
 

 

 

Abstract—High competitive pressure in the global manufac-

turing industry makes efficient, effective and continuously 

improved manufacturing processes a critical success factor. 

Yet, existing analytics in manufacturing, e. g., provided by 

Manufacturing Execution Systems, are coined by major short-

comings considerably limiting continuous process improvement. 

In particular, they do not make use of data mining to identify 

hidden patterns in manufacturing-related data. In this article, 

we present indication-based and pattern-based manufacturing 

process optimization as novel data mining approaches provided 

by the Advanced Manufacturing Analytics Platform. We 

demonstrate their usefulness through use cases and depict 

suitable data mining techniques as well as implementation 

details. 

 
Index Terms—Analytics, Data Mining, Decision Support, 

Process Optimization 

I. INTRODUCTION 

A. Motivation 

Globalization, shorter product lifecycles and rapidly 

changing customer needs lead to high competitive pressure 

in the manufacturing industry. Apart from product quality 

and product variety, flexibility, short lead times and a high 

adherence to delivery dates have become essential success 

factors [1]. Thus, efficient, effective and continuously opti-

mized manufacturing processes are central prerequisite to 

perform successfully on the market [2]. 

Looking at other industry sectors, Business Intelligence 

(BI) technology is successfully applied for the optimization 

of workflow-based business processes, esp. in the service 

industry [3], [4]. This emphasizes the potential of using 

comprehensive analytics to improve business activities. 

Regarding BI approaches in manufacturing, there are 

mainly two types, wide-spread in industry practice: On the 

one hand, pre-packaged dashboard applications based on  
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metrics visualization and basic reporting, typically part of 

Manufacturing Execution Systems (MES) [5]; on the other 

hand, custom BI applications that mainly focus on spread-

sheet-based Online Analytical Processing (OLAP) [6]. The-

se existing BI approaches are coined by the following major 

shortcomings, considerably limiting continuous process 

improvement: 

 Being based on isolated data extracts, they do not adopt 

a holistic view integrating operational and process data, 

e. g., from MES and Enterprise Resource Planning 

(ERP) Systems. 

 They focus on OLAP-like analysis and classical report-

ing and do not employ advanced analytics techniques, 

esp. data mining, to extract knowledge from data. 

 They only provide limited means for sharing and com-

bination of analysis results, for example in different sub 

processes of Manufacturing Process Management. 

 They offer no guidance for transforming analysis results 

into concrete process modifications – leaving this step 

entirely up to the subjective judgement and skills of the 

process analyst. 

Eliminating these insufficiencies is the key motivation of 

the Advanced Manufacturing Analytics (AdMA) Platform, 

which is being developed as part of our overall work. In this 

article, we focus on indication-based and pattern-based op-

timization as novel concepts for process-centric data mining 

in manufacturing provided by the AdMA Platform. 

The remainder is organized as follows: First, we introduce 

the AdMA Platform and characterize existing data mining 

approaches in manufacturing in Section 2. Next, we present 

Indication-based and Pattern-based Manufacturing Optimi-

zation in Section 3. Section 4 details the former and defines 

corresponding uses cases. In addition, adequate data mining 

techniques for a selected use case are discussed and the 

prototypical implementation as well as a first proof of con-

cept is presented. We conclude in Section 5 and point out 

future work. 

B. The Advanced Manufacturing Analytics Platform 

The Advanced Manufacturing Analytics Platform [7] is an 

integrated BI platform for holistic data-driven manufacturing 

process optimization. It is based on a transfer of concepts of 

the Deep Business Optimization Platform [8], [3], [9] to the 

area of manufacturing. Its conceptual architecture consists of 

three integrated layers sketched in Fig. 1. 
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Fig. 1. Conceptual architecture of the  

Advanced Manufacturing Analytics Platform 

 The Data Integration Layer integrates process and op-

erational manufacturing data in a holistic process-

centric data warehouse, the Manufacturing Warehouse. 

In general, operational data are subject-oriented and 

represent data of traditional Data Warehouses, e. g., 

sales data. Process data are flow-oriented and comprise 

execution data, i. e., events recorded during process ex-

ecution, and process model data [9]. The Manufacturing 

Warehouse abstracts heterogeneous source formats and 

provides a unified multidimensional view on all process 

aspects. Considering data provisioning, the Manufactur-

ing Data Integrator matches process and operational 

source data and consolidates them into the Manufactur-

ing Warehouse. 

 Various analysis techniques, esp. data mining methods 

and metrics calculation, are at the heart of the Process 

Analytics Layer. Generated insights, i. e., analysis re-

sults, are stored in the Manufacturing Insight Reposito-

ry as a central component for sharing, combination and 

reuse of analysis results, e. g., data mining models. It is 

oriented towards the dBOP approach in [10]. 

 The Process Optimization Layer focuses on the applica-

tion and combination of insights from the Manufactur-

ing Insight Repository to support the actual process im-

provement. Indication-based Manufacturing Optimiza-

tion as well as Pattern-based Manufacturing Optimiza-

tion are presented in this article. 

II. DATA MINING IN MANUFACTURING 

Due to the large amounts of data generated and collected 

during manufacturing execution, manufacturing is a promis-

ing area of application for data mining to extract knowledge 

for optimization purposes [11]. Yet, data mining approaches 

in manufacturing practice are rare compared to various suc-

cessful data mining applications in the service industry, e.g. 

in banking, telecommunications or retailing. Thus, we con-

ducted a meta-analysis of research literature for data mining 

in manufacturing [12], [11], [13], [14]. Existing data mining 

approaches in manufacturing mainly address the following 

fields of application: 

 

 

 Quality analysis of products to correlate output quality 

and system parameters, esp. machine settings, in order 

to identify causes for deteriorating product quality, e. g., 

in [15], [16]. 

 Failure analysis of production resources, esp. machines, 

to analyse causes of errors and prevent break downs in 

the future, e. g., in [17], [18]. 

 Maintenance analysis to enhance the availability of pro-

duction resources, e. g., by optimized maintenance 

planning, e. g., in [19], [20]. 

 Production planning and scheduling analysis to improve 

planning quality, e. g., by a higher capacity utilisation of 

production resources, e. g., in [21], [22]. 

A multiplicity of existing approaches focuses on quality 

analysis and failure analysis with the semiconductor industry 

as one important field for implementations due to its high 

degree of automation and the multiplicity of parameters 

affecting product quality [12]. In general, existing approach-

es are typically based on manually integrated and isolated 

process data extracts to analyse certain partial aspects of 

manufacturing processes in individual industry-specific 

cases, e. g., selected machines or particular quality measures, 

missing a holistic view on the process. 

Our literature survey hence clearly shows a significant 

need for research on universal data integration and data 

storage concepts for data mining in manufacturing to gener-

ate versatile pre-configured and truly process-centric data 

mining applications that can be adapted to heterogeneous 

manufacturing environments and different branches. An 

initial approach to standardized data mining in manufactur-

ing is the Fraunhofer ProDaMi-Suite [23] mainly focusing 

on quality analysis and failure analysis aspects. 

III. HOLISTIC PROCESS-CENTRIC DATA MINING  

IN THE ADMA PLATFORM 

The AdMA Platform addresses the above mentioned limi-

tations of existing data mining approaches by two means: 

First it defines a universal holistic data basis, the Manufac-

turing Warehouse [24], that integrates all data pertaining to 

manufacturing process performance from various source 

systems, i. e., operational and process data. Second, on this 

basis, the AdMA Platform provides generalized process-

centric data mining use cases for indication-based and pat-

tern-based optimization.  

Indication-based Manufacturing Optimization (IbMO) is 

based on the adaption of the idea in [25] for standardized 

data mining functionalities on workflow audit data. IbMO 

uses pre-configured manufacturing-specific data mining 

models to explain and predict certain process attributes. 

Consequently, hints respectively indications are presented to 

the user that enable him to infer corresponding process im-

provements. 

Pattern-based Manufacturing Optimization (PbMO) goes 

beyond that and proposes concrete process modifications 

that are applicable for a given process to achieve a defined 

goal, e. g., to speed up the process. PbMO is based on the 

idea of pattern-based optimization presented in [3] and uses 

manufacturing-specific optimization patterns stored in the 

Manufacturing Pattern Catalogue. These patterns describe 
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Fig. 2. Use cases for Indication-based Manufacturing Optimization 

typical optimization options, i. e., best practices, and encap-

sulate necessary analytics, esp. data mining models. One 

pattern for example describes the optimal selection of re-

sources for a production step using multiple regression. 

Resource attributes like the experience of an employee are 

linked with performance indicators, e. g., the execution dura-

tion of a production step, in a regression model to predict the 

likely performance and select the best resource available. 

IbMO as well as PbMO can be applied ex-ante in the a 

priori design, real-time during the execution and ex-post in 

the a posteriori analysis of a manufacturing process. In the 

following sections we focus on IbMO, esp. the use case of 

root cause analysis, since PbMO still requires significant 

research efforts, esp. considering the definition of appropri-

ate optimization patterns in manufacturing. 

Both the Manufacturing Warehouse and the data mining 

use cases for IbMO and PbMO are designed to be flexibly 

adaptable to heterogeneous manufacturing environments 

during the instantiation of the AdMA Platform in a concrete 

application environment. The essential conceptual difference 

to existing data mining approaches is the holistic view on the 

manufacturing process comprising all production steps, 

resources as well as all input and output relations of the 

whole process from the creation of the production order until 

the finishing of the product in order to optimize the overall 

manufacturing process in an integrated manner. 

In general, our work can be seen as an application of pro-

cess mining [26] to manufacturing. At this, we do not focus 

on the classic process mining disciplines, namely discovery 

and conformance of process models, but on the enhancement 

of existing process models in order to improve them. In 

contrast to traditional enhancement approaches, we use not 

only process data but also operational data. 

IV. INDICATION-BASED MANUFACTURING OPTIMIZATION 

A. Conceptual use cases 

Based on industry interviews and literature analysis [25], 

[4], [27] we defined four generic data mining use cases for 

IbMO (see Fig. 2).  

Each generic use case can be refined regarding the target 

group of users and further functional aspects to define vari-

ous concrete use cases. The AdMA Platform focuses on 

three main target groups of users: 

 Production analysts who analyse manufacturing pro-

cesses ex-post in depth from an engineering or manage-

rial perspective. 

 Production managers responsible for the planning, exe-

cution and supervision of individual manufacturing pro-

cesses. 

 Production workers taking part in the execution of pro-

cesses, i. e., in single production steps. 

We differentiate two types of generic use cases, namely 

explication and prediction use cases. The former comprise 

the identification of interesting characteristics of executions 

of a manufacturing process to explain their causes and cir-

cumstances. Explication use cases are typically employed 

ex-post and can be targeted or untargeted. In general, a tar-

geted use case requires user-defined process characteristics 

as a starting point compared to an untargeted use case. In 

this context, process characteristics refer to all attributes 

describing an execution of a process, e. g., metrics, machines 

or participating employees, as provided by the Manufactur-

ing Warehouse. 

Root cause analysis (RCA) is a targeted explication use 

case which aims at the data mining-based analysis of select-

ed process characteristics defined by the user to provide 

comprehensible and interpretable explication models, e. g., 

decision trees. As a starting point, we defined the metric-

oriented RCA as a concrete use case. The metric-oriented 

RCA aims at explaining categorized metrics of process in-

stances. In general, categorization associates defined value 

ranges to nominal categories. Metrics are categorized be-

cause typically only certain ranges not single values are 

relevant for RCA [25]. The user selects a pre-calculated 

process metric of a specific process, e. g., lead time, and 

assigns relevant value ranges with corresponding categories 

to it. That is, lead times of the selected process that are high-

er than value X could be “too high”, lead times between X 

and Y could be “OK” and lead times less than Y could be 

“good”. Metrics are provided by the Manufacturing Ware-

house whereas the standard set of basic manufacturing met-

rics can be extended by user-defined metrics. By categoriza-

tion the metric is transformed into a nominal attribute, the 

class label or dependent attribute, and classification tech-

niques [28] are employed to identify influence factors for the 

different categories, e. g., reasons for excessive lead times. 

The metric-oriented RCA is relevant for production manag-

ers and production analysts as they are concerned with the 

ex-post optimization of the whole process. Another concrete 

use case could be the failure-oriented RCA. In contrast to a 

classical data mining-based failure analysis the failure-

oriented RCA operates across the overall manufacturing 

process comprising all production steps to cross correlate all 

influence factors, e. g., different machines, different vendors 

for input material and different workers. 

Structure analysis is an untargeted explication use case, 

i. e., there are no initial pre-defined process characteristics 

of importance for the user. In general, structure analysis is 

about the automatic identification of striking or typical exe-

cutions of a selected process to infer influence factors and 

circumstances. A concrete structure analysis use case is the 

cluster-oriented structure analysis. It focuses on the seg-

mentation of instances of a selected process to identify 

groups of typical process executions. Therefore, esp. tech-

niques for clustering and outlier detection [28] are used on 
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Table I. Data mining techniques for classification 

Classification Technique Interpretability Robustness

Decision Tree Induction High Low

Bayesian Classification Low High

Decision Rules Generation High Low

Neural Networks Low High

Support Vector Machines Low High
 

the basis of an automatically or manually defined selection 

of attributes describing process executions provided by the 

Manufacturing Warehouse. Due to the complexity of cluster-

ing results, the cluster-oriented structure analysis is mainly 

relevant for production analysts. 

In general, use cases for both RCA and structure analysis 

play a central role in improvement efforts as part of Lean 

Production or Six Sigma approaches, e. g. by supporting the 

5-Why method for problem solving and continuous im-

provement [29], [30]. 

Prediction use cases focus on the forecast of certain pro-

cess characteristics. Thus, they are always targeted as the 

user has to pre-define relevant characteristics to predict. 

Prediction can be done ex-ante and real-time. Ex-ante pre-

diction comprises the forecast of characteristics of processes 

before their first execution, i. e., during process planning and 

design. As there is no process execution data available for 

the novel process, similarity inspections of existing process-

es have to be conducted to derive corresponding predictions. 

This is not detailed in this article. In the following, we look 

at real-time prediction, i. e., forecasting of process charac-

teristics during the actual execution of the process. Based on 

the current state of a running process as well as information 

about completed executions in the past, data mining-driven 

predictions can be made. A concrete use case for real-time 

prediction is the metric-oriented real-time prediction. The 

user selects a metric and defines whether numeric or nominal 

forecasts should be made. The former refers to the forecast 

of exact values using numeric prediction techniques, e. g., 

regression [28], the latter focuses on predicting categorized 

metrics in analogy to the metric-oriented RCA. On this ba-

sis, predictions can be made at certain defined stages of the 

process, e. g., after the completion of each production step. 

Each stage defines a restricted data basis for the generation 

of prediction and classification models using data of past 

process executions as training data. These models are then 

employed to make predictions about the process in execu-

tion. Metric-oriented real-time prediction is valuable for all 

target groups including production workers on the shop floor 

whereas each target group uses its own specific metric selec-

tion. In analogy to the failure-oriented RCA we could image 

a failure-oriented real-time prediction as well to forecast 

likely failures during process execution. 

Generally speaking, prediction use cases enable a proac-

tive production management minimizing the possibility of 

error emergence and performance deviations [31]. Moreo-

ver, they support built-to-order scenarios, e. g. by precise 

real-time forecasts of production and delivery times for 

customers [32]. 

Taking the above use cases as a starting point, we talked 

to manufacturing companies about existing data sources in 

manufacturing and novel analytics. Regarding IbMO the 

metric-oriented RCA was rated as most valuable additional 

function especially due to wide-spread metric-oriented dash-

board applications in manufacturing practice. They favour 

data mining-based amendments for metric prediction and 

metric explication. Hence, our current prototypical imple-

mentation focuses on the metric-oriented RCA for produc-

tion managers and production analysts based on the Manu-

facturing Warehouse. Our interviews considering GUI issues 

revealed that esp. production managers prefer dashboard-

like interfaces. Moreover, it was repeatedly emphasized that 

corresponding explication models should be as simply as 

possible to generate and to understand. 

Based on these requirements and the upper functional de-

scription of the metric-oriented RCA, in the following, we 

systematize the selection of appropriate data mining tech-

niques and detail our prototypical implementation. 

B. Selection of data mining technique 

As stated above, the metric-oriented RCA is based on 

classification techniques. Typically, classification is used for 

forecasting tasks, e. g., the prognosis of a credit rating at 

which a training phase with existing ratings is executed and 

the generated model is used in an application phase for fore-

casting. In contrast, the metric-oriented RCA is solely based 

on the training phase with the categorized metric as a class 

label. The aim is to generate a model which is presented to 

the user for explanatory purposes. 

In order to identify suitable classification techniques, two 

conceptual criteria are crucial: 

 The interpretability of the generated models from a user 

point of view. 

 The technical robustness. 

The latter can be high or low regarding issues of overfit-

ting and sensitivity to noisy data or outliers. The former can 

be high or low as well, depending on the type of the generat-

ed model, i. e., pattern. Black-box patterns are effectively 

incomprehensible for the user as they don’t provide a struc-

tural description, e. g., support vector machines. In contrast, 

structural patterns are comprehensible as their construction 

reveals the structure of the problem, e. g., decision rules 

[25]. 

Table I shows major classification techniques as well as a 

qualitative rating for their robustness and interpretability 

based on a literature review, esp. [28], [25]. 

Most importantly, the metric-oriented RCA requires a 

high interpretability of the employed data mining technique 

as the generated models are not used for forecasts but consti-

tute the actual result presented to the user. Moreover, a high 

robustness is desirable to minimize the impact of noisy data 

and prevent overfitting, that is, an overadaption of the gen-

erated model to the given training data. 

Bayesian classification, neural networks as well as support 

vector machines generate black-box patterns, thus, their 

interpretability is comparably low and hence they are not 

suited for the metric-oriented RCA.  

In contrast, decision trees are seen as easily understanda-

ble and intuitively interpretable due to their graphical repre-

sentation. A decision tree is a tree structure at which each 
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Fig. 3. Technical layers  

for root cause analysis 

nonleaf node represents a test on an attribute, each branch 

denotes an outcome of the test and each leaf node shows a 

class label. In general, decision trees can be converted into a 

set of decision rules as well, by traversing the path from the 

root node to a leaf node [28]. 

Decision rule generation itself alludes to the direct genera-

tion of decision rules without generating a decision tree. An 

exemplary decision rule could be: If employee E takes part 

in production step S and machine M is used in production 

step T then lead times are too high. 

For the implementation of the metric-oriented RCA we re-

ly on decision tree induction as suitable classification tech-

nique due to its high interpretability and the possibility to 

deduce decision rules. Yet, additional concepts, esp. pruning 

methods, have to be employed to improve the robustness of 

decision tree algorithms. 

C. Prototypical Implementation and  

First Proof of Concept 

Our current prototype implements a basic version of the 

manufacturing warehouse as well as the metric-oriented 

RCA and is based on a dashboard-like GUI. The user selects 

a process and corresponding metrics, e. g., lead time or First 

Pass Yield, which are represented as speedometers showing 

coloured value ranges for each category. That’s enough to 

start the metric-oriented RCA. Considering configuration 

options, the user can activate tree pruning as well as attribute 

filtering. Both simplify the generated tree to enhance its 

interpretability.  

In the following, we give a short overview of the proto-

type’s architecture that we introduced in [7]. On this basis, 

we detail on data transformation and pattern detection as the 

essential components for the realization of the metric-

oriented RCA. Finally, we present a first proof of concept. 

Our implementation consists 

of three technical layers required 

for the metric-oriented RCA 

(see Fig. 3): The Data Integra-

tion Layer comprises a relational 

version of the Manufacturing 

Warehouse. Moreover, we rely 

on Java using the WEKA data 

mining Framework [33] to im-

plement not only the Presenta-

tion Layer, i. e., the Cockpit, but 

the actual Analytics Layer as 

well. The latter comprises Data 

Transformation, i. e., Denor-

malization and Filtering, as well 

as Pattern Detection, i. e., Deci-

sion Tree Induction.  

In general, the multidimensional Manufacturing Ware-

house takes an activity-centric view with production step 

executions as central facts characterized by various dimen-

sions. Obligatory flow dimensions describe the process flow 

over time and comprise necessary information about time 

and process aspects, like the start of a production step and 

the manufacturing process it belongs to. Optional context 

dimensions comprise additional information regarding em-

ployed resources like machines, manufacturing aids and 

production workers as well as input output information like 

occurred failures, processed input material and generated 

environmental emissions. 

Both pattern detection and data transformation take a dy-

namic view on the data basis. That is, they only assume a set 

of core attributes provided by flow dimensions. All other 

attributes provided by context dimensions, e. g., information 

on employed machines, are treated dynamically, i. e., they 

are automatically used when they are available. This is be-

cause concrete data sources vary significantly in heterogene-

ous manufacturing environments, thus, different warehouse 

models result in individual cases. 

Based on the concrete relational Manufacturing Ware-

house schema, the metric-oriented RCA requires data 

denormalization, data filtering and decision tree induction.  

Generally speaking, classification is based on training da-

ta, i. e., tuples with so called independent attributes and an 

additional class label, the dependent attribute. Classification 

then computes a model, in our case a decision tree, to de-

scribe the correlation between the dependent attribute and 

the independent attributes. In the case of the metric-oriented 

RCA, the dependent attribute is the categorized metric with 

one nominal value per process execution. All available at-

tributes in the Manufacturing Warehouse which potentially 

are of explanatory nature for the user regarding the process 

executions are automatically used as independent attributes, 

e. g., information about employed machines and workers. It 

is important to notice that further metrics, e g., wait time, are 

excluded from the selection of independent attributes as they 

do not represent actual influence factors, only aggregated 

hints. 

The data provided by the Manufacturing Warehouse have 

to be denormalized to get one tuple per process execution as 

input for filtering and decision tree induction. Denormaliza-

tion comprises three steps: 

1. All data concerning the execution of each step of the 

whole process are denormalized. That is, information 

from all dimensions describing the execution of a step 

like input material or employed machines is denormal-

ized. In this context, it has to be taken into account that 

each step is associated with different dimensions in a 

many-to-many relation, because, for example, an arbi-

trary number of machines and workers can be employed 

in a step. Thus, denormalization has to be implemented 

dynamically without knowing the denormalized rela-

tional target structure in advance.  

2. The denormalized step execution data are merged at the 

level of the whole process to get one tuple per process 

execution comprising all production steps.  

3. The class attribute, i. e., the categorized metric value for 

each process execution, is added. 

An excerpt of an exemplary denormalized data structure 

for a metric-oriented RCA on lead times is shown in Fig. 4. 

We used it in a first proof of concept described below. It 

depicts denormalized data of production step 1 and 2 regard-

ing employed machines and workers as well as input materi-

al processed in step 1. Various additional information on 

machines and workers is used, e. g., machine age and em-

ployee group. For reasons of clarity, numerous other attrib-

utes regarding employed production aids, environmental 
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Fig. 5. Exemplary decision tree of a metric-oriented root cause analysis 
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Fig. 4. Exemplary denormalized input data for decision tree induction 

emissions like CO2 generation or power consumption of 

production steps are omitted. The categorized metric lead 

time takes the values “OK” and “TooHigh” and is added as 

class attribute based on the metric value for each process 

execution. 

In our prototype we implemented data denormalization 

using dynamically generated SQL statements in combination 

with relational views to define and populate the denormal-

ized target data structure. 

Based on the denormalized data structure data filtering re-

fers to the reduction of attributes used for decision tree in-

duction. The aim is to focus on core attributes that signifi-

cantly influence the value of the class attribute to simplify 

the resulting decision tree and thus enhance its comprehen-

sibility from a user point of view. For the sake of simplicity, 

we use the standard WEKA attribute selection filter [33] to 

implement data filtering in our prototype as it does not re-

quire any parameterization by the user. 

For the actual decision tree induction we rely on WEKA’s 

implementation of the classic C4.5 algorithm [34] as it can 

handle continuous and discrete attributes and includes suita-

ble pruning techniques. To improve the understandability of 

the generated decision tree, we construct binary trees which 

have exactly two branches per nonleaf node. 

To demonstrate the overall applicability, we did a first 

proof of concept of our prototype as part of two master the-

ses [35], [24]. Based on case study investigations, esp. [36], 

we defined a sample scenario for a typical manufacturing 

process, the production of steel springs for the automotive 

industry. Moreover, we identified exemplary factors influ-

encing time and quality aspects, like the use of old machines. 

We generated corresponding synthetic data to populate the 

Manufacturing Warehouse and conducted metric-oriented 

RCAs on lead times and on quality rates of the process. An 

exemplary simplified decision tree based on the depicted 

denormalized input data is shown in Fig. 5. It represents the 

result of a metric-oriented RCA on lead times. From this 

decision tree, the following exemplary decision rules result: 

 If the first machine in step 1 is older than 3 years, then 

lead times are typically too high. 

 If the first machine in step 1 is not older than 3 years but 

input material I5 is used, then lead times are typically 

too high. 

 If the first machine in step 1 is not older than 3 years 

and input material I5 is not used but the first employee 

in step 2 does not belong to group G4, then lead times 

are typically too high. 

These decision rules represent valid indications for pro-

cess optimization, e. g., not to use machines older than 3 

years in step 1 to avoid high lead times. Our initial proof of 

concept shows the fundamental feasibility and usefulness of 

Indication-based Manufacturing Optimization on the basis of 

the Manufacturing Warehouse and encourages further de-

velopment and evaluation based on industry scenarios. 

V. CONCLUSION AND FUTURE WORK 

In this article we detailed Indication-based Manufacturing 

Optimization as a novel data mining-driven approach for 

process optimization provided by the Advanced Manufactur-

ing Analytics Platform. We defined conceptual use cases and 

described implementation details. 

Indication-based Manufacturing Optimization goes be-

yond existing analytics in manufacturing, which focus on 

manual reporting and OLAP functions using isolated data 

extracts. Based on a holistic data basis, the Manufacturing 

Warehouse, pre-defined data mining use cases are applied to 

identify hidden data patterns for the optimization of the 

whole manufacturing process, from the creation of the pro-

duction order until the finishing of the product. As main 

concrete use case the metric-oriented root cause analysis 

represents a promising amendment for existing metric-

oriented dashboards in industry practice. It enables the pro-

found analysis of reasons for metric deviations and presents 

indications for concrete process improvements. 
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In our future work, we plan to refine and implement fur-

ther use cases for indication-based optimization. Moreover, 

we are going to work on the definition and formalization of 

manufacturing-specific optimization patterns and develop a 

corresponding optimization methodology. The aim is to also 

establish pattern-based optimization in manufacturing build-

ing on our current work. 
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