
Chapter 2

Data Mining Methods for Recommender
Systems

Xavier Amatriain, Alejandro Jaimes, Nuria Oliver, and Josep M. Pujol

Abstract In this chapter, we give an overview of the main Data Mining techniques

used in the context of Recommender Systems. We first describe common prepro-

cessing methods such as sampling or dimensionality reduction. Next, we review the

most important classification techniques, including Bayesian Networks and Support

Vector Machines. We describe the k-means clustering algorithm and discuss several

alternatives. We also present association rules and related algorithms for an effi-

cient training process. In addition to introducing these techniques, we survey their

uses in Recommender Systems and present cases where they have been successfully

applied.

2.1 Introduction

Recommender Systems (RS) typically apply techniques and methodologies from

other neighboring areas – such as Human Computer Interaction (HCI) or Informa-

tion Retrieval (IR). However, most of these systems bear in their core an algorithm

that can be understood as a particular instance of a Data Mining (DM) technique.

The process of data mining typically consists of 3 steps, carried out in succes-

sion: Data Preprocessing [59], Data Analysis, and Result Interpretation (see Figure

2.1). We will analyze some of the most important methods for data preprocessing

in Section 2.2. In particular, we will focus on sampling, dimensionality reduction,

and the use of distance functions because of their significance and their role in RS.

In Sections 2.3 through 2.5, we provide an overview introduction to the data mining

methods that are most commonly used in RS: classification, clustering and associa-
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tion rule discovery (see Figure 2.1 for a detailed view of the different topics covered

in the chapter).

Fig. 2.1: Main steps and methods in a Data Mining problem, with their correspon-

dence to chapter sections.

This chapter does not intend to give a thorough review of Data Mining methods,

but rather to highlight the impact that DM algorithms have in the RS field, and to

provide an overview of the key DM techniques that have been successfully used.

We shall direct the interested reader to Data Mining textbooks (see [28, 73], for

example) or the more focused references that are provided throughout the chapter.

2.2 Data Preprocessing

We define data as a collection of objects and their attributes, where an attribute is

defined as a property or characteristic of an object. Other names for object include

record, item, point, sample, observation, or instance. An attribute might be also be

referred to as a variable, field, characteristic, or feature.
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Real-life data typically needs to be preprocessed (e.g. cleansed, filtered, trans-

formed) in order to be used by the machine learning techniques in the analysis step.

In this section, we focus on three issues that are of particular importance when de-

signing a RS. First, we review different similarity or distance measures. Next, we

discuss the issue of sampling as a way to reduce the number of items in very large

collections while preserving its main characteristics. Finally, we describe the most

common techniques to reduce dimensionality.

2.2.1 Similarity Measures

One of the preferred approaches to collaborative filtering (CF) recommenders is to

use the kNN classifier that will be described in Section 2.3.1. This classification

method – as most classifiers and clustering techniques – is highly dependent on

defining an appropriate similarity or distance measure.

The simplest and most common example of a distance measure is the Euclidean

distance:

d(x,y) =

√

n

∑
k=1

(xk − yk)2 (2.1)

where n is the number of dimensions (attributes) and xk and yk are the kth attributes

(components) of data objects x and y, respectively.

The Minkowski Distance is a generalization of Euclidean Distance:

d(x,y) = (
n

∑
k=1

|xk − yk|
r)

1
r (2.2)

where r is the degree of the distance. Depending on the value of r, the generic

Minkowski distance is known with specific names: For r = 1, the city block, (Man-

hattan, taxicab or L1 norm) distance; For r = 2, the Euclidean distance; For r → ∞,

the supremum (Lmax norm or L∞ norm) distance, which corresponds to computing

the maximum difference between any dimension of the data objects.

The Mahalanobis distance is defined as:

d(x,y) =
√

(x− y)σ−1(x− y)T (2.3)

where σ is the covariance matrix of the data.

Another very common approach is to consider items as document vectors of an

n-dimensional space and compute their similarity as the cosine of the angle that they

form:

cos(x,y) =
(x• y)

||x||||y||
(2.4)
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where • indicates vector dot product and ||x|| is the norm of vector x. This similarity

is known as the cosine similarity or the L2 Norm .

The similarity between items can also be given by their correlation which mea-

sures the linear relationship between objects. While there are several correlation co-

efficients that may be applied, the Pearson correlation is the most commonly used.

Given the covariance of data points x and y Σ , and their standard deviation σ , we

compute the Pearson correlation using:

Pearson(x,y) =
Σ(x,y)

σx ×σy

(2.5)

RS have traditionally used either the cosine similarity (Eq. 2.4) or the Pearson

correlation (Eq. 2.5) – or one of their many variations through, for instance, weight-

ing schemes – both Chapters 5 and 4 detail the use of different distance functions

for CF However, most of the other distance measures previously reviewed are pos-

sible. Spertus et al. [69] did a large-scale study to evaluate six different similarity

measures in the context of the Orkut social network. Although their results might be

biased by the particular setting of their experiment, it is interesting to note that the

best response to recommendations were to those generated using the cosine similar-

ity. Lathia et al. [48] also carried out a study of several similarity measures where

they concluded that, in the general case, the prediction accuracy of a RS was not af-

fected by the choice of the similarity measure. As a matter of fact and in the context

of their work, using a random similarity measure sometimes yielded better results

than using any of the well-known approaches.

Finally, several similarity measures have been proposed in the case of items that

only have binary attributes. First, the M01, M10, M11, and M00 quantities are com-

puted, where M01 = the number of attributes where x was 0 and y was 1, M10 =

the number of attributes where x was 1 and y was 0, and so on. From those quan-

tities we can compute: The Simple Matching coefficient SMC = numbero f matches
numbero f attributes

=
M11+M00

M01+M10+M00+M11
; the Jaccard coefficient JC = M11

M01+M10+M11
. The Extended Jac-

card (Tanimoto) coefficient, a variation of JC for continuous or count attributes that

is computed by d = x•y

∥x∥2+∥x∥2−x•y
.

2.2.2 Sampling

Sampling is the main technique used in DM for selecting a subset of relevant data

from a large data set. It is used both in the preprocessing and final data interpretation

steps. Sampling may be used because processing the entire data set is computation-

ally too expensive. It can also be used to create training and testing datasets. In this

case, the training dataset is used to learn the parameters or configure the algorithms

used in the analysis step, while the testing dataset is used to evaluate the model or

configuration obtained in the training phase, making sure that it performs well (i.e.

generalizes) with previously unseen data.
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The key issue to sampling is finding a subset of the original data set that is repre-

sentative – i.e. it has approximately the same property of interest – of the entire set.

The simplest sampling technique is random sampling, where there is an equal prob-

ability of selecting any item. However, more sophisticated approaches are possible.

For instance, in stratified sampling the data is split into several partitions based on

a particular feature, followed by random sampling on each partition independently.

The most common approach to sampling consists of using sampling without re-

placement: When an item is selected, it is removed from the population. However, it

is also possible to perform sampling with replacement, where items are not removed

from the population once they have been selected, allowing for the same sample to

be selected more than once.

It is common practice to use standard random sampling without replacement with

an 80/20 proportion when separating the training and testing data sets. This means

that we use random sampling without replacement to select 20% of the instances

for the testing set and leave the remaining 80% for training. The 80/20 proportion

should be taken as a rule of thumb as, in general, any value over 2/3 for the training

set is appropriate.

Sampling can lead to an over-specialization to the particular division of the train-

ing and testing data sets. For this reason, the training process may be repeated sev-

eral times. The training and test sets are created from the original data set, the model

is trained using the training data and tested with the examples in the test set. Next,

different training/test data sets are selected to start the training/testing process again

that is repeated K times. Finally, the average performance of the K learned mod-

els is reported. This process is known as cross-validation. There are several cross-

validation techniques. In repeated random sampling, a standard random sampling

process is carried out K times. In n-Fold cross validation, the data set is divided into

n folds. One of the folds is used for testing the model and the remaining n−1 folds

are used for training. The cross validation process is then repeated n times with each

of the n subsamples used exactly once as validation data. Finally, the leave-one-out

(LOO) approach can be seen as an extreme case of n-Fold cross validation where

n is set to the number of items in the data set. Therefore, the algorithms are run

as many times as data points using only one of them as a test each time. It should

be noted, though, that as Isaksson et al. discuss in [44], cross-validation may be

unreliable unless the data set is sufficiently large.

A common approach in RS is to sample the available feedback from the users –

e.g. in the form of ratings – to separate it into training and testing. Cross-validation

is also common. Although a standard random sampling is acceptable in the general

case, in others we might need to bias our sampling for the test set in different ways.

We might, for instance, decide to sample only from most recent ratings – since

those are the ones we would be predicting in a real-world situation. We might also

be interested in ensuring that the proportion of ratings per user is preserved in the

test set and therefore impose that the random sampling is done on a per user basis.

However, all these issues relate to the problem of evaluating RS, which is still a

matter of research and discussion.



44 Xavier Amatriain, Alejandro Jaimes, Nuria Oliver, and Josep M. Pujol

2.2.3 Reducing Dimensionality

It is common in RS to have not only a data set with features that define a high-

dimensional space, but also very sparse information in that space – i.e. there are

values for a limited number of features per object. The notions of density and dis-

tance between points, which are critical for clustering and outlier detection, become

less meaningful in highly dimensional spaces. This is known as the Curse of Di-

mensionality. Dimensionality reduction techniques help overcome this problem by

transforming the original high-dimensional space into a lower-dimensionality.

Sparsity and the curse of dimensionality are recurring problems in RS. Even in

the simplest setting, we are likely to have a sparse matrix with thousands of rows

and columns (i.e. users and items), most of which are zeros. Therefore, dimension-

ality reduction comes in naturally. Applying dimensionality reduction makes such

a difference and its results are so directly applicable to the computation of the pre-

dicted value, that this is now considered to be an approach to RS design, rather than

a preprocessing technique.

In the following, we summarize the two most relevant dimensionality reduction

algorithms in the context of RS: Principal Component Analysis (PCA) and Singu-

lar Value Decomposition (SVD). These techniques can be used in isolation or as a

preprocessing step for any of the other techniques reviewed in this chapter.

2.2.3.1 Principal Component Analysis

Principal Component Analysis (PCA) [45] is a classical statistical method to find

patterns in high dimensionality data sets. PCA allows to obtain an ordered list of

components that account for the largest amount of the variance from the data in

terms of least square errors: The amount of variance captured by the first component

is larger than the amount of variance on the second component and so on. We can

reduce the dimensionality of the data by neglecting those components with a small

contribution to the variance.

Figure 2.2 shows the PCA analysis to a two-dimensional point cloud generated

by a combination of Gaussians. After the data is centered, the principal components

are obtained and denoted by u1 and u2. Note that the length of the new coordi-

nates is relative to the energy contained in their eigenvectors. Therefore, for the

particular example depicted in Fig 2.2, the first component u1 accounts for 83.5%

of the energy, which means that removing the second component u2 would imply

losing only 16.5% of the information. The rule of thumb is to choose m′ so that the

cumulative energy is above a certain threshold, typically 90%. PCA allows us to re-

trieve the original data matrix by projecting the data onto the new coordinate system

X ′
n×m′ = Xn×mW ′m×m′. The new data matrix X ′ contains most of the information

of the original X with a dimensionality reduction of m−m′.

PCA is a powerful technique, but it does have important limitations. PCA relies

on the empirical data set to be a linear combination of a certain basis – although

generalizations of PCA for non-linear data have been proposed. Another important
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Fig. 2.2: PCA analysis of a two-dimensional point cloud from a combination of

Gaussians. The principal components derived using PCS are u1 and u2, whose length

is relative to the energy contained in the components.

assumption of PCA is that the original data set has been drawn from a Gaussian

distribution. When this assumption does not hold true, there is no warranty that the

principal components are meaningful.

Although current trends seem to indicate that other matrix factorizations tech-

niques such as SVD or Non-Negative Matrix Factorization are preferred, earlier

works used PCA. Goldberg et al. proposed an approach to use PCA in the context

of an online joke recommendation system [37]. Their system, known as Eigentaste 1,

starts from a standard matrix of user ratings to items. They then select their gauge set

by choosing the subset of items for which all users had a rating. This new matrix is

then used to compute the global correlation matrix where a standard 2-dimensional

PCA is applied.

2.2.3.2 Singular Value Decomposition

Singular Value Decomposition [38] is a powerful technique for dimensionality re-

duction. It is a particular realization of the Matrix Factorization approach and it is

therefore also related to PCA. The key issue in an SVD decomposition is to find a

lower dimensional feature space where the new features represent “concepts” and

the strength of each concept in the context of the collection is computable. Be-

cause SVD allows to automatically derive semantic “concepts” in a low dimensional

1 http://eigentaste.berkeley.edu
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space, it can be used as the basis of latent-semantic analysis[24], a very popular

technique for text classification in Information Retrieval .

The core of the SVD algorithm lies in the following theorem: It is always possi-

ble to decompose a given matrix A into A =UλV T . Given the n×m matrix data A

(n items, m features), we can obtain an n× r matrix U (n items, r concepts), an r× r

diagonal matrix λ (strength of each concept), and an m× r matrix V (m features, r

concepts). Figure 2.3 illustrates this idea. The λ diagonal matrix contains the sin-

gular values, which will always be positive and sorted in decreasing order. The U

matrix is interpreted as the “item-to-concept” similarity matrix, while the V matrix

is the “term-to-concept” similarity matrix.

An

m

= U

r

( i tems)

(features)
(concepts)

X

r

r X V

m

n
( i tems)

(features)

r
(concepts)

λ

Fig. 2.3: Illustrating the basic Singular Value Decomposition Theorem: an item ×

features matrix can be decomposed into three different ones: an item × concepts, a

concept strength, and a concept × features.

In order to compute the SVD of a rectangular matrix A, we consider AAT and

AT A. The columns of U are the eigenvectors of AAT , and the columns of V are

the eigenvectors of AT A. The singular values on the diagonal of λ are the positive

square roots of the nonzero eigenvalues of both AAT and AT A. Therefore, in order

to compute the SVD of matrix A we first compute T as AAT and D as AT A and then

compute the eigenvectors and eigenvalues for T and D.

The r eigenvalues in λ are ordered in decreasing magnitude. Therefore, the orig-

inal matrix A can be approximated by simply truncating the eigenvalues at a given k.

The truncated SVD creates a rank-k approximation to A so that Ak =UkλkV
T
k . Ak is

the closest rank-k matrix to A. The term “closest” means that Ak minimizes the sum

of the squares of the differences of the elements of A and Ak. The truncated SVD is

a representation of the underlying latent structure in a reduced k-dimensional space,

which generally means that the noise in the features is reduced.

The use of SVD as tool to improve collaborative filtering has been known for

some time. Sarwar et al. [66] describe two different ways to use SVD in this context.

First, SVD can be used to uncover latent relations between customers and products.

In order to accomplish this goal, they first fill the zeros in the user-item matrix

with the item average rating and then normalize by subtracting the user average.

This matrix is then factored using SVD and the resulting decomposition can be

used – after some trivial operations – directly to compute the predictions. The other
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approach is to use the low-dimensional space resulting from the SVD to improve

neighborhood formation for later use in a kNN approach.

As described by Sarwar et al.[65], one of the big advantages of SVD is that there

are incremental algorithms to compute an approximated decomposition. This allows

to accept new users or ratings without having to recompute the model that had been

built from previously existing data. The same idea was later extended and formal-

ized by Brand [14] into an online SVD model. The use of incremental SVD methods

has recently become a commonly accepted approach after its success in the Netflix

Prize 2. The publication of Simon Funk’s simplified incremental SVD method [35]

marked an inflection point in the contest. Since its publication, several improve-

ments to SVD have been proposed in this same context (see Paterek’s ensembles of

SVD methods [56] or Kurucz et al. evaluation of SVD parameters [47]).

Finally, it should be noted that different variants of Matrix Factorization (MF)

methods such as the Non-negative Matrix Factorization (NNMF) have also been

used[74]. These algorithms are, in essence, similar to SVD. The basic idea is to

decompose the ratings matrix into two matrices, one of which contains features

that describe the users and the other contains features describing the items. Matrix

Factorization methods are better than SVD at handling the missing values by in-

troducing a bias term to the model. However, this can also be handled in the SVD

preprocessing step by replacing zeros with the item average. Note that both SVD

and MF are prone to overfitting. However, there exist MF variants, such as the Reg-

ularized Kernel Matrix Factorization, that can avoid the issue efficiently. The main

issue with MF – and SVD – methods is that it is unpractical to recompute the fac-

torization every time the matrix is updated because of computational complexity.

However, Rendle and Schmidt-Thieme [62] propose an online method that allows

to update the factorized approximation without recomputing the entire model.

Chapter 5 details the use of SVD and MF in the context of the Netflix Prize and

is therefore a good complement to this introduction.

2.2.4 Denoising

Data collected for data-mining purposes might be subject to different kinds of noise

such as missing values or outliers. Denoising is a very important preprocessing step

that aims at removing any unwanted effect in the data while maximizing its infor-

mation.

In a general sense we define noise as any unwanted artifact introduced in the data

collection phase that might affect the result of our data analysis and interpretation.

In the context of RS, we distinguish between natural and malicious noise [55]. The

former refers to noise that is unvoluntarely introduced byusers when giving feedback

on their preferences. The latter refers to noise that is deliberately introduced in a

system in order to bias the results.

2 http://www.netflixprize.com
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It is clear that malicious noise can affect the output of a RS. But, also, we per-

formed a study that concluded that the effects of natural noise on the performance

of RS is far from being negligible [4]. In order to address this issue, we designed

a denoising approach that is able to improve accuracy by asking some users to re-

rate some items [5]. We concluded that accuracy improvements by investing in this

pre-processing step could be larger than the ones obtained by complex algorithm

optimizations.

2.3 Classification

A classifier is a mapping between a feature space and a label space, where the fea-

tures represent characteristics of the elements to classify and the labels represent

the classes. A restaurant RS, for example, can be implemented by a classifier that

classifies restaurants into one of two categories (good, bad) based on a number of

features that describe it.

There are many types of classifiers, but in general we will talk about either su-

pervised or unsupervised classification. In supervised classification, a set of labels

or categories is known in advance and we have a set of labeled examples which

constitute a training set. In unsupervised classification, the labels or categories are

unknown in advance and the task is to suitably (according to some criteria) organize

the elements at hand. In this section we describe several algorithms to learn super-

vised classifiers and will be covering unsupervised classification (i.e. clustering) in

Sec. 2.4.

2.3.1 Nearest Neighbors

Instance-based classifiers work by storing training records and using them to pre-

dict the class label of unseen cases. A trivial example is the so-called rote-learner.

This classifier memorizes the entire training set and classifies only if the attributes

of the new record match one of the training examples exactly. A more elaborate, and

far more popular, instance-based classifier is the Nearest neighbor classifier (kNN)

[22]. Given a point to be classified, the kNN classifier finds the k closest points

(nearest neighbors) from the training records. It then assigns the class label accord-

ing to the class labels of its nearest-neighbors. The underlying idea is that if a record

falls in a particular neighborhood where a class label is predominant it is because

the record is likely to belong to that very same class.

Given a query point q for which we want to know its class l, and a training

set X = {{x1, l1}...{xn}}, where x j is the j-th element and l j is its class label, the

k-nearest neighbors will find a subset Y = {{y1, l1}...{yk}} such that Y ∈ X and

∑k
1 d(q,yk) is minimal. Y contains the k points in X which are closest to the query

point q. Then, the class label of q is l = f ({l1...lk}).
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Fig. 2.4: Example of k-Nearest Neighbors. The left subfigure shows the training

points with two class labels (circles and squares) and the query point (as a triangle).

The right sub-figure illustrates closest neighborhood for k = 1 and k = 7. The query

point would be classified as square for k = 1, and as a circle for k = 5 according to

the simple majority vote rule. Note that the query points was just on the boundary

between the two clusters.

Perhaps the most challenging issue in kNN is how to choose the value of k. If

k is too small, the classifier will be sensitive to noise points. But if k is too large,

the neighborhood might include too many points from other classes. The right plot

in Fig. 2.4 shows how different k yields different class label for the query point, if

k = 1 the class label would be circle whereas k = 7 classifies it as square. Note that

the query point from the example is on the boundary of two clusters, and therefore,

it is difficult to classify.

kNN classifiers are amongst the simplest of all machine learning algorithms.

Since kNN does not build models explicitly it is considered a lazy learner. Un-

like eager learners such as decision trees or rule-based systems (see 2.3.2 and 2.3.3,

respectively), kNN classifiers leave many decisions to the classification step. There-

fore, classifying unknown records is relatively expensive.

Nearest Neighbor is one of the most common approaches to CF – and therefore

to designing a RS. As a matter of fact, any overview on RS – such as the one by

Adomavicius and Tuzhilin [1] – will include an introduction to the use of nearest

neighbors in this context. One of the advantages of this classifier is that it is con-

ceptually very much related to the idea of CF: Finding like-minded users (or similar

items) is essentially equivalent to finding neighbors for a given user or an item. The

other advantage is that, being the kNN classifier a lazy learner, it does not require

to learn and maintain a given model. Therefore, in principle, the system can adapt

to rapid changes in the user ratings matrix. Unfortunately, this comes at the cost of

recomputing the neighborhoods and therefore the similarity matrix. This is why we

proposed a neighborhood model that uses a reduced set of experts as the source for

selecting neighbors [3].
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The kNN approach, although simple and intuitive, has shown good accuracy re-

sults and is very amenable to improvements. As a matter of fact, its supremacy as

the de facto standard for CF recommendation has only been challenged recently by

approaches based on dimensionality reduction such as the ones reviewed in Section

2.2.3. That said, the traditional kNN approach to CF has experienced improvements

in several directions. For instance, in the context of the Netflix Prize, Bell and Ko-

ren propose a method to remove global effects such as the fact that some items may

attract users that consistently rate lower. They also propose an optimization method

for computing interpolating weights once the neighborhood is created.

See Chapters 5 and 4 for more details on enhanced CF techniques based on the

use of neighborhoods.

2.3.2 Decision Trees

Decision trees [61, 63] are classifiers on a target attribute (or class) in the form of a

tree structure. The observations (or items) to classify are composed of attributes and

their target value. The nodes of the tree can be: a) decision nodes, in these nodes a

single attribute-value is tested to determine to which branch of the subtree applies.

Or b) leaf nodes which indicate the value of the target attribute.

There are many algorithms for decision tree induction: Hunts Algorithm, CART,

ID3, C4.5, SLIQ, SPRINT to mention the most common. The recursive Hunt al-

gorithm, which is one of the earliest and easiest to understand, relies on the test

condition applied to a given attribute that discriminates the observations by their

target values. Once the partition induced by the test condition has been found, the

algorithm is recursively repeated until a partition is empty or all the observations

have the same target value.

Splits can be decided by maximizing the information gain, defined as follows,

∆i = I(parent)−
ki

∑
j=1

N(v j)I(v j)

N
(2.6)

where ki are values of the attribute i, N is the number of observations, v j is the j-

th partition of the observations according to the values of attribute i. Finally, I is a

function that measures node impurity. There are different measures of impurity: Gini

Index, Entropy and misclassification error are the most common in the literature.

Decision tree induction stops once all observations belong to the same class (or

the same range in the case of continuous attributes). This implies that the impurity

of the leaf nodes is zero. For practical reasons, however, most decision trees imple-

mentations use pruning by which a node is no further split if its impurity measure

or the number of observations in the node are below a certain threshold.

The main advantages of building a classifier using a decision tree is that it is

inexpensive to construct and it is extremely fast at classifying unknown instances.

Another appreciated aspect of decision tree is that they can be used to produce a set
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of rules that are easy to interpret (see section 2.3.3) while maintaining an accuracy

comparable to other basic classification techniques.

Decision trees may be used in a model-based approach for a RS. One possibil-

ity is to use content features to build a decision tree that models all the variables

involved in the user preferences. Bouza et al. [12] use this idea to construct a Deci-

sion Tree using semantic information available for the items. The tree is built after

the user has rated only two items. The features for each of the items are used to

build a model that explains the user ratings. They use the information gain of every

feature as the splitting criteria. It should be noted that although this approach is in-

teresting from a theoretical perspective, the precision they report on their system is

worse than that of recommending the average rating.

As it could be expected, it is very difficult and unpractical to build a decision

tree that tries to explain all the variables involved in the decision making process.

Decision trees, however, may also be used in order to model a particular part of

the system. Cho et al. [18], for instance, present a RS for online purchases that

combines the use of Association Rules (see Section 2.5) and Decision Trees. The

Decision Tree is used as a filter to select which users should be targeted with recom-

mendations. In order to build the model they create a candidate user set by selecting

those users that have chosen products from a given category during a given time

frame. In their case, the dependent variable for building the decision tree is cho-

sen as whether the customer is likely to buy new products in that same category.

Nikovski and Kulev [54] follow a similar approach combining Decision Trees and

Association Rules. In their approach, frequent itemsets are detected in the purchase

dataset and then they apply standard tree-learning algorithms for simplifying the

recommendations rules.

Another option to use Decision Trees in a RS is to use them as a tool for item

ranking. The use of Decision Trees for ranking has been studied in several settings

and their use in a RS for this purpose is fairly straightforward [7, 17].

2.3.3 Ruled-based Classifiers

Rule-based classifiers classify data by using a collection of “if . . . then . . .” rules.

The rule antecedent or condition is an expression made of attribute conjunctions.

The rule consequent is a positive or negative classification.

We say that a rule r covers a given instance x if the attributes of the instance

satisfy the rule condition. We define the coverage of a rule as the fraction of records

that satisfy its antecedent. On the other hand, we define its accuracy as the fraction

of records that satisfy both the antecedent and the consequent. We say that a clas-

sifier contains mutually exclusive rules if the rules are independent of each other –

i.e. every record is covered by at most one rule. Finally we say that the classifier has

exhaustive rules if they account for every possible combination of attribute values

–i.e. each record is covered by at least one rule.
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In order to build a rule-based classifier we can follow a direct method to extract

rules directly from data. Examples of such methods are RIPPER, or CN2. On the

other hand, it is common to follow an indirect method and extract rules from other

classification models such as decision trees or neural networks.

The advantages of rule-based classifiers are that they are extremely expressive

since they are symbolic and operate with the attributes of the data without any

transformation. Rule-based classifiers, and by extension decision trees, are easy to

interpret, easy to generate and they can classify new instances efficiently.

In a similar way to Decision Tress, however, it is very difficult to build a complete

recommender model based on rules. As a matter of fact, this method is not very

popular in the context of RS because deriving a rule-based system means that we

either have some explicit prior knowledge of the decision making process or that

we derive the rules from another model such a decision tree. However a rule-based

system can be used to improve the performance of a RS by injecting partial domain

knowledge or business rules. Anderson et al. [6], for instance, implemented a CF

music RS that improves its performance by applying a rule-based system to the

results of the CF process. If a user rates an album by a given artist high, for instance,

predicted ratings for all other albums by this artist will be increased.

Gutta et al. [29] implemented a rule-based RS for TV content. In order to do,

so they first derived a C4.5 Decision Tree that is then decomposed into rules for

classifying the programs. Basu et al. [9] followed an inductive approach using the

Ripper [20] system to learn rules from data. They report slightly better results when

using hybrid content and collaborative data to learn rules than when following a

pure CF approach.

2.3.4 Bayesian Classifiers

A Bayesian classifier [34] is a probabilistic framework for solving classification

problems. It is based on the definition of conditional probability and the Bayes the-

orem. The Bayesian school of statistics uses probability to represent uncertainty

about the relationships learned from the data. In addition, the concept of priors is

very important as they represent our expectations or prior knowledge about what the

true relationship might be. In particular, the probability of a model given the data

(posterior) is proportional to the product of the likelihood times the prior proba-

bility (or prior). The likelihood component includes the effect of the data while the

prior specifies the belief in the model before the data was observed.

Bayesian classifiers consider each attribute and class label as (continuous or dis-

crete) random variables. Given a record with N attributes (A1,A2, ...,AN), the goal

is to predict class Ck by finding the value of Ck that maximizes the posterior prob-

ability of the class given the data P(Ck|A1,A2, ...,AN). Applying Bayes’ theorem,

P(Ck|A1,A2, ...,AN) ∝ P(A1,A2, ...,AN |Ck)P(Ck)
A particular but very common Bayesian classifier is the Naive Bayes Classifier.

In order to estimate the conditional probability, P(A1,A2, ...,AN |Ck), a Naive Bayes
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Classifier assumes the probabilistic independence of the attributes – i.e. the pres-

ence or absence of a particular attribute is unrelated to the presence or absence of any

other. This assumption leads to P(A1,A2, ...,AN |Ck)=P(A1|Ck)P(A2|Ck)...P(AN |Ck).
The main benefits of Naive Bayes classifiers are that they are robust to isolated

noise points and irrelevant attributes, and they handle missing values by ignoring

the instance during probability estimate calculations. However, the independence

assumption may not hold for some attributes as they might be correlated. In this

case, the usual approach is to use the so-called Bayesian Belief Networks (BBN)

(or Bayesian Networks, for short). BBN’s use an acyclic graph to encode the de-

pendence between attributes and a probability table that associates each node to its

immediate parents. BBN’s provide a way to capture prior knowledge in a domain

using a graphical model. In a similar way to Naive Bayes classifiers, BBN’s handle

incomplete data well and they are quite robust to model overfitting.

Bayesian classifiers are particularly popular for model-based RS. They are often

used to derive a model for content-based RS. However, they have also been used

in a CF setting. Ghani and Fano [36], for instance, use a Naive Bayes classifier to

implement a content-based RS. The use of this model allows for recommending

products from unrelated categories in the context of a department store.

Miyahara and Pazzani [52] implement a RS based on a Naive Bayes classifier.

In order to do so, they define two classes: like and don’t like. In this context they

propose two ways of using the Naive Bayesian Classifier: The Transformed Data

Model assumes that all features are completely independent, and feature selection

is implemented as a preprocessing step. On the other hand, the Sparse Data Model

assumes that only known features are informative for classification. Furthermore, it

only makes use of data which both users rated in common when estimating proba-

bilities. Experiments show both models to perform better than a correlation-based

CF.

Pronk et al. [58] use a Bayesian Naive Classifier as the base for incorporating

user control and improving performance, especially in cold-start situations. In order

to do so they propose to maintain two profiles for each user: one learned from the

rating history, and the other explicitly created by the user. The blending of both

classifiers can be controlled in such a way that the user-defined profile is favored

at early stages, when there is not too much rating history, and the learned classifier

takes over at later stages.

In the previous section we mentioned that Gutta et al. [29] implemented a

rule-based approach in a TV content RS. Another of the approaches they tested

was a Bayesian classifier. They define a two-class classifier, where the classes are

watched/not watched. The user profile is then a collection of attributes together with

the number of times they occur in positive and negative examples. This is used to

compute prior probabilities that a show belongs to a particular class and the con-

ditional probability that a given feature will be present if a show is either positive

or negative. It must be noted that features are, in this case, related to both content

–i.e. genre – and contexts –i.e. time of the day. The posteriori probabilities for a new

show are then computed from these.
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Breese et al. [15] implement a Bayesian Network where each node corresponds

to each item. The states correspond to each possible vote value. In the network, each

item will have a set of parent items that are its best predictors. The conditional prob-

ability tables are represented by decision trees. The authors report better results for

this model than for several nearest-neighbors implementations over several datasets.

Hierarchical Bayesian Networks have also been used in several settings as a way

to add domain-knowledge for information filtering [78]. One of the issues with hier-

archical Bayesian networks, however, is that it is very expensive to learn and update

the model when there are many users in it. Zhang and Koren [79] propose a varia-

tion over the standard Expectation-Maximization (EM) model in order to speed up

this process in the scenario of a content-based RS.

2.3.5 Artificial Neural Networks

An Artificial Neural Network (ANN) [81] is an assembly of inter-connected nodes

and weighted links that is inspired in the architecture of the biological brain. Nodes

in an ANN are called neurons as an analogy with biological neurons. These simple

functional units are composed into networks that have the ability to learn a classifi-

cation problem after they are trained with sufficient data.

Input Signals

Synaptic Weights

Summing Junction

Activation

Function

Output

Threshold

wk0

wk1

wk2

wkp

x0

x1

x2

xp

∑ φ(•)

θk

vk

Fig. 2.5: Perceptron model

The simplest case of an ANN is the perceptron model, illustrated in figure 2.5. If

we particularize the activation function φ to be the simple Threshold Function, the
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output is obtained by summing up each of its input value according to the weights

of its links and comparing its output against some threshold θk. The output function

can be expressed using Eq. 2.7. The perceptron model is a linear classifier that has

a simple and efficient learning algorithm. But, besides the simple Threshold Func-

tion used in the Perceptron model, there are several other common choices for the

activation function such as sigmoid, tanh, or step functions.

yk =

{

1, if ∑xiwki ≥ θk

0, if ∑xiwki < θk

(2.7)

An ANN can have any number of layers. Layers in an ANN are classified into

three types: input, hidden, and output. Units in the input layer respond to data that

is fed into the network. Hidden units receive the weighted output from the input

units. And the output units respond to the weighted output from the hidden units

and generate the final output of the network. Using neurons as atomic functional

units, there are many possible architectures to put them together in a network. But,

the most common approach is to use the feed-forward ANN. In this case, signals are

strictly propagated in one way: from input to output.

The main advantages of ANN are that – depending on the activation function

– they can perform non-linear classification tasks, and that, due to their parallel

nature, they can be efficient and even operate if part of the network fails. The main

disadvantage is that it is hard to come up with the ideal network topology for a

given problem and once the topology is decided this will act as a lower bound for

the classification error. ANN’s belong to the class of sub-symbolic classifiers, which

means that they provide no semantics for inferring knowledge – i.e. they promote a

kind of black-box approach.

ANN’s can be used in a similar way as Bayesian Networks to construct model-

based RS’s. However, there is no conclusive study to whether ANN introduce any

performance gain. As a matter of fact, Pazzani and Billsus [57] did a comprehen-

sive experimental study on the use of several machine learning algorithms for web

site recommendation. Their main goal was to compare the simple naive Bayesian

Classifier with computationally more expensive alternatives such as Decision Trees

and Neural Networks. Their experimental results show that Decision Trees perform

significantly worse. On the other hand ANN and the Bayesian classifier performed

similarly. They conclude that there does not seem to be a need for nonlinear clas-

sifiers such as the ANN. Berka et al. [31] used ANN to build an URL RS for web

navigation. They implemented a content-independent system based exclusively on

trails – i.e. associating pairs of domain names with the number of people who tra-

versed them. In order to do so they used feed-forward Multilayer Perceptrons trained

with the Backpropagation algorithm.

ANN can be used to combine (or hybridize) the input from several recommen-

dation modules or data sources. Hsu et al. [30], for instance, build a TV recom-

mender by importing data from four different sources: user profiles and stereo-

types; viewing communities; program metadata; and viewing context. They use the

back-propagation algorithm to train a three-layered neural network. Christakou and
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Stafylopatis [19] also built a hybrid content-based CF RS. The content-based rec-

ommender is implemented using three neural networks per user, each of them cor-

responding to one of the following features: “kinds”, “stars”, and “synopsis”. They

trained the ANN using the Resilient Backpropagation method.

2.3.6 Support Vector Machines

The goal of a Support Vector Machine (SVM) classifier [23] is to find a linear hy-

perplane (decision boundary) that separates the data in such a way that the margin is

maximized. For instance, if we look at a two class separation problem in two dimen-

sions like the one illustrated in figure 2.6, we can easily observe that there are many

possible boundary lines to separate the two classes. Each boundary has an associated

margin. The rationale behind SVM’s is that if we choose the one that maximizes the

margin we are less likely to missclassify unknown items in the future.

Large MarginSmall Margin

Support Vectors

w • x+b = 0

w • x+b = 1

w • x+b = −1

Fig. 2.6: Different boundary decisions are possible to separate two classes in two

dimensions. Each boundary has an associated margin.

A linear separation between two classes is accomplished through the function

w• x+b = 0. We define a function that can classify items of being of class +1 or -1

as long as they are separated by some minimum distance from the class separation

function. The function is given by Eq. 2.8

f (x) =

{

1, if w• x+b ≥ 1

−1, if w• x+b ≤−1
(2.8)

Margin =
2

∥w∥2
(2.9)
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Following the main rationale for SVM’s, we would like to maximize the margin

between the two classes, given by equation 2.9. This is in fact equivalent to mini-

mizing the inverse value L(w) = ∥w∥2

2
but subjected to the constraints given by f (x).

This is a constrained optimization problem and there are numerical approaches to

solve it (e.g., quadratic programming).

If the items are not linearly separable we can decide to turn the svm into a soft

margin classifier by introducing a slack variable. In this case the formula to mini-

mize is given by equation 2.10 subject to the new definition of f (x) in equation 2.11.

On the other hand, if the decision boundary is not linear we need to transform data

into a higher dimensional space . This is accomplished thanks to a mathematical

transformation known as the kernel trick. The basic idea is to replace the dot prod-

ucts in equation 2.8 by a kernel function. There are many different possible choices

for the kernel function such as Polynomial or Sigmoid. But the most common kernel

functions are the family of Radial Basis Function (RBF).

L(w) =
∥w∥2

2
+C

N

∑
i=1

ε (2.10)

f (x) =

{

1, if w• x+b ≥ 1− ε

−1, if w• x+b ≤−1+ ε
(2.11)

Support Vector Machines have recently gained popularity for their performance

and efficiency in many settings. SVM’s have also shown promising recent results

in RS. Kang and Yoo [46], for instance, report on an experimental study that aims

at selecting the best preprocessing technique for predicting missing values for an

SVM-based RS. In particular, they use SVD and Support Vector Regression. The

Support Vector Machine RS is built by first binarizing the 80 levels of available user

preference data. They experiment with several settings and report best results for a

threshold of 32 – i.e. a value of 32 and less is classified as prefer and a higher value

as do not prefer. The user id is used as the class label and the positive and negative

values are expressed as preference values 1 and 2.

Xu and Araki [76] used SVM to build a TV program RS. They used informa-

tion from the Electronic Program Guide (EPG) as features. But in order to reduce

features they removed words with lowest frequencies. Furthermore, and in order to

evaluate different approaches, they used both the Boolean and the Term frequency -

inverse document frequency (TFIDF) weighting schemes for features. In the former,

0 and 1 are used to represent absence or presence of a term on the content. In the

latter, this is turned into the TFIDF numerical value.

Xia et al.[75] present different approaches to using SVM’s for RS in a CF set-

ting. They explore the use of Smoothing Support Vector Machines (SSVM). They

also introduce a SSVM-based heuristic (SSVMBH) to iteratively estimate missing

elements in the user-item matrix. They compute predictions by creating a classifier

for each user. Their experimental results report best results for the SSVMBH as

compared to both SSVM’s and traditional user-based and item-based CF. Finally,



58 Xavier Amatriain, Alejandro Jaimes, Nuria Oliver, and Josep M. Pujol

Oku et al. [27] propose the use of Context-Aware Vector Machines (C-SVM) for

context-aware RS. They compare the use of standard SVM, C-SVM and an exten-

sion that uses CF as well as C-SVM. Their results show the effectiveness of the

context-aware methods for restaurant recommendations.

2.3.7 Ensembles of Classifiers

The basic idea behind the use of ensembles of classifiers is to construct a set of

classifiers from the training data and predict class labels by aggregating their pre-

dictions. Ensembles of classifiers work whenever we can assume that the classifiers

are independent. In this case we can ensure that the ensemble will produce results

that are in the worst case as bad as the worst classifier in the ensemble. Therefore,

combining independent classifiers of a similar classification error will only improve

results.

In order to generate ensembles, several approaches are possible. The two most

common techniques are Bagging and Boosting. In Bagging, we perform sampling

with replacement, building the classifier on each bootstrap sample. Each sample has

probability (1− 1
N
)N of being selected – note that if N is large enough, this converges

to 1− 1
e
≈ 0.623. In Boosting we use an iterative procedure to adaptively change

distribution of training data by focusing more on previously misclassified records.

Initially, all records are assigned equal weights. But, unlike bagging, weights may

change at the end of each boosting round: Records that are wrongly classified will

have their weights increased while records that are classified correctly will have

their weights decreased. An example of boosting is the AdaBoost algorithm.

The use of ensembles of classifiers is common practice in the RS field. As a

matter of fact, any hybridation technique [16] can be considered an ensemble as

it combines in one way or another several classifiers. An explicit example of this

is Tiemann and Pauws’ music recommender, in which they use ensemble learning

methods to combine a social and a content-base RS [70].

Experimental results show that ensembles can produce better results than any

classifier in isolation. Bell et al. [11], for instance, used a combination of 107 differ-

ent methods in their progress prize winning solution to the Netflix challenge. They

state that their findings show that it pays off more to find substantially different ap-

proaches rather than focusing on refining a particular technique. In order to blend

the results from the ensembles they use a linear regression approach and to derive

weights for each classifier, they partition the test dataset into 15 different bins and

derive unique coefficients for each of the bins. Different uses of ensembles in the

context of the Netflix prize can be tracked in other approaches such as in Schclar et

al.’s [67] or Toescher et al.’s [71].

The boosting approach has also been used in RS. Freund et al., for instance,

present an algorithm called RankBoost to combine preferences [32]. They apply the

algorithm to produce movie recommendations in a CF setting.
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2.3.8 Evaluating Classifiers

The most commonly accepted evaluation measure for RS is the Mean Average Error

or Root Mean Squared Error of the predicted interest (or rating) and the measured

one. These measures compute accuracy without any assumption on the purpose of

the RS. However, as McNee et al. point out [51], there is much more than accuracy

to deciding whether an item should be recommended. Herlocker et al. [42] provide

a comprehensive review of algorithmic evaluation approaches to RS. They suggest

that some measures could potentially be more appropriate for some tasks. However,

they are not able to validate the measures when evaluating the different approaches

empirically on a class of recommendation algorithms and a single set of data.

A step forward is to consider that the purpose of a “real” RS is to produce a top-N

list of recommendations and evaluate RS depending on how well they can classify

items as being recommendable. If we look at our recommendation as a classifica-

tion problem, we can make use of well-known measures for classifier evaluation

such as precision and recall. In the following paragraphs, we will review some of

these measures and their application to RS evaluation. Note however that learn-

ing algorithms and classifiers can be evaluated by multiple criteria. This includes

how accurately they perform the classification, their computational complexity dur-

ing training , complexity during classification, their sensitivity to noisy data, their

scalability, and so on. But in this section we will focus only on classification perfor-

mance.

In order to evaluate a model we usually take into account the following measures:

True Positives (T P): number of instances classified as belonging to class A that

truly belong to class A; True Negatives (T N): number of instances classified as not

belonging to class A and that in fact do not belong to class A; False Positives (FP):

number of instances classified as class A but that do not belong to class A; False

Negatives (FN): instances not classified as belonging to class v but that in fact do

belong to class A.

The most commonly used measure for model performance is its Accuracy de-

fined as the ratio between the instances that have been correctly classified (as be-

longing or not to the given class) and the total number of instances: Accuracy =
(T P + T N)/(T P + T N + FP + FN). However, accuracy might be misleading in

many cases. Imagine a 2-class problem in which there are 99,900 samples of class

A and 100 of class B. If a classifier simply predicts everything to be of class A,

the computed accuracy would be of 99.9% but the model performance is question-

able because it will never detect any class B examples. One way to improve this

evaluation is to define the cost matrix where we declare the cost of misclassifying

class B examples as being of class A. In real world applications different types of

errors may indeed have very different costs. For example, if the 100 samples above

correspond to defective airplane parts in an assembly line, incorrectly rejecting a

non-defective part (one of the 99,900 samples) has a negligible cost compared to

the cost of mistakenly classifying a defective part as a good part.

Other common measures of model performance, particularly in Information Re-

trieval, are Precision and Recall . Precision, defined as P = T P/(T P+FP), is a
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measure of how many errors we make in classifying samples as being of class A.

On the other hand, recall, R = T P/(T P+FN), measures how good we are in not

leaving out samples that should have been classified as belonging to the class. Note

that these two measures are misleading when used in isolation in most cases. We

could build a classifier of perfect precision by not classifying any sample as being

of class A (therefore obtaining 0 TP but also 0 FP). Conversely, we could build a

classifier of perfect recall by classifying all samples as belonging to class A. As a

matter of fact, there is a measure, called the F1-measure that combines both Preci-

sion and Recall into a single measure as: F1 =
2RP
R+P

= 2T P
2T P+FN+FP

Sometimes we would like to compare several competing models rather than es-

timate their performance independently. In order to do so we use a technique de-

veloped in the 1950s for analysis of noisy signals: the Receiver Operating Charac-

teristic (ROC) Curve. A ROC curve characterizes the relation between positive hits

and false alarms. The performance of each classifier is represented as a point on the

curve (see Fig. 2.7).
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Rates while Model 2 is fairly consistent throughout and outperforms Model 1 for

False Positive Rates higher than 0.25

Ziegler et al. show [80] that evaluating recommender algorithms through top-N

lists measures still does not map directly to the user’s utility function. However, it

does address some of the limitations of the more commonly accepted accuracy mea-

sures, such as MAE. Basu et al. [10], for instance, use this approach by analyzing

which of the items predicted in the top quartile of the rating scale were actually

evaluated in the top quartile by the user. McLaughlin and Herlocker [50] propose
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a modified precision measure in which non-rated items are counted as not recom-

mendable. This precision measure in fact represents a lower-bound of the “real”

precision. Although the F-measure can be directly derived from the precision-recall

values, it is not common to find it in RS evaluations. Huang et al. [43] and Bozzon

et al. [13], and Miyahara and Pazzani [52] are some of the few examples of the use

of this measure.

ROC curves have also been used in evaluating RS. Zhang et al. [64] use the value

of the area under the ROC curve as their evaluation measure when comparing the

performance of different algorithms under attack. Banerjee and Ramanathan [8] also

use the ROC curves to compare the performance of different models.

It must be noted, though, that the choice of a good evaluation measure, even in

the case of a top-N RS, is still a matter of discussion. Many authors have proposed

measures that are only indirectly related to these traditional evaluation schemes.

Deshpande and Karypis [25], for instance, propose the use of the hit rate and the

average reciprocal hit-rank. On the other hand, Breese et al. [15] define a measure

of the utility of the recommendation in a ranked list as a function of the neutral vote.

Note that Chapter 8 details on the use of some of these evaluation measures in

the context of RS and is therefore a good place to continue if you are interested on

this topic.

2.4 Cluster Analysis

The main problem for scaling a CF classifier is the amount of operations involved in

computing distances – for finding the best k-nearest neighbors, for instance. A possi-

ble solution is, as we saw in section 2.2.3, to reduce dimensionality. But, even if we

reduce dimensionality of features, we might still have many objects to compute the

distance to. This is where clustering algorithms can come into play. The same is true

for content-based RS, where distances among objects are needed to retrieve simi-

lar ones. Clustering is sure to improve efficiency because the number of operations

is reduced. However, and unlike dimensionality reduction methods, it is unlikely

that it can help improve accuracy. Therefore, clustering must be applied with care

when designing a RS, measuring the compromise between improved efficiency and

a possible decrease in accuracy.

Clustering [41], also referred to as unsupervised learning, consists of assigning

items to groups so that the items in the same groups are more similar than items

in different groups: the goal is to discover natural (or meaningful) groups that exist

in the data. Similarity is determined using a distance measure, such as the ones

reviewed in 2.2.1. The goal of a clustering algorithm is to minimize intra-cluster

distances while maximizing inter-cluster distances.

There are two main categories of clustering algorithms: hierarchical and parti-

tional. Partitional clustering algorithms divide data items into non-overlapping clus-

ters such that each data item is in exactly one cluster. Hierarchical clustering algo-
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rithms successively cluster items within found clusters, producing a set of nested

cluster organized as a hierarchical tree.

Many clustering algorithms try to minimize a function that measures the quality

of the clustering. Such a quality function is often referred to as the objective func-

tion, so clustering can be viewed as an optimization problem: the ideal clustering

algorithm would consider all possible partitions of the data and output the partition-

ing that minimizes the quality function. But the corresponding optimization problem

is NP hard, so many algorithms resort to heuristics (e.g., in the k-means algorithm

using only local optimization procedures potentially ending in local minima). The

main point is that clustering is a difficult problem for which finding optimal solu-

tions is often not possible. For that same reason, selection of the particular clustering

algorithm and its parameters (e.g., similarity measure) depend on many factors, in-

cluding the characteristics of the data. In the following paragraphs we describe the

k-means clustering algorithm and some of its alternatives.

2.4.1 k-Means

k-Means clustering is a partitioning method. The function partitions the data set of

N items into k disjoint subsets S j that contain N j items so that they are as close

to each other as possible according a given distance measure. Each cluster in the

partition is defined by its N j members and by its centroid λ j. The centroid for each

cluster is the point to which the sum of distances from all items in that cluster is

minimized. Thus, we can define the k-means algorithm as an iterative process to

minimize E = ∑k
1 ∑n∈S j

d(xn,λ j), where xn is a vector representing the n-th item,

λ j is the centroid of the item in S j and d is the distance measure. The k-means

algorithm moves items between clusters until E cannot be decreased further.

The algorithm works by randomly selecting k centroids. Then all items are as-

signed to the cluster whose centroid is the closest to them. The new cluster centroid

needs to be updated to account for the items who have been added or removed from

the cluster and the membership of the items to the cluster updated. This operation

continues until there are no further items that change their cluster membership. Most

of the convergence to the final partition takes place during the first iterations of the

algorithm, and therefore, the stopping condition is often changed to “until relatively

few points change clusters” in order to improve efficiency.

The basic k-means is an extremely simple and efficient algorithm. However, it

does have several shortcomings: (1) it assumes prior knowledge of the data in order

to choose the appropriate k ; (2) the final clusters are very sensitive to the selection of

the initial centroids; and (3), it can produce empty cluster. k-means also has several

limitations with regard to the data: it has problems when clusters are of differing

sizes, densities, and non-globular shapes; and it also has problems when the data

contains outliers.

Xue et al. [77] present a typical use of clustering in the context of a RS by em-

ploying the k-means algorithm as a pre-processing step to help in neighborhood for-
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mation. They do not restrict the neighborhood to the cluster the user belongs to but

rather use the distance from the user to different cluster centroids as a pre-selection

step for the neighbors. They also implement a cluster-based smoothing technique in

which missing values for users in a cluster are replaced by cluster representatives.

Their method is reported to perform slightly better than standard kNN-based CF. In

a similar way, Sarwar et al. [26] describe an approach to implement a scalable kNN

classifier. They partition the user space by applying the bisecting k-means algorithm

and then use those clusters as the base for neighborhood formation. They report a

decrease in accuracy of around 5% as compared to standard kNN CF. However, their

approach allows for a significant improvement in efficiency.

Connor and Herlocker [21] present a different approach in which, instead of

users, they cluster items. Using the Pearson Correlation similarity measure they try

out four different algorithms: average link hierarchical agglomerative [39], robust

clustering algorithm for categorical attributes (ROCK) [40], kMetis, and hMetis 3.

Although clustering did improve efficiency, all of their clustering techniques yielded

worse accuracy and coverage than the non-partitioned baseline. Finally, Li et al.[60]

and Ungar and Foster [72] present a very similar approach for using k-means clus-

tering for solving a probabilistic model interpretation of the recommender problem.

2.4.2 Alternatives to k-means

Density-based clustering algorithms such as DBSCAN work by building up on the

definition of density as the number of points within a specified radius. DBSCAN,

for instance, defines three kinds of points: core points are those that have more than

a specified number of neighbors within a given distance; border points have fewer

than the specified number but belong to a core point neighborhood; and noise points

are those that are neither core or border. The algorithm iteratively removes noise

points and performs clustering on the remaining points.

Message-passing clustering algorithms are a very recent family of graph-based

clustering methods. Instead of considering an initial subset of the points as centers

and then iteratively adapt those, message-passing algorithms initially consider all

points as centers – usually known as exemplars in this context. During the algorithm

execution points, which are now considered nodes in a network, exchange messages

until clusters gradually emerge. Affinity Propagation is an important representative

of this family of algorithms [33] that works by defining two kinds of messages

between nodes: “responsibility”, which reflects how well-suited receiving point is

to serve as exemplar of the point sending the message, taking into account other

potential exemplars; and “availability”, which is sent from candidate exemplar to the

point and reflects how appropriate it would be for the point to choose the candidate

as its exemplar, taking into account support from other points that are choosing that

same exemplar. Affinity propagation has been applied, with very good results, to

3 http://www.cs.umn.edu/ karypis/metis
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problems as different as DNA sequence clustering, face clustering in images, or text

summarization.

Finally, Hierarchical Clustering, produces a set of nested clusters organized as

a hierarchical tree (dendogram). Hierarchical Clustering does not have to assume

a particular number of clusters in advanced. Also, any desired number of clusters

can be obtained by selecting the tree at the proper level. Hierarchical clusters can

also sometimes correspond to meaningful taxonomies. Traditional hierarchical al-

gorithms use a similarity or distance matrix and merge or split one cluster at a time.

There are two main approaches to hierarchical clustering. In agglomerative hier-

archical clustering we start with the points as individual clusters and at each step,

merge the closest pair of clusters until only one cluster (or k clusters) are left. In

divisive hierarchical clustering we start with one, all-inclusive cluster, and at each

step, split a cluster until each cluster contains a point (or there are k clusters).

To the best of our knowledge, alternatives to k-means such as the previous have

not been applied to RS. The simplicity and efficiency of the k-means algorithm

shadows possible alternatives. It is not clear whether density-based or hierarchical

clustering approaches have anything to offer in the RS arena. On the other hand,

message-passing algorithms have been shown to be more efficient and their graph-

based paradigm can be easily translated to the RS problem. It is possible that we see

applications of these algorithms in the coming years.

2.5 Association Rule Mining

Association Rule Mining focuses on finding rules that will predict the occurrence of

an item based on the occurrences of other items in a transaction. The fact that two

items are found to be related means co-occurrence but not causality. Note that this

technique should not be confused with rule-based classifiers presented in Sec. 2.3.3.

We define an itemset as a collection of one or more items (e.g. (Milk, Beer,

Diaper)). A k-itemset is an itemset that contains k items. The frequency of a given

itemset is known as support count (e.g. (Milk, Beer, Diaper) = 131). And the support

of the itemset is the fraction of transactions that contain it (e.g. (Milk, Beer, Diaper)

= 0.12). A frequent itemset is an itemset with a support that is greater or equal to a

minsup threshold. An association rule is an expression of the form X ⇒ Y , where

X and Y are itemsets. (e.g. Milk,Diaper ⇒ Beer). In this case the support of the

association rule is the fraction of transactions that have both X and Y . On the other

hand, the confidence of the rule is how often items in Y appear in transactions that

contain X .

Given a set of transactions T , the goal of association rule mining is to find

all rules having support ≥ minsupthreshold and con f idence ≥ mincon f threshold.

The brute-force approach would be to list all possible association rules, compute

the support and confidence for each rule and then prune rules that do not satisfy

both conditions. This is, however, computationally very expensive. For this reason,

we take a two-step approach: (1) Generate all itemsets whose support ≥ minsup
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(Frequent Itemset Generation); (2) Generate high confidence rules from each fre-

quent itemset (Rule Generation)

Several techniques exist to optimize the generation of frequent itemsets. On a

broad sense they can be classified into those that try to minimize the number of can-

didates (M), those that reduce the number of transactions (N), and those that reduce

the number of comparisons (NM). The most common approach though, is to reduce

the number of candidates using the Apriori principle. This principle states that if

an itemset is frequent, then all of its subsets must also be frequent. This is verified

using the support measure because the support of an itemset never exceeds that of

its subsets. The Apriori algorithm is a practical implementation of the principle.

Given a frequent itemset L, the goal when generating rules is to find all non-

empty subsets that satisfy the minimum confidence requirement. If |L| = k, then

there are 2k2 candidate association rules. So, as in the frequent itemset generation,

we need to find ways to generate rules efficiently. For the Apriori Algorithm we can

generate candidate rules by merging two rules that share the same prefix in the rule

consequent.

The effectiveness of association rule mining for uncovering patterns and driving

personalized marketing decisions has been known for a some time [2]. However, and

although there is a clear relation between this method and the goal of a RS, they have

not become mainstream. The main reason is that this approach is similar to item-

based CF but is less flexible since it requires of an explicit notion of transaction –

e.g. co-occurrence of events in a given session. In the next paragraphs we present

some promising examples, some of which indicate that association rules still have

not had their last word.

Mobasher et al. [53] present a system for web personalization based on associ-

ation rules mining. Their system identifies association rules from pageviews co-

occurrences based on users navigational patterns. Their approach outperforms a

kNN-based recommendation system both in terms of precision and coverage. Smyth

et al. [68] present two different case studies of using association rules for RS. In the

first case they use the a priori algorithm to extract item association rules from user

profiles in order to derive a better item-item similarity measure. In the second case,

they apply association rule mining to a conversational recommender. The goal here

is to find co-occurrent critiques – i.e. user indicating a preference over a particular

feature of the recommended item. Lin et al. [49] present a new association mining

algorithm that adjusts the minimum support of the rules during mining in order to

obtain an appropriate number of significant rule therefore addressing some of the

shortcomings of previous algorithms such as the a priori. They mine both associa-

tion rules between users and items. The measured accuracy outperforms previously

reported values for correlation-based recommendation and is similar to the more

elaborate approaches such as the combination of SVD and ANN.

Finally, as already mentioned in section 2.3.2, Cho et al. [18] combine Decision

Trees and Association Rule Mining in a web shop RS. In their system, associa-

tion rules are derived in order to link related items. The recommendation is then

computed by intersecting association rules with user preferences. They look for as-

sociation rules in different transaction sets such as purchases, basket placement, and



66 Xavier Amatriain, Alejandro Jaimes, Nuria Oliver, and Josep M. Pujol

click-through. They also use a heuristic for weighting rules coming from each of the

transaction sets. Purchase association rules, for instance, are weighted higher than

click-through association rules.

2.6 Conclusions

This chapter has introduced the main data mining methods and techniques that can

be applied in the design of a RS. We have also surveyed their use in the literature

and provided some rough guidelines on how and where they can be applied.

We started by reviewing techniques that can be applied in the pre-processing

step. First, there is the choice of an appropriate distance measure, which is reviewed

in Section 2.2.1. This is required by most of the methods in the following steps.

The cosine similarity and Pearson correlation are commonly accepted as the best

choice. Although there have been many efforts devoted to improving these distance

measures, recent works seem to report that the choice of a distance function does not

play such an important role. Then, in Section 2.2.2, we reviewed the basic sampling

techniques that need to be applied in order to select a subset of an originally large

data set, or to separating a training and a testing set. Finally, we discussed the use

of dimensionality reduction techniques such as Principal Component Analysis and

Singular Value Decomposition in Section 2.2.3 as a way to address the curse of

dimensionality problem. We explained some success stories using dimensionality

reduction techniques, especially in the context of the Netflix prize.

In Section 2.3, we reviewed the main classification methods: namely, nearest-

neighbors, decision trees, rule-based classifiers, Bayesian networks, artificial neural

networks, and support vector machines. We saw that, although kNN ( see Section

2.3.1) CF is the preferred approach, all those classifiers can be applied in different

settings. Decision trees ( see Section 2.3.2) can be used to derive a model based

on the content of the items or to model a particular part of the system. Decision

rules ( see Section 2.3.3) can be derived from a pre-existing decision trees, or can

also be used to introduce business or domain knowledge. Bayesian networks ( see

Section 2.3.4) are a popular approach to content-based recommendation, but can

also be used to derive a model-based CF system. In a similar way, Artificial Neu-

ral Networks can be used to derive a model-based recommender but also to com-

bine/hybridize several algorithms. Finally, support vector machines ( see Section

2.3.6) are gaining popularity also as a way to infer content-based classifications or

derive a CF model.

Choosing the right classifier for a RS is not easy and is in many senses task and

data-dependent. In the case of CF, some results seem to indicate that model-based

approaches using classifiers such as the SVM or Bayesian Networks can slightly

improve performance of the standard kNN classifier. However, those results are non-

conclusive and hard to generalize. In the case of a content-based RS there is some

evidence that in some cases Bayesian Networks will perform better than simpler
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methods such as decision trees. However, it is not clear that more complex non-

linear classifiers such as the ANN or SVMs can perform better.

Therefore, the choice of the right classifier for a specific recommending task still

has nowadays much of exploratory. A practical rule-of-thumb is to start with the

simplest approach and only introduce complexity if the performance gain obtained

justifies it. The performance gain should of course balance different dimensions

such as prediction accuracy or computational efficiency.

We reviewed clustering algorithms in Section 2.4. Clustering is usually used in

RS to improve performance. A previous clustering step, either in the user of item

space, reduces the number of distance computations we need to perform. However,

this usually comes at the price of a lower accuracy so it should be handled with

care. As a matter of fact, improving efficiency by using a dimensionality reduction

technique such as SVD is probably a better choice in the general case. As opposed

to what happens with classifiers, not so many clustering algorithms have been used

in the context of RS. The simplicity and relative efficiency of the k-means algorithm

(see Section 2.4.1) make it hard to find a practical alternative. We reviewed some

of them such as Hierarchical Clustering or Message-passing algorithms in Section

2.4.2. Although these techniques have still not been applied for RS, they offer a

promising avenue for future research.

Finally, in Section 2.5, we described association rules and surveyed their use in

RS. Association rules offer an intuitive framework for recommending items when-

ever there is an explicit or implicit notion of transaction. Although there exist effi-

cient algorithms for computing association rules, and they have proved more accu-

rate than standard kNN CF, they are still not a favored approach.

The choice of the right DM technique in designing a RS is a complex task that

is bound by many problem-specific constraints. However, we hope that the short

review of techniques and experiences included in this chapter can help the reader

make a much more informed decision. Besides, we have also uncovered areas that

are open to many further improvements, and where there is still much exciting and

relevant research to be done in the coming years.
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