
a multistrategy approach, because different tasks may need to employ different data
exploration and knowledge generation operators.

The aim of the methodology is to produce knowledge in a form that is close to data
descriptions that an expert might produce.  Such a form may include combinations of
different types of descriptions, e.g., logical, mathematical, statistical, and graphical.  The
main constraint is that these descriptions should be easy to understand and interpret by an
expert in the given domain, i.e., they should satisfy the “principle of comprehensibility”
(Michalski, 1993).  Our first efforts in developing a methodology for multistrategy data
exploration have been implemented in the system INLEN (Michalski et al, 1992).  The
system combines a range of machine learning methods and tools with more traditional data
analysis techniques.  These tools provide a user with the capability to make different kinds
of data explorations and to derive different kinds of knowledge from a database.

The INLEN methodology for intelligent data exploration directly reflects the aims of the
current research on data mining and knowledge discovery.  In this context, it may be useful
to explain the distinction between the concepts of data mining and knowledge discovery, as
proposed in (Fayyad, Piatetsky-Shapiro and Smyth, 1996).  According to this distinction,
data mining refers to the application of machine learning methods, as well as other
methods, to the “enumeration of patterns over the data,” and knowledge discovery refers to
the process encompassing the entire data analysis lifecycle, from the identification of data
analysis goals and the acquisition and organization of raw data to the generation of
potentially useful knowledge, its interpretation and testing.  According to these definitions,
the INLEN methodology incorporates both data mining and knowledge discovery
techniques.

2 Machine Learning and Multistrategy Data Exploration

This section shows a close relationship between ideas and methods developed in the field
of machine learning to the goals of data mining and knowledge discovery.  Specifically, it
describes how methods of symbolic machine learning can be used for automating or semi-
automating a wide range of tasks concerned with conceptual exploration of data and a
generation of task-oriented knowledge from them.  Let us briefly review some of these
methods.
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2 . 1 Determining General Rules from Specific Cases

A major class of tools for multistrategy data exploration is based on methods for symbolic
inductive learning from examples.  Given collections of examples of different decision
classes (or cases of a relationship), and problem-relevant knowledge (“background
knowledge”), an inductive learning method hypothesizes a general description of each
class.  Some methods use a fixed criterion for choosing the description from a large
number of possibilities, and some allow the user to define a criterion that reflects the
problem at hand.  A description can be in the form of a set of decision rules, a decision
tree, a semantic net, etc.  A decision rule can also take on many different forms.  Here we
will assume the following form:

CLASS   ⇐   CONDITION

where CLASS is a statement indicating a class, decision, or a concept name to be assigned
to an entity (an object or situation) that satisfies CONDITION; CONDITION is a
conjunction of elementary conditions on the values of attributes characterizing the objects;
and ⇐ denotes implication.

We will also assume that if CLASS requires a disjunctive description, then several such
(conjunctive) rules relate to the same CLASS.  To illustrate this point, Figure 1 gives an
example of a disjunctive description of a class of robot-figures in EMERALD (a large
system for demonstrating machine learning and discovery capabilities—Kaufman and
Michalski, 1993).

Rule A: Class 1 ⇐ Jacket Color is Red, Green or Blue &
Head Shape is Round or Octagonal

Rule B: Class 1 ⇐ Head Shape is Square &
Jacket Color is Yellow

Figure 1.  A two-rule description of Class 1.

To paraphrase this description, a robot belongs to Class 1 if the color of its jacket is red,
green or blue, and its head is round or octagonal, or, alternatively, its head is square and
the color of its jacket is yellow.

The EMERALD system, mentioned above, combines five programs that display different
kinds of learning capabilities (Kaufman and Michalski, 1993).  These capabilities include
rule learning from examples (using program AQ15), learning distinctions between
structures (INDUCE), conceptual clustering (CLUSTER/2), prediction of object sequences
(SPARC), and derivation of equations and rules characterizing data about physical
processes (ABACUS).  Each of these programs is directly applicable to conceptual data
exploration. For example, the rules in Figure 1 were generated by the AQ15 rule module
[MMHL86], [HMM86] from a set of “positive” and “negative” examples of Class 1 of
robot-figures.

AQ15 learns attributional descriptions of entities, i.e., descriptions involving only their
attributes.  More general descriptions, structural or relational., also involve relationships
among components of the entities, the attributes of the components, and quantifiers.  Such
descriptions are produced, for example, by the INDUCE module of EMERALD (Larson,
1977; Bentrup, Mehler and Riedesel, 1987).  Constructing structural descriptions requires
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a more complex description language that includes multi-argument predicates, for example,
PROLOG, or Annotated Predicate Calculus (Michalski, 1983; Bratko, Muggleton and
Karalic, 1997).

For database exploration, attributional descriptions appear to be the most important and the
easiest to implement, because typical databases characterize entities in terms of attributes,
not relations.  One simple and popular form of attributional description is a decision or
classification tree.  In such a tree, nodes correspond to attributes, branches stemming from
the nodes correspond to attribute values, and leaves correspond to individual classes (e.g.,
Quinlan, 1986).  A decision tree can be transformed into a set of decision rules (a ruleset)
by traversing all paths from the root to individual leaves.  Such rules can be often
simplified by detecting superfluous conditions in them (e.g., Quinlan, 1993).  The opposite
process of transforming a ruleset into a decision tree is not so direct (Imam, 1995), because
a rule representation is more powerful than a tree representation.  The term “more
powerful” means in this context that a decision tree representing a given ruleset may require
superfluous conditions (e.g., Michalski, 1990).

The input to an attributional learning program consists of a set of examples of individual
classes and “background knowledge” (BK) relevant to the given learning problem.  The
examples (cases of decisions) are in the form of vectors of attribute-value pairs associated
with some decision class.  Background knowledge is usually limited to information about
the legal values of the attributes, their type (the scale of measurement), and a preference
criterion for choosing among possible candidate hypotheses.  Such a criterion may refer to,
for example, the computational simplicity of the description, and/or an estimate of its
predictive accuracy.  In addition to BK, a learning method may have a representational
bias, i.e., it may constrain the form of descriptions to only a certain type of expressions,
e.g., single conjunctions, decision trees, sets of conjunctive rules, or DNF expressions.

In some methods, BK may include more information, e.g., constraints on the
interrelationship between various attributes, rules for generating higher level concepts, new
attributes, as well as some initial hypothesis (Michalski, 1983).  Learned rules are usually
consistent and complete with regard to the input data.  This means that they completely and
correctly classify all the original “training” examples.  Sections 5 and 8 present consistent
and complete example solutions from the inductive concept learning program AQ15c
(Wnek et al, 1995).  In some applications, especially those involving learning rules from
noisy data or learning flexible concepts (Michalski, 1990), it may be advantageous to learn
descriptions that are incomplete and/or inconsistent (Bergadano et al, 1992).

Attributional descriptions can be visualized by mapping them into a planar representation of
a discrete multidimensional space (a diagram) spanned over the given attributes (Michalski,
1978), (Wnek et al, 1990).  For example, Figure 2 shows a diagrammatic visualization of
the rules from Figure 1.  The diagram in Figure 2 was generated by the concept
visualization program DIAV (Wnek et al, 1990; Wnek, 1995).

Each cell in the diagram represents  one specific combination of values of the attributes.
For example, the cell marked by an X represents the vector: (HeadShape=    S    quare,
Holding=    S    word, JacketColor=    R    ed, IsSmiling=    F    alse).  The four shaded areas marked
Class1 (A) represent rule A, and the shaded area marked Class 1 (B) represents rule B.  In
such a diagram, conjunctive rules correspond to certain regular arrangements of cells that
are easy to recognize (Michalski, 1978).

The diagrammatic visualization can be used for displaying the target concept  (the concept
to be learned), the training examples (the examples and counter-examples of the concept),
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and the actual concept learned by a method.  By comparing the target concept with the
learned concept, one can determine the error area, i.e., the area containing all examples that
would be incorrectly classified by the learned concept.  Such a diagrammatic visualization
method can illustrate any kind of attributional learning process (Wnek et al, 1990).

X

Class 1

Class 1
(A)

Class 1
(A)

Class 1
(A)

Class 1
(A)

Rule A:    Class 1 <::  Jacket Color is Red, Green or Blue &
    Head Shape is Round or Octagonal

Rule B:    Class 1 <::  Head Shape is Square  &
    Jacket Color is Yellow

X

(B)

Figure 2.  A diagrammatic visualization of rules from Figure 1.

Two types of data exploration operators can be based on methods for learning concept
descriptions  from examples:

•  Operators for determining general symbolic descriptions of a designated
group or groups of entities in a data set.  Such descriptions express the
common properties of the entities in each group.  The operators can use
abstract concepts that are not present in the original data via the mechanism
of constructive induction (see below).  These operators are based on
programs for learning characteristic concept descriptions.

•  Operators for determining differences between different groups of entities.
Such differences are expressed in the form of rules that define properties
that characterize one group but not the other.  These operators are based on
programs for learning discriminant concept descriptions.



6

Section 5 will illustrate these two types of descriptions.  For more details and their
definitions see (Michalski, 1983).  Basic methods for concept learning assume that
examples do not have errors, that all attributes have a specified value in them, that all
examples are located in the same database, and that concepts to be learned have a precise
(“crisp”) description that does not change over time.  In many situations one or more of
these assumptions may not hold.  This leads to a variety of more complex machine learning
and data mining problems:

• Learning from incorrect data, i.e., learning from examples that contain a
certain amount of errors or noise (e.g., Quinlan, 1990; Michalski,
Kaufman and Wnek, 1991).  These problems are important to learning
from complex real-world observations, where there is always some
amount of noise.

• Learning from incomplete data, i.e., learning from examples in which the
values of some attributes are unknown (e.g., Dontas, 1988;
Lakshminarayan et al, 1996).

• Learning from distributed data, i.e., learning from separate collections of
data that must be brought together if the patterns within them are to be
exposed (e.g., Ribeiro, Kaufman and Kerschberg, 1995).

• Learning drifting or evolving concepts, i.e., learning concepts that are not
stable but changing over time, randomly or in a certain general direction.
For example, the “area of interest” of a user is often an evolving concept
(e.g., Widmer and Kubat, 1996).

• Learning concepts from data arriving over time, i.e., incremental learning
in which currently held hypotheses characterizing concepts may need to be
updated to account for the new data (e.g., Maloof and Michalski, 1995).

• Learning from biased data, i.e., learning from a data set that does not
reflect the actual distribution of events (e.g., Feelders, 1996).

• Learning flexible concepts, i.e., concepts that inherently lack precise
definition and whose meaning is context-dependent; some ideas concerned
with this topic include fuzzy sets (e.g., Zadeh, 1965; Dubois, Prade and
Yager, 1993), two-tiered concept representations (e.g., Michalski, 1990;
Bergadano et al, 1992), and rough sets (e.g., Pawlak, 1991; Slowinski,
1992; Ziarko, 1994).

• Learning concepts at different levels of generality, i.e., learning
descriptions that involve concepts from different levels of generalization
hierarchies representing background knowledge (e.g., Kaufman and
Michalski, 1996).

• Integrating qualitative and quantitative discovery, i.e., determining sets of
equations that fit a given set of data points, and qualitative conditions for
the application of these equations (e.g., Falkenhainer and Michalski,
1990).

• Qualitative prediction, i.e., discovering patterns in sequences or processes
and using these patterns to qualitatively predict the possible continuation of
the given sequences or processes (e.g., Davis, 1981; Michalski, Ko and
Chen, 1985; 1986; Dieterrich and Michalski, 1986).

Each of these problems is relevant to the derivation of useful knowledge from a collection
of data (static or dynamic).  Therefore, methods for solving these problems developed in
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the area of machine learning are directly relevant to data mining and knowledge discovery,
in particular, to conceptual data exploration.

2 . 2 Conceptual Clustering

Another class of machine learning methods relevant to data mining and knowledge
discovery concerns the problem of building a conceptual classification of a given set of
entities.  The problem is similar to that considered in traditional cluster analysis, but is
defined in a different way.  Given a set of attributional descriptions of some entities, a
description language for characterizing classes of such entities, and a classification quality
criterion, the problem is to partition entities into classes in a way that maximizes the
classification quality criterion, and simultaneously to determine general (extensional)
descriptions of these classes in the given description language.  Thus, a conceptual
clustering method seeks not only a classification structure of entities (a dendrogram), but
also a symbolic description of the proposed classes (clusters).  An important,
distinguishing aspect of conceptual clustering is that, unlike in cluster analysis, the
properties of class descriptions are taken into consideration in the process of determining
the classes (clusters).

To clarify the difference between conceptual clustering and conventional clustering, notice
that a conventional clustering method typically determines clusters on the basis of a
similarity measure that is a function solely of the properties (attribute values) of the entities
being compared, and not of any other factors:

Similarity(A, B) = f(properties(A), properties(B))
where A and B are entities being compared.

In contrast, a conceptual clustering program clusters entities on the basis of a conceptual
cohesiveness, which is a function of not only properties of the entities, but also of two
other factors: the description language L, which the system uses for describing the classes
of entities, and of the environment, E, which is the set of neighboring examples:

Conceptual cohesiveness(A, B) = f(properties(A), properties(B), L, E)

A

B

Figure 3.  An illustration of the difference between closeness and conceptual cohesiveness.

Thus, two objects may be similar, i.e., close according to some distance (or similarity)
measure, while having a low conceptual cohesiveness, or vice versa.  An example of the
first situation is shown in Figure 3.  The points (black dots) A and B are “close” to each
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other; they therefore would be placed into the same cluster by any technique based solely
upon the distances between the points.  However, these points have small conceptual
cohesiveness due to the fact that they belong to configurations representing different
concepts.  A conceptual clustering method, if equipped with an appropriate description
language, would cluster the points in Figure 3 into two “ellipses,” as people normally
would.

A classification quality criterion used in conceptual clustering may involve a variety of
factors, such as the fit of a cluster description to the data (called sparseness), the simplicity
of the description, and other properties of the entities or the concepts that describe them
(Michalski, Stepp and Diday, 1981).  An example of conceptual clustering is presented in
Section 5.

Some new ideas on employing conceptual clustering for structuring text databases and
creating concept lattices for discovering dependencies in data are in (Carpineto and
Romano, 1995a; 1995b).  The concepts created through the clustering are linked in lattice
structures that can be traversed to represent generalization and specialization relationships.

2 . 3 Constructive Induction

Most methods for learning rules or decision trees from examples assume that the attributes
used for describing examples are sufficiently relevant to the learning problem at hand.  This
assumption does not always hold in practice.  Attributes used in the examples may not be
directly relevant, and some attributes may be irrelevant or nonessential.  An important
advantage of symbolic methods over statistical methods is that they can relatively easily
determine irrelevant or nonessential attributes.  An attribute is nonessential if there is a
complete and consistent description of the classes or concepts to be learned that does not
use this attribute.  Thus, a nonessential attribute may be either irrelevant or relevant, but
will by definition be dispensable.  Inductive learning programs such as the rule-learning
program AQ, or the decision tree-learning ID3, can cope relatively easily with a large
number of nonessential attributes in their input data.

If there are very many nonessential attributes in the initial description of the examples, the
complexity of a learning process may significantly increase.  Such a situation calls for a
method that can efficiently determine the most relevant attributes for the given problem
from among all those given initially.  Only the most relevant attributes will be used in the
description learning process.  Determining the most relevant attributes is therefore a useful
data exploration operator.  Such an operator can also be useful for the data analyst on its
own merit, as it may be important to know which attributes are most discriminatory for a
given       set of classes.  By removing less relevant attributes, the representation space is
reduced, and the problem becomes simpler.  Thus, such a process can be viewed as a form
of improving the representation space.  Some methods for finding the most relevant
attributes are described in (Zagoruiko, 1972; Baim, 1982).

In many applications, the attributes originally given may be only weakly or indirectly
relevant to the problem at hand.  In such situations, there is a need for generating new,
more relevant attributes that may be functions of the original attributes.  These functions
may be simple, e.g., a product or sum of a set of the original attributes, or very complex,
e.g., a Boolean attribute based on the presence or absence of a straight line or circle in an
image (Bongard, 1970).  Finally, in some situations, it will be desirable to abstract some
attributes, that is, to group some attribute values into units, and thus reduce the attribute’s
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range of possible values.  A quantization  of continuous attributes is an example of such an
operation.

All the above operations—removing less relevant attributes, adding more relevant
attributes, and abstracting attributes—are different forms of improving the original
representation space for learning.  A learning process that consists of two (intertwined)
phases, one concerned with the construction of the “best” representation space, and the
second concerned with generating the “best” hypothesis in the found space is called
constructive induction  (Michalski, 1978; 1983; Wnek and Michalski, 1994).  An example
of a constructive induction program is AQ17 (Bloedorn, Wnek and Michalski, 1993),
which performs all three types of improvements of the original representation space.  In
this program, the process of generating new attributes is done by combining initial
attributes by mathematical and/or logical operators and selecting the “best” combinations,
and/or by obtaining advice from an expert (Bloedorn, Wnek and Michalski, 1993;
Bloedorn and Michalski, 1996).

2 . 4 Selection of the Most Representative Examples

When a database is very large, determining general patterns or rules characterizing different
concepts may be very time-consuming.  To make the process more efficient, it may be
useful to extract from the database the most representative or important cases (examples) of
given classes or concepts.  Most such cases are those that are either most typical or most
extreme (assuming that there is not too much noise in the data).  One method for
determining the latter ones, the so-called “method of outstanding representatives,” is
described in (Michalski and Larson, 1978).

2 . 5 Integration of Qualitative and Quantitative Discovery

In a database that contains numerical attributes, a useful discovery might be an equation
binding these attributes.  For instance, from a table of planetary data including planets’
masses, densities, distances from the sun, periods of rotation, and lengths of local years,
one could automatically derive Kepler’s Law that the cube of the planet’s distance from the
sun is proportional to the square of the length of its year.  This is an example of quantitative
discovery.  The application of machine learning to quantitative discovery was pioneered by
the BACON system (Langley, Bradshaw and Simon, 1983), and then explored by many
systems since, such as COPER (Kokar, 1986), FAHRENHEIT (Zytkow, 1987), and
ABACUS (Falkenhainer and Michalski, 1990).  Similar problems have been explored
independently by Zagoruiko (1972) under the name of empirical prediction.

Some equations may not apply directly to data, because of an inappropriate value of a
constant, or different equations may apply under different qualitative conditions.  For
example, in applying Stoke’s Law to determine the velocity of a falling ball, if the ball is
falling through a vacuum, its velocity depends on the length of time it has been falling and
on the gravitational force being exerted upon it.  A ball falling through some sort of fluid
will reach a terminal velocity dependent on the radius and mass of the ball and the viscosity
of the fluid.

A program ABACUS (Greene, 1988; Falkenhainer and Michalski, 1990; Michalski, 1991)
is able to determine quantitative laws under different qualitative conditions.  It partitions the
data into example sets, each of which adheres to a different equation determined by a
quantitative discovery module.  The qualitative discovery module can then determine
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conditions/rules that characterize each of these example sets (in the case of Stoke’s Law,
the rules would be based on the medium of descent).

2 . 6 Qualitative Prediction

Most programs that determine rules from examples determine them from instances of
various classes of objects.  An instance of a concept exemplifies that concept regardless of
its relationship to other examples.  Contrast that with a sequence prediction problem, in
which a positive example of a concept is directly dependent on the position of the example
in the sequence.  For example, Figure 4 shows a sequence of seven figures.  One may ask
what object plausibly follows in the eighth position?  To answer such a question, one needs
to search for a pattern in the sequence, and then use the pattern to predict a plausible
sequence continuation.  In qualitative prediction, the problem is not to predict a specific
value of a variable (as in time series analysis), but to qualitatively describe a plausible
future object, that is, to describe plausible properties of a future object.

1        2       3         4          5         6         7

?

Figure 4.  An example of a sequence prediction problem.

In the example in Figure 4, one may observe that the sequence consists of T-shaped figures
with black tips and I-shaped figures with white tips.  The figures may be white or shaded,
and may be rotated in different orientations at 45-degree intervals.  But is there a consistent
pattern?

To determine such a pattern, one can employ different descriptive models, and instantiate
the models to fit the particular sequence.  The instantiated model that best fits the data is
then used for prediction.  Such a method is described in (Dieterrich and Michalski, 1986).
The method employs three descriptive models—periodic, decomposition and DNF.

The periodic model is used to detect repeating patterns in a sequence.  For example, Figure
4 depicts a recurring pattern that alternates T-shaped and I-shaped objects.  In general, there
can also be periodic sequences within the periodic sequences.  In the figure, the T-shaped
objects form a subsequence in which individual objects rotate leftward by 45 degrees.

The second model, the decomposition model, is used to characterize a sequence by decision
rules in the following general form:  “If one or more of the previous elements of the
sequence have a given set of characteristics, then the next element will have the following
characteristics.”  One such rule that applies to the sequence in Figure 4 would state that if
an element in the sequence has a vertical component, then the next element in the sequence
will have a shaded component; otherwise it will have no shaded components.

The third model, the DNF (disjunctive normal form) or “catch-all” model, tries to capture
general properties characterizing the whole sequence.  For example, for the sequence in
Figure 4, it could instantiate to a statement such as “all elements in the sequence are T-
shaped or I-shaped, they have white or shaded interiors, white or black tips, etc.
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The program SPARC/G (Michalski, Ko and Chen, 1986) employs these three descriptive
models to detect patterns in a sequence of arbitrary objects, and then uses the patterns to
predict a plausible continuation for the sequence.  For the sequence in Figure 4, SPARC/G
found the following strong pattern based on the periodic model:

Period< [Shape=T-shape] & [orientation(i+1)=orientation(i) - 45],
[Shape = I-shape] & [orientation(i+1)=orientation(i) + 45] &
[shaded(i+1)=unshaded(i)]>

The pattern can be paraphrased: There are two phases in a repeating period (their
descriptions are separated by a comma).  The first phase involves a T-shaped figure, and
the second phase an I-shaped figure.  The T-shaped figure rotates to the left, and the I-
shaped figure rotates to the right by 45 degrees in relation to its predecessor.  I-shaped
figures are alternatingly shaded and unshaded.  Based on this pattern, a plausible next
figure in the sequence would be an unshaded I-shaped figure rotated clockwise 45 degrees
in relation to the previous I-shaped figure.

The qualitative prediction capabilities described above can be useful for conceptual
exploration of temporal databases in many application domains, such as agriculture,
medicine, robotics, economic forecasting, etc.

2 . 7 Summarizing the Machine Learning-Oriented Approach

To help the reader to develop a rough sense of what is different and new in the above, let
us summarize operations typically performed by traditional multivariate data analysis
methods.  These include computing mean-corrected or standardized variables, variances,
standard deviations, covariances and correlations among attributes; principal component
analysis (determining orthogonal linear combinations of attributes that maximally account
for the given variance); factor analysis (determining highly correlated groups of attributes);
cluster analysis (determining groups of data points that are close according to some distance
measure); regression analysis (fitting an equation of an assumed form to given data points);
multivariate analysis of variance; and discriminant analysis.  All these methods can be
viewed as primarily oriented toward a numerical characterization of a data set.

In contrast, the machine learning methods described above are primarily oriented toward
developing symbolic logic-style descriptions of data, which may characterize one or more
sets of data qualitatively, differentiate between different classes (defined by different values
of designated output variables), create a “conceptual” classification of data, select the most
representative cases, qualitatively predict sequences, etc.  These techniques are particularly
well suited for developing descriptions that involve nominal (categorical) and rank variables
in data.

Another important distinction between the two approaches to data analysis is that statistical
methods are typically used for globally characterizing a class of objects (a table of data), but
not for determining a description for predicting class membership of future objects.  For
example, a statistical operator may determine that the average lifespan of a certain type of
automobile is 7.3 years.  Knowledge of the average lifespan of automobiles in a given class
does not allow one to recognize the type of a particular automobile for which one obtained
information about how long this automobile remained driveable.  In contrast, a symbolic
machine learning approach might create a description such as “if the front height of a
vehicle is between 5 and 6 feet, and the driver’s seat is 2 to 3 feet above the ground, then
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the vehicle is likely to be a minivan.”  Such descriptions are particularly suitable for
assigning entities to classes on the basis of their properties.

The INLEN methodology integrates a wide range of strategies and operators for data
exploration based on machine learning research, as well as statistical operators.  The reason
for such a multistrategy approach is that a data analyst may be interested in many different
types of information about the data.  Different types of questions require different
exploratory strategies and different operators.

3 Classification of Data Exploration Tasks

The problems described above can be simply illustrated by means of a general data table
(GDT).  Such a table is a generalization of a standard data table used in data analysis
(Figure 5).  It consists of a collection of relational tables (data tables) arranged in layers
ordered by the time instance associated with each table.  A GDT is used to represent a
sequence of entities as they change over time.  Examples of a GDT are a sequence of
medical records of a patient (when each record is represented as a table of test results), a
sequence of descriptions of a crop as it develops in the field, a sequence of data tables
characterizing the state of a company during selected time instances, etc.
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Figure 5.  A GDT illustrating the role of different symbolic operators.

Columns in the tables correspond to attributes used to characterize entities associated with
the rows.  These may be initial attributes, given a priori, or additional ones generated
through a process of constructive induction (e.g., Wnek and Michalski, 1994).  Each
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attribute is assigned a domain and a type.  The domain specifies the set of all legal values
that the attribute can be assigned in the table.  The type defines the ordering (if any) of the
values in the domain.  For example, the AQ15 learning program (Michalski et al, 1986)
allows four types of attributes: nominal (no order), linear (total order), cyclic (cyclic total
order), and structured (hierarchical order; see Kaufman and Michalski, 1996).  The
attribute type determines the kinds of operations that are allowed on this attribute’s values
during a learning process.

Entries in each row are values of the attributes for the entity associated with the row.
Typically, each row corresponds to a single entity.  However, in large databases whose
records represent common, repeatable transactions, a column can be added to represent the
number of occurrences of that particular transaction.  With such information, discovery
tools can incorporate a bias based on the frequency of instances.

Entries in the various columns of the table can be specific values of the corresponding
attributes, the symbol “?,” meaning that a value of this attribute is unknown for the given
entity, or the symbol N/A, if an attribute does not apply to a specific entity.  For example,
“number of legs” usually applies to an animal, but would not apply to a plant.

An important problem of conceptual data exploration is to determine which attribute or
attributes in a table functionally depend on other attributes.  A related problem is to
determine a general form of this relationship that would enable one to predict values of
some attributes for future entities.  For instance, when it is known that a nominal-scale
attribute depends on other (independent) attributes, the problem is to hypothesize a general
description of this relationship so that one can predict values of the nominal-scale attribute
for future combinations of values of the independent attributes.  This problem is equivalent
to the problem of concept learning from examples, so methods developed in machine
learning       directly apply.  In such a case, the column in the data table that corresponds to the
dependent attribute represents the output attribute.  The values of that variable are classes
whose descriptions are to be learned.  In Figure 5, for illustration, it was assumed that the
first       column (attribute A0) represents values of the output variable.  When there are no a
priori classes to which entities belong, there is no such designated column.  In this case,
methods of conceptual clustering can be applied to determine a classification of entities.

Below we use the GDT (Figure 5) to relate machine learning techniques described in the
previous section to data exploration problems.

Learning rules from examples:

Suppose that one discrete attribute in the GDT has been designated as the output attribute,
and all or some of the remaining attributes as input (independent) attributes.  A set of rows
in the table for which the output attribute takes the same value can be viewed as a set of
training examples of the decision class (concept) symbolized by this value.  Any of the
conventional concept learning techniques can be directly applied for determining a rule
relating the output attribute to the input attributes.  For a general analysis of the data set,
every discrete attribute (and continuous attributes as well after quantization) can be
considered as an output attribute, and a machine learning method can be applied to
determine a relationship between that attribute and other attributes.  The determination of
such relationships (rules) can be guided by different rule quality criteria, for example,
simplicity, cost, predictive accuracy, etc.  In the INLEN system, the AQ learning method
was applied due to the simplicity and the high comprehensibility of decision rules it
generates (Wnek et al, 1995; Bloedorn and Michalski, 1996).
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 Determining time-dependent patterns:

This problem concerns the detection of temporal patterns in sequences of data arranged
along the time dimension in a GDT (Figure 5).  Among the novel ideas that could be
applied for analyzing such time-dependent data is a multi-model method for qualitative
prediction (Dieterrich and Michalski, 1986; Michalski, Ko and Chen, 1985; 1986).
Another novel idea is a temporal constructive induction technique that can generate new
attributes that are designed to capture time-dependent patterns (Davis, 1981; Bloedorn and
Michalski, 1996).

Example selection:

The problem is to select rows from the table that correspond to the most representative
examples of different classes.  When a datatable is very large, is it important to concentrate
the analysis on a representative sample.  The “method of outstanding representatives”
selects examples (tuples) that are most different from the other examples (Michalski and
Larson, 1978).

Attribute selection:

When there are many columns (attributes) in the GDT, it is often desirable to reduce the
data table by removing columns that correspond to the least relevant attributes for a
designated learning task.  This can be done by applying one of many methods for attribute
selection, such as Gain Ratio(Quinlan, 1993) or Promise level (Baim, 1982).

Generating new attributes:

The problem is to generate additional columns that correspond to new attributes generated
by a constructive induction procedure.  These new attributes are created by using the
problem’s background knowledge and/or special heuristic procedures as described in
papers on constructive induction (e.g., Bloedorn, Wnek and Michalski, 1993).

Clustering:

The problem is to automatically partition the rows of the table into groups that correspond
to “conceptual clusters,” that is, sets of entities with high conceptual cohesiveness
(Michalski, Stepp and Diday, 1981).  Such a clustering operator will generate an additional
column in the table that corresponds to a new attribute ”cluster name.”  The values of this
attribute for each tuple in the table indicate the assigned class of the entity.  Rules that
describe clusters are stored separately in the Knowledge Base and linked to the entities via
knowledge segments (see Section 4).  An example of a clustering is presented in Section 5.

Determining attribute dependencies:

The problem is to determine relationships, such as correlations, causal dependencies,
logical or functional dependencies among the attributes (columns) in the given GDT, using
statistical and logical methods.

Incremental rule update:

The problem is to update working knowledge (in particular, rulesets characterizing
relationships among attributes in the GDT) to accommodate new instances or time slices in
the table.  To do so, an incremental learning program must be applied to synthesize the
prior knowledge with the new information.  The incremental learning process may be full-
memory, partial-memory, or no-memory, depending on how much of the original training
data is maintained in the incremental learning process (Hong, Mozetic and Michalski, 1986;
Reinke and Michalski, 1988; Maloof and Michalski, 1995).
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Searching for approximate patterns in (imperfect) data:

For some GDTs, it may not be possible (or useful) to find complete and consistent
descriptions.  In such cases, it is important to determine patterns that hold for a large
number of cases, but not necessarily for all.  An important case of this problem is when
some entries in the table are missing or incorrect.  The problem is then to determine the best
(i.e., the most plausible) hypothesis that accounts for most of the available data.

Filling in missing data:

Given a data table in which some entries are missing, determine plausible values of the
missing entries on the basis of analysis of the currently known data.  An interesting
approach to this problem is to apply a multi-line reasoning, based on the core theory of
human plausible reasoning (Collins and Michalski, 1981; 1989; Dontas, 1988).

Determining decision structures from declarative knowledge (decision rules):

Suppose that a set of general decision rules (a declarative form of knowledge) has been
hypothesized for a given data set (GDT).  If this ruleset is to be used for predicting new
cases (by a computer program, or by an expert), it may be desirable to convert it into the
form of a decision tree (or a more general form, a decision structure) that is tailored to a
given decision-making situation (e.g., by taking into consideration the cost of measuring
attributes).  A methodology for doing this and arguments for and against using such an
approach (as opposed to the traditional method of learning of decision trees directly from
examples) are discussed in (Imam and Michalski, 1993; Imam ,1995; Michalski and Imam,
1997).

Methods for performing the above operations on data tables have been implemented in
various machine learning programs (e.g., Michalski, Carbonell and Mitchell, 1983; 1986;
Forsyth and Rada, 1986; Kodratoff, 1988; Kodratoff and Michalski, 1990).  Below we
describe the INLEN system that aims at ultimately incorporating all of these programs as
operators in one integrated system for the generation of knowledge from data.

4 Integration of Many Operators in INLEN

To make the data exploration operations described above easily available to a data analyst,
and applicable in sequences in which the output from one operation is an input to another
one, programs performing these operations need to be integrated into one system.  This
idea underlies the INLEN system (Kaufman, Michalski and Kerschberg, 1991; Michalski
et al, 1992).  The name INLEN is derived from inference and learning.  The system
integrates machine learning programs, statistical data analysis tools, a database, a
knowledge base, inference procedures, and various supporting programs under a unified
architecture and graphical interface.  The knowledge base is used for storing, updating and
applying rules and other forms of knowledge that may be employed for assisting data
exploration, and for reporting results from it.

The general architecture of INLEN is presented in Figure 6.  The system consists of a
database (DB) connected to a knowledge base (KB), and a set of operators.  The operators
are divided into three classes:

• DMOs:  Data Management Operators, which operate on the database.
These are conventional data management operators that are used for
creating, modifying and displaying relational tables.
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• KMOs:  Knowledge Management Operators, which operate on the
knowledge base.  These operators play a similar role to the DMOs, but
apply to the rules and other structures in the knowledge base.

• KGOs:  Knowledge Generation Operators, which operate on both the data
and knowledge bases.  These operators perform symbolic and numerical
data exploration tasks.  They are based on various machine learning and
inference programs, on conventional data exploration techniques, and on
visualization operators for displaying graphically the results of exploration.
The diagrammatic visualization method DIAV (Wnek ,1995) is used for
displaying the effects of symbolic learning operations on data.

DB KB

  SELECT

PROJECT

  JOIN

COMBINE

 CREATE

INSERT

CHANGE

 DELETE

INTERSECT

  SELECT

PROJECT

  JOIN

COMBINE

INTERSECT

 CREATE

INSERT

CHANGE

 DELETE

DATA MANAGEMENT
         OPERATORS

 KNOWLEDGE
MANAGEMENT
  OPERATORS

VISUALIZE 

  GENTREE GENHIER

 GENEQGENRULE   TRANSFORM

ANALYZE    GENATR

TEST GENEVE

KNOWLEDGE GENERATION OPERATORS

KNOWLEDGE GENERATION OPERATORS

Figure 6.  An architecture of the INLEN system for multistrategy data exploration.

The KGOs are the heart of the INLEN system.  To facilitate their use, the concept of a
knowledge segment was introduced (Kaufman, Michalski and Kerschberg, 1991).  A
knowledge segment is a structure that links one or more relational tables from the database
with one or more structures from the knowledge base.  KGOs can be viewed as modules
that perform some form of inference or transformation on knowledge segments and, as a
result, create new knowledge segments.  Knowledge segments are both inputs to and
outputs from the KGOs.  Thus, they facilitate the passage of data and knowledge from one
knowledge generation operator to another.

The execution of a KGO usually requires some background knowledge, and is guided by
control parameters (if some parameters are not specified, default values are used).  The
background knowledge may contain some general knowledge as well as knowledge
specifically relevant to a given application domain, such as a specification of the value sets
and types of attributes, the constraints and relationships among attributes, initial rules
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hypothesized by an expert, etc.  The KGOs can be classified into groups, based on the type
of operation they perform.  Each group includes a number of specific operators that are
instantiated by a combination of parameters.  The basic operator groups are as follows:

• GENRULE operators generate different kinds of decision rules from given facts.  A
specific operator may generate rules characterizing a set of facts, discriminating
between groups of facts, characterizing a sequence of events, and determining
differences between sequences, based on programs such as AQ15c (Wnek et al, 1995)
and SPARC/G (Michalski, Ko and Chen, 1986).  A KGO for learning rules can
usually work in either incremental or batch mode.  In the incremental mode, it tries to
improve or refine the existing knowledge, while in the batch mode, it tries to create
entirely new knowledge based on the facts in the database, and knowledge in the
knowledge base.

• GENTREE operators build a decision structure from a given set of decision rules (e.g.,
Imam and Michalski, 1993), or from examples (e.g., Quinlan, 1993).  A decision
structure is a generalization of the concept of a decision tree in which nodes can be
assigned an attribute or a function of attributes.  Individual branches may be assigned a
set of attribute values.  Leaves may be assigned a set of decisions (Imam and
Michalski, 1993; Imam, 1995).

• GENEQ operators generate equations characterizing numerical data sets and
qualitatively describing the conditions under which these equations apply (e.g.,
Falkenhainer and Michalski, 1990).

• GENHIER operators build conceptual clusters or hierarchies.  They are based on the
program CLUSTER methodology (Michalski, Stepp and Diday, 1981).  The operator
in INLEN is based on the reimplementation in C of the program CLUSTER/2 (Stepp,
1984).

• TRANSFORM operators perform various transformations on the knowledge segments,
e.g., generalization or specialization, abstraction or concretion, optimization of given
rules, etc. according to user-provided criteria.  For instance, one such operator climbs
an attribute’s generalization hierarchy to build more general decision rules (Kaufman
and Michalski, 1996).

• GENATR operators generate new attribute sets by creating new attributes (Bloedorn
and Michalski, 1996), selecting the most representative attributes from the original set
(Baim, 1982), or by abstracting attributes (Kerber, 1992).

• GENEVE operators generate events, facts or examples that satisfy given rules, select
the most representative events from a given set (Michalski and Larson, 1978),
determine examples that are similar to a given example (Collins and Michalski, 1989),
or predict the value of a given variable using an expert system shell or a decision
structure.

• ANALYZE operators analyze various relationships that exist in the data, e.g.,
determining the degree of similarity between two examples, checking if there is an
implicative relationship between two variables, etc.  Statistical and symbolic operators
alike may perform these tasks.
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• TEST operators test the performance of a given set of rules on an assumed set of facts.
The output from these operators is a confusion matrix—a table whose (i,j)th element
shows how many examples from the class i were classified by the rules to be in class j.
These operators can also be used to apply the rules to any given situation to determine a
decision.  The TEST operator implemented in INLEN is based on the ATEST program
(Reinke, 1984).

• VISUALIZE operators are used to present data and/or knowledge to the user in a
convenient, easy-to-understand format (Wnek, 1995).

Summarizing, INLEN integrates a large set of operators for performing various types of
operations on the data base, on the knowledge base, or the data and knowledge bases
combined.

5  Illustration of Clustering and Learning Operators

Among the most important knowledge generation operators implemented in INLEN are the
operator for creating a classification of data (clustering), and the operator for learning
general rules relating a designated concept (attribute) to other designated attributes.  The
first operator is realized by the CLUSTER/2 program for conceptual clustering (Stepp,
1984).  The second operator is realized by the AQ15c rule learning program (Wnek et al,
1995).  This section illustrates these operators through an application to a datatable
characterizing hard drives (Figure 7).  The datatable is based on information published in
the October, 1994 issue of MacUser.

In the table presented in Figure 7, each row (except for the first one) describes a hard drive
in terms of the attributes specified in the first row.  Suppose that the task of data
exploration is to develop a classification of the hard drives into some meaningful
categories.  For this task, the operator CLUSTER is applied.  Let us assume that the
operator will seek a clustering that maximizes the quality of classification, as defined by
two criteria: the simplicity of the descriptions of generated categories, and the cohesiveness
of the       descriptions (measured by the ratio of the number of instances in the datatable
covered by a given description to the number of possible instances covered by the
description).  The input to the conceptual clustering operator is the table in Figure 7
(without the rightmost column, which, for the sake of saving space, represents already the
result of clustering).

The result of applying the clustering operator is a knowledge segment containing two
components—a new, extended data table, and a set of rules.  The new table, in comparison
to       the input table, has an additional column—the rightmost column in Figure 7, labeled
“Group,” which represents the category assignments of the drives by the clustering
operator.  The second component is the set of rules describing the categories that were
generated.  Here are the rules describing the categories created by the operator:
[Class 1]  ⇐ [Toll_free_Support is yes] & [FCC_Class-B is yes] & [Encryption is

no] & [SCSI_50-Pin is yes or no] & [Guarantee is yes or by dealer]
[Class 2]  ⇐ [Toll_free_Support is no] & [SCSI_50-Pin is yes] & [5yr_Warranty

is yes] & [Guarantee is yes or no] & [Loaners is yes or no]
[Class 3]  ⇐ [Toll_free_Support is no] & [FCC_Class-B is yes] & [AC outlet is

yes] & [Passwd_Protect is yes] & [5yr_Warranty is no] & [Guarantee
is not by dealer] & [Loaners is yes or if available]



1 9

Hard Drive

Apple 1050

Micropolis

SLMO 1000

Focus 1G

GHD 1200S

Joule 1080

Liberty 1GB

Spitfire 1GB

PowerUser
1070
P1000

Seagate 1075

Minipak 1000

PowerCity
1GB
Spin 1021

APS MS 1.7

Seagate 2GB

SLMO 2000

Focus 2G

FWB 1760MF

Liberty 2GB

Loviel L2000

Seagate 2.1

PowerUser
1801
MacP Sg 28

AC
Outlet

SCSI
50-Pin

FCC
Class B

Passwd
ProtectEncrypt

5yr
Warranty

Toll-free
SupportGuaranteeLoanersCapacity

no

no

no

yes

no

yes

no

yes

no

no

yes

no

yes

no

no

no

no

yes

no

no

yes

yes

no

no

yes

yes

yes

yes

yes

no

25 pin

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

68 pin
SCSI2

no

yes

yes

yes

yes

yes

yes

Class
A

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

no

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

no

yes

yes

yes

no

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

no

yes

no

yes

no

no

no

no

no

no

no

no

no

no

no

no

no

yes

no

no

yes

no

no

no

no

no

no

yes

yes

no

yes

yes

no

yes

no

no

no

no

on
mech.
yes

yes

yes

yes

no

no

no

yes

yes

no

yes

yes

no

no

yes

no

yes

no

no

yes

yes

yes

no

yes

yes

yes

no

no

yes

no

no

no

no

yes

no

by
dealer

no

no

yes

no

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

no

no

yes

no

yes

yes

yes

yes

yes

low

low

low

low

low

low

low

low

low

low

low

low

low

low

high

high

high

high

high

high

high

high

high

high

by
dealer

no

yes

yes

no

no

yes

no

no

no

no

yes

no

no

no

no

yes

yes

if
avail.
yes

yes

no

no

no

Group

1

2

2

1

2

1

3

2

1

1

1

3

1

1

1

2

2

1

3

3

2

2

1

2

Figure 7.  A datatable characterizing hard drives.

Thus, the operator created three categories of hard drives and described each category in the
form of rules.  Each rule shows all characteristics common to a given category, that is, it
represents a characteristic description of a category (Michalski, 1983).  (Note that some of
the conditions in these rules appear to be redundant.  For example, the last condition of the
Class 2 rule says that Loaners is yes or no.  This can be explained by the presence of a
third value, “by dealer,” that neither guarantees, nor rules out a loaner.)  These
characterizations do not point out the most significant distinctions between a given category
and other categories.

To create a description that points out the most significant distinctions, one needs to apply
the operator that creates discriminant descriptions (Michalski, 1983).  The operator
(GENRULE) is applied to the extended data table in Figure 7, using the “Group” column
as its output attribute.  The result is a set of new decision rules:
[Class 1]  ⇐ [Toll_free_Support is yes]

[Class 2]  ⇐ [Toll_free_Support is no] & [5yr_Warranty is yes]

[Class 3]  ⇐ [Toll_free_Support is no] & [5yr_Warranty is no]
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The obtained rules are much simpler and easier to interpret than the rules generated by the
CLUSTER operator that invented the three classes.  The reason is that a discriminant
description lists only those characteristics that are necessary to discriminate a given
category from the other categories.  Discriminant descriptions are designed to provide the
minimum information needed for distinguishing between entities of different categories.
Both characteristic and discriminant descriptions are complete and consistent with all the
examples in Figure 7, i.e., they classify all examples in the same way.

6 Data and Rule Visualization

It is desirable for data analysts to be able to visualize the results of different operators in
order to relate visually the input data to the rules that have been learned from them, to see
which datapoints would corroborate or contradict these rules, to identify possible errors,
etc.  To this end, INLEN supports the visualization of data and knowledge through the
diagrammatic visualization method implemented in the DIAV program (Michalski, 1978;
Wnek, 1995).

Figure 8.  A visualization of the characteristic description created by the conceptual
clustering operator.

Let us illustrate the method with the hard disk classification problem presented in the
previous section.  The representation space, projected onto six attributes, is pictured in
Figure 8.  To simplify the visualization, the attributes used to span the diagram,
Toll_free_Support (tf), Loaners (lo), SCSI_50-Pin (sc), FCC_Class-B (fc), Guarantee
(gu), and 5yr_Warranty (wa), are only those that appeared most frequently in the
characteristic descriptions created by the conceptual clustering operator.  Each cell in the
diagram corresponds to one combination of attribute values, specified by the annotations of
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the columns and rows.  Thus the upper-leftmost cell corresponds to a datapoint in which all
six of these attributes have the value yes (y).

The 24 examples from Figure 7 have been projected onto this space, and are represented by
placing their class number in the corresponding cells.  The shaded areas represent the
characteristic descriptions of the classes generated by the clustering operator; the lightest
color indicates Class 1, the intermediate shade represents Class 2, and the darkest one
indicates Class 3.  As can be seen in the diagram, the descriptions generated by the
clustering operator are generalizations of the input instances, as they also cover instances
that have not yet been observed (shaded areas without a number).

For comparison, Figure 9 is a visualization of the discriminant descriptions generated by
the rule       learning operator from the input examples classified according to the previously
generated clustering.  The organization of the diagram in Figure 9 is the same as in Figure 8
with regard to the labeling of examples, classes, rows and columns.  Because discriminant
descriptions focus only on features that distinguish among the classes, they cover broader
sections of the representation space.  Thus, they are much more general than characteristic
descriptions.

Figure 9.  A visualization of the discriminant rules created by the inductive generalization
operator.

The obtained discriminant descriptions divide the representation space into four sections,
three corresponding to the rules for the three classes, and the fourth to the indeterminate
portion of the event space, containing none of the known instances of the three categories.
This latter section is defined by the combination of characteristics: Toll_free_Support = no
and 5yr_Warranty = on_mechanism.
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Note also that due to the greater generality of the discriminant descriptions, the
indeterminate area is much smaller than in the case of characteristic descriptions (the blank
area in Figure 8).

As can be seen from the diagram, the generated discriminant descriptions are consistent and
complete with regard to all of the presented examples, that is, they preserve the
classification of cases created by the clustering operator.  Summarizing, the visualization
method presented above makes it very easy to see how generated descriptions relate to the
cases from which they were generated.

7 Learning Rules with Structured Attributes

In addition to conventional symbolic and numerical attributes, INLEN supports a new kind
of attribute, called structured.  Such attributes have value sets ordered into hierarchies
(Michalski, 1980).  In order to take advantage of the properties of structured attributes in
executing inductive learning, new inductive generalization rules have been defined.

An inductive generalization rule (or transmutation) takes an input statement and relevant
background knowledge, and hypothesizes a more general statement (Michalski, 1980;
1983; 1994).  For example, removing a condition from the premise of a decision rule is a
generalization transmutation (this is called a dropping condition generalization rule), since if
the premise has fewer conditions, a larger set of instances can satisfy it.

A powerful inductive generalization operator used in the AQ learning programs is the
extension-against operator.  If rule R1: C ⇐ [xi = A] & CTX1 characterizes a subset of

positive concept examples, E+, of the concept C, and rule R2: C ⇐ [x i = B] & CTX2
characterizes negative examples, E- (where A and B represent disjoint subsets of the values
of xi, and the CTXs stand for any additional conditions), then the extension of R1 against
R2 along dimension xi

C ⇐  R1 | R2 /x i

produces a new rule R3: [x i ≠ B ∪ ε], which is a consistent generalization of R1, that is,
a generalization that does not intersect logically with R2 (Michalski and McCormick, 1971;
Michalski, 1983).  The value of the parameter ε controls the degree of generalization.  If

ε is ø (the empty set), then R3 is the maximal consistent generalization of R1.  If ε is
D(x i) \ (A  ∪  B) (where D(xi) is the domain of xi), then R3 is the minimal consistent
generalization of R1 involving only xi.  In AQ programs, the extension-against operator is
typically used with ε = ø.

By repeating the extension-against operator until the resulting rule no longer covers any
negative examples, a consistent concept description (one that covers no negative examples)
can be generated.  Such a process can be applied in order to generate a description (cover)
that is complete and consistent with regard to all the training examples.

By applying the extension-against operator with different values of the parameter ε, one       can
generate descriptions with different degrees of generality.  For instance, in AQ15c, in order
to learn a characteristic rule, the output of the operator with ε initially set to ø is maximally
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specialized in such a way that it continues to cover all of the positive examples described by
the initial extension.  If discriminant rules are desired, the extension will be maximally
generalized so long as it continues not to cover any negative examples of the concept.

In order to effectively apply the extension-against operator to structured attributes, new
generalization rules need to be defined.  Let us illustrate the problem by an example that
uses a structured attribute “Food” shown in Figure 10.  Each non-leaf node denotes a
concept that is more general than its children nodes.  These relationships need to be taken
into consideration when generalizing given facts.  Suppose that the concept to be learned is
exemplified by statements: “John eats strip steak” and “John doesn’t eat vanilla ice cream.”
There are many consistent generalizations of these facts, for example, “John eats strip
steak,” “John eats steak,” “John eats cattle,” “John eats meat,” “John eats meat or
vegetables,” or “John eats anything but vanilla ice cream.”  The first statement represents
the maximally specific description (no generalization), the last statement represents the
maximally general description, and the remaining ones represent intermediate levels of
generalization.  A problem arises in determining the generalization of most interest for a
given situation.  We approach this problem by drawing insights from human reasoning.

Food

Meat                                  Vegetable                        Dessert

Cattle            Pigs         Fowl       Carrots   Broccoli    Beans  Frozen      Pies     Pudding

Hamburger  Steak   Veal     Green   Pinto   Baked       Ice Cream   Sherbet    Cherry  Apple

T-Bone   Strip                                         Vanilla    Rocky Road+ -+

Anchor nodes are shown in bold.  Nodes marked by +  and —  are values
occurring in positive and negative examples, respectively.

Figure 10.  The domain of a structured attribute “Food.”

Cognitive scientists have noticed that people prefer certain nodes in a generalization
hierarchy (concepts) over other nodes when creating descriptions (e.g., Rosch et al, 1976).
Factors that influence the choice of a concept (node) include the concept typicality (how
common are a concept’s features among its sibling concepts), and the context in which the
concept is being used.  For instance, upon seeing a robin (a typical bird), we may say,
“There is a bird,” rather than “There is a robin,” assuming that the given situation does not
require a specification of the type of bird.  On the other hand, when we see a penguin, a
much less typical bird, we are more likely to say “There is a penguin,” rather than “There is
a bird”.  This way a listener (who is not an observer) will not assign to the unseen bird
characteristics typical to a bird, but rather the special characteristics of a penguin.  This
facilitates communication.  Context also comes into play; at a gathering of bird watchers,
the robin will not likely be called simply a bird, but rather will be referred to by its
taxonomic name.
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To provide some mechanism for capturing such preferences, INLEN allows a user to
define anchor nodes in a generalization hierarchy.  Such nodes should reflect the interests
of a given application (Kaufman and Michalski, 1996).  To illustrate this idea, consider
Figure 10 again.  In this hierarchy, vanilla and rocky road are kinds of ice cream; ice cream
is a frozen dessert, which is a dessert, which is a type of food.  In everyday usage,
depending on the context, we will typically describe vanilla or rocky road as ice cream or
dessert, but less likely as frozen dessert or food.  Hence, we can designate dessert and ice
cream as anchor nodes in the Food hierarchy.  Using information about anchor nodes,
different rule preference criteria can be specified, such as selecting the rule with the most
general anchor nodes, or the one that generalizes positive examples to the next higher
anchor node(s).

INLEN supports the use of structured attributes both as independent (input) and dependent
(output) variables.  Structured independent attributes represent hierarchies of values that are
used to characterize entities.  Structured dependent attributes represent hierarchies of
decisions or classifications that can be made about an entity.  Through the use of structured
output attributes, INLEN’s learning module can determine rules at different levels of
generality.

While dependent attributes, like independent ones, can take on in principle different types
(nominal, linear, cyclic or structured), in practical applications they are frequently either
nominal or linear.  A nominal output attribute is most frequently used in concept learning;
its values denote concepts or classes to be learned.  A linear output attribute (which is
typically a measurement on a ratio scale) is used to denote a measurement whose values are
to be predicted on the basis of the past data.

In many applications, it is desirable to use a structured attribute as a dependent variable.
For example, when deciding which personal computer to buy, one may first decide the
general type of the computer—whether it is to be IBM PC-compatible or Macintosh-
compatible.  After deciding the type, one can focus on a specific model of the chosen type.
The above two-level decision process is easier to execute than a one-level process in which
one has to directly decide which computer to select from a large set.

When a dependent variable is structured, the learning operator focuses first on the top-level
values (nodes), and creates rules for them.  Subsequently, it creates rules for the
descendant nodes in the context of their ancestors.  This procedure produces decision rules
that are simpler and easier to interpret than rules learned with a flat (nominal) organization
of the decision attribute.

8   Learning Decision Structures from Decision Rules

One of the main reasons for data exploration is to learn rules or patterns in data that will
enable a data analyst to predict future cases.  Thus, when such rules are learned, one needs
a method for efficiently applying the rules for prediction.  Since a convenient structure for
implementing a decision process is a decision tree, the problem of how to transfer
knowledge to a decision tree arises.  In the conventional machine learning approach,
decision trees are learned directly from training examples, thus avoiding the step of first
creating rules (Hunt, Marin and Stone, 1966; Quinlan, 1986; 1993).

Learning a decision tree directly from examples, however, may have serious disadvantages
in practice.  A decision tree is a form of procedural knowledge.  Once it has been
constructed, it is not easy to modify it to accommodate changes in the decision-making
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conditions.  For example, if an attribute (test) assigned to a high-level node in the tree is
impossible or too costly to measure, the decision tree offers no alternative course of action
other than probabilistic reasoning (Quinlan, 1986).

In contrast, a human making the decision would probably search for alternative tests to
perform.  People can do this because they typically store decision knowledge in a
declarative form.  From a declarative form of knowledge, such as a set of decision rules,
one can usually construct many different, but logically equivalent, or nearly equivalent,
decision trees.  One such decision tree may be preferable to another in a given decision-
making situation.  Therefore, it is desirable to store knowledge decoratively and to transfer
it only when the need arises to the procedural form that is most appropriate to the given
situation.

Another weakness of decision trees is that they may become unwieldy and
incomprehensible because of their limited knowledge representational power.  To overcome
the above limitations, a new approach has been developed that creates task-oriented
decision structures from decision rules (Imam, 1995, Michalski and Imam, 1997).  A
decision structure is a generalization of a decision tree in which tests associated with nodes
can refer not only to single attributes, but also to functions of multiple attributes; branches
may be associated not only with single values/results of these tests, but also with a set of
such values; and leaves can be assigned not only a single decision, but also a set of
alternative decisions with appropriate probabilities.

This approach has been implemented in the AQDT-2 program, and employs an AQ-type
learning algorithm (AQ15c and AQ17-DCI) for determining decision rules from examples.
Among its advantages are the ability to generate a decision structure that is most suitable to
a particular task and the ability to avoid or delay measuring costly attributes.  Different
users may want to generate different decision structures from a given set of rules, so that
the structures are tailored to their individual situations.  Furthermore, if an attribute is
difficult to measure, or cannot be measured at all, the program can be instructed to build a
decision structure from rules that tries to avoid this attribute, or measure it only when
necessary.

Another advantage of this methodology is that once a rule set is determined, a decision
structure can be generated from it far more rapidly than if it has to be determined from
examples, hence processing time is very small.  Also, a set of rules will take up less
storage space than the data set from which it was learned.

Experiments with AQDT-2 indicate that decision structures learned from decision rules tend
to be significantly simpler than decision trees learned from the same data, and frequently
also have a higher predictive accuracy.  For example, a decision structure learned by
AQDT-2 for a wind bracing design problem had 5 nodes and 9 leaves, with a predictive
accuracy of 88.7% when tested against a new set of data, while the decision tree generated
by the popular program C4.5 had 17 nodes and 47 leaves with a predictive accuracy of
84% (Michalski and Imam, 1997).  In another experiment, a decision tree learned from
decision rules by AQDT to analyze Congressional voting patterns had 7 nodes and 13
leaves, with a predictive accuracy of 91.8% (when AQDT built an equivalent decision
structure by combining some branches, the number of leaves was reduced to 8), while the
decision tree learned by C4.5 from the same set of training examples had 8 nodes and 15
leaves, with a predictive accuracy of 85.7% (Imam and Michalski, 1993).



2 6

This methodology directly fits the philosophy of INLEN.  A rule base may be provided
either from an expert or through the use of a rule learning operator, thereby allowing for the
generation of decision structures from rules.

9 Automatic Improvement of Representation Spaces
9 . 1 Determining Most Relevant Attributes

In a large database, many attributes may be used to characterize given entities.  For any
specific problem of determining rules characterizing the relationship between a designated
output attribute and other attributes, it may be desirable to limit the independent attributes to
the most relevant ones.  To this end, one may use many different criteria for evaluating the
relevance of an attribute for a given classification problem, such as gain ratio (Quinlan,
1993), gini index (Breiman et al, 1984), PROMISE (Baim, 1982), and chi-square analysis
(Hart, 1984; Mingers, 1989).

These criteria evaluate attributes on the basis of their expected global performance, which
means that those attributes with the highest ability to discriminate among all classes are
selected as the most relevant.

When determining a declarative knowledge representation, such as decision rules, the goal
is somewhat different.  Here, each class is described independently from other classes, and
the simplest and most accurate rules for each class are desired.  Hence, if an attribute has a
single value that characterizes very well just one specific class, the attribute with this value
will be used effectively in a corresponding decision rule.  In contrast, such an attribute may
have a low global discriminating value, and is thus ignored in building a decision tree.  It
follows that the determination of attributes for decision trees and for decision rules needs to
follow different criteria.

To illustrate this point, consider the problem of recognizing the upper-case letters of the
English alphabet.  Two of the attributes to be considered might be whether the letter has a
tail and whether it is made up exclusively of straight lines.  In a rule-based (declarative)
representation, the letter Q can be distinguished from the rest of the alphabet by a simple
and concise property, if the letter has a tail, it is a Q.  Conversely, the straight line condition
is alone insufficient to discriminate any specific letter, but is useful overall.

Thus, the attribute has-tail is very useful for learning one specific class, although not very
useful for characterizing other classes.  It is thus appropriate for use in rule learning.  In
decision-tree learning, however, it may be evaluated as having a relatively low overall
utility and replaced by other attributes.  This will most likely happen if Qs are relatively
rare.  Hence, testing the letter for a tail will be considered a wasted operation, as it only
serves to eliminate the possibility of it being a Q, without making any progress in
distinguishing between the other 25 letters.  Meanwhile, testing the condition all-straight-
lines immediately bisects the search space.  It is better to pare down the set of hypotheses
more rapidly, and only check for a tail as a last step when the set of possible letters has
been reduced to O and Q.  This way, the recognition of Q will require more tests than
necessary, but at no expense to the recognition of other letters.

INLEN supports both global and local attribute evaluation criteria for selecting the most
relevant attributes.  The former is based on the PROMISE methodology (Baim, 1982),
while the latter employs a variation of PROMISE that is oriented toward the maximum
performance of some attribute value, rather than on the attribute’s global performance.
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9 . 2 Generating New Attributes

When the original representation space is weakly relevant to the problem at hand, or the
concept to be learned is difficult to express in the from of attributional decision rules such
as those employed in INLEN, there is a need to generate new attributes that are functions of
the original ones and better suited to the given problem.  This is done by a constructive
induction operator based on the program AQ17-DCI (Bloedorn and Michalski, 1996).

In the case of a database that contains information on objects changing over time, one needs
a mechanism for constructive induction that can take advantage of the time data ordering.
For example, the database may contain information on the maximum temperature at a given
location each day, with a field in each record indicating the day on which its temperature
was recorded.  Inherent in a timestamped representation are many attributes that can be
generated through constructive induction, for example, date of the highest temperature, the
minimum population growth rate during some period, weediness on date of planting, etc.

CONVART (Davis, 1981) uses user-provided and default system suggestions to search for
useful time-dependent attributes that are added to the representation space.  It uses the items
on the suggestion list to generate new attributes and to test them for likely relevance to the
problem.  If they exceed a relevance threshold, it adds them to the representation space,
repeating this procedure until a desired number of new attributes have been constructed.
As part of its attribute construction capability, INLEN will incorporate such techniques for
the generation of time-dependent attributes.

1 0 Exemplary Application: Discovery in Economic and
Demographic Data

1 0 . 1 Motivation

Economic analysis is one domain in which conceptual data exploration tools can be of great
value.  The following example illustrates the role an intelligent data exploration system can
play in the extraction of knowledge from data.

The United States government maintains records of the import and export of goods
from various countries of the world.  The different products and raw materials are
divided and subdivided into different categories.  In the early 1980s the data showed a
sharp decline in the import of trucks from Japan and a corresponding increase in the
import of auto parts from Japan.  It took several years before analysts noticed that fact
and concluded that Japan was shipping the chassis and truck beds separately to the
US, where they would be subsequently assembled, thereby avoiding a high US tariff
on imported trucks that was directed primarily at Europe and had been on the books
since World War II.  When United States analysts inferred this explanation, the US
and Japan commenced trade negotiations pertaining to the import of trucks.

How much sooner would that trend have been noticed had a conceptual data exploration
program been applied to the data and pointed out the opposite changes in two related
categories to an analyst?  How much revenue did the undiscovered truth cost the US before
they could finally work out a new agreement with Japan?  Noticing economic trends and
patterns like the one above is a difficult task, as humans can easily get overwhelmed by the
amount of data.
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Based on such motivation, the analysis of economic and demographic data has become one
of the focus domains for INLEN development and testing.  We illustrate some of its
discovery capabilities through experiments involving two similar data sets:  one provided
by the World Bank consisting of information on 171 countries for the period of 1965 to
1990 (in terms of 95 attributes), and one extracted from the 1993 World Factbook
(published by the Central Intelligence Agency) containing several databases of information
on 190 countries (in terms of 17 attributes).

1 0 . 2 Experiment 1: Integration of Multiple Operators

The World Bank data enabled us to conduct a number of experiments for testing INLEN
capabilities.  One experiment focused on distinguishing between development patterns in
Eastern Europe and East Asia, first by identifying such patterns, and then by generating
discriminant rules (Kaufman, 1994).

A conceptual clustering operator determined a way of grouping the countries, based on
each country’s change in the percentage of its population in the labor force between 1980
and 1990.  In this classification, the typical Eastern European country and the typical East
Asian country fell into separate groups.  Most of the European countries had a labor force
change below a threshold determined for the region by the clustering program, while most
of the Asian countries had changes in labor force participation above the threshold
determined for their region.

Based on this grouping, the rule learning operator (using the AQ15c inductive learning
program) was called upon first in characteristic mode to characterize the Asian-like
countries (those above their regional thresholds) and the European-like countries (those
below their regional thresholds), and then in discriminant rule-optimizing mode to
condense those characterizations into simple discriminant rules.  The discriminant rules
obtained were:

Country is Asian-Like if:
A.1 Change in Labor Force Participation ≥ slight_gain, (9 countries)

or
B.1 Life Expectancy is in 60s, and
   2 Working Age Population ≤ 64%, (2 countries)

Country is European-Like if:
A.1 Change in Labor Force Participation is near 0 or decreasing, and
   2 Life Expectancy is not in 60s, (7 countries)

or
B.1 Percentage of Labor Force in Industry ≥ 40. (1 country)

The rules show that of the 10 attributes in the original data set, only four attributes are
instrumental in distinguishing between the European-style and Asian-style development
patterns, namely Change in Labor Force Participation, Life Expectancy, Working Age
Population and Percentage of Labor Force in Industry.  In both the Asian- and European-
Like       cases, the first rule accounted for most of the countries fitting the class, while the
second one described the remainder.

This experiment demonstrated one of the cornerstone features of the methodology - an
integration of different learning and discovery strategies that allows knowledge to be
passed from one operator to another in a seamless way, leading to conclusions unreachable
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by any one individual program.  It also shows that the rules created by the system are easy
to understand and interpret.

1 0 . 3 Experiment 2: Detecting Anomalies in Subgroups

Another experiment with INLEN investigated the problem of detecting interesting
regularities within the subgroups it creates.  While the subgroups in a demographic domain
may indicate that member countries or regions have something in common, notable
exceptions may be exposed when a member of these constructed subsets shows a marked
dissimilarity to the rest of the group.  These exceptions in turn may prove to be a
springboard for further discovery.

INLEN discovered several rules from the World Factbook PEOPLE database characterizing
the 55 countries with low (less than 1% per year) population growth rates by invoking the
rule learning operator in characteristic mode.  One of the characteristic descriptions (Figure
11) had three conditions that together characterized 19 low growth countries and only one
with higher population growth rates.

Characteristic Description of Countries with Population Growth Rate
below 1 per 1000 people:     Pos        Neg        Supp        Comm     

1 Birth Rate = 10 to 20 or Birth Rate ≥ 50 46   20  69%   84%
2 Predominant Religion is Orthodox or 40   68  37%   73%

Protestant or Hindu or Shinto
3 Net Migration Rate ≤ +20 32 104  23%   58%

All 3 conditions: 19     1  95%   35%

Figure 11.  A characterization of countries with low population growth.

In the characterization shown in Figure 11, the columns Pos and Neg respectively represent
the number of positive and negative examples satisfying the condition.  The support level
(Supp) is defined as Pos / (Pos + Neg), giving an indication of how much support the
condition lends to the suggestion that a country’s Population Growth Rate is less than 1%.
The commonality level (Comm) is defined as Pos / Total_Pos, giving an indication of how
commonly the condition occurs in countries with Population Growth Rates below 1% (in
this example, Total_Pos = 55).

The first condition (and thus the strongest in terms of support level) states that countries
with population growth rate below 1% have a low (under 20 per 1000 population) or very
high (over 50 per 1000 population) birth rate.  The presence of a very high birth rate in
countries with low population growth is highly counterintuitive; examination of the 19
countries covered by the description pointed out that 18 had birth rates below 20, while
only one, Malawi, had the high birth rate.  When further attention was focused on Malawi,
the explanation was clear.  Malawi had a massive outward net migration rate of over 30 per
1000 population, by far the most extreme migration rate in the world.  INLEN thus
facilitated a discovery of a surprising exception to a normal pattern.

1 0 . 4 Experiment 3: Utilizing Structured Attributes

The rule shown in the previous example contained an attribute “predominant religion.”
This attribute was presented as a nominal attribute in the initial dataset.  In order to examine
how the structuring of attributes affects knowledge discovery, INLEN was applied to
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identical data sets with and without the Religion attribute being structured (Kaufman and
Michalski, 1996).  A portion of the attribute domain structure is shown in Figure 12.

One strong argument for structuring is that if the Predominant Religion attribute has been
set up in an unstructured (nominal) manner, the statement “Predominant Religion is
Lutheran” would be regarded as being as antithetical to “Predominant Religion is Christian”
as it is to the statement “Predominant Religion is Buddhist,” since “Lutheran,” “Christian”
and “Buddhist” are all considered equally different in a “flat” domain.  This would lead to
the possibility that some contradictions such as “Predominant Religion is Lutheran, but not
Christian” might be generated.

Predominant Religion

Muslim          Jewish     Buddhist     Shinto        Christian       Hindu

Sunni        Shi’a         Ibadhi             Theravada      Protestant     Orthodox      Roman Catholic

Lutheran           Evangelical        Georgian    Bulgarian        Romanian
         Anglican                Tuvalu             Armenian          Greek

Figure 12.  Part of the structure of the PEOPLE database’s Religion attribute.

Experiments using INLEN-2 have lent support to this and other hypotheses regarding the
use of structured and non-structured attributes.  Among the findings regarding their use as
independent variables was that structuring attributes leads to simpler rules than when not
structuring them.  For example, when INLEN learned rules to distinguish the 55 countries
with low population growth rate (less than 1%) from other countries, in a version of the
PEOPLE database in which the attribute “Predominant Religion” was not structured, one of
the rules it found was:

Population Growth Rate < 1% if: (20 examples)
1 Literacy = 95% to 99%,
2 Life Expectancy is 70 to 80 years,
3 Predominant Religion is Roman Catholic or Orthodox or Romanian or Lutheran or

Evangelical or Anglican or Shinto,
4 Net Migration Rate ≤ +20 per 1000 population.

This rule was satisfied by 20 of the 55 countries with low growth rates. When the same
experiment was run with “Religion” used as a structured attribute, a simpler pattern was
discovered:

Population Growth Rate < 1% if: (21 examples, 1 exception)
1 Literacy = 95% to 99%,
2 Life Expectancy is 70 to 80 years,
3 Predominant Religion is Christian or Shinto,
4 Net Migration Rate ≤ +10 per 1000 population.
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This rule has one exception (the United States, whose 1993 population growth rate was
between 1% and 2%).  If full consistency is required, the third condition could still be
expressed in a simpler form than in an unstructured religion domain by performing a
minimal specialization operation on the node Christian so that the rule would cover the
same positive examples, but not the exception.

Similar differences were obtained by structuring dependent attributes.  By arranging events
into different levels of generality, rules classified them accordingly, which reduced the
complexity and increased the informational significance of the rules at different levels of
generalization.

These effects were especially visible at the lower levels of the hierarchy.  In the
unstructured dataset, five rules, each with two to five conditions, were required to define
the 11 Sunni Muslim countries.  The only one to describe more than two of the 11
countries was a rule with quite fragmented conditions:

Predominant Religion is Sunni_Muslim if:   (4 examples)
1 Literacy ≠ 30% to 99%,
2 Infant Mortality Rate is 25 to 40 or greater than 55 per 1000 population
3 Fertility Rate is 1 to 2 or 4 to 5 or 6 to 7 per 1000 population,
4 Population Growth Rate is 1% to 3% or greater than 4%.

The value ranges in these conditions are divided into multiple segments, suggesting that
this is not a strong pattern.  In contrast, using a structured religion attribute, the learning
operator produced two simple and easily understood patterns, each with one only
condition:

Predominant Religion is Sunni_Muslim if:   (10 examples, 1 exception)
1 Infant Mortality Rate ≥ 40 per 1000 population.

Predominant Religion is Sunni_Muslim if:   (4 examples)
1 Birth Rate is 30 to 40 per 1000 population.

As described above, these rules apply only in the context of predominantly Islamic
countries, and are based on the assumption that that determination has already been made.

1 0 . 5 Experiment 4: Applying Constructive Induction Operators

An experiment chronicled by Bloedorn and Michalski (1996) demonstrates the power of
utilizing constructive induction as a knowledge discovery operator.  Working from 11
economic attributes sampled over each of five consecutive years, 1986-1990 (for a total of
55 available attributes per record), the learning program attempted to discover rules to
predict countries’ changes in gross national product over the 5-year period.  By applying
three data-driven constructive induction operators—generating new attributes based on the
existing attribute set, removing attributes less relevant to the goal concept, and abstracting
numerical attributes into a small number of intervals—the predictive accuracy on new data
increased by nearly half (from 41.7% to 60.5%).

Among the newly constructed highly relevant attributes were Change in Energy
Consumption Between 1986 and 1988, Ratio of Birth Rate in 1989 to Energy
Consumption in 1990, and Average Annual Energy Consumption Over the 5-year Period.
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These results demonstrated that constructive induction can be a very useful tool for
analyzing data, as it can build more adequate representation spaces for knowledge
discovery.

1 1 Summary

The main thesis of this paper is that modern methods developed in symbolic machine
learning have a direct and important application to the development of new operators for
conceptual data exploration.  A wide range of ideas on the applicability of various machine
learning methods to this area were presented.

Two highly important operators are the construction of conceptual hierarchies (conceptual
clustering), and the inductive derivation of general rules characterizing the relationship
between designated output and input attributes.  These rules represent high-level
knowledge that can be of great value to a data analyst and directly usable in human
decision-making.  Other important operators include construction of equations along with
logical preconditions for their application, determination of symbolic descriptions of time
sequences, selection of most relevant attributes, generation of new, more relevant
attributes, and selection of representative examples.

In contrast to many data mining approaches, the presented methodology requires a
considerable amount of background knowledge regarding the data and the domain of
discourse.  This background knowledge may include, for example, a specification of the
domain and the type of the attributes, the relationships among them, causal dependencies,
theories about the objects or processes that generated the data, goals of the data analysis
and other high-level knowledge.  An important aspect of the methodology is its ability to
take advantage of this knowledge.

The machine learning techniques implemented in the INLEN system allow a user to
perform easily a wide range of symbolic data manipulation and knowledge generation
operations.  The illustrative examples demonstrate a significant potential utility of the
described multistrategy methodology in solving problems of data mining and knowledge
discovery.
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