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Abstract

Background: Dementia and cognitive impairment associated with aging are a major medical and social concern.
Neuropsychological testing is a key element in the diagnostic procedures of Mild Cognitive Impairment (MCI), but
has presently a limited value in the prediction of progression to dementia. We advance the hypothesis that newer
statistical classification methods derived from data mining and machine learning methods like Neural Networks,
Support Vector Machines and Random Forests can improve accuracy, sensitivity and specificity of predictions
obtained from neuropsychological testing. Seven non parametric classifiers derived from data mining methods
(Multilayer Perceptrons Neural Networks, Radial Basis Function Neural Networks, Support Vector Machines, CART,
CHAID and QUEST Classification Trees and Random Forests) were compared to three traditional classifiers (Linear
Discriminant Analysis, Quadratic Discriminant Analysis and Logistic Regression) in terms of overall classification
accuracy, specificity, sensitivity, Area under the ROC curve and Press’Q. Model predictors were 10
neuropsychological tests currently used in the diagnosis of dementia. Statistical distributions of classification
parameters obtained from a 5-fold cross-validation were compared using the Friedman’s nonparametric test.

Results: Press’ Q test showed that all classifiers performed better than chance alone (p < 0.05). Support Vector
Machines showed the larger overall classification accuracy (Median (Me) = 0.76) an area under the ROC (Me =
0.90). However this method showed high specificity (Me = 1.0) but low sensitivity (Me = 0.3). Random Forest
ranked second in overall accuracy (Me = 0.73) with high area under the ROC (Me = 0.73) specificity (Me = 0.73)
and sensitivity (Me = 0.64). Linear Discriminant Analysis also showed acceptable overall accuracy (Me = 0.66), with
acceptable area under the ROC (Me = 0.72) specificity (Me = 0.66) and sensitivity (Me = 0.64). The remaining
classifiers showed overall classification accuracy above a median value of 0.63, but for most sensitivity was around
or even lower than a median value of 0.5.

Conclusions: When taking into account sensitivity, specificity and overall classification accuracy Random Forests
and Linear Discriminant analysis rank first among all the classifiers tested in prediction of dementia using several
neuropsychological tests. These methods may be used to improve accuracy, sensitivity and specificity of Dementia
predictions from neuropsychological testing.
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Background

It is estimated that about 25 million people suffer from

dementia nowadays and, as a consequence of the popu-

lation aging, the number of people affected is expected

to double every 20 years [1]. The presence of cognitive

complaints is very common in aged people and may be

the first sign of an on-going dementing disorder like

Alzheimer’s disease. It is possible to identify people with

cognitive complaints who are at risk for the progression

to dementia, that is to say, who have Mild Cognitive

Impairment (MCI) [2,3]. Since the establishment of MCI

requires the demonstration of cognitive decline greater

than expected for an individual’s age and education

level, neuropsychological testing is a key element in the

diagnostic procedures [4].

Recently, it has become possible to identify the traces, or

biomarkers, of Alzheimer’s disease in patients with MCI,

by the use of Magnetic Resonance Imaging (MRI) volu-

metric studies, neurochemical analysis of the cerebrospinal

fluid, and Positron Emission Tomography (PET) scan [5].

These studies, however, are expensive, technically challen-

ging, some invasive, and not widely available. Longitudinal

studies assessing the predictive value of neuropsychologi-

cal tests in progression of MCI patients to dementia have

shown an area under the receiver operating characteristic

curve of 61-94% (being higher for tests assessing verbal

episodic memory) but with lower accuracy and sensitivity

values [6-11]. It would be important to improve the value

of neuropsychological tests to predict the progression of

MCI patients to dementia. This can be achieved at a clini-

cal level by increasing the number of patients with longer

clinical follow-ups. Predictive power of these tests may be

also enhanced through innovating statistical classification

and data mining techniques. Traditional statistical classifi-

cation methods (e.g., Fisher’s Linear Discriminant Analysis

(LDA) and Logistic Regression (LR)) have been extensively

used in medical classification problems for which the cri-

terion variable is dichotomous [12-18]. More recently,

research has been steadily building on the accuracy and

efficiency of data mining, with classifiers like Neural

Networks (NN), Support Vector Machines (SVM), Classi-

fication Trees (CT) and Random Forests (RF) used for

medical prediction and classification tasks [13,14,19-27].

Research on the comparative accuracy of traditional classi-

fiers (LDA and LR) vs. new, computer intensive data

mining methods which require large computing power,

innovative iterative algorithms and user intervention, has

been growing steadily. Several authors propose that data

mining classifiers have higher accuracy and lower error

rates than the traditional classification methods

[22,25,28,29]. However, this superiority is not apparent

with all data sets, especially with real data [12,13,30-32].

Results regarding the superiority of classification accuracy

of newer classification methods as compared to traditional,

less computer demanding methods, as well as the stability

of the findings are still controversial [31,33-35]. Most

comparisons between methods are based only on total

classification accuracy and/or error rates; they involve

human intervention for training and optimization of the

data mining classifiers vs. out-of-the-box results for the

traditional classifiers. Furthermore, in medical contexts,

sensitivity (the ability to predict the condition when the

condition is present), specificity (the ability to predict the

absence of the condition when the condition is not pre-

sent) as well as the classifier discriminant power (as esti-

mated from the area under the Receiver Operating

Characteristic (ROC) curve) are key features that must be

considered when comparing classifiers and diagnostic

methods.

In this paper we evaluated the sensitivity, specificity,

overall classification accuracy, area under the ROC and

Press’ Q of data mining classifiers like Neural Networks

(Multilayer Perceptrons and Radial Basis Networks),

Support Vector Machines, Classification Trees and Ran-

dom Forests as compared to the traditional Linear,

Quadratic Discriminant Analysis and Logistic Regression

in the prediction of the evolution into dementia of 400

elderly people with Mild Cognitive Impairment.

Methods

Classifiers

Discriminant Analysis

The oldest classifier still in use was devised almost 100

years ago by Sir R. Fisher [36]. Fisher’s Linear Discrimi-

nant Analysis (LDA) builds j = min(k-1,p) discriminant

functions that estimate discriminant scores (Dji) for each

of i = 1,...,n subjects classified into k groups, from p lin-

early independent predictor variables (X) as

Dji = wi1X1i + wi2X2i + . . . + wipXpi

[i = 1, . . . , n and j = 1, . . . , min(k − 1, p)]

Discriminant weights (wij) are estimated by ordinary

least squares so that the ratio of the variance within the

k groups to the variance between the k groups is mini-

mal. Classification functions of the type

Cji = cjo + cj1X1i + cj2X2i + . . . + cjpXpi

for each of the j = 1,...,k groups can therefore be

constructed from the discriminant scores. The coeffi-

cients of the classification function for the j th group

are estimated from the within sum of squares matrixes

(W) of the discriminant scores for each group and

from the vector of the p discriminant predictors means

in each of the classifying groups (M) as Cj = W
-1
M
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with cjo = log p − 1
/

2CjMj. Quadratic Discriminant Ana-

lysis (QDA) uses the same within vs. between sum of

square minimization optimization but on a quadratic

discriminant function of the form:

Di =

P
∑

p=1

wι̇pXp +

P
∑

p=1

qι̇pX
2
p +

P−1
∑

p=1

rι̇pXpXp+1

[i = 1, . . . , min(k − 1, p)]

With classification functions

cj = c0j +

P
∑

p=1

cι̇pXp +

P
∑

p=1

oι̇pX
2
p +

P−1
∑

p=1

mι̇pXpXp+1

[j = 1, . . . , k]

Both on LDA and QDA, a subject is then classified

into the group for which its classification function score

is higher [for a detailed description of LDA and QDA

see [37]].

Logistic Regression

Binomial Logistic regression (LR) models the probability

of occurrence of one (success) of the two classes of a

dichotomous criterion. A linear combination of predic-

tors is used to fit a Logit transformation of the probabil-

ity of success for each subject (πi) as

Ln[π̂i

/

(1 − π̂i)] = βo + β1X1i + . . . + βpXpi

Regression coefficients are fitted by maximum likeli-

hood estimation, and by solving the Logit in order to πi
the probability of success for each subject is estimated as

π̂i =
eβ0+β1X1i+...+βpXpi

1 + eβ0+β1X1i+...+βpXpi

If the estimated probability is greater than 0.5 (or

other user pre-defined threshold value), the subject is

classified into the success group; otherwise, it is classi-

fied into the failure group [for a detailed description see

[38]].

Neural Networks

Neural Networks (NN) methods have been used exten-

sively in classification problems and this is one of the

most active research and application areas in the Neural

Networks field [39]. Inspired from the biological neuron

cells, a NN is a multi-stage, multi-unit classifier, with

input, hidden or processing, and output layers as illu-

strated by Figure 1.

For a polytomous criterion yk with k classes, the NN

can be described by general the model

ŷk = fk(x, w, o, x0, o0k, θ) =

= f

⎛

⎝

h
∑

j=1

okj · g

(

p
∑

i=1

wjixi + x0j

)

+ o0k

⎞

⎠

Where x is the vector of p predictors, w is the vector

of input weights, o is the vector of hidden weights for

the hidden layer, x0 and o0k are bias (memory) con-

stants. The functions g(.) and f(.) are processing activa-

tion functions for the hidden layer and output layer

respectively. Activation functions are one of the general

linear, logistic, exponential or gaussian function families.

Several topologies of Neural Networks (NN) can be

used in binary classification problems. Two of the most

used NN are the Multilayer Perceptron (MLP) and the

Radial Basis Function (RBF). The main differences

between these two NN reside in the activation functions

of the hidden layer: For the MLP the activation function

belongs, generally, to a linear

fj(x) =
∑p

i=1
wijxi

or logistic activation function family:

f (x) =
1

1 + exp(−x)

For the RBF function the activation function belongs

to the Gaussian family:

fj(x) = exp

[

−
1

2
(x − µj)

′
�

−1
j (x − µj)

]

A NN is generally trained in a set of iterations

(epochs) for a subset of the data (train set) and tested

for the remained subset (test set). The vector of sinaptic

weights (w) of the NN is upgraded in each iteration in

way to maximize the correct classification rate and or

minimize a function of the classification errors; either a

function of the sum of squares of the errors for a con-

tinuous criterion

SSE =
1

2

n
∑

i=1

(yi − ŷi)
2

or the Cross-entropy error function for a binary criter-

ion:

CEE = −

n
∑

i=1

[

yi1 Ln

(

ŷi

yi

)

+ (1 − Yi)Ln
(1 − ŷi)

(1 − yi)

]

[for a detailed description of NN see [40]].

Support Vector Machines

Support Vector Machines (SVM) are machine-learning

derived classifiers which map a vector of predictors into

a higher dimensional plane through either linear and

non-linear kernel functions [41]. In a binary classifica-

tion problem, the two groups, say {-1} and {+1}, are

separated in a higher-dimension hyperplane accordingly

to a structural risk minimization principle. The objective

is to find a linear separating hyperplane

Maroco et al. BMC Research Notes 2011, 4:299

http://www.biomedcentral.com/1756-0500/4/299

Page 3 of 14



w
′φ(x) + b = 0

constructed from a vector x of predictors mapped

into a higher dimension feature space by a nonlinear

feature function j, a vector w of weights and a bias off-

set b, that classifies all the observation yi in one of the

two groups {-1; +1} [41]. The classification function is

then

f (x) = Sign(w′φ(x) + b)

Since, in a binary classification problem, there are infi-

nite separation hyperplanes, the goal is to find the opti-

mum linear plane which separates best the two groups.

To find the optimum plane furthest from both {-1} and

{+1} groups, one strategy is to maximize the distance or

margin of separation from the supporting planes,

respectively w’j(x) + b ≥ +1 for the {+1} group and w’j

(x) + b ≤ -1 for the {-1} group. These support planes are

pushed apart until they bum into a small number of

observations or training patterns that respect the above

constrains and thus are called support vectors. Figure 2

illustrates this concept. The classification goal can be

achieved by maximizing the distance or margin of

separation r between the two planes w’j(x) + b = +1

and w’x + b = -1 given by r = 2/|| w ||. This is equiva-

lent to minimizing the cost function

C(w) =
‖w‖2

2
+ c

n
∑

i=1

ξi =
1

2
w

′
w + c

n
∑

i=1

ξi

Subjected to the linear inequality constrains

yi(w
′φ(xi) + b) ≥ 1 − ξi and ξi ≥ 0

where c > 0 is penalty parameter that balances classifi-

cation errors vs. the complexity of the model, which is

controlled by the margin of separation, and ξi, is the so

called slack-variable. This variable is the penalty of a

misclassified observation that controls how far on the

wrong side of the hyperplane a point can lie when the

training data cannot be classified without error, that is

when the objects are not linearly separable and a soft

separating non-linear margin is required [41,42].

Because the feature space can be infinite, the nonlinear

mapping by the feature function j is computed through

special nonlinear semi-positive definite K functions

called kernels (Ivanciuc, 2007).

Thus, the above minimization is generally solved

through a dual formulation problem [see e.g. [41,43]]:

min 1
2

n
∑

i,j=1

yiyjαiαjK(xi, xj) −

n
∑

i=1

αi

subjected to the linear constrains

n
∑

ι̇=1

yiαi = 0 and 0 ≤ αi ≤ C

Where ai(i = 1,...,n) are nonnegative Lagrange multi-

pliers and K(.) is a kernel unction. In classification pro-

blems (c-SVM) the usual kernel functions are the linear

kernel K(xi, xj ) = xi ’xj or the Gaussian K(xi, xj) = exp

(-g ||xi - xj||
2) where g is the kernel parameter. The use

of kernel functions has the advantage of operating in

the original input variables where the solution of the

classification problem is a weighted sum of kernels eval-

uated at the support vectors [for a complete description

of SVM see [28,41,43].

Figure 1 Pictorial representation of a neural network (multilayer perceptron) with input layer (dendrites), hidden layer (nucleus) and

output layer (axon) (see text for a description of the neural networks components).
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Classification Trees

Classification Trees (CT) are non-parametric classifiers

that construct hierarchical decision trees by splitting

data among classes of the criterion at a given step

(node) accordingly to an “if-then” rule applied to a set

of predictors, into two child nodes repeatedly, from a

root node that contains the whole sample. Thus, CT

can select the predictors and its interactions that are

most important in determining an outcome for a criter-

ion variable. The development of a CT is supported on

three major elements: (1) choosing a sampling-splitting

rule that defines the tree branch which connect the clas-

sification nodes; (2) the evaluation of classification pro-

duced by the splitting rule at each node and (3) the

criteria used for choosing an optimal or final tree for

classification proposes. Accordingly to the features of

these major elements, the most usual CT can be classi-

fied into: Classification and Regression Tree (CART)

[44], Chi-squared Automatic Interaction Detector

(CHAID) [45] and Quick Unbiased Efficient Statistical

Tree (QUEST) [46]. The following descriptions are

based on these algorithms and its references. In CART

trees, the predictors are split in a way that minimizes

the impurity of node produced at each t branch of the

tree until all data points are classified into C mutually

exclusive classes. The impurity measure of choice in

CART is the Gini impurity index defined as

IG(t) = 1 −

C
∑

c=1

P(c|t)2 =

=

C
∑

c=1

C
∑

c �=d=1

P(c|t)P(j|t)

where P (c | t) is the conditional probability of a class

c given the node t. This probability is estimated as

P(c|t) =
P(c, t)

P(t)

with P(c, t) =
π(c)nc(t)

nc
and P(t) =

C
∑

c=1

P(c, t)

where π(c) is the probability of observing the group c

and nc(t) is the number of elements in group c at a

given node t. The tree is grown until no further pre-

dictors can be used or the impurity of each group at a

final branch of the tree cannot be reduced further.

Non significant predictors (branches) can be pruned

from the final tree and removed from the analysis.

In CHAID trees, the homogeneity of the groups gen-

erated by the tree is evaluated by a Bonferroni corrected

p-value obtained from the chi-square statistic applied to

Figure 2 Schematic representation of the optimum hyperplane (H0) by a Support Vector Machine. Diagonal lines represent the
classification function for objects {-1} and {+1}. Objects inside the circles are the so-called support vectors verifying w’x + b = -1 or w’x + b = +
1 respectively.
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two-way classification tables with C classes and K splits

for each tree node:

X2 =

C
∑

c=1

K
∑

k=1

(nck − n̂ck)2

n̂ck
∼ χ2

(C−1)(K−1)

where nck stands for the observed frequencies of cell

ck and n̂ck stands for the expected frequencies under the

null hypothesis of two-way homogeneity.

In QUEST, the homogeneity of groups at each branch

of the tree is evaluated with the ratio of the within

group variance and between group variances for contin-

uous predictors which define the F statistic:

FX =

C
∑

c=1

nc(t)
(x̄c(t) − x̄(t))2

(C − 1)
n

∑

i=1

(xi − x̄c(t))

(n(t) − C)

∼ F(C − 1; n(t) − C)

where x̄c(t) is the average of predictor X in the c

group at node t and x̄(t) is the average of predictor X at

node t for all groups. For categorical predictors, a chi-

square like statistic similar to the one defined for a

CHAID is used.

Random Forests

Random Forests (RF) were proposed by Leo Breinman

[47]. This “ensemble learning” classification method con-

struct a series of CART using random bootstrap samples

of the original data sample. Each of these trees is built

from further random sub-set of the total predictors who

maximize the classification criteria at each node. An esti-

mate of the classification error-rate can be obtained

using each of the CART to predict the data not in the

bootstrap sample (“out-of-the bag”) used to grow the

tree, and then average the out-of-the bag predictions for

the grown set of trees (forest). These out-of-the bag esti-

mates of the error-rate can be quite accurate if enough

trees have been grown [48]. Object classification is then

performed from the majority of predictions given by the

trees in the random forest. Although this classification

strategy may lack a perceivable advantage over single CT,

according to its creator (Leo Breiman), it has unexcelled

accuracy among current algorithms, performing very well

when compared to many classifiers including LDA, NN

and SVM [for a detailed description of RF see [47]].

Furthermore, this method is quite user-friendly since it

has only two parameters that the user needs to define:

the number of random trees in the forest; and the num-

ber of predictor variables in the random subset of tree at

each node. These parameters can be easily optimized

although random forests are not very sensitive to their

values [48].

Case study application

Sample

Subjects were recruited as part of a cohort study of 921

elderly non-demented patients with cognitive complaints

referred for neuropsychological evaluation at 3 institu-

tions, the Laboratory of Language Studies, Santa Maria

Hospital, and Memoclínica (a Memory Clinic), both in

Lisbon, and the Neurology Department, University Hospi-

tal, Coimbra, from 1999 to 2007. Inclusion criteria con-

sisted in the diagnosis of Mild Cognitive Impairment

(according to the criteria of the European Consortium on

Alzheimer’s Disease, 2006); presence of at least one

follow-up neuropsychological assessment or clinical re-

evaluation. Patients with dementia [DSM-IV-TR [49]] or

other disorders that may cause cognitive impairment, like

stroke, brain tumour, significant head trauma, epilepsy,

psychiatric disorders, uncontrolled medical illness (hyper-

tension, metabolic, endocrine, toxic and infectious dis-

eases); medical treatments interfering with cognitive

function; and alcohol or illicit drug abuse were excluded

from the study sample. At the follow-up, the subjects were

classified as having: Mild Cognitive Impairment (according

to the same criteria); or Dementia (DSM-IV-TR, 2000).

The final sample was composed by 400 patients (see

Table 1 for sample demographics) who gave voluntary

consent to participate in this study. The local ethics com-

mittee approved the study.

Criterion and Predictors

The criterion was a dichotomous variable with two groups:

MCI and Dementia. Neuropsychological predictors were a

subset of tests with criterion validity (p < 0.1) from the

Battery of Lisbon for the Assessment of Dementia (BLAD)

[50], which includes multiple neuropsychological tests

Table 1 Sample demographics: The two groups in the criterion were “MCI” - Mild Cognitive impaired patients; and

“Dementia” patients

MCI Dementia p-value

Group size (%) 275(69%) 125 (31%) <0.001‡

Age (M ± SD) 67.8 ± 8.8 71.6 ± 8.4 <0.001†

Sex (♀/♂) 165/110 78/47 0.649‡

Schooling years (M ± SD) 8.1 ± 4.7 8.64 ± 4.9 0.469†

Time between assessments (year)(M ± SD) 2.3 ± 1.6 2.2 ± 1.4 0.517†

The class to predict was “Dementia”. P-values for group comparison were obtained from Student’s-t test (†) or c2 test (‡).
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representing key cognitive domains and was validated for

the Portuguese population. The selected 10 neuropsycho-

logical tests assessed the following cognitive areas: verbal

initiative (Verbal Semantic Fluency) [51]; verbal and non-

verbal abstraction (Interpretation of Proverbs and the

Raven Progressive Matrices) [52]; visuo-constructional

abilities and executive functions (Clock Draw) [53];

immediate memory (Digit Span forward) [54]; working

memory (Digit Span backward) [54]; learning and verbal

memory (Word Recall, Verbal Paired-associate Learning

and Logical Memory) [54] and orientation (adapted from

the Mini-Mental State Examination (MMSE) Test) [50]. A

Forgetting Index was also studied as a predictor variable.

This Index is calculated based on the correct information

evoked between the immediate and the delayed condition

of the Logical Memory Test (Forgetting Index = [(LM

delayed recall - LM immediate)/LM immediate)] × 100)

[55] Figure 3 gives the scatter biplots for all pairs of pre-

dictors and their frequency histograms. None of the

predictors showed a normal distribution judging from

Kolmogorov-Smirnov with Lilliefors correction tests (p <

0.05), but criterion group variances were homogenous

according to the Levene’s test (p > 0.05). No multicolli-

nearity problems were apparent (VIF<5) but several bivari-

ate outliers were detected (see Figure 3).

Data mining settings and classifiers evaluation

To prevent overfitting and artificial accuracy improve-

ment due to the use of the same data for training and

testing of classifiers, a 5-fold cross-validation strategy was

followed to train and evaluate the 10 classifiers. The total

sample was divided into 5 proportional sub-samples. In

each of the 5 steps, 4/5 of the sample was used for train-

ing and 1/5 for testing. Test results for the 5 runs, gath-

ered from the 5 test samples, were then considered for

further comparisons. The performances (total accuracy,

sensitivity, specificity, AUC and Press’ Q) of the different

classifiers where compared with Friedman’s test followed

Figure 3 Scatter biplots for MCI (white circles) and Dementia (black circles) patients in the 11 predictors and its histograms (DSf -

Digit Span Forward; DSb - Digit Span Backward; SF - Verbal Semantic Fluency; Ori - Orientation; WR - Word Recall; VPA - Verbal

Paired-associate Learning; LM - Logical Memory; Forg - Forgetting Index; Clock-Clock Drawing; MPR - Raven Progressive Matrices;

Prov - Interpretation of Proverbs). See text for tests descriptions.
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by Dunn’s post-hoc multiple comparisons of mean ranks

for paired samples. Statistical significance was assumed

for p < 0.05. To avoid biases from the data sets, equal a

priori classification probabilities were used for Linear

Discriminant Analysis, Quadratic Discriminant Analysis

and Logistic Regression. Neural Networks, Support

Vector Machines, Classification trees and Random forests

used settings that are most frequently employed in prac-

tical data mining applications as follows. The Multilayer

Perceptron was trained with 11 inputs (one for each pre-

dictor) in the input layer, 1 hidden layer with 4-7 neurons

and a hyperbolic tangent activation function. The num-

ber of neurons in the hidden layer was iteratively

adjusted by the software to minimize classification errors

in the train data set. The activation function for the out-

put layer was the Softmax with a cross-entropy error

function. Synaptic weights were obtained from a

80%:20% train: test setup. The Radial Basis Function

Neural Network had 11 inputs, one hidden layer with 2-8

neurons and a Softmax activation function. The activa-

tion function for the output layer was the identity func-

tion with a sum of squares error function. The Gaussian

function was the kernel used in the SVM. Cost (c) and g

parameters were optimized by a linear grid search in the

intervals [2-3; 215] for c and [2-15; 23] for g, followed by

cross-validation of each of the SVM obtained in the 5

train sets. The classification function was the sign of the

optimum margin of separation. CHAID, CART and

QUEST classification trees used a to split and a to

merge of 0.05, with 10 intervals. Tree growth and prun-

ing of CART were set with a minimum parent size of 5

and minimum child size of 1. Classification priors for

both trees were fixed at 0.5:0.5. Random Forests were

composed of 500 CART trees with 2-9 predictors per

tree cross-validation optimization. The Predictive Analy-

tic Software (PASW) Statistics (v. 18, SPSS Inc., Chicago,

Il) was used for Discriminant Analysis, Logistic Regres-

sion, Neural Networks and Classification Trees. Support

Vector Machines and Random Forests were performed

with R (v. 2.8, CRAN) with the e1071 [56] and random-

Forest [48] packages, respectively.

Results

Classification accuracy, sensitivity, specificity, area under

the ROC and Press’ Q statistic were evaluated in the 5 test

sets resulting from the 5-fold cross validation strategy as

described before. Data gathered is illustrated in box-plots

for the different classifiers.

Total Accuracy

Figure 4 shows the box-plots of the total classification

accuracy for the 10 classifiers studied. Judging from the

Friedman’s test on ranks, there were statistical significant

differences between distributions of the total accuracy

(X2
Fr(9) = 22.211; p = 0.008). Post-hoc, multiple mean

rank comparisons for paired samples revealed that SVM

and RF had higher mean ranks than the other classifiers

who did not differ significantly in mean rank accuracy

(p > 0.05).

Specificity

The distributions of the specificity (the proportion of

subjects that did not convert to dementia and were cor-

rectly predicted) are shown in Figure 5. The differences

in the specificity distributions were statistically significant

(X2
Fr(9)= 37.292; p < 0.001). SVM scored the highest in

specificity followed by a second group composed by

MLP, LR and RBF with significant differences from a

third group composed by LDA, QDA, classification trees

and RF.

Sensitivity

Figure 6 illustrates the distributions of the sensitivity

(proportion of subjects that were correctly predicted to

convert into dementia) values obtained by the 10 classi-

fiers in the 5 test samples. There were statistically signif-

icant differences in the distribution of the sensitivity

values of the analyzed classifiers (X2Fr(9) = 29.0; p =

0.001). LDA, CART, QUEST and RF had the highest

sensitivity values. It is worthwhile to mention that LR,

MLP, RBF and CHAID had median sensitivity values

close to or lower than 0.5, and that SVM was the classi-

fier with the significantly lowest sensitivity.

Area under the ROC

The distribution of the areas under the ROC (AUC) for the

10 classifiers in the 5 test samples is shown in Figure 7.

There are statistically significant differences between the

classifiers (X2
Fr(9) = 23.745; p = 0.005). SVM shows the

highest AUC, however an extreme low value removes

the significance of the differences with the AUC distribu-

tions from the other classifiers. LDA, LR, MLP, RBF and

RF are a homogenous group statistically different from the

group composed by QDA, CHART and CHAID. QUEST

had the significantly lowest AUC.

Classification by chance alone

Press’ Q evaluates the performance of a classifier as

compared to chance alone. The test statistic is

Q =
(N − nk)2

N(k − 1)
∼ χ2

(1)

where N is the total sample size, n is the number of

observations correctly classified and k is the number of

groups. Under the null hypothesis that the classifier is

no better than chance alone, Press’ Q has a chi-square

distribution with 1 degree of freedom. Thus, classifiers

with Q≥3.84 classify significantly better than chance
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alone for a 0.05 significance level. The Q distributions in

the 5 sample tests are shown in Figure 8. There were

statistically significant differences between the Q distri-

butions (X2Fr(9) = 21.582; p = 0.01). Dunn’s multiple

mean rank comparisons revealed that SVM had the

highest mean rank followed by RF, MLP, CHAID and

LR. The smallest mean ranks were observed for LDA,

QDA, RBF, CART and QUEST. All classifiers, with the

Figure 4 Box-plot distributions of classification accuracy (number of correct classifications/total sample size) for the 5 test samples

resulting from the 5-fold cross-validation procedure (see text for abbreviations) (X2Fr(9) = 22.211; p = 0.008). Different letters
correspond to methods with statistically significant differences according to Dunn’s mean rank post-hoc comparisons (p < 0.05). Circles represent
outliers (observations greater than the 3rd quartile plus 1.5 times the interquartile range or smaller than the 1st quartile minus 1.5 times the
interquartile range; stars represent extreme outliers, that correspond to observations greater than the 3rd quartile plus 3 times the interquartile
range or smaller than the 1st quartile minus 3 times the interquartile range.

Figure 5 Box-plot distributions of specificity (number of MCI predicted/number of MCI observed) for the 5 test samples resulting

from the 5-fold cross-validation procedure (see text for abbreviations) (X2Fr(9)= 37.292; p < 0.001). Different letters indicate statistically
significant differences between classifiers on Dunn’s mean rank comparison procedure. Circles and stars represent outliers and extreme outliers
respectively.
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exception of QUEST, had 1st quartiles higher than 3.84

(p < 0.05).

Discussion

All classifiers evaluated showed better median (Me) clas-

sification than chance alone in the prediction of

evolution into dementia of elderly people with Mild

Cognitive Impairment. Median Press’s Q statistic was

larger or equal to 5 for all classifiers, although in

QUEST the 1st quartile was below the critical level for

this statistics. Discriminant power of the classifiers, as

judged by the AUC, was appropriate for most classifiers

Figure 6 Box-plot distributions of sensitivity (number of Dementia predicted/number of Dementia observed) (see text for

abbreviations) (X2Fr(9)= 29.0; p = 0.001). Different letters indicate statistically significant differences between classifiers on a multiple mean
rank comparison procedure. Circles and stars represent outliers and extreme outliers respectively.

Figure 7 Box-plot distributions of area under the Receiver Operating Characteristic curve (AUC) (see text for abbreviations) (X2
Fr(9)=

23.745; p = 0.005). Different letters indicate statistically significant differences between classifiers on a multiple mean rank comparison
procedure. Circles and stars represent outliers and extreme outliers respectively.
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(greater than 0.7) with the exception for classification

trees (median AUC of 0.6). No statistically significant

differences were found in the total accuracy of 8 of the

10 evaluated classifiers (Medians between 0.63 and

0.73), but RF (Me = 0.74) and SVM (Me = 0.76)

obtained statistically significant higher classification

accuracy. Median specificity ranged from a minimum of

0.64 (CART and LDA) to a maximum of 1 (SVM). With

the exception of LDA, CART and QUEST, all the other

classifiers were quite efficient in predicting group mem-

bership in the group with larger number of elements (the

MCI group corresponding to 69% of the sample) (Median

specificity larger than 0.6). Judging from total accuracy,

SVM and RF rank highest amongst the classifiers tested

as has been suggested elsewhere [47,48,57,58]. However,

a quite different picture emerges from the analysis of the

sensitivity of the classifiers. Prediction for the group with

lower frequency (the Dementia group, 31% of the sample)

was quite poor for several of the tested classifiers, includ-

ing the ones with some of the highest specificity values.

Minimum median sensitivity was 0.30 (SVM) and maxi-

mum median sensitivity was 0.66 (QUEST, followed by

0.64 for LDA and RF). Only six of the ten classifiers

tested showed median sensitivity larger than 0.5 (and

only five had 1st quartile sensitivity larger than 0.5). Con-

sidering that conversion into dementia is the key predic-

tion in this biomedical application and thus higher

sensitivity of classifiers is required, classifiers like Logistic

Regression, Neural Networks, Support Vector Machines

and CHAID trees are inappropriate for this type of binary

classification task. Similar findings were observed in stu-

dies comparing different classifiers in other biomedical

conditions [24,34,58]. Total accuracy of classifiers is mis-

leading since some classifiers are good only at predicting

the larger group membership (high specificity) but quite

insufficient at predicting the smaller group membership

(low sensitivity). Some of the classifiers with the highest

specificity (Neural Networks (MLP and RBF) and SVM)

are also the classifiers with the lowest sensitivity. Unba-

lance of classification efficiency for small frequency vs.

large frequency groups has been found in other real-data

studies for Logistic Regression and Neural Networks

[30,34,59,60]. To our knowledge, such unbalance of SVM

in the prediction of the lowest frequency was not been

published elsewhere. David Meyer (Personal communica-

tion) has observed also that SVM predict poorly low fre-

quency groups. Taking into account total accuracy,

specificity and sensitivity, the oldest Fisher’s Linear Dis-

criminant Analysis does not rank much lower than Mul-

tiple Layer Perceptrons or Random Forests, the newest

member of the binary classification family. The relatively

small sample size, although in the range of most biome-

dical experimental studies with dementia and cognitive

impairment, may limit the performance of some data

mining methods assessed in this study. Sample size has

been known to play an important role in the accuracy of

Neural Networks [61,62]. In our study, the number of

cases for the training and testing sets are at lower limit

for recommended data set dimensions for Neural Net-

works applications (several hundred) [61-63]. Large data

Figure 8 Box-plot distributions of Press’ Q (see text for abbreviations) (X2Fr(9) = 21.582; p = 0.01). Different letters indicate statistically
significant differences between classifiers on Dunn’s multiple mean rank comparison procedure. Classifiers with Q3.84 classify significantly better
than chance alone for a 0.05 significance level. Circles and stars represent outliers and extreme outliers respectively.
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sets requirements are also found in LR, but less in LDA if

the model assumptions are met. The present sample size

was not, apparently, limiting for the achievement of an

acceptable accuracy, specificity and sensitivity of both

Random Forests and LDA, as reported elsewhere [18,63].

Furthermore, there are studies with relatively small sam-

ples where data mining techniques, like SVM and Neural

Networks have been used with high accuracy in classifi-

cation problems [see e.g. [58,64-66]]. Equivalent or even

superior performances have been reported for Linear

Discriminant Analysis and Random Forests when com-

pared with Neural Networks, Classification Trees and

Support Vector Machines [see e.g. [34,47,58,67,68]].

However, controversy still prevails regarding the effects

on classifiers’ performance of different combinations of

predictors, data assumptions, sample sizes and para-

meters tuning [16,17,31,58,69,70]. Different application

with different data sets (both real and simulated) have

failed to produce a classifier that ranks best in all applica-

tions as shown in the studies by Michie et al., [71] (STA-

LOG project with 23 different classifiers evaluated in 22

real datasets); Lim et al [72] (33 classifiers evaluated on

16 real data sets) and Meyer et al. [34] (24 classifiers,

available in the R Software, evaluated on 21 data sets).

It must be pointed out that the results gathered in our

study are based on a specific data set and a single set of

tuning parameters. It is well known that for Neural Net-

works and Support Vector Machines the performance of

these classifiers and the properties of the resulting predic-

tions are heavily dependent on the chosen values for the

tuning parameters [33,34,72,73]. Although, we used set-

tings, that are most commonly used in data mining appli-

cations, and tuning parameters, that were optimally

determined by grid search methods that minimize total

error rates, it may well be that the performance of the data

mining methods is just a reflection of the tuning para-

meters chosen. Discussing Neural Networks versus tradi-

tional classifiers, Duin, [73] takes this argument one step

further when he states that “(...) a straight forward fair

comparison demands automatic classifiers with no user

interaction. As this conflicts with one of the main charac-

teristics of neural networks, their flexibility, the question

whether they are better or worse than traditional techni-

ques might be undecidable”.

Similar results to the ones reported in this study have

been made by other authors when classifiers were com-

pared on more than total accuracy or total error rates.

For example, Breinman et al. (1984) state that “LDA does

as well as other classifiers in most applications”. Meyer et

al. [34] point out in their comparison study of data

mining classifiers, including Neural Networks and SVM,

that LDA is a very competitive classifier, producing good

results “out-of-the-box without the inconvenience of deli-

cate and computationally expensive hyperparameter

tuning”. In a similar application of Random Forests,

SVM, Neural Networks and Linear Discriminant Analysis

for recognition of Alzheimer’s disease based on electrical

brain activity, Lehmann et al. [58] state that “even though

modern computer-intensive classification algorithms

such as Random Forest, SVM and Neural Networks show

a slight superiority, more classical classification algo-

rithms performed nearly equally well”.

Conclusions

For binary classification problems, like prediction of

dementia, where classes can be linearly separated and

sample size may compromise training and testing of popu-

lar data mining and machine learning methods, Random

Forests and Linear Discriminant Analysis proved to have

high accuracy, sensitivity, specificity and discriminant

power. On the contrary, data mining classifiers like Sup-

port Vector Machines, Neural Networks and Classification

Trees showed low sensitivity, recommending against its

use in classification problems where the class of interest is

less represented. Since for some data mining techniques

the final result and the classifier performance is dependent

on the skill of the analyst who applies them and his

“special art for tuning the parameters” the question raised

by Dunn [33] if “A data mining method can outperform

the traditional classifiers?” may well not be ever deniable.

However, it is noteworthy to mention that Fisher’s Linear

Discriminant Analysis, a classifier devised almost a century

ago, stands up against computer intensive classifiers, as a

simple, efficient, user- and time-proof classifier.
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