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Abstract—The value of using static code attributes to learn defect predictors has been widely debated. Prior work has explored issues

like the merits of “McCabes versus Halstead versus lines of code counts” for generating defect predictors. We show here that such

debates are irrelevant since how the attributes are used to build predictors is much more important than which particular attributes are

used. Also, contrary to prior pessimism, we show that such defect predictors are demonstrably useful and, on the data studied here,

yield predictors with a mean probability of detection of 71 percent and mean false alarms rates of 25 percent. These predictors would

be useful for prioritizing a resource-bound exploration of code that has yet to be inspected.

Index Terms—Data mining detect prediction, McCabe, Halstead, artifical intelligence, empirical, naive Bayes.
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1 INTRODUCTION

GIVEN recent research in artificial intelligence, it is now
practical to use data miners to automatically learn

predictors for software quality. When budget does not
allow for complete testing of an entire system, software
managers can use such predictors to focus the testing on
parts of the system that seem defect-prone. These potential
defect-prone trouble spots can then be examined in more
detail by, say, model checking, intensive testing, etc.

The value of static code attributes as defect predictors
has been widely debated. Some researchers endorse them
([1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20]) while others vehemently
oppose them ([21], [22]).

Prior studies may have reached different conclusions
because they were based on different data. This potential
conflation can now be removed since it is now possible to
define a baseline experiment using public-domain data sets1

which different researchers can use to compare their
techniques.

This paper defines and motivates such a baseline. The
baseline definition draws from standard practices in the data
mining community [23], [24]. To motivate others to use our
definition of a baseline experiment, we must demonstrate
that it can yield interesting results. The baseline experiment
of this article shows that the rule-based or decision-tree
learning methods used in prior work [4], [13], [15], [16], [25]
are clearly outperformed by a naive Bayes data miner with a

log-filtering preprocessor on the numeric data (the terms in
italics are defined later in this paper).

Further, the experiment can explain why our preferred
Bayesian method performs best. That explanation is quite
technical and comes from information theory. In this
introduction, we need only say that the space of “best”
predictors is “brittle,” i.e., minor changes in the data (such
as a slightly different sample used to learn a predictor) can
make different attributes appear most useful for defect
prediction.

This brittleness result offers a new insight on prior work.

Prior results about defect predictors were so contradictory

since they were drawn from a large space of competing

conclusions with similar but distinct properties. Different

studies could conclude that, say, lines of code are a better/

worse predictor for defects than the McCabes complexity

attribute, just because of small variations to the data.

Bayesian methods smooth over the brittleness problem by

polling numerous Gaussian approximations to the nu-

merics distributions. Hence, Bayesian methods do not get

confused by minor details about candidate predictors.

Our conclusion is that, contrary to prior pessimism [21],

[22], data mining static code attributes to learn defect

predictors is useful. Given our new results on naive Bayes

and log-filtering, these predictors are much better than

previously demonstrated. Also, prior contradictory results

on the merits of defect predictors can be explained in terms

of the brittleness of the space of “best” predictors. Further,

our baseline experiment clearly shows that it is a misdir-

ected discussion to debate, e.g., “lines of code versus

McCabe” for predicting defects. As we shall see, the choice of

learning method is far more important than which subset of the

available data is used for learning.

2 BACKGROUND

For this study, we learn defect predictors from static code
attributes defined by McCabe [2] and Halstead [1]. McCabe
and Halstead are “module”-based metrics, where a module
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is the smallest unit of functionality.2 We study defect
predictors learned from static code attributes since they are
useful, easy to use, and widely used.

Useful. This paper finds defect predictors with a
probability of detection of 71 percent. This is markedly
higher than other currently used industrial methods such as
manual code reviews:

. A panel at IEEE Metrics 2002 [26] concluded that
manual software reviews can find ! 60 percent of
defects.3

. Raffo found that the defect detection capability of
industrial review methods can vary from

pd ¼ TRð35; 50; 65Þ%

for full Fagan inspections4 [29] to

pd ¼ TRð13; 21; 30Þ%

for less-structured inspections.

Easy to use. Static code attributes like lines of code and
the McCabe/Halstead attributes can be automatically and
cheaply collected, even for very large systems [6]. By
contrast, other methods, such as manual code reviews, are
labor-intensive. Depending on the review methods, 8 to
20 LOC/minute can be inspected and this effort repeats for
all members of the review team, which can be as large as
four or six [30].

Widely used. Many researchers use static attributes to
guide software quality predictions (see [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20]). Verification and validation (V&V) textbooks
([31]) advise using static code complexity attributes to
decide which modules are worthy of manual inspections.
For several years, T. Menzies worked on-site at the NASA
software Independent Verification and Validation facility
and he knows of several large government software
contractors that will not review software modules unless
tools like McCabe predict that they are fault prone.

Nevertheless, static code attributes are hardly a complete
characterization of the internals of a function. Fenton and
Pfleeger offer an insightful example where the same
functionality is achieved using different programming
language constructs resulting in different static measure-
ments for that module [32]. They use this example to argue
the uselessness of static code attributes.

An alternative interpretation of Fenton and Pfleeger’s
example is that static attributes can never be a certain
indicator of the presence of a fault. Nevertheless, they are
useful as probabilistic statements that the frequency of
faults tends to increase in code modules that trigger the
predictor.

Shepperd and Ince [22], as well as Fenton and Pfleeger,
might reject the alternative interpretation. They present
empirical evidence that the McCabe static attributes offer
nothing more than uninformative attributes such as lines of

code. Fenton and Pfleeger note that the main McCabe’s

attribute (cyclomatic complexity, or vðgÞ) is highly corre-
lated with lines of code [32]. Also, Shepperd and Ince
remark that “for a large class of software it (cyclomatic
complexity) is no more than a proxy for, and in many cases
outperformed by, lines of code.”

If Shepperd and Ince and Fenton and Pfleeger are right,
then

. the supposedly better static code attributes, such as
Halstead and McCabes, should perform no better
than just simple thresholds on lines of code, and

. the performance of a predictor learned by a data
miner should be very poor.

Neither of these are true, at least for the data sets used in
this study. Our experimental method seeks the “best”
subsets of the available attributes that are most useful for

predicting defects. We will show that the best size for the
“best” set is larger than 1; i.e., predictors based on single
lines of code counts do not perform as well as other
methods.

Also, the predictors learned from those “best” sets
perform surprisingly well. Formally, learning a defect
predictor is a binary prediction problem where each module
in a database has been labeled “defect-free” or “defective.”
The learning problem is to build some predictor which
guesses the labels for as-yet-unseen modules. Using the
methods described below, this paper offers new defect

predictors with a probability of detection (pd) and prob-
ability of false alarm (pf) of

meanðpd; pfÞ ¼ ð71%; 25%Þ:

Fig. 1 lets us compare our new results against standard
binary prediction results from the University of California
Irvine machine learning repository of standard test sets for
data miners [33]. Our new results of ðpd; pfÞ ¼ ð71%; 25%Þ

are close to the standard results of ðpd; pfÞ ¼ ð81%; 20%Þ,
which is noteworthy in four ways:

1 It is unexpected. If static code attributes capture so
little about source code (as argued by Shepherd and
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2. In other languages, modules may be called “function” or “method.”
3. That panel supported neither Fagan’s claim [27] that inspections can

find 95 percent of defects before testing or Shull’s claim that specialized
directed inspection methods can catch 35 percent more defects than other
methods [28].

4. TRða; b; cÞ is a triangular distribution with min/mode/max of a; b; c.

Fig. 1. Some representative pds and pfs for prediction problems from
the University of California Irvine machine learning database [33]. These
values were generated using the standard settings of a state-of-art
decision tree learner (J48). For each data set, 10 experiments were
conducted where a decision tree was learned on 90 percent of the data,
then tests of the remaining 10 percent. The numbers shown here are the
average results across 10 such experiments.



Ince and Fenton and Pfleeger), then we would
expect lower probabilities of detection and much
higher false alarm rates.

2 These new ðpd; pfÞ figures are much larger than any
of our prior results of meanðpd; pfÞ ¼ ð36%; 17%Þ [4]
(see Fig. 2). Despite much experimentation [14], [13],
the only way we could achieve a pd > 70% was to
accept a 50 percent false alarm rate.

3 These new results of meanðpdÞ ¼ 71% are better than
currently used industrial methods, such as the
pd ! 60% reported at the 2002 IEEE Metrics panel
or the medianðpdÞ ¼ 21::50 reported by Raffo.

4 There is still considerable room for improvement,
such as lower pfs and higher pds. We are actively
researching better code metrics which, potentially,
will yield “better” predictors.

This last point motivates much of this paper. Before we
can demonstrate “better,” we need to define “better than
what?” That is, improvement can only be measured against
a well-defined baseline result. That baseline needs to be
repeatable and based on a public-domain data set. Further,
the basis for comparatively assessing different data mining
methods should be well-justified and well-specified so that
others can repeat, improve, or refute prior results. Hence,
much of the rest of this paper is devoted to a meticulous
description of our experimental method.

The baseline experiment was selected in response to
certain shortcomings in other work. For example, Nagap-
pan and Ball [6, p. 6] report accuracies of 82.91 percent for
their defect predictor. Accuracy attributes the number of
times the predicted class of a module (defect-free or
defective) is the same as the actual class. These accuracy
values were found in a self-test; i.e., the learned predictor
was applied to the data used to train it. In our study, we use
neither accuracy nor self-tests:

. When the target class (defect-free or defective) is in
the minority, accuracy is a poor measure of a
learner’s performance. For example, a learner could
score 90 percent accuracy on a data set with
10 percent defective modules, even if it predicts that
all defective modules were defect-free.

. Self-tests are deprecated by the data mining com-
munity since such self-tests can grossly overestimate
performance [23]. If the goal is to understand how
well a defect predictor will work on future projects,
it is best to assess the predictor via holdout modules
not used in the generation of that predictor.

Hence, for this study, we use attributes other than
accuracy including pd, pf , and several others defined below.

Also, our learned predictors will be assessed using holdout
modules.

3 THREATS TO VALIDITY

Like any empirical data mining paper, our conclusions are
biased according to what data was used to generate them.
Issues of sampling bias threaten any data mining experiment;
i.e., what matters there may not be true here. For example,
the sample used here comes from NASA, which works in a
unique market niche.

Nevertheless, we argue that results from NASA are
relevant to the general software engineering industry.
NASA makes extensive use of contractors who are con-
tractually obliged (ISO-9O01) to demonstrate their under-
standing and usage of current industrial best practices.
These contractors service many other industries; for exam-
ple, Rockwell-Collins builds systems for many government
and commercial organizations. For these reasons, other
noted researchers, such as Basili et al. [34], have argued that
conclusions from NASA data are relevant to the general
software engineering industry.

All inductive generalization suffers from a sampling
bias. The best we can do is define our methods and
publicize our data so that other researchers can try to repeat
our results and, perhaps, point out a previously unknown
bias in our analysis. Hopefully, other researchers will
emulate our methods in order to repeat, refute, or improve
our results. We would encourage such researchers to offer
not just their conclusions, but the data used to generate
those conclusions. The MDP is a repository for NASA data
sets and the PROMISE code repository are places to store
and discuss software engineering data sets from other
organizations.

Another source of bias in this study is the set of learners
explored by this study. Data mining is a large and active
field and any single study can only use a small subset of the
known data mining algorithms. For example, neural net-
works [35] and genetic algorithms [36] were not used for
this study as they can be very slow. The experiment
described in this paper took weeks to debug and a full day
to run once debugged. We were therefore not motivated to
explore other, slower learners but would encourage other
researchers with access to supercomputers or a large CPU-
farm to do so.

4 DATA

An experiment needs three things:

. data to be processed,

. a processing method, and

. a reporting method.

This section discusses the data used in this study.
Processing via data miners and our reporting methods are
discussed later.

All our data comes from the MDP. At the time of this
writing, 10 data sets are available in that repository. Two of
those data sets have a different format from the rest and
were not used in this study. This left eight, shown in Fig. 3.
Each module of each data sets describes the attributes of
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Fig. 2. Prior results of learning defect predictors. From [4].



that module, plus the number of defects known for that
module. This data comes from eight subsystems taken from
four systems. These systems were developed in different
geographical locations across North America. Within a
system, the subsystems shared some a common code base
but did not pass personnel or code between subsystems.
Fig. 4 shows the module sizes of our data; for example,
there are 126 modules in the kc4 data set; most of them are
under 100 lines of code, but a few of them are more than
1,000 lines of code long.

Each data set was preprocessed by removing the module
identifier attribute (which is different for each row). Also,
the error count column was converted into a Boolean
attribute called defective? as follows:

defective? ¼ ðerror count % 1Þ:

Finally, the error density column was removed (since it can
be derived from line counts and error count). The pre-
processed data sets had 38 attributes plus one target
attribute (defective?), shown in Fig. 5, and included
Halstead, McCabe, lines of code, and other miscellaneous
attributes.

The Halstead attributes were derived by Maurice
Halstead in 1977. He argued that modules that are hard to
read are more likely to be fault prone [1]. Halstead estimates
reading complexity by counting the number of operators
and operands in a module: See the h attributes of Fig. 5.
These three raw h Halstead attributes were then used to
compute the H: the eight derived Halstead attributes using
the equations shown in Fig. 5. In between the raw and
derived Halstead attributes are certain intermediaries
(which do not appear in the MDP data sets):

. ! ¼ !1 þ !2,

. minimum operator count: !'
1 ¼ 2, and

. !
'
2 is the minimum operand count and equals the

number of module parameters.

An alternative to the Halstead attributes are the complex-

ity attributes proposed by Thomas McCabe in 1976. Unlike

Halstead, McCabe argued that the complexity of pathways

between module symbols is more insightful than just a count

of the symbols [2]. The first three lines of Fig. 5 show

McCabe’s three main attributes for this pathway complex-

ity. These are defined as follows: A module is said to have a

flow graph; i.e., a directed graph where each node corre-

sponds to a program statement and each arc indicates the

flow of control from one statement to another. The
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Fig. 3. Data sets used in this study. The data sets cm1-05 and pc1-05 update data sets cm1 and pc1 processed previously by the authors [15].

Fig. 4. Log-log plot of module sizes in the Fig. 3 data. Fig. 5. Attributes used in this study.



cyclomatic complexity of a module is vðGÞ ¼ e( nþ 2, where

G is a program’s flow graph, e is the number of arcs in the

flow graph, and n is the number of nodes in the flow graph

[37]. The essential complexity (evðGÞ) of a module is the extent

to which a flow graph can be “reduced” by decomposing all

the subflowgraphs of G that are D-structured primes (also

sometimes referred to as “proper one-entry one-exit sub-

flowgraphs” [37]). evðGÞ ¼ vðGÞ (m, where m is the

number of subflowgraphs of G that are D-structured primes

[37]. Finally, the design complexity (ivðGÞ) of a module is the

cyclomatic complexity of a module’s reduced flow graph.
At the end of Fig. 5 are a set of misc attributes that are less

well-defined than lines of code attributes or the Halstead

and McCabe attributes. The meaning of these attributes is

poorly documented in the MDP database. Indeed, they

seem to be values generated from some unknown tool set

that was available at the time of uploading the data into the

MDP. Since there are difficulties in reproducing these

attributes at other sites, an argument could be made for

removing them from this study. A counterargument is that

if static code attributes are as weak as suggested by

Shepherd and Ince and Fenton and Pfleeger, then we

should use all possible attributes in order to make

maximum use of the available information. This study took

a middle ground: All these attributes were passed to the

learners and they determined which ones had the most

information.
An interesting repeated pattern in our data sets are

exponential distributions in the numeric attributes. For

example, Fig. 6a shows the sorted McCabe vðgÞ attributes

from cm1. These values form an exponential distribution

with many small values and a few much larger values.

Elsewhere, we have conducted limited experiments sug-

gesting that a logarithmic filter on all numeric values might

improve predictor performance [14]. Such a filter replaces

all numerics n with their logarithms. lnðnÞ. The effects of

such a filter are shown in Fig. 6b: The log-filtered values are

now more evenly spread across the y-range, making it

easier to reason about them. To test the value of log-

filtering, all the data was passed through one of two filters:

1. none; i.e., no change, or
2. logNums; i.e., logarithmic filtering. To avoid numer-

ical errors with lnð0Þ, all numbers under 0.000001 are
replaced with lnð0:000001Þ.

5 LEARNERS

The above data was passed to three learners from the
WEKA data mining toolkit [23]: OneR, J48, and naive
Bayes.5 This section describes those learners.

Holte’s OneR algorithm [38] builds prediction rules
using one or more values from a single attribute. For
example, OneR executing on the kc4 data set can return

EDGE_COUNT:

< 2.99 -> defect-free

>= 2.99 -> defective

which may be read as follows: “A module is defect-free if its
edge count is less than 2.99.” OneR was chosen to test the
value of predictors based on simple thresholds on single
attributes. For an example of such a simple threshold, recall
that McCabe recommends inspected modules that satisfy
vðgÞ > 10 or ivðgÞ > 4. Several other example thresholds
exist in defect prediction literature:

. Chapman and Solomon advocate predicting defects
using vðgÞ > 20 or evðgÞ > 8 [3].

. In early work [14], we advocated evðgÞ > 7 or
lines of code > 118 (based on this study, we now
reject that advice).

OneR can only return simple thresholds on single
attributes. If predictors built by OneR were as good as
any other, then that would support the use of simple
thresholds, such as those advocated by McCabe et al.

One way to view OneR’s defect predictions rules is a
decision tree of maximum depth 1 whose leaves are either
the label defective or defect-free. The J48 learner builds
decision trees of any depth. For example, J48 executing on
the kc4 data set can return

CALL_PAIRS <= 0: defect-free

CALL_PAIRS > 0

| NUMBER_OF_LINES <= 3.12: defect-free

| NUMBER_OF_LINES > 3.12

| | NORMALIZED_CYLOMATIC_COMPLEXITY <= 0.02
| | | NODE_COUNT <= 3.47: defective

| | | NODE_COUNT > 3.47: defect-free

| | NORMALIZED_CYLOMATIC_COMPLEXITY > 0.02:

defective

which may be read as follows: “A module is defective if it
has nonzero call-pairs and has more than 3.12 lines and
does not have a low normalized cyclomatic complexity
(0.02) or it has a low normalized cyclomatic complexity and
a low node-count (up to 3.47).” Note that J48 predictors can
be more complex and explore more special cases than
OneR. J48’s predictors would outperform OneR if defect
prediction required such elaboration.

J48 is a JAVA implementation of Quinlan’s C4.5
(version 8) algorithm [39]. The algorithm recursively splits
a data set according to tests on attribute values in order to
separate the possible predictions (although attribute tests
are chosen one at a time in a greedy manner, they are
dependent on results of previous tests). C4.5/J48 uses
information theory to assess candidate splits: The best split is
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Fig. 6. vðGÞ from cm1. (a) Raw values. (b) Log-filtered on right.



the one that most simplifies the target concept. Concept
simplicity is measured using information theory. Suppose a
data set has 80 percent defect-free modules and 20 percent
defective modules. Then, that data set has a class distribu-
tion C0 with classes cð1Þ ¼ defect( free and cð2Þ ¼ defective
with frequencies nð1Þ ¼ 0:8 and nð2Þ ¼ 0:2. The number of
bits required to encode an arbitrary class distribution C0 is
HðC0Þ, defined as follows:

N ¼
P

c2C nðcÞ
pðcÞ ¼ nðcÞ=N
HðCÞ ¼ (

P

c2CpðcÞlog2pðcÞ

9

=

;
: ð1Þ

A split divides C0 (before the split) into C1 and C2 (after the
split). The best split leads to the simplest concepts; i.e.,
maximize HðC0Þ ( ðHðC1Þ þHðC2ÞÞ.

Another way to build defect predictors is to use a naive
Bayes data miner. Such classifiers are based on Bayes’
Theorem. Informally, the theorem says next ¼ old ' new;
i.e., what we’ll believe next comes from how new evidence
affects old beliefs. More formally,

P ðHjEÞ ¼
P ðHÞ

P ðEÞ

Y

i

P ðEijHÞ;

i.e., given fragments of evidence Ei and a prior probability
for a class P ðHÞ, the theorem lets us calculate a posteriori
probability P ðHjEÞ. When building defect detectors, the
posterior probability of each class (“defective” or “defect-
free”) is calculated, given the attributes extracted from a
module such as the lines of code, the McCabe attributes, the
Halstead attributes, etc. The module is assigned to the
possibility with the highest probability. This is straightfor-
ward processing and involves simply estimating the
probability of attribute measurements within the historical
modules. Simple frequency counts are used to estimate the
probability of discrete attribute attributes. For numeric
attributes, it is common practice to use the probability
density function for a normal distribution [23]:

fðxÞ ¼
1
ffiffiffiffiffiffi

2"
p

#
e
(ðx(!Þ2

2#2 ;

where f!;#g are the attributes {mean, standard deviation}.
To be precise, the probability of a continuous attribute being
a particular continuous value x is zero, but the probability
that it lies within a small region, say x) $=2, is $* fðxÞ.
Since $ is a constant that weighs across all possibilities, it
cancels out and needs not to be computed.

The above learning technology can be used to generate
defect predictors from data or to assess the value of
different portions of the data. Various attribute subset
selection algorithms [24] (hereafter, subsetting) find what
attributes can be deleted without damaging the perfor-
mance of the learned predictor. Subsetting can be used
independently of the learning technique of choice as a
general method for data reduction.

The simplest and fastest subsetting method is to rank
attributes from the most informative to least informative.
After discretizing numeric data,6 then if A is a set of

attributes, the number of bits required to encode a class

after observing an attribute is

HðCjAÞ ¼ (
X

a2ApðaÞ
X

c2CpðcjaÞlog2ðpðcjaÞ:

The highest ranked attribute Ai is the one with the largest

information gain, i.e., the one that most reduces the encoding

required for the data after using that attribute:

InfoGainðAiÞ ¼ HðCÞ (HðCjAiÞ; ð2Þ

where HðCÞ comes from (1). In iterative InfoGain subsetting,

predictors are learned using the i ¼ 1; 2; . . . ; Nth top-ranked

attributes. Subsetting terminates when iþ 1 attributes

perform no better than i. In exhaustive InfoGain subsetting,

the attributes are first ranked using iterative subsetting.

Next, predictors are built using all subsets of the top j

ranked attributes. For both iterative and exhaustive subset-

ting, the process is repeated 10 times using 90 percent of the

data (randomly selected). Iterative subsetting takes time

linear on the number of attributes N while exhaustive

subsetting takes time 2j (so it is only practical for small

j + N).

6 EXPERIMENTAL DESIGN

This study used the ðM ¼ 10Þ ' ðN ¼ 10Þ-way cross-evaluation

iterative attribute subset selection shown in Fig. 7. The study is

nearly the same as the procedure defined in Hall and

Holmes’ subsetting experiments [24] (but we have added a

data filtering step). The data set is divided into N buckets.

For each bucket in a 10-way cross-evaluation, a predictor is

learned on nine of the buckets, then tested on the remaining

bucket.
Hall and Holmes advise repeating an N-way study

M times, randomizing the order each time. Many algo-

rithms exhibit order effects, where certain orderings drama-

tically improve or degrade performance [41] (insertion sort

runs slowest if the inputs are already sorted in reverse
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6. For example, given an attribute’s minimum and maximum values,
replace a particular value n with ðn(minÞ=ððmax(minÞ=10Þ. For more on
discretization, see [40].

Fig. 7. This study. Data is filtered and the attributes are ranked using

InfoGain. The data is then shuffled into a random order and divided into

10 bins. A learner is then applied to a training set built from nine of the
bins. The learned predictor is tested on the remaining bin.



order). Randomizing the order of the inputs defends against
order effects.

These M 'N studies implement a holdout study which, as
argued above, is necessary to properly assess the value of a
learned predictor. Holdout studies assess a learned predictor
usingdatanotused togenerate it. Suchholdout studies are the
preferred evaluation method when the goal is to produce
predictors intended to predict future events [23].

The 10 ' 10-way study was wrapped inside scripts that
explored different subsets of the attributes in the order
suggested by InfoGain (2). In the innermost loop of the
study, some method was applied to some data set. As shown
in the third to the last line of Fig. 7, these methodswere some
combination of filter, attributes’, and learner.

7 ASSESSING PERFORMANCE

The performance of the learners on the MDP data was
assessed using receiver-operator (ROC) curves. Formally, a
defect predictor hunts for a signal that a software module is
defect prone. Signal detection theory [42] offers ROC
curves as an analysis method for assessing different
predictors. A typical ROC curve is shown in Fig. 8. The
y-axis shows probability of detection (pd) and the x-axis
shows probability of false alarms (pf). By definition, the
ROC curve must pass through the points pf ¼ pd ¼ 0 and
pf ¼ pd ¼ 1 (a predictor that never triggers never makes
false alarms; a predictor that always triggers always
generates false alarms). Three interesting trajectories con-
nect these points:

1. A straight line from (0, 0) to (1, 1) is of little interest
since it offers no information; i.e., the probability of a
predictor firing is the same as it being silent.

2. Another trajectory is the negative curve that bends
away from the ideal point. Elsewhere [14], we have
found that if predictors negate their tests, the
negative curve will transpose into a preferred curve.

3. The point (pf ¼ 0, pd ¼ 1) is the ideal position (a.k.a.
“sweet spot”) on a ROC curve. This is where we
recognize all errors and never make mistakes.
Preferred curves bend up toward this ideal point.

In the ideal case, a predictor has a high probability of
detecting a genuine fault (pd) and a very low probability of
false alarm (pf). This ideal case is very rare. The only way to
achieve high probabilities of detection is to trigger the

predictor more often. This, in turn, incurs the cost of more
false alarms.

Pf and pd can be calculated using the ROC sheet of
Fig. 9. Consider a predictor which, when presented with
some signal, either triggers or is silent. If some oracle knows
whether or not the signal is actually present, then Fig. 9
shows four interesting situations. The predictor may be
silent when the signal is absent (cell A) or present (cell B).
Alternatively, if the predictor registers a signal, sometimes
the signal is actually absent (cell C) and sometimes it is
present (cell D).

If the predictor registers a signal, there are three cases of
interest. In one case, the predictor has correctly recognized
the signal. This probability of this detection is the ratio of
detected signals, true positives, to all signals:

probability detection ¼ pd ¼ recall ¼ D=ðBþDÞ: ð3Þ

(Note that pd is also called recall.) In another case, the
probability of a false alarm is the ratio of detections when
no signal was present to all nonsignals:

probability false alarm ¼ pf ¼ C=ðAþ CÞ: ð4Þ

For convenience, we say that notPf is the complement of pf :

notPf ¼ 1( C=ðAþ CÞ: ð5Þ

Fig. 9 also lets us define the accuracy, or acc, of a predictor as
the percentage of true negatives and true positives:

accuracy ¼ acc ¼ ðAþDÞ=ðAþBþ C þDÞ: ð6Þ

If reported as percentages, these attributes have the
range

0 + acc%; pd%; ; notPf% + 100:

Ideally, we seek predictors that maximize acc percent,
pd percent, and notPf percent.

Note that maximizing any one of these does not imply
high values for the others. For example, Fig. 9 shows an
example with a high accuracy (83 percent) but a low
probability of detection (37 percent). Accuracy is a good
measure of a learner’s performance when the possible
outcomes occur with similar frequencies. The data sets used
in this study, however, have very uneven class distributions
(see Fig. 3). Therefore, this paper will assess its learned
predictors using bal, pd, and notPf and not acc.

In practice, engineers balance between pf and pd. To
operationalize this notion of balance, we define bal to be the

MENZIES ET AL.: DATA MINING STATIC CODE ATTRIBUTES TO LEARN DEFECT PREDICTORS 7

Fig. 8. Regions of a typical ROC curve.

Fig. 9. A ROC sheet assessing the predictor vðgÞ % 10. Each cell

{A,B,C,D} shows the number of modules that fall into each cell of this

ROC sheet. The bal (or balance) variable is defined below.



Euclidean distance from the sweet spot pf ¼ 0; pd ¼ 1 to a
pair of < pf; pd > . For convenience, we 1) normalize bal by
the maximum possible distance across the ROC square
(

ffiffiffi

2
p

), 2) subtract this from 1, and 3) express it as a
percentage; i.e.

balance ¼ bal ¼ 1(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0( pfð Þ2þ 1( pdð Þ2
q

ffiffiffi

2
p : ð7Þ

Hence, better and higher balances fall closer to the desired
sweet spot of pf ¼ 0; pd ¼ 1.

8 QUARTILE CHARTS oF PERFORMANCE DELTAS

Recall from Fig. 7 that a method is some combination of
filter, attributes’, and learner. The experiment described
above explored numerous combinations of filters, attri-
butes, and learners all within a ðM ¼ 10Þ ' ðN ¼ 10Þ-way
cross-evaluation study. Hence, this experiment generated
nearly 800,000 performance deltas (defined below) comparing
pd, notPf , and bal values from different methods applied to
the same test data.

The performance deltas were computed using simple
subtraction, defined as follows: A positive performance delta
for method X means that method X has outperformed some
other method in one comparison. Using performance deltas,
we say that the best method is the one that generates the
largest performance deltas over all comparisons.

The performance deltas for each method were sorted
and displayed as quartile charts. To generate these charts,
the performance deltas for some method were sorted to
find the lowest and highest quartile as well as the median
value, e.g.,

(59
|{z}

min

;(19;(19
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{

lowest quartile

;(16;(14;(10; (10
|{z}

median

; 5; 14; 39; 42; 62; 69
|{z}

max

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
highest quartile

:

In a quartile chart, the upper and lower quartiles are
marked with black lines, the median is marked with a black
dot, and vertical bars are added to mark 1) the zero point,
2) the minimum possible value, and 3) the maximum
possible value (in our case, -100 percent and 100 percent).
The above numbers would therefore be drawn as follows:

( 100%j ((( ,j ((( j100%:

We prefer quartile charts of performance deltas to other
summarization methods forM 'N studies. First, they offer a
very succinct summary of a large number of experiments.
For example, Fig. 10 displays 200,000 performance deltas in
1
4
of page. Second, they are nonparametric displays; i.e., they

make no assumptions about the underlying distribution.
Standard practice in data mining is to compare the mean
performance of different methods using t-tests [23]. T-tests
are a parametric method that assume that the underlying
population distribution is a Gaussian. Recent results
suggest that there are many statistical issues left to explore
regarding how to best to apply those t-tests for summariz-
ing M 'N-way studies [43]. Such t-tests assume Gaussian
distributions and some of our results are clearly non-
Gaussian:

. The naive Bayes performance delta pd results (using
logNums) of Fig. 10 exhibit an extreme skewness (a
median point at 52.4 with a quarter of the perfor-
mance deltas pushed up toward the maximum
figure of 100 percent).

. All the OneR performance delta pd results of Fig. 10
are highly skewed. OneR’s pd performance delta
was never higher than 16.7 and over half the
performance deltas for that method had that value
(hence, the missing upper arms in the OneR results
of Fig. 10).

For the sake of completeness, we applied t-tests when
sorting quartile charts: One quartile chart appears above
its neighbor if it was statistically different (at the 95
percent confidence level) and has a larger mean. How-
ever, given the skews we are seeing in the data, we base
our conclusions on standout effects seen in the nonpara-
metric quartile diagrams. A standout effect is a large and
positive median with a highest quartile bunched up
toward the maximum figure. The pd results for naive
Bayes (with logNums) are an example of such a standout
effect. On the other hand, OneR’s pd results are a negative
standout: Those performance deltas tend to bunch down
toward (100 percent; i.e., in terms of pd, OneR usually
performs much worse than anything else.

9 RESULTS

Naive Bayes with a log-transform has both a positive
standout result for pd and a negative standout result for
notPf . This result, of winning on pd but losing on pf , is to be
expected. Fig. 8 showed that the cost of high pds are higher
pfs. The other learning methods cannot emulate the high
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Fig. 10. Performance deltas for pd, notPf, and bal using all 38 attributes.



pds of naive Bayes (with log-transforms) since they take
fewer chances (hence, have lower false alarm rates).

The balance results of Fig. 10 combines the pd and pf
results using (7). On balance, with 38 attributes:

. OneR loses more often than it wins: Observe that
OneR has a negative median balance.

. The best method, on balance, is clearly naive Bayes
with log-transforms since it has a minority of
negative balance performance deltas (only 25 per-
cent), and it beats other methods by 22.1 percent (or
more) half the time.

A review of the J48 and OneR quartile charts in Fig. 10
shows that J48 outperforms OneR in terms of pd, notPf and
bal. That is, for these data sets, predictors that use simple
threshold comparisons (OneR) perform worse than pre-
dictors built from more elaborate decision trees (J48).

Since, on balance logNums.nb performs best, the rest of
this article only presents the subsetting results for that
method. Initial experiments with iterative InfoGain subset-
ting showed that all but one of the data sets (pc1) could be
reduced from 38 to 3 attributes without degrading the on-
balance performance. However, iterative subsetting se-
lected seven attributes for PC1. Therefore, for that data
set only, exhaustive subsetting was performed on 27 subsets
to find the three best attributes.

These InfoGain results were then compared to various
other subsetting methods: CFS [44]; Relief [45], [46]; and
CBS [47]. Measured in terms of pd, notPf , balance, or
number of selected attributes, there was no apparent
advantage in using these other subsetting methods instead
of InfoGain.

Fig. 11 shows the InfoGain results for naive Bayes with
logNums. On balance, large reductions in the number of
attributes are possible without compromising the perfor-
mance of the learned predictor. Using 2 or 3 attributes
worked as well as using 38 attributes. However, using only
one attribute resulted in inferior performance.

All the results up to this point have been comparisons
between different methods. Having determined that naive
Bayes (with logNums) is our preferred method, the next
question is how well does that method perform in absolute
terms. To test that, in Fig. 12, a standard 10 ' 10-way
experiment with attribute subset-selection was performed
(hence, each line in Fig. 12 shows the results of
10 ' 10 ¼ 100 experiments using just the two or three
attributes shown in the selected attributes column of
Fig. 12). On average, naive Bayes (with logNums) built
predictors with mean pd ¼ 71%, and mean pf ¼ 25%.

The Fig. 12 results are better than they first appear:

. Recall from Fig. 3 that the number of defective
modules may be very small: The most extreme
example of this is PC2 with only 0.4 percent
defective modules. It is somewhat of an achievement
that, for PC2, our methods yielded fpd ¼ 72%; pf ¼
14%g for such a tiny target.

. The best we have achieved in the past with cross-
validation was a mean pd under 50 percent [48]
(recall Fig. 2). In those experiments, the only way
to achieve a pd > 70% was to accept around a
50 percent false alarm rate [13], [14]. The results of
Fig. 11 results have much higher pds and lower
pfs.

One interesting aspect of Fig. 12 is that different data sets

selected very different “best” attributes (see the selected

attribute column (see the selected attribute column of Fig. 12

and Fig. 13)). This aspect can be explained by Fig. 14, which

shows the InfoGain of all the attributes in an MDP data set

(KC3). Note how the highest ranked attributes (those on the

left) offer very similar information. That is, there are no

clear winners, so minor changes in the training sample (the

90 percent subsampling used in subsetting or a cross-

validation study) can result in the selection of very different

“best” attributes.
The pattern of InfoGain values of Fig. 14 (where there are

many alternative “best” attributes) repeats in all the MDP
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Fig. 11. On balance performance deltas of naive Bayes (with logNums)

using just the best one, two, or three attributes, or all 38 attributes.

Fig. 12. Best defect predictors learned in this study. Mean results from
Näive Bayes after a 10 repeats of 1) randomize the order of the data; 2)
divide that data into 10 90 percent:10 percent splits for training:test.
Prior to learning, all numerics where replaced with logarithms. InfoGain
was then used to select the best two or three attributes shown in the
right-hand column (and if “three” performed as well as “two,” then this
table shows the results using “two”).

Fig. 13. Attributes used in Fig. 12, sorted into the groups of Fig. 5.



data sets. This pattern explains a prior observation of
Shepperd and Ince, who found 18 publications of which an
equal number of studies reported that the McCabe cyclo-
matic complexity is the same, is better, or is worse than lines
of code in predicting defects [22]. Fig. 14 motivates the
following principles:

. Do not seek “best” subsets of static code attributes.

. Rather, seek learning methods that can combine
multiple partial defect indicators, like the statistical
methods of naive Bayes.

10 CONCLUSION

These results strongly endorse building defect predictors
using niave Bayes (with logNums). The combination of
learnerþ filter generated predictors with average results of
pd ¼ 71% and pf ¼ 25% (see Fig. 12). This is an interesting
result since, as mentioned above, if static code attributes
capture so little about source code (as argued by Shepherd
and Ince and Fenton and Pfleeger), then we would expect
much lower probabilities of detection and much higher
false alarm rates.

Our results also comment on the relative merits of certain
learners. Based on these experiments, we would reject the
use of simple thresholds for defect prediction. If simple
thresholds such as vðgÞ > 10 _ ivðgÞ > 4 were the best defect
predictors, then two results would be predicted. First, the
single attribute tests of OneR would perform as well as the
multiple tests of J48. Second, the subsetting methods would
select attribute sets of size 1. Neither of these results were
seen in Fig. 10 and Fig. 11.

This experiment was also negative regarding the merits
of building intricate decision trees to predict defects.
Recalling Fig. 10, naive Bayes (with logNums) outper-
formed J48. We offer two explanations why naive Bayes
with logNums outperforms our prior work:

. Recalling Fig. 6, it is possible that code defects are
actually associated in some log-normal way to static
code attributes. Of all the methods studied here, only
naive Bayes (with logNums) was able to directly
exploit this association.

. Recalling Fig. 14, many of the static code attributes
have similar information content. Perhaps defect
detection is best implemented as some kind of
thresholding systems, i.e., by summing the signal
from several partial indicators. Of all the learners

used in this study, only the statistical approach of
naive Bayes can sum information from multiple
attributes.

The best attributes to use for defect prediction vary from
data set to data set. Hence, rather than advocating a
particular subset of possible attributes as being the best
attributes, these experiments suggest that defect predictors
should be built using all available attributes, followed by
subsetting to find the most appropriate particular subset for
a particular domain.

In summary, we endorse the use of static code attributes
for predicting detects with the following caveat: Those
predictors should be treated as probabilistic, not categorical,
indicators. While our best methods have a nonzero false
alarm, they also have a usefully high probability of
detection (over two-thirds). Just as long as users treat these
predictors as indicators and not definite oracles, then the
predictors learned here would be pragmatically useful for
focusing limited verification and validation budgets on
portions of the code base that are predicted to be
problematic.

Since we are optimistic about using static code attributes,
we need to explain prior pessimism about such attributes
[21], [22]:

. Prior work would not have found good predictors
if that work had focused on attribute subsets
rather than the learning methods. Fig. 12 shows
that the best attribute subsets for defects predictors
can change dramatically from data set to data set.
Hence, conclusions regarding the best attribute(s)
are very brittle, i.e., may not still apply when we
change data sets.

. Also, prior work would not have found good
predictors if that work had not explored a large
space of learning methods. For example, Fig. 10
shows that, of the six methods explored here, only
one (naive Bayes with logNums) had a median
performance that was both large and positive.

More generally, our high-level conclusion is that it is no
longer adequate to assess defect learning methods using
only one data set and only one learner. Further research
should assess the merits of their proposed techniques via
extensive experimentation.

11 FUTURE WORK

Our hope is that numerous researchers repeat our experi-
ments and discover learning methods that are superior to
the one proposed here. Paradoxically, this paper will be a
success if it is quickly superseded.

There are many ways to design learning methods that
could outperform the results of this paper. Here, we list just
three:

. Data mining is a dynamic field and new data miners
and continually being developed. For example,
Webb et al. have proposed an improvement to naive
Bayes that aggregates 1-dependence estimators [49].
It would be interesting to check if these newer
learners improved the results of this paper.
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Fig. 14. InfoGain for KC3 attributes. Calculated from (2). Lines show

means and t-bars show standard deviations after 10 trials on 90 percent

of the training data (randomly selected).



. With regard to preprocessing the numerics, we
might be able to do even better than our current
results. Dougherty et al. [40] report spectacular
improvements in the performance of naive Bayes
via the use of better numeric preprocessing than just
simple log-filtering.

. The Halstead and McCabe attributes were defined in
the 1970s and complier technology has evolved
considerably since then. Halstead and McCabe are
intramodule metrics and, with modern intraproce-
dural data flow analysis, it should be possible to
define a new set of 21st-century intermodule metrics
that yield better defect predictors.
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