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Abstract A dataset is imbalanced if the classification categories are not approximately 

equally represented. Recent years brought increased interest in applying ma- 

chine learning techniques to difficult "real-world" problems, many of which are 

characterized by imbalanced data. Additionally the distribution of the testing 

data may differ from that of the training data, and the true misclassification costs 

may be unknown at learning time. Predictive accuracy, a popular choice for 

evaluating performance of a classifier, might not be appropriate when the data is 

imbalanced andlor the costs of different errors vary markedly. In this Chapter, 

we discuss some of the sampling techniques used for balancing the datasets, and 

the performance measures more appropriate for mining imbalanced datasets. 
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1 Introduction 

The issue with imbalance in the class distribution became more pronounced 

with the applications of the machine learning algorithms to the real world. 

These applications range from telecommunications management (Ezawa et al., 

1996), bioinformatics (Radivojac et al., 2004), text classification (Lewis and 

Catlett, 1994; Dumais et al., 1998; Mladeni6 and Grobelnik, 1999; Cohen, 

1995b), speech recognition (Liu et al., 2004), to detection of oil spills in satel- 

lite images (Kubat et al., 1998). The imbalance can be an artifact of class 

distribution and/or different costs of errors or examples. It has received atten- 

tion from machine learning and Data Mining community in form of Workshops 

(Japkowicz, 2000b; Chawla et al., 2003a; Dietterich et al., 2003; Fem et al., 
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2004) and Special Issues (Chawla et al., 2004a). The range of papers in these 

venues exhibited the pervasive and ubiquitous nature of the class imbalance is- 

sues faced by the Data Mining community. Sampling methodologies continue 

to be popular in the research work. However, the research continues to evolve 

with different applications, as each application provides a compelling problem. 

One focus of the initial workshops was primarily the performance evaluation 

criteria for mining imbalanced datasets. The limitation of the accuracy as the 

performance measure was quickly established. ROC curves soon emerged as a 

popular choice (Fem et al., 2004). 

The compelling question, given the different ciass distributions is: What 
is the correct distribution for a learning algorithm? Weiss and Provost pre- 

sented a detailed analysis on the effect of class distribution on classifier learn- 

ing (Weiss and Provost, 2003). Our observations agree with their work that 

the natural distribution is often not the best distribution for learning a classifier 

(Chawla, 2003). Also, the imbalance in the data can be more characteristic of 

"sparseness" in feature space than the class imbalance. Various re-sampling 
strategies have been used such as random oversampling with replacement, ran- 

dom undersampling, focused oversampling, focused undersampling, oversam- 

pling with synthetic generation of new samples based on the known informa- 

tion, and combinations of the above techniques (Chawla et al., 2004b). 

In addition to the issue of inter-class distribution, another important probem 

arising due to the sparsity in data is the distribution of data within each class 
(Japkowicz, 2001a). This problem was also linked to the issue of small 

disjuncts in the decision tree learning. Yet another, school of thought is a 

recognition based approach in the form of a one-class learner. The one-class 

learners provide an interesting alternative to the traditional discriminative ap- 

proach, where in the classifier is learned on the target class alone (Japkowicz, 

2001b; Juszczak and Duin, 2003; Raskutti and Kowalczyk, 2004; Tax, 2001). 

In this chapter1, we present a liberal overview of the problem of mining im- 

balanced datasets with particular focus on performance measures and sampling 

methodologies. We will present our novel oversampling technique, SMOTE, 

and its extension in the boosting procedure - SMOTEBoost. 

2. Performance Measure 

A classifier is, typically, evaluated by a confusion matrix as illustrated in 

Figure 40.1 (Chawla et al., 2002). The columns are the Predicted class and 

the rows are the Actual class. In the confusion matrix, T N  is the num- 

ber of negative examples correctly classified (True Negatives), F P  is the 

number of negative examples incorrectly classified as positive (False Posi- 

tives), F N  is the number of positive examples incorrectly classified as neg- 

ative (False Negatives) and TP is the number of positive examples correctly 
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classified ( T N ~  Positives). Predictive accuracy is defined as Accuracy = 

( T P  + T N ) / ( T P  + F P  + T N  + F N ) .  

Predicted Predicted I Negative I Positive I 
Actual 

Negative 

Actual 
Positive 

Figure 40.1. Confusion Matrix 

However, predictive accuracy might not be appropriate when the data is 
imbalanced and/or the costs of different errors vary markedly. As an example, 

consider the classification of pixels in mammogram images as possibly cancer- 
ous (Woods et al., 1993). A typical mammography dataset might contain 98% 

normal pixels and 2% abnormal pixels. A simple default strategy of guessing 

the majority class would give a predictive accuracy of 98%. The nature of the 

application requires a fairly high rate of correct detection in the minority class 

and allows for a small error rate in the majority class in order to achieve this 

(Chawla et al., 2002). Simple predictive accuracy is clearly not appropriate in 

such situations. 

2.1 ROC Curves 

The Receiver Operating Characteristic (ROC) curve is a standard technique 

for summarizing classifier performance over a range of tradeoffs between true 

positive and false positive error rates (Swets, 1988). The Area Under the Curve 

(AUC) is an accepted performance metric for a ROC curve (Bradley, 1997). 

ROC curves can be thought of as representing the family of best decision 

boundaries for relative costs of TP and FP. On an ROC curve the X-axis 

represents %FP = F P / ( T N  + F P )  and the Y-axis represents %TP = 

T P / ( T P  + F N ) .  The ideal point on the ROC curve would be (0,100), that 

is all positive examples are classified correctly and no negative examples are 

misclassified as positive. One way an ROC curve can be swept out is by ma- 

nipulating the balance of training samples for each class in the training set. 

Figure 40.2 shows an illustration (Chawla et al., 2002). The line y = x repre- 

sents the scenario of randomly guessing the class. A single operating point of 

a classifier can be chosen from the trade-off between the %TP and %FP, that 

is, one can choose the classifier giving the best %TP for an acceptable %FP 
(Neyman-Pearson method) (Egan, 1975). Area Under the ROC Curve (AUC) 

is a useful metric for classifier performance as it is independent of the decision 
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Figure 40.2. Illustration of Sweeping out an ROC Curve through under-sampling. Increased 
under-sampling of the majority (negative) class will move the performance from the lower left 
point to the upper right. 

criterion selected and prior probabilities. The AUC comparison can establish a 

dominance relationship between classifiers. If the ROC curves are intersecting, 

the total AUC is an average comparison between models (Lee, 2000). 
The ROC convex hull can also be used as a robust method of identifying 

potentially optimal classifiers (Provost and Fawcett, 2001). Given a family of 

ROC curves, the ROC convex hull can include points that are more towards 

the north-west frontier of the ROC space. If a line passes through a point on 

the convex hull, then there is no other line with the same slope passing through 

another point with a larger true positive (TP) intercept. Thus, the classifier at 

that point is optimal under any distribution assumptions in tandem with that 

slope (Provost and Fawcett, 2001). 

Moreover, distribution/cost sensitive applications can require a ranking or 

a probabilistic estimate of the instances. For instance, revisiting our mam- 

mography data example, a probabilistic estimate or ranking of cancerous cases 

can be decisive for the practitioner (Chawla, 2003; Maloof, 2003). The cost 

of further tests can be decreased by thresholding the patients at a particular 

rank. Secondly, probabilistic estimates can allow one to threshold ranking for 

class membership at values < 0.5. The ROC methodology by (Hand, 1997) 

allows for ranking of examples based on their class memberships - whether 

a randomly chosen majority class example has a higher majority class mem- 

bership than a randomly chosen minority class example. It is equivalent to the 

Wilcoxon test statistic. 
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2.2 Precision and Recall 

From the confusion matrix in Figure 40.1, we can derive the expression for 

precision and recall (Buckland and Gey, 1994). 

precision = 
T P  

T P  + FP 

recall = 
T P  

T P  + FN 

The main goal for learning from imbalanced datasets is to improve the recall 

without hurting the precision. However, recall and precision goals can be often 

conflicting, since when increasing the true positive for the minority class, the 

number of false positives can also be increased; this will reduce the precision. 

The F-value metric is one measure that combines the trade-offs of precision 

and recall, and outputs a single number reflecting the "goodness" of a classi- 

fier in the presence of rare classes. While ROC curves represent the trade-off 

between values of TP and FP, the F-value represents the trade-off among dif- 

ferent values of TP, FP, and FN (Buckland and Gey, 1994). The expression for 

the F-value is as follows: 

(1  + P2) * recall *precision 
F - value = 

0 2  * recall +precision 

where /3 corresponds to the relative importance of precision vs recall. It is 

usually set to 1. 

2.3 Cost-sensitive Measures 

2.3.1 Cost Matrix. Cost-sensitive measures usually assume that the 

costs of making an error are known (Turney, 2000; Domingos, 1999; Elkan, 

2001). That is one has a cost-matrix, which defines the costs incurred in false 

positives and false negatives. Each example, x, can be associated with a cost 

C(i,  j, x),  which defines the cost of predicting class i for x when the "true" 

class is j. The goal is to take a decision to minimize the expected cost. The 

optimal prediction for x can be defined as 

The aforementioned equation requires a computation of conditional proba- 

blities of class j given feature vector or example x. While the cost equation is 

straightforward, we don't always have a cost attached to making an error. The 

costs can be different for every example and not only for every type of error. 

Thus, C(i,  j) is not always = to C(i,  j, x). 
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2.3.2 Cost Curves. (Drummond and Holte, 2000) propose cost-curves, 

where the x-axis represents of the fraction of the positive class in the training 

set, and the y-axis represents the expected error rate grown on each of the 

training sets. The training sets for a data set is generated by under (or over) 

sampling. The error rates for class distributions not represented are construed 

by interpolation. They define two cost-sensitive components for a machine 

learning algorithm: 1) producing a variety of classifiers applicable for different 

distributions and 2) selecting the appropriate classifier for the right distribution. 

However, when the misclassification costs are known, the x-axis can represent 

the "probability cost function", which is the normalized product of C(- I 
+) * P(+); the y-axis represents the expected cost. 

3. Sampling Strategies 

Over and under-sampling methodologies have received significant attention 

to counter the effect of imbalanced data sets (Solberg and Solberg, 1996; Jap- 

kowicz, 2000a; Chawla et al., 2002; Weiss and Provost, 2003; Kubat and 
Matwin, 1997; Jo and Japkowicz, 2004; Batista et al., 2004; Phua and Ala- 

hakoon, 2004; Laurikkala, 2001; Ling and Li, 1998). Various studies in im- 

balanced datasets have used different variants of over and under sampling, and 

have presented (sometimes conflicting) viewpoints on usefulness of oversam- 

pling versus undersampling (Chawla, 2003; Maloof, 2003; Drurnmond and 

Holte, 2003; Batista et al., 2004). 

The random under and over sampling methods have their various 

short-comings. The random undersampling method can potentially remove 

certain important examples, and random oversampling can lead to overfitting. 

However, there has been progression in both the under and over sampling 

methods. (Kubat and Matwin, 1997) used one-sided selection to selectively 
undersample the original population. They used Tomek Links (Tomek, 1976) 

to identify the noisy and borderline examples. They also used the Condensed 

Nearest Neighbor (CNN) rule (Hart, 1968) to remove examples from the ma- 

jority class that are far away from the decision border. (Laurikkala, 2001) 

proposed Neighborhood Cleaning Rule (NCL) to remove the majority class 

examples. The author computes three nearest neighbors for each of the (Ei) 

examples in the training set. If Ei belongs to the majority class, and it is mis- 

classified by its three nearest neighbors, then Ei is removed. If Ei belongs to 

the minority class, and it is misclassified by its three nearest neighbors then the 

majority class examples among the three nearest neighbors are removed. This 

approach can reach a computational bottleneck for very large datasets, with a 

large majority class. 

(Japkowicz, 2000a) discussed the effect of imbalance in a dataset. She eval- 

uated three strategies: under-sampling, resampling and a recognition-based 
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induction scheme. She considered two sampling methods for both over and 

undersampling. Random resampling consisted of oversampling the smaller 

class at random until it consisted of as many samples as the majority class and 

"focused resampling" consisted of oversampling only those minority exam- 

ples that occurred on the boundary between the minority and majority classes. 

Random under-sampling involved under-sampling the majority class samples 

at random until their numbers matched the number of minority class samples; 
focused under-sampling involved under-sampling the majority class samples 

lying further away. She noted that both the sampling approaches were effec- 

tive, and she also observed that using the sophisticated sampling techniques 

did not give any clear advantage in the domain considered. However, her over- 

sampling methodologies did not construct any new examples. 

(Ling and Li, 1998) also combined over-sampling of the minority class with 

under-sampling of the majority class. They used lift analysis instead of accu- 
racy to measure a classifier's performance. They proposed that the test exam- 

ples be ranked by a confidence measure and then lift be used as the evaluation 

criteria. In one experiment, they under-sampled the majority class and noted 

that the best lift index is obtained when the classes are equally represented. In 

another experiment, they over-sampled the positive (minority) examples with 

replacement to match the number of negative (majority) examples to the num- 

ber of positive examples. The over-sampling and under-sampling combination 

did not provide significant improvement in the lift index. 
We developed a novel oversampling technique called SMOTE (Synthetic 

Minority Oversampling TEchnique). It can be essential to provide new related 

information on the positive class to the learning algorithm, in addition to un- 

dersampling the majority class. This was the first attempt to introduce new 

examples in the training data to enrich the data space and counter the sparsity 

in the distribution. We will discuss SMOTE in more detail in the subsequent 

section. We combined SMOTE with undersampling. We used ROC analyses 

to present the results of our findings. 

Batista et al. (Batista et al., 2004) evaluated various sampling methodolo- 

gies on a variety of datasets with different class distributions. They included 

various methods in both oversampling and undersampling. They conclude that 

SMOTE+Tomek and SMOTE+ENN are more applicable and give very good 

results for datasets with a small number of positive class examples. They also 

noted that the decision trees constructed from the oversampled datasets are 

usually very large and complex. This is similar to the observation by (Chawla 

et al., 2002). 
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3.1 Synthetic Minority Oversampling TEchnique: 
SMOTE 

Over-sampling by replication can lead to similar but more specific regions 

in the feature space as the decision region for the minority class. This can po- 
tentially lead to overfitting on the multiple copies of minority class examples. 

To overcome the overfitting and broaden the decision region of minority class 

examples, we introduced a novel technique to generate synthetic examples by 

operating in "feature space" rather than "data space" (Chawla et al., 2002). The 

minority class is over-sampled by taking each minority class sample and intro- 

ducing synthetic examples along the line segments joining anylall of the k mi- 

nority class nearest neighbors. Depending upon the amount of over-sampling 

required, neighbors from the k nearest neighbors are randomly chosen. Syn- 

thetic samples are generated in the following way: Take the difference between 

the feature vector (sample) under consideration and its nearest neighbor. Mul- 

tiply this difference by a random number between 0 and l, and add it to the 
feature vector under consideration. This causes the selection of a random point 

along the line segment between two specific features. This approach effectively 

forces the decision region of the minority class to become more general. For 

the nominal cases, we take the majority vote for the nominal value amongst the 

nearest neighbors. We use the modification of Value Distance Metric (VDM) 

(Cost and Salzberg, 1993) to compute the nearest neighbors for the nominal 

valued features. 

The synthetic examples cause the classifier to create larger and less spe- 

cific decision regions, rather than smaller and more specific regions, as typi- 

cally caused by over-sampling with replication. More general regions are now 

learned for the minority class rather than being subsumed by the majority class 

samples around them. The effect is that decision trees generalize better. 
SMOTE was tested on a variety of datasets, with varying degrees of imbal- 

ance and varying amounts of data in the training set, thus providing a diverse 

testbed. SMOTE forces focused learning and introduces a bias towards the mi- 

nority class. On most of the experiments, SMOTE using C4.5 (Quinlan, 1992) 

and Ripper (Cohen, 1995a) as underlying classifiers outperformed other meth- 

ods including sampling strategies, Ripper's Loss Ratio, and even Naive Bayes 

by varying the class priors. 

4. Ensemble-based Methods 

Combination of classifiers can be an effective technique for improving pre- 

diction accuracy. As one of the most popular combining techniques, boosting 

(Freund and Schapire, 1996), uses adaptive sampling of instances to generate 

a highly accurate ensemble of classifiers whose individual global accuracy is 

only moderate. In boosting, the classifiers in the ensemble are trained serially, 
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with the weights on the training instances adjusted adaptively according to the 

performance of the previous classifiers. The main idea is that the classifica- 

tion algorithm should concentrate on the instances that are difficult to learn. 

Boosting has received extensive empirical study (Dietterich, 2000; Bauer and 

Kohavi, 1999), but most of the published work focuses on improving the ac- 

curacy of a weak classifier on datasets with well-balanced class distributions. 

There has been significant interest in the recent literature for embedding cost- 

sensitivities in the boosting algorithm. We proposed SMOTEBoost that em- 

beds the SMOTE procedure during boosting iterations. CSB fling, 2000) and 

AdaCost boosting algorithms (Fan et al., 1999) update the weights of examples 

according to the misclassification costs. On the other side, Rare-Boost (Joshi 

et al., 2001) updates the weights of the examples differently for all four entries 

shown in Figure 40.1. Guo and Viktor (Guo and Viktor, 2004) propose another 

technique that modifies the boosting procedure - DataBoost. As compared 

to SMOTEBoost, which only focuses on the hard minority class cases, this 

technique employs a synthetic data generation process for both minority and 

majority class cases. 

In addition to boosting, popular sampling techniques have also been de- 

ployed to construct ensembles. Radivojac et al. (Radivojac et al., 2004) com- 
bined bagging with oversampling methodlogies for the bioinformatics domain. 

Liu et al. (Liu et al., 2004) also applied a variant of bagging by bootstrapping 

at equal proportions from both the minority and majority classes. They ap- 

plied this technique to the problem of sentence boundary detection. Phua et. 
a1 (Phua and Alahakoon, 2004) combine bagging and stacking to identify the 

best mix of classifiers. In their insurance fraud detection domain, they note 

that stacking-bagging achieves the best cost-savings 

4.1 SMOTEBoost 

SMOTEBoost algorithm combines SMOTE and the standard boosting pro- 

cedure (Chawla et al., 2003b). We want to utilize SMOTE for improving the 

accuracy over the minority classes, and we want to utilize boosting to maintain 

accuracy over the entire data set. The major goal is to better model the mi- 

nority class in the data set, by providing the learner not only with the minority 

class instances that were rnisclassified in previous boosting iterations, but also 

with a broader representation of those instances. 

The standard boosting procedure gives equal weights to all misclassified 

examples. Since boosting samples from a pool of data that predominantly con- 

sists of the majority class, subsequent samplings of the training set may still 

be skewed towards the majority class. Although boosting reduces the vari- 

ance and the bias in the final ensemble (Freund and Schapire, 1996), it might 

not hold for datasets with skewed class distributions. There is a very strong 
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learning bias towards the majority class cases in a skewed data set, and subse- 

quent iterations of boosting can lead to a broader sampling from the majority 

class. Boosting (Adaboost) treats both kinds of errors (FP and FN) in a sim- 

ilar fashion. Our goal is to reduce the bias inherent in the learning procedure 

due to the class imbalance, and increase the sampling weights for the minority 

class. Introducing SMOTE in each round of boosting will enable each learner 

to be able to sample more of the minority class cases, and also learn better 

and broader decision regions for the minority class. SMOTEBoost approach 

outperformed boosting, Ripper (Cohen, 1995a), and AdaCost on a variety of 

datasets (Chawla et al., 2003b). 

5. Discussion 

Mining from imbalanced datasets is indeed a very important problem from 
both the algorithmic and performance perspective. Not choosing the right dis- 

tribution or the objective function while developing a classification model can 

introduce bias towards majority (potentially uninteresting) class. Furthermore, 

predictive accuracy is not a useful measure when evaluating classifiers learned 

on imbalance data sets. Some of the measures discussed in Section 2 can be 

more appropriate. 
Sampling methods are very popular in balancing the class distribution be- 

fore learning a classifier, which uses an error based objective function to search 

the hypothesis space. We focused on SMOTE in the chapter. Consider the ef- 
fect on the decision regions in feature space when minority over-sampling is 

done by replication (sampling with replacement) versus the introduction of 

synthetic examples. With replication, the decision region that results in a clas- 

sification decision for the minority class can actually become smaller and more 

specific as the minority samples in the region are replicated. This is the op- 

posite of the desired effect. Our method of synthetic over-sampling works to 

cause the classifier to build larger decision regions that contain nearby minority 

class points. The same reasons may be applicable to why SMOTE performs 

better than Ripper's loss ratio and Naive Bayes; these methods, nonetheless, 

are still learning from the information provided in the dataset, albeit with dif- 

ferent cost information. SMOTE provides more related minority class samples 

to learn from, thus allowing a learner to carve broader decision regions, lead- 

ing to more coverage of the minority class. The SMOTEBoost methodology 

that embeds SMOTE within the Adaboost procedure provided further improve- 

ments to the minority class prediction. 

One compelling problem arising from sampling methodologies is: Can we 

identify the right distribution? Is balanced the best distribution? It is not 

straightforward. This is very domain and classifier dependent, and is usually 

driven by empirical observations. (Weiss and Provost, 2003) present a bud- 
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geted sampling approach, which represents a heuristic for searching for the 

right distribution. Another compelling issue is :What ifthe test distribuion re- 

markably difers from the training distribution? If we train a classifier on a 

distribution tuned on the discovered distribution, will it generalize enough on 

the testing set. In such cases, one can assume that the natural distribution holds, 

and apply a form of cost-sensitive learning. If a cost-matrix is known and is 

static across the training and testing sets, learn from the original or natural dis- 

tribution, and then apply the cost-matrix at the time of classification. It can 

also be the case that the majority class is of an equal interest as the minority 

class - the imbalance here is a mere artifiact of class distribution and not of 

different types of errors (Liu et al., 2004). In such a scenario, it is important to 

model both the majority and minority classes without a particular bias towards 

any one class. 

We believe mining imbalanced datasets opens a front of interesting prob- 

lems and research directions. Given that Data Mining is becoming pervasive 

and ubiquitous in various applications, it is important to investigate along the 

lines of imbalance both in class distribution and costs. 
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