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Mining Sequence Patterns in Biological Data

 A brief introduction to biology and bioinformatics

 Alignment of biological sequences

 Hidden Markov model for biological sequence 

analysis

 Summary
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Biology Fundamentals (1): DNA Structure

 DNA: helix-shaped molecule 

whose constituents are two 

parallel strands of nucleotides

 DNA is usually represented by 

sequences of these four 

nucleotides

 This assumes only one strand 

is considered; the second 

strand is always derivable 

from the first by pairing A’s 

with T’s and C’s with G’s and 

vice-versa

 Nucleotides (bases)

 Adenine (A)

 Cytosine (C)

 Guanine (G)

 Thymine (T)
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Biology Fundamentals (2): Genes

 Gene: Contiguous subparts of single 

strand DNA that are templates for 

producing proteins.  Genes can 

appear in either of the DNA strand.

 Chromosomes: compact chains of 

coiled DNA

 Genome: The set of all genes in a 

given organism.

 Noncoding part: The function of DNA 

material between genes is largely 

unknown.  Certain intergenic regions 

of DNA are known to play a major 

role in cell regulation (controls the 

production of proteins and their 

possible interactions with DNA).
Source: www.mtsinai.on.ca/pdmg/Genetics/basic.htm 
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Biology Fundamentals (3): Transcription

 Proteins: Produced from DNA using 3 operations or 
transformations: transcription, splicing and translation

 In eukaryotes (cells with nucleus): genes are only a 
minute part of the total DNA 

 In prokaryotes (cells without nucleus): the phase of 
splicing does not occur (no pre-RNA generated)

 DNA is capable of replicating itself (DNA-polymerase)

 Genes are transcribed into pre-RNA by a complex 
ensemble of molecules (RNA-polymerase).  During 
transcription T is substituted by the letter U (for uracil).  

 Pre-RNA can be represented by alternations of sequence 
segments called exons and introns.  The exons represents 
the parts of pre-RNA that will be expressed, i.e., translated 
into proteins.



6

Biology Fundamentals (4): Proteins

 Splicing (by spliceosome—an ensemble of proteins): concatenates 

the exons and excises introns to form mRNA (or simply RNA)

 Translation (by ribosomes—an ensemble of RNA and proteins)

 Repeatedly considers a triplet of consecutive nucleotides (called 

codon) in RNA and produces one corresponding amino acid

 In RNA, there is one special codon called start codon and a few 

others called stop codons

 An Open Reading Frame (ORF): a sequence of codons starting with a 

start codon and ending with an end codon.  The ORF is thus a 

sequence of nucleotides that is used by the ribosome to produce the 

sequence of amino acid that makes up a protein.

 There are basically 20 amino acids (A, L, V, S, ...) but in certain rare 

situations, others can be added to that list. 
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Biological Information:  From 
Genes to Proteins

Gene
DNA

RNA

Transcription

Translation

Protein Protein folding

genomics

molecular 

biology

structural 

biology

biophysics
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Biology Fundamentals (5): 3D Structure

 Since there are 64 different codons and 20 amino acids, the ―table 

look-up‖ for translating each codon into an amino acid is redundant: 

multiple codons can produce the same amino acid

 The table used by nature to perform translation is called the genetic 

code

 Due to the redundancy of the genetic code, certain nucleotide 

changes in DNA may not alter the resulting protein

 Once a protein is produced, it folds into a unique structure in 3D 

space, with 3 types of components:α-helices, β-sheets and coils.

 The secondary structure of a protein is its sequence of amino acids, 

annotated to distinguish the boundary of each component

 The tertiary structure is its 3D representation
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DNA / amino acid

sequence 3D structure                       protein functions 

DNA (gene) →→→ pre-RNA →→→ RNA →→→ Protein

RNA-polymerase Spliceosome Ribosome

CGCCAGCTGGACGGGCACACC

ATGAGGCTGCTGACCCTCCTG

GGCCTTCTG…

TDQAAFDTNIVTLTRFVMEQG

RKARGTGEMTQLLNSLCTAVK

AISTAVRKAGIAHLYGIAGST

NVTGDQVKKLDVLSNDLVINV

LKSSFATCVLVTEEDKNAIIV

EPEKRGKYVVCFDPLDGSSNI

DCLVSIGTIFGIYRKNSTDEP

SEKDALQPGRNLVAAGYALYG

SATML

From Amino Acids to Proteins Functions
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Biology Fundamentals (6): 
Functional Genomics

 The function of a protein is 

the way it participates with 

other proteins and molecules 

in keeping the cell alive and 

interacting with its 

environment

 Function is closely related to 

tertiary structure

 Functional genomics: studies 

the function of all the 

proteins of a genome

Source: fajerpc.magnet.fsu.edu/Education/2010/Lectures/26_DNA_Transcription.htm
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Biology Fundamentals (7): Cell Biology

 A cell is made up of molecular 
components that can be 
viewed as 3D-structures of 
various shapes

 In a living cell, the molecules 
interact with each other (w. 
shape and location).  An 
important type of interaction 
involve catalysis (enzyme) 
that facilitate interaction.

 A metabolic pathway is a 
chain of molecular interactions 
involving enzymes

 Signaling pathways are 
molecular interactions that 
enable communication 
through the cell’s membrane

Source: www.mtsinai.on.ca/pdmg/images/pairscolour.jpg

Human Genome—23 pairs of chromosomes
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Lab Tools for Determining Bio. Data (I)

 Sequencer: machines capable of reading off a sequence of 

nucleotides in a strand of DNA in biological samples

 It can produce 300k base pairs per day at relatively low cost

 A user can order from biotech companies vials containing short 

sequences of nucleotides specified by the user

 Since sequences gathered in a wet lab consist of short random 

segments, one has to use the shotgun method (a program) to 

reassemble them

 Difficulty: redundancy of seq. and ambiguity of assembly.

 Mass spectroscopy: identifies proteins by cutting them into short 

sequences of amino acids (peptides) whose molecular weights can be 

determined by a mass spectrograph, and then computationally infer 

the constituents of peptides
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Lab Tools for Determining Bio. Data (II)

 The 3D-structure of proteins is mainly determined (costly) by 

 X-ray crystallography: X-ray passing through a crystallized sample 
of that protein, and 

 nuclear magnetic resonance (NMR): obtain a number of matrices 
that express that fact that two atoms are within a certain distance 
and then deduce a 3D shape

 Expressed sequence tags (ESTs): RNA chunks that can be gathered 
from a cell in minute quantities (not containing the materials that 
would be present in introns), can be used to infer positions of introns

 Libraries of variants of a given organism: 

 Each variant may correspond to cells having a single one of its 
genes knocked out

 Enable biologists to perform experiments and deduce information 
about cell behavior and fault tolerance

 RNA-i: (the i denoteing interference): chunks of the RNA of a 
given gene are inserted in the nucleus of a cell, that may prevent 
the production of that gene
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Lab Tools for Determining Bio. Data (III)

 Microarrays: determine simultaneously the amount of mRNA production 
(gene expression) of thousands of genes. It has 3 phases:

 Place thousands of different one-strand chunks of RNA in minuscule 
wells on the surface of a small glass chip

 Spread genetic material obtained by a cell experiment one wishes to 
perform

 Use a laser scanner and computer to measure the amount of 
combined material and determine the degree (a real number) of 
gene expression for each gene on the chip

 Protein-arrays: chips whose wells contain molecules that can be bound 
to particular proteins (for study of protein expression)

 Determining protein interaction by two-hybrid experiments:

 Construct huge Boolean matrices, whose rows and columns 
represent the proteins of a genome

 If a protein interacts with another, the corresp. position is set to true



Data Mining: Principles and Algorithms 15

Gene Expression and Microarray
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Biological Data Available

 Vast majority of data are sequence of symbols (nucleotides―genomic 

data, but also good amount on amino acids).

 Next in volume: microarray experiments and also protein-array data

 Comparably small: 3D structure of proteins (PDB)

 NCBI (National Center for Biotechnology Information) server:

 Total 26B bp: 3B bp human genome, then several bacteria (e.g., 

E. Coli), higher organisms: yeast, worm, fruitful, mouse, and 

plants

 The largest known genes has ~20million bp  and the largest 

protein consists of ~34k amino acids

 PDB has a catalogue of only 45k proteins, specified by their 3D 

structure (i.e, need to infer protein shape from sequence data)
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Bioinformatics

 Computational management and 

analysis of biological information

 Interdisciplinary Field (Molecular 

Biology, Statistics, Computer 

Science, Genomics, Genetics, 

Databases, Chemistry, Radiology 

…)

 Bioinformatics vs. computational 

biology (more on algorithm 

correctness, complexity and other 

themes central to theoretical CS)

Bioinformatics

Genomics

Proteomics

Functional

Genomics

Structural

Bioinformatics
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Mining Sequence Patterns in Biological Data

 A brief introduction to biology and bioinformatics

 Alignment of biological sequences

 Hidden Markov model for biological sequence 

analysis

 Summary
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Comparing Sequences

 All living organisms are related to evolution

 Alignment: Lining up sequences to achieve the maximal level of identity

 Two sequences are homologous if they share a common ancestor

 Sequences to be compared: either nucleotides (DNA/RNA) or amino acids 

(proteins)

 Nucleotides: identical

 Amino acids: identical, or if one can be derived from the other by 

substitutions that are likely to occur in nature

 Local vs. global alignments: Local—only portions of the sequences are 

aligned.  Global—align over the entire length of the sequences

 Use gap ―–‖ to indicate preferable not to align two symbols

 Percent identity: ratio between the number of columns containing identical 

symbols vs. the number of symbols in the longest sequence

 Score of alignment: summing up the matches and counting gaps as negative
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Sequence Alignment: Problem Definition

 Goal:

 Given two or more input sequences

 Identify similar sequences with long conserved 

subsequences

 Method:

 Use substitution matrices (probabilities of substitutions 

of nucleotides or amino-acids and probabilities of 

insertions and deletions)

 Optimal alignment problem: NP-hard

 Heuristic method to find good alignments
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Pair-Wise Sequence Alignment

 Example

 Which one is better?  Scoring alignments

 To compare two sequence alignments, calculate a score

 PAM (Percent Accepted Mutation) or BLOSUM (Blocks Substitution 

Matrix) (substitution) matrices: Calculate matches and 

mismatches, considering amino acid substitution

 Gap penalty: Initiating a gap

 Gap extension penalty: Extending a gap

HEAGAWGHEE

PAWHEAE

HEAGAWGHE-E

P-A--W-HEAE

HEAGAWGHE-E

--P-AW-HEAE
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Pair-Wise Sequence Alignment: 
Scoring Matrix

A E G H W

A 5 -1 0 -2 -3

E -1 6 -3 0 -3

H -2 0 -2 10 -3

P -1 -1 -2 -2 -4

W -3 -3 -3 -3 15

Gap penalty: -8

Gap extension: -8

HEAGAWGHE-E

P-A--W-HEAE

HEAGAWGHE-E

--P-AW-HEAE

(-8) + (-8) + (-1) + 5 + 15 + (-8)

+ 10 + 6 + (-8) + 6 = 9

Exercise: Calculate for 
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Formal Description

 Problem: PairSeqAlign

 Input: Two sequences             x, y

Scoring matrix               s

Gap penalty                  d

Gap extension penalty    e

 Output: The optimal sequence alignment 

 Difficulty: 

If x, y are of size n then

the number of possible     

global alignments is
nn

n

n

n n2

2

2

)!(

)!2(2



31

Global Alignment: Needleman-Wunsch

 Needleman-Wunsch Algorithm (1970)

 Uses weights for the outmost edges that encourage the best 

overall (global) alignment

 An alternative algorithm: Smith-Waterman (favors the contiguity 

of segments being aligned)

 Idea: Build up optimal alignment from optimal alignments of 

subsequences HEAG

--P-

-25

HEAGA

--P-A

-20

HEAGA

--P—

-33

HEAG-

--P-A

-33

Add score from table

Gap with bottom
Gap with top Top and bottom

HEAGAWGHE-E

--P-AW-HEAE
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Global Alignment

 Uses recursion to fill in 

intermediate results table

 Uses O(nm) space and time

 O(n2) algorithm

 Feasible for moderate 

sized sequences, but not 

for aligning whole 

genomes.

F(i,j)F(i-1,j)

F(i,j-1)F(i-1,j-1)

s(xi,yj) d

d

xi aligned to gap

yj aligned to gap

While building the table, 
keep track of where optimal 
score came from, reverse 
arrows
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Pair-Wise Sequence Alignment

( , ),

(0,0) 0

( 1, 1) ( , )

( , ) max ( 1, )

( , 1)

i j

i j

Given s x y d

F

F i j s x y

F i j F i j d

F i j d

( , ),

(0,0) 0

0

( 1, 1) ( , )
( , ) max

( 1, )

( , 1)

i j

i j

Given s x y d

F

F i j s x y
F i j

F i j d

F i j d

Alignment:  F(0,0) – F(n,m) Alignment:  0 – F(i,j) 

We can vary both the model and the alignment strategies 



34

Dot Matrix Alignment Method

 Dot Matrix Plot: Boolean matrices representing possible 
alignments that can be detected visually

 Extremely simple but

 O(n2) in time and space

 Visual inspection
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Heuristic Alignment Algorithms

 Motivation: Complexity of alignment algorithms: O(nm) 

 Current protein DB: 100 million base pairs

 Matching each sequence with a 1,000 base pair query takes 

about 3 hours!

 Heuristic algorithms aim at speeding up at the price of possibly 

missing the best scoring alignment

 Two well known programs

 BLAST: Basic Local Alignment Search Tool

 FASTA: Fast Alignment Tool

 Both find high scoring local alignments between a query 

sequence and a target database

 Basic idea: first locate high-scoring short stretches and then 

extend them
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FASTA (Fast Alignment)

 Approach [Pearson & Lipman 1988]

 Derived from the logic of the dot matrix method

 View sequences as sequences of short words (k-tuple)

 DNA: 6 bases,  protein: 1 or 2 amino acids

 Start from nearby sequences of exact matching words

 Motivation

 Good alignments should contain many exact matches

 Hashing can find exact matches in O(n) time

 Diagonals can be formed from exact matches quickly

 Sort matches by position (i – j)

 Look only at matches near the longest diagonals

 Apply more precise alignment to small search space at the end
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FASTA (Fast Alignment)
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BLAST (Basic Local Alignment Search Tool)

 Approach (BLAST) (Altschul et al. 1990, developed by NCBI)

 View sequences as sequences of short words (k-tuple)

 DNA: 11 bases, protein: 3 amino acids

 Create hash table of neighborhood (closely-matching) words

 Use statistics to set threshold for ―closeness‖

 Start from exact matches to neighborhood words

 Motivation

 Good alignments should contain many close matches

 Statistics can determine which matches are significant

 Much more sensitive than % identity

 Hashing can find matches in O(n) time

 Extending matches in both directions finds alignment

 Yields high-scoring/maximum segment pairs (HSP/MSP)
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BLAST (Basic Local Alignment Search Tool)
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Multiple Sequence Alignment

 Alignment containing multiple DNA / protein sequences

 Look for conserved regions → similar function

 Example:
#Rat  ATGGTGCACCTGACTGATGCTGAGAAGGCTGCTGT

#Mouse   ATGGTGCACCTGACTGATGCTGAGAAGGCTGCTGT

#Rabbit  ATGGTGCATCTGTCCAGT---GAGGAGAAGTCTGC

#Human   ATGGTGCACCTGACTCCT---GAGGAGAAGTCTGC

#Oppossum ATGGTGCACTTGACTTTT---GAGGAGAAGAACTG

#Chicken   ATGGTGCACTGGACTGCT---GAGGAGAAGCAGCT

#Frog      ---ATGGGTTTGACAGCACATGATCGT---CAGCT
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Multiple Sequence Alignment: Why?

 Identify highly conserved residues

 Likely to be essential sites for structure/function

 More precision from multiple sequences

 Better structure/function prediction, pairwise alignments

 Building gene/protein families

 Use conserved regions to guide search

 Basis for phylogenetic analysis

 Infer evolutionary relationships between genes

 Develop primers & probes

 Use conserved region to develop

 Primers for PCR

 Probes for DNA micro-arrays
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Multiple Alignment Model

X1=x11,…,x1m1
Model: scoring function  s: A

Possible alignments of all Xi’s: A ={a1,…,ak}

Find the best alignment(s)

1 2* arg max ( ( , ,..., ))a Na s a X X X

Q3: How can we find a* quickly?

Q1: How should we define s?

S(a*)= 21

Q4: Is the alignment biologically 

Meaningful?

Q2: How should we define A?

X2=x21,…,x2m2

XN=xN1,…,xNmN

…

X1=x11,…,x1m1

X2=x21,…,x2m2

XN=xN1,…,xNmN

…
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Minimum Entropy Scoring

 Intuition:

 A perfectly aligned column 

has one single symbol 

(least uncertainty) 

 A poorly aligned column 

has many distinct symbols 

(high uncertainty) Count of symbol a in 

column i

'

'

( ) logi ia ia

a

ia
ia

ia

a

S m p p

c
p

c
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Multidimensional Dynamic Programming

1, 2,...,

0,0,...,0

1 2

1 1, 2 1,..., 1 1 2

2

1, 2 1,..., 1 2

1

1 1, 2,..., 1 1

1, 2,...,

1, 2,..., 1

1 1, 2

0

( , ,..., )

( , ,..., )

( , ,..., )

max ...

( , ,..., )

...

i i iN

N

i i iN i i iN

N

i i iN i iN

N

i i iN i iN

i i iN

N

i i iN iN

i i

S x x x

S x x

S x x

S x

1

,..., 1( , ,..., )iN iS x

Assumptions: (1) columns are independent (2) linear gap cost 

Alignment:  0,0,0…,0---|x1| , …, |xN|

We can vary both the model and the alignment strategies 

( ) ( )

( )

i

i

S m G s m

G g dg

=Maximum score of an alignment up to the subsequences ending with 
1 2

1 2, ,..., N

i i iNx x x
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Complexity of Dynamic Programming

 Complexity: Space: O(LN); Time: O(2NLN)

 One idea for improving the efficiency

 Define the score as the sum of pairwise alignment scores

 Derive a lower bound for S(akl), only consider a pairwise 
alignment scoring better than the bound

( ) ( )kl

k l

S a S a
Pairwise alignment between sequences k and l

' '

' '

' '

' '

ˆ ˆ( ) ( ) ( ) ( )

( )

ˆ ˆ( ) ( ) ( )

kl kl k l

k l

kl kl

kl kl k l

k l

a S a S a S a

S a

a S a S a
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Approximate Algorithms for Multiple 
Alignment

 Two major methods (but it remains a worthy research topic)

 Reduce a multiple alignment to a series of pairwise alignments and 

then combine the result (e.g., Feng-Doolittle alignment)

 Using HMMs (Hidden Markov Models)

 Feng-Doolittle alignment (4 steps)

 Compute all possible pairwise alignments

 Convert alignment scores to distances

 Construct a ―guide tree‖ by clustering

 Progressive alignment based on the guide tree (bottom up)

 Practical aspects of alignments

 Visual inspection is crucial

 Variety of input/output formats: need translation
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More on Feng-Doolittle Alignment

 Problems of Feng-Doolittle alignment

 All alignments are completely determined by pairwise alignment 

(restricted search space)

 No backtracking (subalignment is ―frozen‖)

 No way to correct an early mistake

 Non-optimality: Mismatches and gaps at highly conserved 

region should be penalized more, but we can’t tell where is a 

highly conserved region early in the process

 Iterative Refinement 

 Re-assigning a sequence to a different cluster/profile

 Repeatedly do this for a fixed number of times or until the score 

converges

 Essentially enlarge the search space 
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Clustal W: A Multiple Alignment Tool

 CLUSTAL and its variants are software packages often used to 

produce multiple alignments

 Essentially following Feng-Doolittle

 Do pairwise alignment (dynamic programming)

 Do score conversion/normalization (Kimura’s model)

 Construct a guide tree (neighbour-journing clustering)

 Progressively align all sequences using profile alignment

 Offer capabilities of using substitution matrices like BLOSUM or PAM

 Many Heuristics 
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Mining Sequence Patterns in Biological Data

 A brief introduction to biology and bioinformatics

 Alignment of biological sequences

 Hidden Markov model for biological sequence 

analysis

 Summary
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Markov Models in Computational Biology

 There are many cases in which we would like to 

represent the statistical regularities of some class of 

sequences

 genes

 various regulatory sites in DNA (e.g., where RNA

polymerase and transcription factors bind)

 proteins in a given family

 Markov models are well suited to this type of task
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A Markov Chain Model

 Markov property: Given the present 

state, future states are independent 

of the past states

 At each step the system may change its 

state from the current state to another 

state, or remain in the same state, 

according to a certain probability 

distribution

 The changes of state are called 

transitions, and the probabilities 

associated with various state-changes are 

called transition probabilities

 Transition probabilities
 Pr(xi=a|xi-1=g)=0.16
 Pr(xi=c|xi-1=g)=0.34
 Pr(xi=g|xi-1=g)=0.38
 Pr(xi=t|xi-1=g)=0.12

1)|Pr( 1 gxx ii
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Definition of Markov Chain Model

 A Markov chain model is defined by

 A set of states

 Some states emit symbols

 Other states (e.g., the begin state) are silent

 A set of transitions with associated probabilities

 The transitions emanating from a given state define 

a distribution over the possible next states
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Markov Chain Models: Properties

 Given some sequence x of length L, we can ask how
probable the sequence is given our model

 For any probabilistic model of sequences, we can write 
this probability as

 key property of a (1st order) Markov chain: the 
probability of each xi depends only on the value of xi-1

)Pr()...,...,|Pr(),...,/Pr(

),...,,Pr()Pr(

112111

11

xxxxxxx

xxxx

LLLL

LL

L

i

ii

LLLL

xxx

xxxxxxxx

2

11

112211

)|Pr()Pr(

)Pr()|Pr()...|Pr()/Pr()Pr(
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The Probability of a Sequence for a Markov Chain 
Model

Pr(cggt)=Pr(c)Pr(g|c)Pr(g|g)Pr(t|g)
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Example Application

 CpG islands

 CG dinucleotides are rarer in eukaryotic genomes than

expected given the marginal probabilities of C and G

 but the regions upstream of genes are richer in CG

dinucleotides than elsewhere – CpG islands

 useful evidence for finding genes

 Application: Predict CpG islands with Markov chains

 one to represent CpG islands

 one to represent the rest of the genome
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Markov Chains for Discrimination

 Suppose we want to distinguish CpG islands from other

sequence regions

 Given sequences from CpG islands, and sequences from

other regions, we can construct

 a model to represent CpG islands

 a null model to represent the other regions

 can then score a test sequence by:

)|Pr(

)|Pr(
log)(

nullModelx

CpGModelx
xscore
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Markov Chains for Discrimination

 Why use 

 According to Bayes’ rule

 If we are not taking into account of prior probabilities of 
two classes, we just need to compare Pr(x|CpG) and
Pr(x|null)

)Pr(

)Pr()|Pr(
)|Pr(

x

CpGCpGx
xCpG

)Pr(

)Pr()|Pr(
)|Pr(

x

nullnullx
xnull

)|Pr(

)|Pr(
log)(

nullModelx

CpGModelx
xscore
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Higher Order Markov Chains

 The Markov property specifies that the probability of a 

state depends only on the probability of the previous 

state

 But we can build more ―memory‖ into our states by 

using a higher order Markov model

 In an n-th order Markov model

),...,|Pr(),...,,|Pr( 1121 niiiiii xxxxxxx



59

Selecting the Order of a Markov Chain Model

 The number of parameters we need to estimate grows

exponentially with the order

 for modeling DNA we need parameters 

for an n-th order model

 The higher the order, the less reliable we can expect 

our parameter estimates to be

 estimating the parameters of a 2nd order Markov 

chain from the complete genome of E. Coli, we’d 

see each word > 72,000 times on average

 estimating the parameters of an 8-th order chain, 

we’d see each word ~ 5 times on average

)4( 1nO
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Higher Order Markov Chains

 An n-th order Markov chain over some alphabet A is

equivalent to a first order Markov chain over the 

alphabet of n-tuples:  An

 Example: A 2nd order Markov model for DNA can be

treated as a 1st order Markov model over alphabet

AA, AC, AG, AT

CA, CC, CG, CT

GA, GC, GG, GT

TA, TC, TG, TT
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A Fifth Order Markov Chain

Pr(gctaca)=Pr(gctac)Pr(a|gctac)



62

Hidden Markov Model: A Simple HMM

Given observed sequence AGGCT, which state emits 
every item?
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Hidden Markov Model

 A hidden Markov model (HMM): A statistical model in which the 

system being modeled is assumed to be a Markov process with 

unknown parameters

 The challenge is to determine the hidden parameters from the 

observable data. The extracted model parameters can then be used 

to perform further analysis

 An HMM can be considered as the simplest dynamic Bayesian 

network

 In a hidden Markov model, the state is not directly visible, but 

variables influenced by the state are visible

 Each state has a probability distribution over the possible output 

tokens. Therefore the sequence of tokens generated by an HMM 

gives some information about the sequence of states. 
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Learning and Prediction Tasks

 Learning

 Given a model, a set of training sequences

 Find model parameters that explain the training sequences with
relatively high probability (goal is to find a model that generalizes 
well to sequences we haven’t seen before)

 Classification

 Given a set of models representing different sequence classes, a 
test sequence

 Determine which model/class best explains the sequence

 Segmentation

 Given a model representing different sequence classes, a test 
sequence

 Segment the sequence into subsequences, predicting the class of 
each subsequence
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Algorithms for Learning & Prediction

 Learning

 correct path known for each training sequence → simple 

maximum likelihood or Bayesian estimation

 correct path not known → Forward-Backward algorithm + ML or

Bayesian estimation

 Classification

 simple Markov model → calculate probability of sequence along 

single path for each model

 hidden Markov model → Forward algorithm to calculate probability 

of sequence along all paths for each model

 Segmentation

 hidden Markov model → Viterbi algorithm to find most probable 

path for sequence
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The Parameters of an HMM

 Transition Probabilities

 Probability of transition from state k to state l

 Emission Probabilities

 Probability of emitting character b in state k

)|Pr( 1 kla iikl

)|Pr()( kbxbe iik
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An HMM Example
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Three Important Questions

 How likely is a given sequence?

 The Forward algorithm

 What is the most probable ―path‖ for generating 

a given sequence?

 The Viterbi algorithm

 How can we learn the HMM parameters given a 

set of sequences?

 The Forward-Backward (Baum-Welch) 

algorithm
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How Likely is a Given Sequence?

 The probability that the path is taken and the
sequence is generated:

L

i

iNL iii
axeaxx

1

001 11
)()...,...Pr(

6.3.8.4.2.4.5.

)(

)()(

),Pr(

35313

111101

aCea

AeaAea

AAC
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How Likely is a Given Sequence?

 The probability over all paths is

 But the number of paths can be exponential in the length of 

the sequence...

 The Forward algorithm enables us to compute this efficiently

 Define fk(i) to be the probability of being in state k
having observed the first i characters of sequence x

 To compute fN(L), the probability of being in the end state 
having observed all of sequence x

 Can define this recursively

 use dynamic programming
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The Forward Algorithm

 Initialization

 f0(0) = 1 for start state;  fi(0) = 0 for other state

 Recursion

 For emitting state (i = 1, … L)

 For silent state

 Termination
k

klkl aifif )()(

k

klkll aifieif )1()()(

k

kNkNL aLfLfxxx )()()...Pr()Pr( 1
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Forward Algorithm Example

Given the sequence x=TAGA
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Forward Algorithm Example

 Initialization

 f0(0)=1, f1(0)=0…f5(0)=0

 Computing other values

 f1(1)=e1(T)*(f0(0)a01+f1(0)a11)

=0.3*(1*0.5+0*0.2)=0.15

 f2(1)=0.4*(1*0.5+0*0.8)

 f1(2)=e1(A)*(f0(1)a01+f1(1)a11)

=0.4*(0*0.5+0.15*0.2)

…

 Pr(TAGA)= f5(4)=f3(4)a35+f4(4)a45
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Three Important Questions

 How likely is a given sequence?

 What is the most probable ―path‖ for generating 

a given sequence?

 How can we learn the HMM parameters given a 

set of sequences?
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Finding the Most Probable Path: The Viterbi Algorithm

 Define vk(i) to be the probability of the most 

probable path accounting for the first i 

characters of x and ending in state k

 We want to compute vN(L), the probability of 

the most probable path accounting for all of 

the sequence and ending in the end state

 Can define recursively

 Can use DP to find vN(L) efficiently
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Three Important Questions

 How likely is a given sequence?

 What is the most probable ―path‖ for generating 

a given sequence?

 How can we learn the HMM parameters given a 

set of sequences?
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Learning Without Hidden State

 Learning is simple if we know the correct path for each 
sequence in our training set

 estimate parameters by counting the number of times 
each parameter is used across the training set
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Learning With Hidden State

 If we don’t know the correct path for each sequence 
in our training set, consider all possible paths for the 
sequence

 Estimate parameters through a procedure that counts 
the expected number of times each parameter is used 
across the training set
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Learning Parameters: The Baum-Welch 
Algorithm

 Also known as the Forward-Backward algorithm

 An Expectation Maximization (EM) algorithm

 EM is a family of algorithms for learning 

probabilistic models in problems that involve 

hidden state

 In this context, the hidden state is the path that 

best explains each training sequence
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Learning Parameters: The Baum-Welch 
Algorithm

 Algorithm sketch:

 initialize parameters of model

 iterate until convergence

 calculate the expected number of times 

each transition or emission is used

 adjust the parameters to maximize the 

likelihood of these expected values
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Computational Complexity of HMM Algorithms

 Given an HMM with S states and a sequence of length L,

the complexity of the Forward, Backward and Viterbi

algorithms is

 This assumes that the states are densely 

interconnected

 Given M sequences of length L, the complexity of Baum

Welch on each iteration is

)( 2LSO

)( 2LMSO
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Markov Models Summary

 We considered models that vary in terms of 

order, hidden state

 Three Dynamic Programming-based algorithms 

for HMMs: Forward, Backward and Viterbi

 We discussed three key tasks: learning, 

classification and segmentation

 The algorithms used for each task depend on 

whether there is hidden state (correct path 

known) in the problem or not
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Mining Sequence Patterns in Biological Data

 A brief introduction to biology and bioinformatics

 Alignment of biological sequences

 Hidden Markov model for biological sequence 

analysis

 Summary
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Summary: Mining Biological Data

 Biological sequence analysis compares, aligns, indexes, and analyzes 

biological sequences (sequence of nucleotides or  amino acids)

 Biosequence analysis can be partitioned into two essential tasks: 

 pair-wise sequence alignment and multiple sequence alignment

 Dynamic programming approach (notably, BLAST ) has been popularly used 

for sequence alignments

 Markov chains and hidden Markov models are probabilistic models in which 

the probability of a state depends only on that of the previous state

 Given a sequence of symbols, x, the forward algorithm finds the 

probability of obtaining x in the model 

 The Viterbi algorithm finds the most probable path (corresponding to x) 

through the model

 The Baum-Welch learns or adjusts the model parameters (transition 

and emission probabilities) to best explain a set of training sequences.
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