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Data mining and pattern recognition methods reveal interesting findings in genetic

studies, especially on how the genetic makeup is associated with inherited diseases.

Although researchers have proposed various data mining models for biomedical

approaches, there remains a challenge in accurately prioritizing the single nucleotide

polymorphisms (SNP) associated with the disease. In this commentary, we review the

state-of-art data mining and pattern recognition models for identifying inherited diseases

and deliberate the need of binary classification- and scoring-based prioritization methods

in determining causal variants. While we discuss the pros and cons associated with these

methods known, we argue that the gene prioritizationmethods and the protein interaction

(PPI) methods in conjunction with the K nearest neighbors’ could be used in accurately

categorizing the genetic factors in disease causation.

Keywords: inherited diseases, data mining, machine learning, single nucleotide polymorphism, protein-protein

interaction

INTRODUCTION

Many human diseases that have a causative association with genetic components are called as
inherited diseases. Recent advances have significantly improved our understanding on diseases
and inherited factors that play an important role in the disease paradigm (Schrodi et al., 2014).
While it is a challenging task to identify the variants associated with inherited diseases through
wet-lab based techniques, there is a need to find the causal effects of genetic changes associated
with inherited diseases such as Autism, Schizophrenia, Bipolar disorder, etc. However, due to the
complexity of the human genome, information from traditional methods such as human pedigree
analysis has been in demand. In humans, as crosses cannot be performed due to ethical reasons,
genealogical records need to be scrutinized to distinguish autosomal diseases from other forms of
inherited diseases like X-linked diseases. Conversely, animals have been employed as models to
ascertain factors linking to such diseases and causal mutations. From these studies, the pedigree
or genealogy trees are interpreted to understand concurrent pairs of phenotypes for the diseasome
studies. Such phenotypic studies would further allow us to understand the inheritance patterns of
a disease associated with genetic polymorphism.

In the recent-past, there is a great deal of information outlying the genes associated with
polymorphisms in relation to single nucleotide polymorphisms (SNP), genetic variants, multi
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nucleotide polymorphisms (MNP), quantitative trait loci (QTL),
gene ontology (GO), and protein-protein interactions (PPI) or
association and transcriptomic datasets coming from RNA-Seq
data (Costa et al., 2013; Schrodi et al., 2014). Nevertheless, the
genetic variation can be best seen with the intragenic/intronic
regions or those that are non-coding or non-regulatory in nature.
As most of the sequences associated with non-coding or non-
regulatory regions, especially miRNAs, are highly conserved, it
would be difficult to find the SNPs associated with them and
their principal component part of diseasome studies is debated.
Although the root cause for such genetic models could be studied
by patterns associated with these polymorphisms, there remains
a challenge on how these models are essential for understanding
different data types.

PERFORMANCE OF THE SNP BASED
APPROACHES FOR IDENTIFYING
INHERITED DISEASES

With the SNPs as genetic variants (Jiaxin et al., 2010), traditional
classification methods and novel data mining techniques were
explored to show effectiveness of different algorithms in
identifying the disease association (Jiang et al., 2007). The SNPs
located within protein coding regions can be further categorized
into synonymous and non-synonymous SNPs (nsSNPs). A
synonymous SNP does not alter the protein sequence, whereas
the non-synonymous substitutions potentially affect protein
function that may result in diseases (Yates and Sternberg,
2013). In methods used for classification and machine learning,
the nsSNPs have been known to serve as better candidates,
for example in studies involving binary classification with
ensemble learning approach (Breiman, 1999). The methods such
as AdaBoost (Figure 1), Random forest, L2boosting, stochastic
gradient regression are known to fall short of classification
methods such as decision tree and support vector machines
(Jiaxin et al., 2010; Benso et al., 2013).

The five ensemble learning approaches and two classification
methods are briefly tabulated in Table 1. Essentially, the
following three categories of data are integrated to identify
disease-causing SNPs of statistical significance: (a) annotations
of nsSNPs extracted from the Swiss-Prot database (Consortium,
2010), (b) annotation of the protein families and structural
domains extracted from Pfam database (Finn et al., 2006), and
(c) a domain-domain interaction network obtained from the
DOMINE (Raghavachari et al., 2008) and the InterDom database
(Ng et al., 2003). From our preliminary observations, when we
test all the classifiers against the above data, they seem to perform
well in disease causing nsSNPs against regular nsSNPs. However,
when comparing only four pre-set evaluation criteria, we find
them to have significant differences from the random situations
(Figure 2). The performance of approaches in identifying SNPs
associated with diseases is measured by accuracy of the prediction
(ACC), proportion of correctly classified cases (Horn et al.,
2003), the area under receiver operating characteristic (ROC)
curve (also called AUC), understating the prediction power of a
given classification method, the balanced error rate (BER), and
Matthew’s correlation coefficient (MCC) which represents the

prediction power under a certain decision threshold considering
the biased and unbiased samples. Generally, smaller the BER,
larger are the ACC and MCC. These methods have been
reviewed elsewhere and are in agreement with the datum that
Logit boost algorithm is the best method (Jiaxin et al., 2010).
Results of the decision tree are distinguished more from other
ensemble classifiers; BER of the decision tree is higher than other
classifiers. The performance wise arrangement of the classifiers
are L2boosting < stochastic gradient regression < SVM <

Adaboost < random forest tree < logitboosts (Jiaxin et al.,
2010). These methods for prioritizing candidates are based on
the integrated use of two-sequence conservation features and
methods such as domain-domain interaction networks. The
bioinformatics based methods such as PolyPhen (Ramensky
et al., 2002), SIFT (Ng and Henikoff, 2003), KBAC (Liu and
Leal, 2010), and MSRV (Jiang et al., 2007) along with binary
classificationmethods provide limited information in prioritizing
disease-associated nsSNPs when compared to multiple sequence
alignment (MSA) methods (Rui and Jiaxin, 2011) which extracts
conserved protein sequences underlying the mutation.

To overcome this limitation, we introduced methods that
integrate conservation properties of amino acids and domains
harbored calculated association score (Rui and Jiaxin, 2011). A
brief description is given below.

Calculation of Similarity Scores between
nsSNPs
The purpose of using following equations is to measure the
similarity scores between a single pair of nsSNPs, first getting an
nsSNP and the corresponding amino acid substitution occurring
at a certain position. The probability of occurrence of the original
amino acid (Porg) is calculated at a similar position of the protein
super family. For this purpose, the Pfam database is used to
extract the multiple sequence alignment (MSA) of the query
protein to find the number of occurrences of the original amino
acid at the corresponding position of the alignment and then to
divide the number of occurrences by the number of proteins in
the alignment (Rui and Jiaxin, 2011).

First Equation corresponds to probability of occurrence of the
original amino acid (Porg).

Simorg (a, b) = 1− | porg (a)− porg (b) |

Second Equation corresponds to probability of occurrence of the
substituted amino acid (Psub).

Simsub (a, b) = 1− | psub (a)− psub (b) |

Third Equation corresponds to calculation of diffusion kernel of
the domain-domain interaction network

SimDDI (a, b) = KDDI (a, b),

Prioritization of Candidate nsSNPs
After calculating the single pairwise similarity measure of
nsSNPs, the prioritization of a set of candidate nsSNPs is done
by “guilt-by-association principle” (Altshuler et al., 2000). The
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FIGURE 1 | Flow chart of the Ada-Boost Algorithm.

association score for a candidate nsSNPs as the mean similarity
value between the nsSNP and all seed nsSNPs is calculated using

A(c) =
1

S(d)

∑

s∈ S(d)

Sim(c, s),

where c is a candidate nsSNP, A(c) is the association score and
S(d) the set of seed nsSNPs from query disease d.

Integrating Multiple Ranks
The multiple ranking lists obtained from guilt-by-association
principle is applied to each data sources. Here, an altered
Stouffer’s Z-score method is provided to integrate the ranks and
to obtain a single ranking list.

Z
(K)
i = 8

−1

(

1−
r
(k)
i + 0.5

max(r
(k)
i )+ 1

)

The integrated Z-score is made by adding up their corresponding
Z-scores as following equation. Finally, they are re-ranked
according to the integrated Z-scores in decreasing order to obtain
the integrated ranking list.

Z
(k)
i =

m
∑

k = 1

z
(k)
i√
m

We argue that there are certain limitations in this approach, as
it is a choice for extracting conserved protein domains using
the Pfam database. To overcome the problem of identifying the
variants, few other sequence alignment tools such as BLAST
or PSIBLAST can be used to extract sequence conservation
features (Altschul et al., 1997) which highlight the mutations
in genome regions such as transcriptional-factor binding sites
or promoter regions (Jiaxin et al., 2010; Rui and Jiaxin, 2011).
While a binary classification solution such as Logitboost is

found to be a more accurate classification algorithm, it is
fully dependent on the multiple sequence alignment. However,
combining the multiple sequence analysis and domain-domain
interaction method is a better method to identify nsSNPs
associated with diseases. Further enhancement of domain-
domain interaction models would allow us to evaluate the
functional similarity between two genes and their products.
These data sources contain gene expression profile, gene ontology
annotations, PPI.

COMBINATION OF SNP METHODS
ATTRIBUTING TO INHERITED DISEASES

With SNPs and other clinical conditions contributing to a wide
range of inherited diseases (Fiaschi et al., 2009), a general
framework has been proposed to find variants for pre-eclampsia,
a progressive disorder that occurs during pregnancy and soon
after the birth, affecting both the mother and the baby (Roberts
et al., 1989). Mutated risk genes, genetic, and environmental
factors are thought to be of key importance in such diseases
(Risch and Merikangas, 1996; Liangcai et al., 2008). Further
methods have been proposed to analyze risk pathway of the
bipolar disorder (BD; Hirschfeld et al., 2003). Keeping in
view of the fact that detection of associations between human
genetic variant and their phenotypic involvement is a significant
challenge in understanding genetic basis of inherited diseases in
humans (Wu et al., 2014), various methods, viz. ID3 (Breiman
et al., 1999), ADTree (Freund and Mason, 1999), and C4.5
(Quinlan, 1993) have been recognized. Most of the current
systems, however, predict associations between nsSNPs and
diseases based on features obtained from only protein sequences
and/or structure information, and do not provide details about
which specific disease is associated with nsSNPs. Further, to
evaluate combination of methodologies, analysis of the disease
association of the SNPs and environmental factors in the KEGG
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TABLE 1 | Comparison of the Ensemble learning approaches.

Methods Description Features

AdaBoost Adaboosting (adaptive boosting) is one of the most popular boosting algorithms.

This algorithm is characterized by its adaptive changes to fit sample weights

during the boosting process, according to the weighted classification error

identified from the last training (Vapnik, 1991).

Advantage of the decision tree as the basic “weak” classifier

(Jiaxin et al., 2010).

LogitBoost Logiboost is an improved version of the AdaBoost algorithm. The main difference

between Adaboost and Logiboost is that Logiboost puts confidence on the

binomial log-likelihood as a loss function, more likely in binary classification than

the exponential basis underlying the Adaboost algorithms.

Compared with Adaboost, LogitBoost is found to be more

effective in case of noisy data, easier to implement and does

not require tuning and model or kernel selection like neural

networks or support vector machines. LogitBoost can work

with Logit models, decision stump, or decision trees

(Friedman et al., 2000; Jiaxin et al., 2010).

Random Forest

trees

Random forest is a boosting method implemented for voting most popular tree

after many classification trees have been grown. In large data sets, the method

shows outstanding efficiency.

This method has several advantages, like few parameters to

be adjusted, no over-fitting problem, fast computational

speed, and a strong ability of anti-noise characteristics. In

addition, Random forests have a built-in method to estimate

the importance of features. This method is usefully to

prioritize the features by their importance and reduce the

feature set in order to improve the computational complexity

(Jiaxin et al., 2010).

L2boosting L2boosting is a gradient boosting algorithm for optimizing arbitrary loss functions

where component based linear models are made use of based learners. It has

shown better performance compared to decision stumps (tree with two terminal

nodes) and other more common competitors, particularly when the predictor

space is multi-dimensional.

In addition, L2boosting works well with both regression and

classification problems. It shows comparably better

performance for classification related problems like

LogitBoost (Jiaxin et al., 2010).

Stochastic gradient

regression

Stochastic gradient is a regression prediction method. This method uses

regression tree as a base learner. The optimization of the gradient descent,

stochastic gradient regression utilizes the pseudo-residuals resulting from negative

gradient of loss function to set up iterative regression tree.

This algorithm randomly selects part of the pseudo-residual

to make regression tree instead of the whole

pseudo-residuals. This model can be a linear combination of

some regression trees (Jiaxin et al., 2010).

Support Vector

Machine

Support Vector Machine (SVM), also known as “Support Vector Network” is a

machine learning method for binary classification problems, although

implementations of multi-class SVMs exist to map input vectors to a

multi-dimensional feature space. A linear decision environment is built with special

properties ensuring high generalization ability of a machine learning approach.

The idea behind the support vector network has been

extensively implemented in biology with some method for the

restricted case where training data can be separated without

errors, further extending this result to non-separable training

data (Cortes and Vapnik, 1995).

Decision trees This method applies to scenarios in which specific decision alternatives cannot be

predicted with high level of confidence. It is a hierarchical modeling system for

supervised learning where local regions are identified by a sequence of recursive

splits in few steps. A tree here is composed of decision nodes and terminal leaves.

The trees can be of various types like univariate trees, classification trees,

regression trees etc. When making a decision, a lot of different factors are taken as

inputs, the decision tree uses its own feature selection strategy to select only those

useful for classification (Breiman et al., 1999; Alpaydin, 2014).

Decision tree solves complex decisional problems having

significant uncertainty(Safavian and Landgrebe, 1991).

pathways can be done through which we could represent the
SNP networks of molecular wiring diagrams, in addition to
mapping genes to the reaction and interactions (Kanehisa and
Goto, 2000; Liangcai et al., 2008). There are few major steps of
calculating disease risks which focus on genetic factors involved
in the relationship between multiple genes and the diseases,
but also the metabolic environment factors between genes and
pathways. This can be further achieved by calculating the two
RS scores and by prioritizing the pathways. The RS measures
are integrated according to condition-dependent theory, and the
association between the biological pathways and the complex
disease is established through sorts of genes. The measurements
algorithm, viz. a SNP Pathway based Association Method

(SPAM) is briefed as follows (also see Figure 3) (Liangcai et al.,
2008).

RS (D, Pi) =
N
∑

j = 1















d(GSj, pi) ∗
1

M

∑

k = 1
gk ∈ GSj

maxRisk(gk,D)















Or

RS (D, Pi) =
N
∑

j= 1















d(GSj, pi) ∗
1

M

∑

k = 1
gk ∈ GSj

[

1−min p(gk,D)
]
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FIGURE 2 | Performance of the approaches as explained from the

methods (A) Rate of performance evaluation comparison of the each

classification methods; the accuracy of the prediction (ACC); the area

under the receiver operating characteristic (ROC) curve (AUC); the

balanced error rate (BER) and the Matthews’ correlation coefficient

(MCC). (B) Performance of the 7 approaches based on the true positive rate

vs. false positive rate.

Here, RS (D, pi) is the relationship scoring between pathway pi
and the disease D, N is the number of gene clusters on pathway
pi and d(GSj, pi) reveals the complexity of gene cluster GSj on
pathway pi. m is the number of genes with p < 0.05. M is the
count of all genes on pathway pi.

While comparing our method (SNPs analysis) with earlier
stated methods, we argue that other methods are effective only in
detecting partially known genetic or unknown genetic bases and
are used for analyzing queried protein sequences. To overcome
this limitation, PSI-BLAST (Altschul et al., 1997) or COBALT
(Papadopoulos and Agarwala, 2007) enables feature selection
methods. Family history related data can additionally be used to
infer performance of the proposed solution (Fiaschi et al., 2009),
in addition to feature selection entities such as transcriptional
and promoter regions (Liangcai et al., 2008; Wu et al., 2014).
Whereas the combination methods explain more originality of
how SNPs specific to diseases can be analyzed, KEGG pathways
are useful to scrutinize other environment factors with SNP data.
The phenotype data associated with diseases and its threshold
values are used to transform categorical data into Boolean ones
(Fiaschi et al., 2009) which helps in machine learning. However,

it must be done judiciously as selection may significantly
affect the accuracy of the solution. Wu et al. (2014) argue that
Canberra distance (Emran and Ye, 2001) algorithm is the best
to calculate distance between pairwise nsSNPs but in some cases,
the same distance may be inferred between two similar pairs
in the dataset as it is hard to classify or to associate with the
particular diseases.

Given the numbers of diseased gene prioritization generated
by wet lab techniques serve as a major impediment in human
genetics, bringing a multi-faceted approach for diagnostics
and treatment (Arrais and Oliveira, 2010) for diseases such
as autism (Kim et al., 2000), schizophrenia (Jingchun et al.,
2008) and diabetes should be strategically prioritized. That
said, the similarity between all strategies is the use of “guilt-by-
association” concept where the most relevant candidates will
be the ones that are similar to the genes already known to be
linked to the biological process of interest. Graph based models
for gene-disease prioritization consider biomedical terms such
as genes, pathways, homologies, ontologies, gene expression data
and literature in ascertaining the model (Arrais and Oliveira,
2010). The previous gene-disease prioritization models have
been built using gene related concepts to construct the questions
over biomedical databases and to create ranked list of genes.
Following this, from MeSH (Xu and Li, 2006), the statistical and
knowledge based combining data from gene ontology and MeSH
(Raghavachari et al., 2008) apart from probabilistic methods,
viz. Hyper-Induced Topic Search (HITS; Kleinberg, 1999) and
PageRank (Page et al., 1999) have been very useful. However, the
above methods lagged by annotation coverage and tend for large
biases.

PPI NETWORKS AND INHERITED
DISEASES

The availability of human genome-wide PPI data has opened
a wide outlook for discovering inherited disease genes by
studying topological features in PPI networks (Xu and Li, 2006).
Keeping in view of the fact that studies on proteins and their
interactions are important to understand their dynamic roles
for identification of inherited, and to a certain extent rare
immunological disorders, mapping the disease specific genes
(for example genes related to schizophrenia) into the whole
human interaction network and then the extraction of related
sub networks can throw light on the cellular mechanisms and
biological processes related to the inherited disease (Jingchun
et al., 2008). The sequence based features have previously been
exploited and found that in many cases there are significant
differences between genes responsible for human hereditary
disease and those not known to be involved in diseases (Xu and
Li, 2006). Genes associated with a human disease preferentially
interacted with other disease-causing genes, suggesting that
heritable disease-genes might share some topological features
in the PPIs network when compared to the non-diseased
genes (Gandhi et al., 2006). We further argue that similar
genes are obtained with human PPI datasets from Online
Predicted Human Integration Database (OPID; Brown and
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FIGURE 3 | A SNP pathway based Association Method (SPAM): First step is SNP significance analysis and the corresponding risk calculation. Data of

case and control for each and risk ratio is calculated from relationships between the SNP and complex diseases. The second step is reconstruction of KEGG pathway

and analysis of the reconstructed network attribution. As per the format, KEGG pathway represents a network where a node represents metabolite and one edge

represents some enzyme or a gene cluster. The third step involves screening of SNPs and mapping of SNPs to reconstructed network (Hoh and Ott, 2003). The fourth

step is calculation of the two integrated measurements of RS scoring and prioritizing the pathway.

Jurisica, 2005) employing K-nearest neighbor (KNN) algorithm
for classification. The KNN algorithm is a simple and yet a
powerful non parametric classification algorithm (Franke et al.,
2006) with an effective performance. With rapid enhancement
in quantity and quality of human interaction and phenotypic
data, the performance and utility of this approach to detect
novel disease-genes should improve further as we come to
the end of the post-genomic era. We have earlier proposed a
classification scoring method to validate the interaction mapping
between such proteins and calculated the total reliability score
(TRS) using machine learning algorithms (Suravajhala and
Sundararajan, 2012). The accuracy of six point classification
model was found to be 81.08% on multilayer perception of
neural network which, if used based on such approaches, could
have identified causal SNPs toward development of molecular
markers. In the recent-past, the PPI database is also used as
a knowledge base with a set of known disease-related genes
that is utilized with linkage analysis in prioritizing the best
candidates. From our previous discussions, we argue that the
main advantage of the probabilistic knowledge model is that it
reduces the prioritization error by 6% when compared to already
published methods. These studies based on the relatedness to
known diseases or closely related disease processes, however,
remain a challenge in prioritizing loner or isolated genes with

no known relationships between two nodes in the network.
The solution for prioritizing loosely connected disease genes
with other genes has previously been proposed by Fang et al.
(Fang et al., 2014) (Figure 4) which uses network diffusion and
rank concordance (NDRC). In addition, they found that genes
related to complex diseases are divided into several modules
associated with different disease phenotypes. First, they built
the network without removing the insignificant genes from the
network, while the second one was based on the Diffusion
Rank (DR) algorithm (Yang et al., 2007). The NDRC simulates
the heat diffusion process where information flows from the
known disease genes of related disease and propagates over
the PPI network with noisy data as a problem to prioritize
disease genes (Li et al., 2009; Wang et al., 2009; Fang et al.,
2014). Multiple kernels learning (KML) and N dimensional order
statistic (NDOS) methods were found to be handling noisy data
effectively. Two strategies are relatively known, one to search for
a kernel that would best represent all the information available
using a convex optimization method, known as semi-definite
programming (SDP; Lanckriet et al., 2004; De Bie et al., 2007)
which simultaneously optimizes parameters for one-class SVM
and tests genes ranked by the one-class SVM. In the second
strategy, all test genes were first ranked using one-class SVM
with an individual data source and then, N-dimensional order
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FIGURE 4 | Gene prioritization methods. (A) (a) Entities and their relations are retrieved from the source databases which are then filtered, sorted and

disambiguated to create the graph. From gene expression studies or positional studies or GO, a list of genes are obtained for prioritization (Arrais and Oliveira, 2010)

(b) Calculation of the gene semantic similarity scores to obtain the three gene similarity profiles; (B) Combining the three gene similarity profiles and the phenotype

similarity profile to calculate three dimensional features for classification; (C) Training classifier using the known associations and sufficient unrelated gene-disease pairs

as training sets; (D) Prediction of disease-gene associations; (E) Prioritization of candidate genes (He and Jiang, 2012).

statistics was used to combine these rank lists into one rank list
(Lanckriet et al., 2004). For gene ontology and sequence data,
we argue that the kernel with higher weight may not have much
influence in discerning the SNPs. Different machine learning
algorithms as described are used for prioritizing SNPs and proven

to be effective especially SVMs with higher performance than
the random forest. A comparative study was carried out by
Tranchevent et al. (2010) on prioritizing tools. The authors
recommended genes to diseases (G2D) as a good tool for
providing an ordered list of candidate genes in the peak regions
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(Perez-Iratxeta et al., 2002). In conclusion, SVM can be applied
to the gene prioritizing process with ontology association as
it encompasses enrichment based feature selection processes
in identification of inherited diseases (He and Jiang, 2012;
Xie et al., 2012). Nevertheless, feature selection method and
integrating more data sources like semantic and phenotype
similarity profiling between diseases and genes could build better
prediction ability.

CONCLUSIONS

Most of the inherited diseases are caused by SNP variants
and research findings on causal SNPs are becoming prominent.
During the last few years, the multitude of research showcasing
SNPs and other methodologies has come up in identifying
the candidates for inherited diseases. From this commentary,
we reason out that identification of SNPs has generally been
considered as a binary classification problem, although, there are
a host of methods, viz. support vector machine tools, random
forest methods, gene prioritization methods that are used for
scoring and calculating genes truly associated with the inherited
diseases. Among the classifiers, KNN is known to be the most

best performing algorithm for the analysis of inherited diseases
based on PPI network. As human PPIs grow in post-genomic
era, a promising source for discovering such disease genes could
herald a need to understand the rigorous algorithms behind
such approaches. As researchers use different cross validation
methods to prove accuracy, efficiency, and the appropriation, a
conceptualized framework for identification of inherited diseases
would be promising. With deluge of human genomic data
containing SNPs and PPI, there remains this challenge.
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