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Abstract. Digital forensics research includes several stages. Once we have 
collected the data the last goal is to obtain a model in order to predict the output 
with unseen data. We focus on supervised machine learning techniques. This 
chapter performs an experimental study on a forensics data task for multi-class 
classification including several types of methods such as decision trees, bayes 
classifiers, based on rules, artificial neural networks and based on nearest 
neighbors. The classifiers have been evaluated with two performance measures: 
accuracy and Cohen's kappa. The followed experimental design has been a 4-
fold cross validation with thirty repetitions for non-deterministic algorithms in 
order to obtain reliable results, averaging the results from 120 runs. A statistical 
analysis has been conducted in order to compare each pair of algorithms by 
means of t-tests using both the accuracy and Cohen’s kappa metrics. 

Keywords: Digital forensics, Glass evidence, Data mining, Supervised machine 
learning, Classification model. 

1 Introduction 

Forensic science can be defined as the application of the science to matters of the law. 
A fundamental principle of forensic science is that a criminal act, or more generally a 
human-initiated event, produces a record of itself. The record, however imperfect, is 
the results of human actor(s) ant the events they set in motion producing interactions 
that result in changes in the environment. Object get moved or broken, marks are 
made, and materials are changed or transferred [1]. Forensic analysis is usually per-
formed through experiments in lab which is expensive both in cost and time. Nowa-
days, data availability is increasing and the computational intelligence [2] techniques 
are very important in order to do automatically an accurate and fast analysis. Popescu 
and Farid [3] did a research about the use of statistical tools for altered photographs in 
the digital forensics context. Although digital forensics has been around for several 
decades, it is still a young science, and the body of peer-reviewed, academic literature 
that is essential for every science is currently relatively small, but it is growing [4]. 
Several kinds of evidences may be present in a forensic activity, such as fibres, paint, 
glass, soil, fingerprints. Depending on the types chemical tests, microscopic 
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techniques, molecular spectroscopy, elemental analysis, mass spectrometry, separa-
tion techniques or thermal analysis could be conducted [5]. 

An important area in forensic science called forensic interpretation of glass evi-
dence is devoted to the study of several kind of glass properties (shape, structure, 
colour, size, thickness,…) after their breakage [6]. Forensic glass analysis tries to 
discriminate between several types of glasses. Moreover sometimes, a subsequent 
work once the glasses have been passed by an annealing process is performed. It has 
been applied in the case of a bi-class problem with toughened and laminated glasses 
[7]. Winstanley and Rydeard [8] were pioneered in talking about some annealing 
concepts about small glass fragments. Terry et al. [9] performed a quantitative analy-
sis of glasses used in Australia depending on the source country. 

The classification of glass fragments has been addressed with three data mining 
approaches in [10]. Ahmad et al. [11] worked with several samples of glass from cars 
or shops. The purpose of the classifier in the former case was to separate the rear, 
wind and side glass, and in the latter one was to distinguish heat absorbing, clear, 
reflective and figured floats. In the context of glass microtraces, Zadora et al. [12] 
proposed a quantitative elemental analysis using a scanning electron microscope with 
an energy dispersive X-ray spectrometer (SEM-EDX) in order to achieve a classifica-
tion scheme for samples collected in Poland. Float glass samples of relevant cars in 
New Zealand using laser ablation inductively coupled plasma mass spectrometry 
(LA-ICP-MS) have been analyzed in [13]. Uzkent et al. [14] have developed a system 
for classifying the sound produced by the glass breaking. 

2 The Problem and the Data Set 

Glass may be scattered in several locations and can be produced in a wide variety of 
forms and compositions, and these affect the properties of this material [15]. It can 
occur as evidence when it is broken during the commission of a crime. Broken glass 
fragments ranging in size from large pieces to tiny shards may be transferred to and 
retained by nearby persons or objects. The mere presence of fragments of glass on the 
clothing of an alleged burglar in a case involving entry through a broken window may 
be significant evidence if fragments are found. The significance of such evidence will 
be enhanced if the fragments are determined to be indistinguishable in all measured 
properties from the broken window. On the other hand, if the recovered fragments 
differ in their measured properties from the glass from the broken window, then 
that window can be eliminated as a possible source of the glass on the subject’s 
clothing [16]. 

Our digital forensics problem is to forecast the type of class on basis of the chemi-
cal analysis. The study of classification of types of glass was motivated by crimino-
logical investigation. Their data set is named Glass Identification [17], whose data 
come from USA Forensic Science Service. It was created by B. German and was 
donated by V. Spiehler to UCI (University of California, Irvine) repository [18]. In-
stances belong to one of the types of glass, defined in terms of their oxide content (i.e. 
Na, Fe, K, etc). Now, we proceed to describe the semantics of the features and the 
class label. 
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• Attribute 1. Id number: 1 to 214.
• Attribute 2. RI: refractive index.
• Attribute 3. Na: Sodium (unit measurement: weight percent in corresponding

oxide, as are attributes 4-10).
• Attribute 4. Mg: Magnesium.
• Attribute 5. Al: Aluminum.
• Attribute 6. Si: Silicon.
• Attribute 7. K: Potassium.
• Attribute 8. Ca: Calcium.
• Attribute 9. Ba: Barium.
• Attribute 10. Fe: Iron.
• Class label. Type of glass. There are seven possible values:

─ Building_windows_float_processed (value 1).  
─ Building_windows_non_float_processed (value 2). 
─ Vehicle_windows_float_processed (value 3).  
─ Vehicle_windows_non_float_processed (value 4). However, there are no instances 

containing this glass type. 
─ Containers (value 5). 
─ Tableware (value 6). 
─ Headlamps (value 7). 

We have deleted the information related with the identificator of the instances and 
we have considered six possible output values. Table 1 summarizes the main proper-
ties of the data set taking into account the previous remarks and Table 2 depicts the 
values of the statistics related with glass identification features. 

This problem has been used in several works. V. Spiehler experienced with a bi-
nary classification problem for the determination whether the glass was a type of 
"float" glass or not. She conducted a comparison test of her rule-based system, 
BEAGLE, the nearest-neighbor algorithm and discriminant analysis. Also, Buscema 
[19] has tested the Glass Identification problem in a binary form with four classifiers.
Previously, Parvin et al. [20] introduced an ensemble approach and tested it with the
6-class glass problem. The multi-class version of this digital forensics task is very
complex since it is difficult to classify, as literature have reported, with a high accura-
cy and thus this is the motivation of this chapter.

Table 1. Summary of the digital forensics problem 

Patterns Attributes Numeric 
Attributes 

Domain and 
Type 

Nominal 
Attributes 

Classes 

214 9 9 Real (conti-
nuous) 

0 6
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Table 2. Problem statistics 

Attribute Mean SD Min Max Correlation 
with class 

2. RI 1.5184 0.0030 1.5112 1.5339 -0.1642
3. Na 13.4079 0.8166 10.73 17.38 0.5030
4. Mg 2.6845 1.4424 0 4.49 -0.7447
5. Al 1.4449 0.4993 0.29 3.5 0.5988
6. Si 72.6509 0.7745 69.81 75.41 0.1515
7. K 0.4971 0.6522 0 6.21 -0.0100
8.Ca 8.9570 1.4232 5.43 16.19 0.0007
9. Ba 0.1750 0.4972 0 3.15 0.5751
10. Fe 0.0570 0.0974 0 0.51 -0.1879

SD standard deviation. 

3 The Algorithms 

Classifiers can be divided in several types [21-22]: 

• Decision trees.  A possible definition of a decision tree is a simple structure based
on a tree that can be used as a classifier. Each non-leaf or internal node is asso-
ciated with a decision and the leaf nodes are generally associated with an outcome
or class label. Each internal node tests one or more attribute values leading two or
more links or branches. Each link in turn is associated with a possible value of the
decision. These links are mutually distinct and collectively exhaustive. This means
that it is possible to follow only one of the links and all possibilities will be taken
care of—there is a link for each possibility. The interested reader is referred to
Murthy's paper [23] for a deep review. We have used two representative methods
like C4.5 [24] and CART [25] that stands for Classification and Regression Tree.

• Bayes classifiers. In pattern recognition, Bayes classifier [26] is popular because it
is an optimal classifier. It is possible to show that the resultant classification mini-
mizes the average probability of error. Bayes classifier is based on the assumption
that information about classes in the form of prior probabilities and distributions of
patterns in the class are known. It employs the posterior probabilities to assign the
class label to a test pattern; a pattern is assigned the label of the class that has the
maximum posterior probability. The classifier employs Bayes theorem to convert
the prior probability into posterior probability based on the pattern to be classified,
using the likelihood values. We have used a Bayesian network (BayesNet) which is
a probabilistic graphical model that represents a set of variables and their probabil-
istic dependencies. Formally, Bayesian networks are directed acyclic graphs whose
nodes represent variables, and whose arcs encode conditional dependencies be-
tween the variables. There are efficient algorithms that perform inference and
learning in Bayesian networks [22].

• Rule-Based classifiers. Also named rule induction classifiers. The learned model is
represented as a set of IF-THEN rules. Rules are a good way of representing
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information or bits of knowledge [27]. In problems where classes can be characte-
rized by general relationships, rather than just by examples (instances). It becomes 
attractive to build classifiers based on rules. Humans generally like explanations 
for most decisions. Rules, one at a time, can be directly learned from the data that 
is called rule induction. Each rule is a combination of conditions [22]. As an exam-
ple of this classifier type we have used RIPPER (Repeated Incremental Pruning to 
Produce Error Reduction) [28]. 

• Artificial neural networks. The field of neural networks has arisen from diverse
sources, ranging from the fascination of mankind with understanding and emulat-
ing the human brain, to broader issues of copying human abilities such as speech
and the use of language, to the practical commercial, scientific, and engineering
disciplines of pattern recognition, modeling, and prediction [29]. There are several
approaches: feed-forward and recurrent neural networks [30]. We have used the
feed-forward type including two well-known approaches like the Multi-Layer Per-
ceptron (MLP) neural network [31] with a back-propagation algorithm and the
Radial Basis Function (RBF) neural network [32].

• Classifiers based on nearest neighbours. One of the simplest decision procedures
that can be used for classification is the nearest neighbour (NN) rule [33-34]. It
classifies a sample based on the category of its nearest neighbour. When large
samples are involved, it can be shown that this rule has a probability of error which
is less than twice the optimum error—hence there is less than twice the probability
of error compared to any other decision rule. The nearest neighbour based classifi-
ers use some or all the patterns available in the training set to classify a test pattern.
These classifiers essentially involve finding the similarity between the test pattern
and every pattern in the training set. The nearest neighbour (1-NN) algorithm as-
signs to a test pattern the class label of its closest neighbor. We have used three 1-
NN variants that differ in the distance function that compute the dissimilarity
measure or distance. Euclidean, Manhattan and Chebyshev (also written as Tche-
byschev) distance [35] measures have been tested in the current chapter. The
resulting classifiers are called Classical 1-NN (sometimes referred as Euclidean
1-NN), Manhattan 1-NN and Chebyshev 1-NN. The first one is very common in
machine learning community. Recently, Boularias and Chaib-draa [36] have com-
pared Euclidean and Manhattan distances in the k-NN algorithm for apprenticeship
learning. In other research, related with granular data modeling, Chebyshev and
Euclidean distances have been used [37].

4 Experimentation 

4.1 Validation Technique 

The experimental design used in this chapter has been a stratified four-fold cross vali-
dation [38]. The primary idea of the four-fold cross validation procedure is to divide 
the full data set in four partitions of the same size; each one is used as a test set and 
the remaining are used as a train set. The stratification subjects to that the partitions 
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maintain the class distribution of the samples approximately equal as in the original 
data set [39]. Stochastic algorithms have been run thirty times and since we have four 
folds, the results are averaged by one hundred and twenty runs in order to obtain reli-
able results. 

4.2 Performance Measures 

There are several measures for assessing the models obtained by the classifiers [40]. 
We have gathered the following performance measures: 

• Accuracy. Generally speaking, the accuracy of a classifier is the probability of
correctly classifying a randomly selected instance [39]. It is also known as the
number of successful hits [41]. Mathematically, the accuracy is given by:

1

( ( ) )
*100

N

n
n

I C y
Accuracy

N
=

=
=
 nx

     (1) 

where I(g) is a function that returns 1 if g is true and 0 otherwise, ( )C nx the class 

label assigned to the nx  pattern by the classifier and N the total number of 

patterns. 
• Cohen’s kappa. It is an interesting alternative measure to the accuracy, since it

compensates for random hits [42]. It was first introduced as a measure of agree-
ment between observers of psychological behavior. The original intent of Cohen’s
kappa was to measure the degree of agreement, or disagreement, between two
people observing the same phenomenon The range of Kappa values extends from
positive to negative one, with positive one indicating strong agreement, negative
one indicating strong disagreement, and zero indicating chance-level agreement. In
order to illustrate, the calculation of Cohen’s kappa from the confusion matrix we
will take as a starting point a 3-class problem which confusion matrix including
marginal values is shown in Table 3.

Table 3. Confusion matrix for a 3-class problem 

Predicted class 

C1 C2 C3 Total 

Correct 

class 

C1 a b c a+b+c=C1corr 

C2 d e f d+e+f=C2corr 

C3 g h i g+h+i=C3corr 

Total a+d+g=C1pred b+e+h= C2pred c+f+i=C3pred N 
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Being N the total number of patterns, C1, C2 and C3 the label related with class 1, 
2 or 3, respectively. Their Cohen’s kappa is given by: 

2
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where iiCM  represent the diagonal elements of the confusion matrix. 

Next, we will compute both performance measures for a numeric example taken 
from [40] that is depicted in Table 4. The accuracy and Cohen’s kappa of the confu-
sion matrix example for the 3-class problem is as follows. 
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Table 4. Confusion matrix example for a 3-class problem 

  Predicted class  

  C1 C2 C3 Total 

Correct 

class 

C1 15 2 3 20 

C2 7 15 8 30 

C3 2 3 45 50 

 Total 24 20      56 100 

Source: [40]. 
 
The Cohen’s kappa value is greater than 0 (random classification) and more close 

to 1 (perfect classification), that indicates some classification errors. The performance 
is good, but it can be improved for instance by correctly classifying more samples of 
the class number 2. 
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4.3 Algorithm Implementation and Parameters 

For the experimentation we have used the implementations of the algorithms de-
scribed in Section 3 that are included in framework WEKA (Waikato Environment 
for Knowledge Analysis) version 3.7.4 [43], with the exceptions of CART and RBF 
taken from the version 3.5.7. We have tested the methods related with different su-
pervised machine learning approaches such as decision trees, bayes classifiers,  
rule-based classifiers, artificial neural networks and classifiers based on nearest 
neighbours. More specifically, we have carried out experiments with the following 
nine algorithms: C4.5 (J48), CART (SimpleCart), BayesNet, RIPPER (JRip), MLP 
with a back-propagation method, RBF, Euclidean 1-NN, Manhattan 1-NN and Che-
byshev 1-NN. Regarding the parameters, in the first experiment the algorithms have 
been run with the default values which are according to the recommendations of their 
own authors. In addition, these values have been used by us in some previous studies 
and showed a robust behavior [44]. In the second experiment we have reported the 
results with fined-tuned parameter values that are described in the next section. 

4.4 Statistical Tests 

A statistical analysis has been performed in order to find out significant differences 
between the results obtained by the stochastic algorithms that we have dealt with. For 
the non-stochastic algorithms it is not possible to carry out the analysis because we 
have only one result per fold and the number of freedom degrees would be low for it. 
Since we have one problem and several stochastic algorithms we have performed a 
paired t-test for comparing the algorithms two by two [45]. More specifically, we 
have done a two-tailed t-test at a significant level of 0.05 . Let 1μ  be the mean per-

formance of the first algorithm and 2μ be the mean performance of the second algo-

rithm, and 1 2dμ μ μ= − , the hypotheses are the following: 

─ 0 : 0dH μ = . There is no difference in the mean performances of the two  

algorithms. 
─ 1 : 0dH μ > . The first algorithm seems to work better. 

The t statistic is computed. For the t value we will obtain the tail area (p-value) 
from the t-distribution table with a number of number of freedom degrees equal to the 
sample size minus one of the repetitions performed by each algorithm (in our case 
120-1=119). If the p-value is lower than 0.05 we reject the null hypothesis conclud-
ing that there significant differences and the first algorithm is significantly better to 
the second one. 

Statistical analysis have been conducted for the both performances measures re-
ported in this chapter in order to extract general conclusions about which are the most 
stochastic appropriate algorithms for the digital forensics problem. 
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5 Results 

This section is structured in two subsections. The first one is devoted to report the 
results with the default parameter values that were proposed by their authors due they 
are robust in general terms; in addition we have included a statistical comparison in 
order to obtain an overview if there are significant differences between stochastic 
algorithms. The second one show the results with fined-tuned parameter values of the 
algorithms by means of a grid search using the training set of each fold; since trials 
with a different range of the parameters could conduct to other ordering of the algo-
rithms we have not performed any kind of statistical test. In both subsections we have 
divided the results in two parts: one for non-stochastic algorithms and another for the 
stochastic ones. The accuracy and Cohen’s kappa measures have been reported for 
each algorithm regarding to training and test phases. 

5.1 Results with Default Parameter Values 

Table 5 shows the results obtained with the default parameters. Taking into account 
the non-stochastic algorithms, the best one is Manhattan 1-NN with a test accuracy 
over 70% and a test Cohen’s kappa very close to 0.6. The second best is Euclidean 1-
NN with differences of approximately 0.5 for accuracy and 0.01 for Cohen’s kappa. 
The next best algorithms are BayesNet, C4.5 and Chebyshev 1-NN. The best stochas-
tic algorithms ordered by decreasing performance for both measures are CART and 
RIPPER. The followers are MLP and/or RBF algorithms, depending on the evaluation 
measure. Statistical test will let to refine these remarks by means of a two-tailed t-test 
for each pair of algorithms. We do not established a direct comparison between non-
stochastic and stochastic algorithms due to the different number of iteration for each 
kind of method. 

The best results published recently in the paper authored by Silva and Hruscka [46] 
using the same data set are similar (70% with k-NN instead of 1-NN) although there 
are important differences in the kind of cross validation (ten-fold versus four-fold) 
and that work does not contain any statistical analysis for the aforementioned prob-
lem. They have reported the mean accuracy without including neither the SD nor the 
Cohen’s kappa measure, thus it is not possible to comment some issues about the 
homogeneity of the solutions or to get an overview about the global classifier perfor-
mance for the different labels of the instances. Two years ago, Wang et al. [47]  
presented a study about the performance of extreme learning machine (ELM) and 
introduced a new proposal called effective ELM (EELM). Their experimental de-
signed was performed by a hold-out getting an accuracy test (from 0 to 1) with ELM 
and EELM over 0.42 averaged by fifty trials. 

Now, we present the statistical analysis results for the stochastic algorithms. We 
have done two independent kinds of tests: one for accuracy and another for Cohen’s 
kappa that are reported in Tables 6 and 7. 

 
 



422 A.J. Tallón-Ballesteros and J.C. Riquelme 

 

Table 5. Training and test results with the accuracy and Cohen´s kappa measures for 6-class 
glass identification problem 

Algorithm type Classifier 
approach 

Method Accuracy (%) Cohen’s kappa 

   Training 
 

Test 
 

Training 
 

Test 
 

Non-stochastic Decision 
Tree 

C4.5 90.50±1.59 68.00±8.33 0.8700±0.0214 0.5663±0.1005 

 Bayes BayesNet * 69.59±7.50 * 0.5830±0.0974 

 Nearest 
neighbour 

Euclidean 
1-NN 

100.00±0.00 69.64±7.84 1.0000±0.0000 0.5867±0.1062 

 Nearest 
neighbour 

Manhattan  
1-NN 

100.00±0.00 70.13±6.85 1.0000±0.0000 0.5949±0.0973 

 Nearest 
neighbour 

Chebyshev 1-
NN 

100.00±0.00 65.04±6.18 1.0000±0.0000 0.5222±0.0849 

Stochastic Decision 
Tree 

CART 80.99±4.39 67.87±2.39 0.7358±0.0621 0.5541±0.0343 

 Rules RIPPER 80.63±4.65 66.26±6.03 0.7327±0.0648 0.5290±0.0837 

 ANN MLP 82.44±2.57 65.47±5.73 0.7557±0.0365 0.5180±0.0805 

 ANN RBF 79.15±2.78 65.27±8.33 0.7170±0.0383 0.5259±0.1118 

Best and second best test results depending on the algorithm type have been highlighted in boldface and italics, respec-

tively. 

* Training results not provided by the classifier implementation. 

Table 6. Statistical analysis with a two-tailed t-test for accuracy measure in the 6-class glass 
identification problem 

Two-tailed t-test for accuracy 
Algorithm 1 Algorithm  2 p-value 

 
t(119)
statistic 

Statistical test  
conclusion 

CART RIPPER 0.0099 *  2.6226  CART > RIPPER 
CART MLP -58.868*10  *  4.0586  CART > MLP 
CART RBF 0.0023 *  3.1205  CART > RBF 
RIPPER MLP  0.2780  1.0899  RIPPER ≥ MLP 

RIPPER RBF 0.2200  1.2331 RIPPER ≥ RBF 

MLP RBF  0.7536  0.3146  MLP ≥ RBF  

Overall accuracy ranking: Accuracy(CART) Accuracy(RIPPER) Accuracy(MLP) Accuracy(RBF)μ μ μ μ> ≥ ≥  . 

* : Significant difference at 0.05α = . 

 
According to the statistical test results for accuracy, we can assert that CART is the 

algorithm with a performance significantly better than the remaining algorithms. The 
second best algorithm is RIPPER but the differences with their competitors are not 
enough to be significant. Thus the best classifier belongs to decision tree approach 
and the next best to rules. Comparing the two models of neural networks, there are no 
significant differences although MLP is slightly better than RBF. 
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Table 7. Statistical analysis with a two-tailed t-test for Cohen’s kappa measure in the 6-class 
glass identification problem 

Two-tailed t-test for Cohen’s kappa 

Algorithm 1 Algorithm  2 p-value 
 

t(119)  

statistic 

Statistical test 
conclusion 

CART RIPPER 0.0044 *  2.9016  CART > RIPPER 
CART MLP -53.4*10  *  4.3051  CART > MLP 
CART RBF 0.0145 *  2.4813  CART > RBF 
RIPPER MLP  0.2827  1.0791 RIPPER ≥  MLP 

RIPPER RBF 0.7820  0.2774  RIPPER ≥  RBF 

MLP RBF  0.3678  0.9041 RBF ≥  MLP 

Overall Cohen’s kappa ranking: 

Cohen's kappa(CART) Cohen's kappa(RIPPER) Cohen's kappa(RBF) Cohen's kappa(MLP)μ μ μ μ> ≥ ≥ . 

* : Significant difference at 0.05α = . 

 
For Cohen’s kappa, statistical test indicates that CART is significantly the best al-

gorithm. The second best one is RIPPER that is quantitatively better than MLP and 
RBF. The last one neural network model is slightly better than MLP without signifi-
cant differences.  

5.2 Results with Fine-Tuned Parameter Values 

First of all, we introduce the parameter values that we have defined for the fine setting 
by means of a grid search with the training set of each fold. For the 1-NN algorithm it 
is not possible to use specific parameters with the exception of the distance function 
that we have considered in the previous subsection. Table 8 presents the possible 
values or range of the parameters that we have selected for the fine tuning; the algo-
rithms are sorted depending on the type, that is, first the non-stochastic ones and then 
the stochastic ones. 

Table 9 reports the results of those algorithms obtained with the aforementioned 
fine-tuned parameters grouped by algorithm type and classifier approach. Also, we 
have included the results default with the default parameters, due to the reasons ex-
posed at the beginning of this subsection, for the three variants of 1-NN in order to get 
a general view of the performance. In reference to the non-stochastic methods, the 
two best algorithms are C4.5 and Manhattan 1-NN, depending on the performance 
measure. From the stochastic aspect, the best classifier for both measures is CART, 
followed by RBF. 

The fine setting of the parameters has shifted the performance ordering of the non-
stochastic algorithms and has let to improve the results; the best classifier has now 
surpassed the top of 73.5% of accuracy and has reached a Cohen’s kappa close to 
0.595. In the context of stochastic methods, this tuning has increased the performance 
of the algorithms and has moved the name of the second best classifier; the best  
results for both measures are over 68% and 0.55 for accuracy and Cohen’s kappa, 
respectively.  
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Table 8. Fine-tuned parameter values of the algorithms by means of a grid search on the 
training set of each fold 

Algorithm Parameter Possible values or range Default value Best value 

C4.5 Confidence factor (C) {0.150, 0.175, 0.200, 
0.225, 0.250} 

0.25 0.175

Minimum number of instances 
per leaf (M) 

2-10 2 2

BayesNet Alpha value (A) for Simple 
Estimator 

{0.25, 0.50, 0.75} 0.50 0.75 

CART Minimal number of observa-
tions of the terminal nodes 
(M) 

2-5 2 4

The number of fold in the 
internal cross-validation 

2-10 5 5

RIPPER Folds: the amount of data used 
for pruning (F) 

1-5 3 4

The minimum total weight of 
the instances in a rule (N) 

1-3 2 1

The number of optimization 
runs (O) 

1-3 2 3

MLP TrainingTime: The number of 
epochs to train through (N) 

{250, 500, 750, 1000} 500 500 

HiddenLayers: hidden layers
of the neural network (H) 

4-16 a = (attribs. + classes) / 2 15 

RBF NumClusters: The number of 
clusters for K-Means to 
generate (B) 

1-6 2 4

Table 9. Training and test fine-tuned results with the accuracy and Cohen´s kappa measures for 
6-class glass identification problem

Algorithm type Classifier 
approach 

Method Accuracy (%) Cohen’s kappa 

Training Test Training Test 

Non-stochastic Decision 
Tree 

C4.5 88.71±2.31 73.67±2.62 0.8511±0.0334 0.5929±0.1006 

Bayes BayesNet * 70.07±6.84 * 0.5886±0.0897

Nearest 
neighbour 

Euclidean 
1-NN 

100.00±0.00 69.64±7.84 1.0000±0.0000 0.5867±0.1062 

Nearest 
neighbour 

Manhattan
1-NN 

100.00±0.00 70.13±6.85 1.0000±0.0000 0.5949±0.0973 

Nearest 
neighbour 

Chebyshev 1-
NN 

100.00±0.00 65.04±6.18 1.0000±0.0000 0.5222±0.0849 

Stochastic Decision 
Tree 

CART 77.78±2.98 68.22±1.93 0.6907±0.0388 0.5576±0.0292 

Rules RIPPER 82.39±4.65 66.85±4.84 0.7584±0.0640 0.5397±0.0674

ANN MLP 86.95±2.45 66.47±3.37 0.8200±0.0339 0.5323±0.0456

ANN RBF 88.28±2.35 66.86±4.67 0.8407±0.0320 0.5475±0.0633 

Best and second best test results with fine-tuned parameters depending on the algorithm type have been highlighted in 

boldface and italics, respectively. 

* Training results not provided by the classifier implementation.



Data Mining Methods Applied to a Digital Forensics Task 425 

6 Conclusions 

In this chapter we have reviewed the state-of-the-art related with a digital forensics 
task called Glass Identification in the context of multi-class supervised learning. This 
problem have been tackled from some decades to the present, however the previous 
studies are focused on a particular issue. We have presented an empirical overview of 
the performance with a good number of classifiers from different machine learning 
approaches with two metrics like accuracy and Cohen’s kappa for training and test 
stages, using the default parameter values in the first experiment and the fine-tuned 
values in the second one. We have included a statistical analysis in the first experi-
ment that has revealed some valuable conclusions. 

In the first experiment, related with the deterministic algorithms, Manhattan 1-NN 
obtains the best performance for accuracy and Cohen’s kappa metrics. Their perfor-
mance is slightly better than the Euclidean 1-NN. Our real-world problem is another 
sample in that nearest neighbours classifiers can be applied successfully. Thus, it has 
been proven that Manhattan 1-NN is better than Euclidean 1-NN, BayesNet, C4.5 and 
Chebyshev 1-NN. Moreover, we have reported the results of non-deterministic algo-
rithms; however it is not possible to compare them with deterministic algorithms be-
cause the former methods have been smoothed by an average of one hundred and 
twenty runs versus four of the latter methods. The best non-deterministic algorithm is 
CART with statistically significant differences with the remaining non-deterministic 
methods. The second best classifier is RIPPER, however there are no significant 
differences with the classifiers with a lower performance. Best approaches for 
non-deterministic methods are, in this order, decision trees, rules and artificial neural 
networks. In the second experiment, the best deterministic algorithm is C4.5 or 1-NN 
Manhattan according to the performance evaluation measure. The best non-
deterministic algorithm is CART with both measures and the second best one is the 
RBF neural network model. 

The most important remarks taking into account both experiments are stated as fol-
lows. The fine tuning of the parameters has been very useful due to: i) From the non-
stochastic algorithm perspective the best accuracy results has passed 73.5% with C4.5 
classifier and are very close to 0.595 for Cohen’s kappa with 1-NN Manhattan, ii) The 
performance of the best stochastic algorithm has reached 68.22 and 0.5576 for accu-
racy and Cohen’s kappa, respectively. The problem tackled can be considered very 
difficult since, up the best of our knowledge, it is not possible, as this chapter showed, 
to classify the test instances with an accuracy level a 75%. A possible future research 
line of this chapter could try to study some pre-processing data mining techniques in 
order to act on the features, instances or values of the attributes.  
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