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Abstract 

Many high quality studies have emerged from public databases, such as Surveillance, Epidemiology, and End Results 

(SEER), National Health and Nutrition Examination Survey (NHANES), The Cancer Genome Atlas (TCGA), and Medical 

Information Mart for Intensive Care (MIMIC); however, these data are often characterized by a high degree of dimen-

sional heterogeneity, timeliness, scarcity, irregularity, and other characteristics, resulting in the value of these data not 

being fully utilized. Data-mining technology has been a frontier field in medical research, as it demonstrates excellent 

performance in evaluating patient risks and assisting clinical decision-making in building disease-prediction models. 

Therefore, data mining has unique advantages in clinical big-data research, especially in large-scale medical public 

databases. This article introduced the main medical public database and described the steps, tasks, and models of 

data mining in simple language. Additionally, we described data-mining methods along with their practical applica-

tions. The goal of this work was to aid clinical researchers in gaining a clear and intuitive understanding of the applica-

tion of data-mining technology on clinical big-data in order to promote the production of research results that are 

beneficial to doctors and patients.
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Background

With the rapid development of computer software/hard-

ware and internet technology, the amount of data has 

increased at an amazing speed. “Big data” as an abstract 

concept currently affects all walks of life [1], and although 

its importance has been recognized, its definition var-

ies slightly from field to field. In the field of computer 

science, big data refers to a dataset that cannot be per-

ceived, acquired, managed, processed, or served within 

a tolerable time by using traditional IT and software and 

hardware tools. Generally, big data refers to a dataset that 

exceeds the scope of a simple database and data-pro-

cessing architecture used in the early days of computing 

and is characterized by high-volume and -dimensional 

data that is rapidly updated represents a phenomenon 

or feature that has emerged in the digital age. Across the 

medical industry, various types of medical data are gen-

erated at a high speed, and trends indicate that applying 

big data in the medical field helps improve the quality of 

medical care and optimizes medical processes and man-

agement strategies [2, 3]. Currently, this trend is shifting 

from civilian medicine to military medicine. For example, 

the United States is exploring the potential to use of one 

of its largest healthcare systems (the Military Health-

care System) to provide healthcare to eligible veterans in 

order to potentially benefit > 9 million eligible personnel 
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[4]. Another data-management system has been devel-

oped to assess the physical and mental health of active-

duty personnel, with this expected to yield significant 

economic benefits to the military medical system [5]. 

However, in medical research, the wide variety of clinical 

data and differences between several medical concepts in 

different classification standards results in a high degree 

of dimensionality heterogeneity, timeliness, scarcity, and 

irregularity to existing clinical data [6, 7]. Furthermore, 

new data analysis techniques have yet to be popularized 

in medical research [8]. �ese reasons hinder the full 

realization of the value of existing data, and the intensive 

exploration of the value of clinical data remains a chal-

lenging problem.

Computer scientists have made outstanding contri-

butions to the application of big data and introduced 

the concept of data mining to solve difficulties associ-

ated with such applications. Data mining (also known as 

knowledge discovery in databases) refers to the process of 

extracting potentially useful information and knowledge 

hidden in a large amount of incomplete, noisy, fuzzy, and 

random practical application data [9]. Unlike traditional 

research methods, several data-mining technologies mine 

information to discover knowledge based on the prem-

ise of unclear assumptions (i.e., they are directly applied 

without prior research design). �e obtained informa-

tion should have previously unknown, valid, and practical 

characteristics [9]. Data-mining technology does not aim 

to replace traditional statistical analysis techniques, but it 

does seek to extend and expand statistical analysis meth-

odologies. From a practical point of view, machine learn-

ing (ML) is the main analytical method in data mining, as 

it represents a method of training models by using data 

and then using those models for predicting outcomes. 

Given the rapid progress of data-mining technology and 

its excellent performance in other industries and fields, it 

has introduced new opportunities and prospects to clini-

cal big-data research [10]. Large amounts of high qual-

ity medical data are available to researchers in the form 

of public databases, which enable more researchers to 

participate in the process of medical data mining in the 

hope that the generated results can further guide clinical 

practice.

�is article provided a valuable overview to medical 

researchers interested in studying the application of data 

mining on clinical big data. To allow a clearer under-

standing of the application of data-mining technology 

on clinical big data, the second part of this paper intro-

duced the concept of public databases and summarized 

those commonly used in medical research. In the third 

part of the paper, we offered an overview of data min-

ing, including introducing an appropriate model, tasks, 

and processes, and summarized the specific methods of 

data mining. In the fourth and fifth parts of this paper, we 

introduced data-mining algorithms commonly used in 

clinical practice along with specific cases in order to help 

clinical researchers clearly and intuitively understand 

the application of data-mining technology on clinical 

big data. Finally, we discussed the advantages and disad-

vantages of data mining in clinical analysis and offered 

insight into possible future applications.

Overview of common public medical databases

A public database describes a data repository used for 

research and dedicated to housing data related to scien-

tific research on an open platform. Such databases col-

lect and store heterogeneous and multi-dimensional 

health, medical, scientific research in a structured form 

and characteristics of mass/multi-ownership, complex-

ity, and security. �ese databases cover a wide range of 

data, including those related to cancer research, disease 

burden, nutrition and health, and genetics and the envi-

ronment. Table  1 summarizes the main public medical 

databases [11–26]. Researchers can apply for access to 

data based on the scope of the database and the appli-

cation procedures required to perform relevant medical 

research.

Data mining: an overview

Data mining is a multidisciplinary field at the intersec-

tion of database technology, statistics, ML, and pattern 

recognition that profits from all these disciplines [27]. 

Although this approach is not yet widespread in the field 

of medical research, several studies have demonstrated 

the promise of data mining in building disease-prediction 

models, assessing patient risk, and helping physicians 

make clinical decisions [28–31].

Data‑mining models

Data-mining has two kinds of models: descriptive 

and predictive. Predictive models are used to predict 

unknown or future values of other variables of inter-

est, whereas descriptive models are often used to find 

patterns that describe data that can be interpreted by 

humans [32].

Data‑mining tasks

A model is usually implemented by a task, with the goal 

of description being to generalize patterns of potential 

associations in the data. �erefore, using a descriptive 

model usually results in a few collections with the same 

or similar attributes. Prediction mainly refers to estima-

tion of the variable value of a specific attribute based on 

the variable values of other attributes, including classifi-

cation and regression [33].
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Data‑mining methods

After defining the data-mining model and task, the data 

mining methods required to build the approach based 

on the discipline involved are then defined. �e data-

mining method depends on whether or not dependent 

variables (labels) are present in the analysis. Predictions 

with dependent variables (labels) are generated through 

supervised learning, which can be performed by the 

use of linear regression, generalized linear regres-

sion, a proportional hazards model (the Cox regres-

sion model), a competitive risk model, decision trees, 

the random forest (RF) algorithm, and support vector 

machines (SVMs). In contrast, unsupervised learn-

ing involves no labels. �e learning model infers some 

internal data structure. Common unsupervised learn-

ing methods include principal component analysis 

(PCA), association analysis, and clustering analysis.

Data‑mining algorithms for clinical big data

Data mining based on clinical big data can produce effec-

tive and valuable knowledge, which is essential for accu-

rate clinical decision-making and risk assessment [34]. 

Data-mining algorithms enable realization of these goals.

Supervised learning

A concept often mentioned in supervised learning is 

the partitioning of datasets. To prevent overfitting of 

a model, a dataset can generally be divided into two or 

three parts: a training set, validation set, and test set. Rip-

ley [35] defined these parts as a set of examples used for 

learning and used to fit the parameters (i.e., weights) of 

the classifier, a set of examples used to tune the param-

eters (i.e., architecture) of a classifier, and a set of exam-

ples used only to assess the performance (generalized) 

Table 1 Overview of main medical public database

Database Range Location Founded year Cost URL References

Surveillance, Epidemiology, 
and End Results (SEER)

Tumor USA 1973 Partially free https:// seer. cancer. gov/ [11]

Medical Information Mart for 
Intensive Care (MIMIC)

Intensive medical USA 2001 Free https:// mimic. physi onet. org/ [12]

National Health and Nutri-
tion Examination Survey 
(NHANES)

Children and adults health USA 1999 Free https:// wwwn. cdc. gov/ nchs/ 
nhanes/

[13]

Global Burden of Disease 
(GBD)

Epidemic trends and burden 
of disease

Global 1988 Free http:// ghdx. healt hdata. org/ [14]

UK Biobank (UKB) Health-related genetic data 
and phenotypic data

UK 2006 Partially free https:// www. ukbio bank. ac. uk/ [15]

The Cancer Genome Atlas 
(TCGA)

Cancer genomics USA 2006 Free http:// cance rgeno me. nih. 
gov/

[16]

Gene Expression Omnibus 
(GEO)

Sequencing and gene expres-
sion

USA 2000 Free https:// www. ncbi. nlm. nih. 
gov/ geo/

[17]

International Cancer Genome 
Consortium (ICGC)

Cancer genomics Global 2008 Free https:// dcc. icgc. org/ [18]

China Kadoorie Biobank (CKB) Chronic diseases China 2004 Partially free https:// www. ckbio bank. org/ 
site/

[19]

Comparative Toxicogenomics 
Database (CTD)

Environmental chemicals and 
human health

USA 2004 Free http:// ctdba se. org/ [20]

Paediatric Intensive Care (PIC) Paediatric Intensive China 2010 Free http:// pic. nbscn. org/ [21]

Biologic Specimen and Data 
Repositories Informa-
tion Coordinating Center 
(BioLINCC)

Cardiovascular, pulmonary, 
and hematological

USA 2009 Free https:// bioli ncc. nhlbi. nih. gov/ [22]

China Health and Nutrition 
Survey (CHNS)

Health and nutrition China 1989 Partially free http:// www. cpc. unc. edu/ 
proje cts/ china

[23]

China Health and Retire-
ment Longitudinal Study 
(CHARLS)

Ageing and health China 2011 Free http:// charls. pku. edu. cn/ [24]

eICU Collaborative Research 
Database (eICU-CRD)

Intensive medical USA 2018 Free https:// eicu- crd. mit. edu/ [25]

Health and Retirement Study 
(HRS)

Aging health and social 
support

Global 1992 Free https:// hrs. isr. umich. edu/ [26]

https://seer.cancer.gov/
https://mimic.physionet.org/
https://wwwn.cdc.gov/nchs/nhanes/
https://wwwn.cdc.gov/nchs/nhanes/
http://ghdx.healthdata.org/
https://www.ukbiobank.ac.uk/
http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://dcc.icgc.org/
https://www.ckbiobank.org/site/
https://www.ckbiobank.org/site/
http://ctdbase.org/
http://pic.nbscn.org/
https://biolincc.nhlbi.nih.gov/
http://www.cpc.unc.edu/projects/china
http://www.cpc.unc.edu/projects/china
http://charls.pku.edu.cn/
https://eicu-crd.mit.edu/
https://hrs.isr.umich.edu/
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of a fully-specified classifier, respectively. Briefly, the 

training set is used to train the model or determine the 

model parameters, the validation set is used to perform 

model selection, and the test set is used to verify model 

performance. In practice, data are generally divided into 

training and test sets, whereas the verification set is 

less involved. It should be emphasized that the results 

of the test set do not guarantee model correctness but 

only show that similar data can obtain similar results 

using the model. �erefore, the applicability of a model 

should be analysed in combination with specific prob-

lems in the research. Classical statistical methods, such 

as linear regression, generalized linear regression, and a 

proportional risk model, have been widely used in medi-

cal research. Notably, most of these classical statistical 

methods have certain data requirements or assumptions; 

however, in face of complicated clinical data, assump-

tions about data distribution are difficult to make. In con-

trast, some ML methods (algorithmic models) make no 

assumptions about the data and cross-verify the results; 

thus, they are likely to be favoured by clinical research-

ers [36]. For these reasons, this chapter focuses on ML 

methods that do not require assumptions about data dis-

tribution and classical statistical methods that are used in 

specific situations.

Decision tree

A decision tree is a basic classification and regression 

method that generates a result similar to the tree struc-

ture of a flowchart, where each tree node represents a 

test on an attribute, each branch represents the output 

of an attribute, each leaf node (decision node) repre-

sents a class or class distribution, and the topmost part 

of the tree is the root node [37]. �e decision tree model 

is called a classification tree when used for classification 

and a regression tree when used for regression. Studies 

have demonstrated the utility of the decision tree model 

in clinical applications. In a study on the prognosis of 

breast cancer patients, a decision tree model and a clas-

sical logistic regression model were constructed, respec-

tively, with the predictive performance of the different 

models indicating that the decision tree model showed 

stronger predictive power when using real clinical data 

[38]. Similarly, the decision tree model has been applied 

to other areas of clinical medicine, including diagnosis of 

kidney stones [39], predicting the risk of sudden cardiac 

arrest [40], and exploration of the risk factors of type II 

diabetes [41]. A common feature of these studies is the 

use of a decision tree model to explore the interaction 

between variables and classify subjects into homogene-

ous categories based on their observed characteristics. 

In fact, because the decision tree accounts for the strong 

interaction between variables, it is more suitable for use 

with decision algorithms that follow the same structure 

[42]. In the construction of clinical prediction mod-

els and exploration of disease risk factors and patient 

prognosis, the decision tree model might offer more 

advantages and practical application value than some 

classical algorithms. Although the decision tree has many 

advantages, it recursively separates observations into 

branches to construct a tree; therefore, in terms of data 

imbalance, the precision of decision tree models needs 

improvement.

The RF method

�e RF algorithm was developed as an application of an 

ensemble-learning method based on a collection of deci-

sion trees. �e bootstrap method [43] is used to ran-

domly retrieve sample sets from the training set, with 

decision trees generated by the bootstrap method con-

stituting a “random forest” and predictions based on 

this derived from an ensemble average or majority vote. 

�e biggest advantage of the RF method is that the ran-

dom sampling of predictor variables at each decision 

tree node decreases the correlation among the trees in 

the forest, thereby improving the precision of ensemble 

predictions [44]. Given that a single decision tree model 

might encounter the problem of overfitting [45], the ini-

tial application of RF minimizes overfitting in classifica-

tion and regression and improves predictive accuracy 

[44]. Taylor et al. [46] highlighted the potential of RF in 

correctly differentiating in-hospital mortality in patients 

experiencing sepsis after admission to the emergency 

department. Nowhere in the healthcare system is the 

need more pressing to find methods to reduce uncer-

tainty than in the fast, chaotic environment of the emer-

gency department. �e authors demonstrated that the 

predictive performance of the RF method was superior 

to that of traditional emergency medicine methods and 

the methods enabled evaluation of more clinical variables 

than traditional modelling methods, which subsequently 

allowed the discovery of clinical variables not expected 

to be of predictive value or which otherwise would have 

been omitted as a rare predictor [46]. Another study 

based on the Medical Information Mart for Intensive 

Care (MIMIC) II database [47] found that RF had excel-

lent predictive power regarding intensive care unit (ICU) 

mortality [48]. �ese studies showed that the application 

of RF to big data stored in the hospital healthcare system 

provided a new data-driven method for predictive analy-

sis in critical care. Additionally, random survival forests 

have recently been developed to analyse survival data, 

especially right-censored survival data [49, 50], which 

can help researchers conduct survival analyses in clinical 

oncology and help develop personalized treatment regi-

mens that benefit patients [51].
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SVMs

�e SVM is a relatively new classification or prediction 

method developed by Cortes and Vapnik and represents 

a data-driven approach that does not require assump-

tions about data distribution [52]. �e core purpose of 

an SVM is to identify a separation boundary (called a 

hyperplane) to help classify cases; thus, the advantages of 

SVMs are obvious when classifying and predicting cases 

based on high dimensional data or data with a small sam-

ple size [53, 54].

In a study of drug compliance in patients with heart 

failure, researchers used an SVM to build a predictive 

model for patient compliance in order to overcome the 

problem of a large number of input variables relative to 

the number of available observations [55]. Additionally, 

the mechanisms of certain chronic and complex dis-

eases observed in clinical practice remain unclear, and 

many risk factors, including gene–gene interactions and 

gene-environment interactions, must be considered in 

the research of such diseases [55, 56]. SVMs are capa-

ble of addressing these issues. Yu et  al. [54] applied an 

SVM for predicting diabetes onset based on data from 

the National Health and Nutrition Examination Survey 

(NHANES). Furthermore, these models have strong dis-

crimination ability, making SVMs a promising classifica-

tion approach for detecting individuals with chronic and 

complex diseases. However, a disadvantage of SVMs is 

that when the number of observation samples is large, 

the method becomes time- and resource-intensive, which 

is often highly inefficient.

Competitive risk model

Kaplan–Meier marginal regression and the Cox propor-

tional hazards model are widely used in survival analysis 

in clinical studies. Classical survival analysis usually con-

siders only one endpoint, such as the impact of patient 

survival time. However, in clinical medical research, mul-

tiple endpoints usually coexist, and these endpoints com-

pete with one another to generate competitive risk data 

[57]. In the case of multiple endpoint events, the use of 

a single endpoint-analysis method can lead to a biased 

estimation of the probability of endpoint events due 

to the existence of competitive risks [58]. �e competi-

tive risk model is a classical statistical model based on 

the hypothesis of data distribution. Its main advantage 

is its accurate estimation of the cumulative incidence of 

outcomes for right-censored survival data with multiple 

endpoints [59]. In data analysis, the cumulative risk rate 

is estimated using the cumulative incidence function in 

single-factor analysis, and Gray’s test is used for between-

group comparisons [60].

Multifactor analysis uses the Fine-Gray and cause-

specific (CS) risk models to explore the cumulative risk 

rate [61]. �e difference between the Fine-Gray and CS 

models is that the former is applicable to establishing a 

clinical prediction model and predicting the risk of a sin-

gle endpoint of interest [62], whereas the latter is suitable 

for answering etiological questions, where the regression 

coefficient reflects the relative effect of covariates on the 

increased incidence of the main endpoint in the target 

event-free risk set [63]. Currently, in databases with CS 

records, such as Surveillance, Epidemiology, and End 

Results (SEER), competitive risk models exhibit good 

performance in exploring disease-risk factors and prog-

nosis [64]. A study of prognosis in patients with oesopha-

geal cancer from SEER showed that Cox proportional 

risk models might misestimate the effects of age and dis-

ease location on patient prognosis, whereas competitive 

risk models provide more accurate estimates of factors 

affecting patient prognosis [65]. In another study of the 

prognosis of penile cancer patients, researchers found 

that using a competitive risk model was more helpful in 

developing personalized treatment plans [66].

Unsupervised learning

In many data-analysis processes, the amount of usable 

identified data is small, and identifying data is a tedious 

process [67]. Unsupervised learning is necessary to judge 

and categorize data according to similarities, character-

istics, and correlations and has three main applications: 

data clustering, association analysis, and dimensionality 

reduction. �erefore, the unsupervised learning meth-

ods introduced in this section include clustering analysis, 

association rules, and PCA.

Clustering analysis

�e classification algorithm needs to “know” informa-

tion concerning each category in advance, with all of the 

data to be classified having corresponding categories. 

When the above conditions cannot be met, cluster analy-

sis can be applied to solve the problem [68]. Clustering 

places similar objects into different categories or subsets 

through the process of static classification. Consequently, 

objects in the same subset have similar properties. Many 

kinds of clustering techniques exist. Here, we introduced 

the four most commonly used clustering techniques.

Partition clustering �e core idea of this clustering 

method regards the centre of the data point as the centre 

of the cluster. �e k-means method [69] is a representa-

tive example of this technique. �e k-means method takes 

n observations and an integer, k, and outputs a partition 

of the n observations into k sets such that each observa-

tion belongs to the cluster with the nearest mean [70]. �e 

k-means method exhibits low time complexity and high 

computing efficiency but has a poor processing effect on 
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high dimensional data and cannot identify nonspherical 

clusters.

Hierarchical clustering �e hierarchical clustering algo-

rithm decomposes a dataset hierarchically to facilitate the 

subsequent clustering [71]. Common algorithms for hier-

archical clustering include BIRCH [72], CURE [73], and 

ROCK [74]. �e algorithm starts by treating every point 

as a cluster, with clusters grouped according to closeness. 

When further combinations result in unexpected results 

under multiple causes or only one cluster remains, the 

grouping process ends. �is method has wide applicabil-

ity, and the relationship between clusters is easy to detect; 

however, the time complexity is high [75].

Clustering according to  density �e density algorithm 

takes areas presenting a high degree of data density and 

defines these as belonging to the same cluster [76]. �is 

method aims to find arbitrarily-shaped clusters, with the 

most representative algorithm being DBSCAN [77]. In 

practice, DBSCAN does not need to input the number of 

clusters to be partitioned and can handle clusters of vari-

ous shapes; however, the time complexity of the algorithm 

is high. Furthermore, when data density is irregular, the 

quality of the clusters decreases; thus, DBSCAN cannot 

process high dimensional data [75].

Clustering according to  a  grid Neither partition nor 

hierarchical clustering can identify clusters with non-

convex shapes. Although a dimension-based algorithm 

can accomplish this task, the time complexity is high. To 

address this problem, data-mining researchers proposed 

grid-based algorithms that changed the original data 

space into a grid structure of a certain size. A representa-

tive algorithm is STING, which divides the data space 

into several square cells according to different resolutions 

and clusters the data of different structure levels [78]. 

�e main advantage of this method is its high process-

ing speed and its exclusive dependence on the number of 

units in each dimension of the quantized space.

In clinical studies, subjects tend to be actual patients. 

Although researchers adopt complex inclusion and 

exclusion criteria before determining the subjects to be 

included in the analyses, heterogeneity among differ-

ent patients cannot be avoided [79, 80]. �e most com-

mon application of cluster analysis in clinical big data is 

in classifying heterogeneous mixed groups into homo-

geneous groups according to the characteristics of exist-

ing data (i.e., “subgroups” of patients or observed objects 

are identified) [81, 82]. �is new information can then be 

used in the future to develop patient-oriented medical-

management strategies. Docampo et  al. [81] used hier-

archical clustering to reduce heterogeneity and identify 

subgroups of clinical fibromyalgia, which aided the evalu-

ation and management of fibromyalgia. Additionally, 

Guo et al. [83] used k-means clustering to divide patients 

with essential hypertension into four subgroups, which 

revealed that the potential risk of coronary heart dis-

ease differed between different subgroups. On the other 

hand, density- and grid-based clustering algorithms have 

mostly been used to process large numbers of images 

generated in basic research and clinical practice, with 

current studies focused on developing new tools to help 

clinical research and practices based on these technolo-

gies [84, 85]. Cluster analysis will continue to have exten-

sive application prospects along with the increasing 

emphasis on personalized treatment.

Association rules

Association rules discover interesting associations and 

correlations between item sets in large amounts of data. 

�ese rules were first proposed by Agrawal et al. [86] and 

applied to analyse customer buying habits to help retail-

ers create sales plans. Data-mining based on association 

rules identifies association rules in a two-step process: 1) 

all high frequency items in the collection are listed and 

2) frequent association rules are generated based on the 

high frequency items [87]. �erefore, before association 

rules can be obtained, sets of frequent items must be cal-

culated using certain algorithms. �e Apriori algorithm 

is based on the a priori principle of finding all relevant 

adjustment items in a database transaction that meet a 

minimum set of rules and restrictions or other restric-

tions [88]. Other algorithms are mostly variants of the 

Apriori algorithm [64]. �e Apriori algorithm must scan 

the entire database every time it scans the transaction; 

therefore, algorithm performance deteriorates as data-

base size increases [89], making it potentially unsuit-

able for analysing large databases. �e frequent pattern 

(FP) growth algorithm was proposed to improve effi-

ciency. After the first scan, the FP algorithm compresses 

the frequency set in the database into a FP tree while 

retaining the associated information and then mines the 

conditional libraries separately [90]. Association-rule 

technology is often used in medical research to identify 

association rules between disease risk factors (i.e., explo-

ration of the joint effects of disease risk factors and com-

binations of other risk factors). For example, Li et al. [91] 

used the association-rule algorithm to identify the most 

important stroke risk factor as atrial fibrillation, followed 

by diabetes and a family history of stroke. Based on the 

same principle, association rules can also be used to 

evaluate treatment effects and other aspects. For exam-

ple, Guo et  al. [92] used the FP algorithm to generate 

association rules and evaluate individual characteristics 

and treatment effects of patients with diabetes, thereby 
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reducing the readability rate of patients with diabetes. 

Association rules reveal a connection between premises 

and conclusions; however, the reasonable and reliable 

application of information can only be achieved through 

validation by experienced medical professionals and 

through extensive causal research [92].

PCA

PCA is a widely used data-mining method that aims to 

reduce data dimensionality in an interpretable way while 

retaining most of the information present in the data 

[93, 94]. �e main purpose of PCA is descriptive, as it 

requires no assumptions about data distribution and is, 

therefore, an adaptive and exploratory method. Dur-

ing the process of data analysis, the main steps of PCA 

include standardization of the original data, calculation 

of a correlation coefficient matrix, calculation of eigen-

values and eigenvectors, selection of principal compo-

nents, and calculation of the comprehensive evaluation 

value. PCA does not often appear as a separate method, 

as it is often combined with other statistical methods 

[95]. In practical clinical studies, the existence of multi-

collinearity often leads to deviation from multivariate 

analysis. A feasible solution is to construct a regression 

model by PCA, which replaces the original independ-

ent variables with each principal component as a new 

independent variable for regression analysis, with this 

most commonly seen in the analysis of dietary patterns 

in nutritional epidemiology [96]. In a study of socio-

economic status and child-developmental delays, PCA 

was used to derive a new variable (the household wealth 

index) from a series of household property reports and 

incorporate this new variable as the main analytical vari-

able into the logistic regression model [97]. Additionally, 

PCA can be combined with cluster analysis. Burgel et al. 

[98] used PCA to transform clinical data to address the 

lack of independence between existing variables used to 

explore the heterogeneity of different subtypes of chronic 

obstructive pulmonary disease. �erefore, in the study of 

subtypes and heterogeneity of clinical diseases, PCA can 

eliminate noisy variables that can potentially corrupt the 

cluster structure, thereby increasing the accuracy of the 

results of clustering analysis [98, 99].

The data‑mining process and examples of its 

application using common public databases

Open-access databases have the advantages of large vol-

umes of data, wide data coverage, rich data information, 

and a cost-efficient method of research, making them 

beneficial to medical researchers. In this chapter, we 

introduced the data-mining process and methods and 

their application in research based on examples of utiliz-

ing public databases and data-mining algorithms.

The data‑mining process

Figure  1 shows a series of research concepts. �e data-

mining process is divided into several steps: (1) database 

selection according to the research purpose; (2) data 

extraction and integration, including downloading the 

required data and combining data from multiple sources; 

(3) data cleaning and transformation, including removal 

of incorrect data, filling in missing data, generating new 

variables, converting data format, and ensuring data con-

sistency; (4) data mining, involving extraction of implicit 

relational patterns through traditional statistics or ML; 

(5) pattern evaluation, which focuses on the validity 

parameters and values of the relationship patterns of the 

extracted data; and (6) assessment of the results, involv-

ing translation of the extracted data-relationship model 

into comprehensible knowledge made available to the 

public.

Examples of data‑mining applied using public databases

Establishment of warning models for the early prediction 

of disease

A previous study identified sepsis as a major cause of 

death in ICU patients [100]. �e authors noted that 

the predictive model developed previously used a lim-

ited number of variables, and that model performance 

required improvement. �e data-mining process applied 

to address these issues was, as follows: (1) data selection 

using the MIMIC III database; (2) extraction and integra-

tion of three types of data, including multivariate features 

(demographic information and clinical biochemical indi-

cators), time series data (temperature, blood pressure, 

and heart rate), and clinical latent features (various scores 

related to disease); (3) data cleaning and transformation, 

including fixing irregular time series measurements, esti-

mating missing values, deleting outliers, and addressing 

data imbalance; (4) data mining through the use of logi-

cal regression, generation of a decision tree, application 

of the RF algorithm, an SVM, and an ensemble algorithm 

(a combination of multiple classifiers) to established the 

prediction model; (5) pattern evaluation using sensitivity, 

precision, and the area under the receiver operating char-

acteristic curve to evaluate model performance; and (6) 

evaluation of the results, in this case the potential to pre-

dicting the prognosis of patients with sepsis and whether 

the model outperformed current scoring systems.

Exploring prognostic risk factors in cancer patients

Wu et  al. [101] noted that traditional survival-analysis 

methods often ignored the influence of competitive risk 

events, such as suicide and car accident, on outcomes, 

leading to deviations and misjudgements in estimating 

the effect of risk factors. �ey used the SEER database, 

which offers cause-of-death data for cancer patients, and 
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a competitive risk model to address this problem accord-

ing to the following process: (1) data were obtained from 

the SEER database; (2) demography, clinical character-

istics, treatment modality, and cause of death of cecum 

cancer patients were extracted from the database; (3) 

patient data were deleted when there were no demo-

graphic, clinical, therapeutic, or cause-of-death vari-

ables; (4) Cox regression and two kinds of competitive 

risk models were applied for survival analysis; (5) the 

results were compared between three different models; 

and (6) the results revealed that for survival data with 

multiple endpoints, the competitive risk model was more 

favourable.

Derivation of dietary patterns

A study by Martínez Steele et al. [102] applied PCA for 

nutritional epidemiological analysis to determine dietary 

patterns and evaluate the overall nutritional quality of 

the population based on those patterns. �eir process 

involved the following: (1) data were extracted from the 

NHANES database covering the years 2009–2010; (2) 

demographic characteristics and two 24 h dietary recall 

interviews were obtained; (3) data were weighted and 

excluded based on subjects not meeting specific criteria; 

(4) PCA was used to determine dietary patterns in the 

United States population, and Gaussian regression and 

restricted cubic splines were used to assess associations 

Fig. 1 The steps of data mining in medical public database
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between ultra-processed foods and nutritional balance; 

(5) eigenvalues, scree plots, and the interpretability of 

the principal components were reviewed to screen and 

evaluate the results; and (6) the results revealed a nega-

tive association between ultra-processed food intake 

and overall dietary quality. �eir findings indicated that 

a nutritionally balanced eating pattern was character-

ized by a diet high in fibre, potassium, magnesium, and 

vitamin C intake along with low sugar and saturated fat 

consumption.

Conclusion

�e use of “big data” has changed multiple aspects of 

modern life, with its use combined with data-mining 

methods capable of improving the status quo [86]. �e 

aim of this study was to aid clinical researchers in under-

standing the application of data-mining technology on 

clinical big data and public medical databases to further 

their research goals in order to benefit clinicians and 

patients. �e examples provided offer insight into the 

data-mining process applied for the purposes of clinical 

research. Notably, researchers have raised concerns that 

big data and data-mining methods were not a perfect fit 

for adequately replicating actual clinical conditions, with 

the results potentially capable of misleading doctors and 

patients [86]. �erefore, given the rate at which new tech-

nologies and trends progress, it is necessary to maintain a 

positive attitude concerning their potential impact while 

remaining cautious in examining the results provided by 

their application.

In the future, the healthcare system will need to uti-

lize increasingly larger volumes of big data with higher 

dimensionality. �e tasks and objectives of data analysis 

will also have higher demands, including higher degrees 

of visualization, results with increased accuracy, and 

stronger real-time performance. As a result, the meth-

ods used to mine and process big data will continue to 

improve. Furthermore, to increase the formality and 

standardization of data-mining methods, it is possi-

ble that a new programming language specifically for 

this purpose will need to be developed, as well as novel 

methods capable of addressing unstructured data, such 

as graphics, audio, and text represented by handwriting. 

In terms of application, the development of data-man-

agement and disease-screening systems for large-scale 

populations, such as the military, will help determine the 

best interventions and formulation of auxiliary standards 

capable of benefitting both cost-efficiency and personnel. 

Data-mining technology can also be applied to hospital 

management in order to improve patient satisfaction, 

detect medical-insurance fraud and abuse, and reduce 

costs and losses while improving management efficiency. 

Currently, this technology is being applied for predicting 

patient disease, with further improvements resulting in 

the increased accuracy and speed of these predictions. 

Moreover, it is worth noting that technological devel-

opment will concomitantly require higher quality data, 

which will be a prerequisite for accurate application of 

the technology.

Finally, the ultimate goal of this study was to explain 

the methods associated with data mining and commonly 

used to process clinical big data. �is review will poten-

tially promote further study and aid doctors and patients.
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