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Recently, data management and processing for wireless sensor networks (WSNs) has become a topic of active research in several
�elds of computer science, such as the distributed systems, the database systems, and the data mining. 
e main aim of deploying
the WSNs-based applications is to make the real-time decision which has been proved to be very challenging due to the highly
resource-constrained computing, communicating capacities, and huge volume of fast-changed data generated by WSNs. 
is
challenge motivates the research community to explore novel data mining techniques dealing with extracting knowledge from
large continuous arriving data from WSNs. Traditional data mining techniques are not directly applicable to WSNs due to the
nature of sensor data, their special characteristics, and limitations of the WSNs.
is work provides an overview of how traditional
data mining algorithms are revised and improved to achieve good performance in a wireless sensor network environment. A
comprehensive survey of existing data mining techniques and their multilevel classi�cation scheme is presented. 
e taxonomy
together with the comparative tables can be used as a guideline to select a technique suitable for the application at hand. Based on
the limitations of the existing technique, an adaptive data mining framework of WSNs for future research is proposed.

1. Introduction

Advances in wireless communication and microelectronic
devices led to the development of low-power sensors and the
deployment of large-scale sensor networks.With the capabili-
ties of pervasive surveillance, sensor networks have attracted
signi�cant attention in many applications domains, such as
habitat monitoring [1, 2], object tracking [3, 4], environment
monitoring [5–7], military [8, 9], disaster management [10],
as well as smart environments. In these applications, real-
time and reliable monitoring is essential requirement. 
ese
applications yield huge volume of dynamic, geographically
distributed and heterogeneous data. 
is raw data, if e�-
ciently analyzed and transformed to usable information
through data mining, can facilitate automated or human-
induced tactical/strategic decision. 
erefore, it is essential
to develop techniques to mine the sensor data for patterns in
order to make intelligent decisions promptly.

Recently, extracting knowledge from sensor data has
received a great deal of attention by the data mining com-
munity. Di�erent approaches focusing on clustering [11–
14], association rules [15, 16], frequent patterns [17–20],

sequential patterns [21–23], and classi�cation [24–26] have
been successfully used on sensor data. However, the design
and deployment of sensor networks creates unique research
challenges due to their large size (up to thousands of sensor
nodes), random and hazardous deployment, lossy communi-
cating environment, limited power supply, and high failure
rate. 
ese challenges make traditional mining techniques
inapplicable because traditionally mining is centralized and
computationally expensive, and it focuses on disk-resident
transactional data. As a result, new algorithms have been
created, and some of the data mining algorithms have
been modi�ed to handle the data generated from sensor
networks. A plethora of knowledge discoverymethodologies,
techniques, and algorithms have been proposed during the
last ten years.

For example, a decent amount of work is done for
detection of the outlier in WSNs which is presented in [27–
29]. Most of the techniques examined in [27, 28] heavily
rely on data mining techniques, but their focus is detec-
tion of irregularities in WSNs data rather than information
extraction and analysis. A survey [29] presented the anomaly
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Table 1: Di�erence between traditional and sensor data processing.

Traditional data WSNs data

Processing architecture Centralized Distributed

Data type Static Dynamic

Memory usage Unlimited Restricted

Processing time Unlimited Restricted

Computational power High Weak

Energy No constraints Limited

Data �ow Stationary Continuous

Data length Bounded Unbounded

Response time Non-real-time Real time

Update speed Low High

Number of passes Multipass Single

detection in multiple domains using data mining as well as
statistical information theoretic and spectral techniques.

Since data mining is a broad discipline and can be
applied to any domain data, more general surveys on data
mining techniques can be found in [30], where authors
examined the machine-learning and data mining techniques
for analyzing medical data. Since the classi�cation of data
mining techniques in this survey is based on frequent pattern
mining, clustering, and classi�cation, there are plenty of
surveys available on each of these techniques. For example,
frequent pattern mining over data stream is presented in [31,
32]. A survey on clustering algorithm for WSNs is presented
in [33, 34]. 
e clustering techniques examined in those
papers exclusively focus on architecture and management
of network rather than information discovery. A survey on
classi�cationmethods over data stream is given in [35], where
the author examined conventional classi�cation techniques
over data streams.

However, none of the above surveys examined data
mining techniques that focus on information extraction
and analysis from WSNs data. In comparison with the
above-mentioned surveys, this paper examines algorithms
and approaches specially designed for WSNs data, not only
leading to a di�erent classi�cation, evaluation, and discussion
on di�erent domains but also presenting di�erent choices of
a solution. We examined how data mining algorithms will be
utilized to make the sensor network applications intelligent.

e research method consists of review of data mining tech-
niques for WSNs such as frequent pattern mining, sequential
patternmining, clustering, and classi�cation. Problem-based
taxonomy is presented to classify and compare existing data
mining techniques adopted forWSNs. In addition, evaluation
of each technique is presented. Based on the limitations of
existing techniques and special characteristics of WSNs, we
proposed a new hybrid data mining architecture for WSNs,
which combines the o�ine learning with distributive and
online data processing.


e rest of the paper is organized as follows. A�er the
introduction in Section 1, how traditional data mining pro-
cess is di�erent with data mining process in WSNs and
challenges of data mining for WSNs data are discussed in
Section 2. In Section 3, taxonomy of categorizing the existing

data mining techniques for WSNs is presented. In Section 4,
we analyzed a collection of published studies using the taxon-
omy framework. 
e comparison of data mining techniques
for WSNs is presented in Section 5. 
e limitations of this
work are given in Section 6, and future research directions
are presented in Section 7. Finally, the paper ends with the
conclusion in Section 8.

2. Fundamentals of Data Mining in WSNs

2.1. Data Mining Process in WSNs. Data mining in sensor
networks is the process of extracting application-oriented
models and patterns with acceptable accuracy from a contin-
uous, rapid, and possibly nonended �ow of data streams from
sensor networks. In this case, whole data cannot be stored and
must be processed immediately. Data mining algorithm has
to be su�ciently fast to process high-speed arriving data.
e
conventional data mining algorithms are meant to handle the
static data and use the multistep techniques and multiscan
mining algorithms for analyzing static data-sets. 
erefore,
conventional data mining techniques are not suitable for
handling the massive quantity, high dimensionality, and
distributed nature of the data generated by theWSNs. Table 1
shows the summary of di�erence between traditional data
and WSNs data mining process.

It can be observed from Table 1 that traditional data min-
ing is centralized, computationally expensive, and focused on
disk-resident transactional data. It directly collects data at the
central sitewhich is not bounded by computational resources.
In comparison with traditional data-sets, the WSNs data
�ows continuously in systems with varying update rates. Due
to huge amount and high storage cost, it is impossible to
store the entire WSNs data or to scan through it multiple
times. 
ese characteristics of sensor data and the special
design issues of sensor networks make traditional data
mining techniques challenging. Hence, it is crucial to develop
data mining technique that can analyze and process WSNs
data in multidimensional, multilevel, single-pass, and online
manner.

2.2. Challenges. According to the following reasons, conven-
tional data mining techniques for handling sensor data in
WSNs are challenging.

(i) Resource Constraint. 
e sensor nodes are resource
constraints in terms of power, memory, communica-
tion bandwidth, and computational power. 
e main
challenge faced by data mining techniques for WSNs
is to satisfy the mining accuracy requirements while
maintaining the resource consumption of WSNs to a
minimum.

(ii) Fast and Huge Data Arrival. 
e inherent nature of
WSNs data is its high speed. In many domains, data
arrives faster than we are able to mine. Additionally,
spatiotemporal embedding of sensor data plays an
important role in WSNs application. 
is may cause
many classical data processing techniques to perform
poorly on spatiotemporal sensor data. 
e challenge
for data mining techniques is how to cope with the
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continuous, rapid, and changing data streams and
also how to incorporate user interaction during high-
speed data arrival.

(iii) Online Mining. In WSNs, environment data is geo-
graphically distributed, inputs arrive continuously,
and newer data items may change the results based
on older data substantially. Most of data mining tech-
niques that analyze data in an o�ine manner do not
meet the requirement of handling distributed stream
data. 
us, a challenge for data mining techniques is
how to process distributed streaming data online.

(iv) Modeling Changes of Mining Results Over Time. When
the data-generating phenomenon is changing over
time, the extracted model at any time should be
up-to-date. Due to the continuity of data streams,
some researchers have pointed out that capturing the
change of mining results is more important in this
area than themining results.
e research issue is how
to model this change in the results.

(v) Data Transformation. Since sensor nodes are limited
in terms of bandwidth, transforming original data
over the network is not feasible. Knowledge structure
transformation is an important issue. A�er extracting
model and patterns locally from WSNs data, the
output is transferred to the base station.
e challenge
for data mining technique is how to e�ciently rep-
resent data and discovered patterns over network for
transmission.

(vi) DynamicNetwork Topology. Sensor network deployed
in potentially harsh, uncertain, heterogenic, and
dynamic environments. Moreover, sensor nodes may
move among di�erent locations at any point over
time. Such dynamicity and heterogeneity increase the
complexity of designing an appropriate data mining
technique for WSNs.

To address these challenges, researchers have modi�ed
the conventional data mining techniques and also proposed
new data mining algorithms to handle the data generated
from sensor networks. In the following section we have
provided the taxonomy of these data mining techniques
based on the discipline from which they adopt their ideas.

3. Taxonomy of Data Mining Techniques
for WSNs

In this section, a classi�cation scheme for existing approaches
designed for mining WSNs data is presented. 
e highest-
level classi�cation is based upon the general data mining
classes used such as frequent pattern mining, sequential pat-
tern mining, clustering, and classi�cation. Most of the frequent
pattern mining and sequential pattern mining approaches
have adapted the traditional frequent mining techniques
such as the Apriori and frequent pattern (��) growth-based
algorithms to �nd the association among large WSNs data.
Cluster-based approaches have adapted the K-mean, hier-
archical, and data correlation-based clustering, based upon

the distance among the datapoint, whereas, classi�cation-
based approaches have adapted the traditional classi�cation
techniques such as decision tree, rule-based, nearest neighbor,
and support vector machines methods based on type of
classi�cation model that they used. 
ese algorithms have
very di�erent and distinct roles; therefore, in order to choose
the algorithm forWSNs application, one has to decide in term
of these top-level classes.


e second level of classi�cation is based upon each
approach’s ability to process data on centralized or distributed
manner. Since WSNs nodes are limited in terms of resource
such as power, computation, bandwidth, and memory, there-
fore, the approach meant for distributed processing requires
one-pass algorithms to complete a part of data mining
locally and then aggregate the results. 
e objective to use
the distributed approaches is to limit the messages and
communication energy of sensor nodes while transferring
data to central server. It also helps to improve the WSNs life-
time and can extract maximum data from the environment,
whereas, the centralized processing data from entire network
is collected and stored at central server for analysis. Since
the central server is rich in resources, therefore, there are no
such constraints for choosing the accurate algorithm. 
is
approach is always discouraged for the researchers because
it generates huge amount of data�ow and communication
which can create bottlenecks and wastage of communication
bandwidth. 
ese two data processing/storage architectures
have a large impact on type of data mining algorithm to
choose; therefore, one has to decide the processing\storage
architecture for choosing the data mining algorithm for
WSNs application.


e third level of classi�cation is selected according to
the attitude towards solving a speci�c problem. Research
in WSNs area has focused on two separate aspects of
issues, namely, WSNs performance issues and application
issues. As WSNs nodes are usually resource constrained
such as energy, communication bandwidth, memory, and
resource, aware algorithms are needed to maximize the
WSNs performance. On the other hand, a WSNs application
requires data precision and accuracy, fault tolerance, event
prediction, scalability, and robustness, and it o�en needs
abundant use of energy, communication, and redundancies.

is leads to resource tradeo�: whether someone sacri�ces
the application’s performance in favor of network e�ciency or
wants to get the best application performance and deal with
the network resource issues such as energy in some other way
(larger battery; renewable sources with the nodes). For this
reason, WSNs performances or application-speci�c-oriented
approaches have been selected as the lowest-level classi�ca-
tion criteria. 
e taxonomy of data mining techniques for
WSNs is presented in Figure 1.

4. State of the Art of Data Mining Techniques
for WSNs

In this section, data mining techniques designed for WSNs
are classi�ed using the taxonomy framework presented in
Section 3, and the characteristics and performance analysis
of each technique is discussed.
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Figure 1: Taxonomy of data mining techniques for sensor networks.

4.1. Frequent Pattern Mining. In this section, we review some
of the works that have been proposed for mining frequent
patterns from WSNs data. Frequent pattern mining is used
to �nd the group of variables that co-occur frequently in
the data-set. 
e aim is to �nd the most interesting relations
between variables. Traditional frequent pattern mining algo-
rithms [36–39] are the CPU and the I/O intensive, making it
very expensive to mine dynamic nature of WSN data. Unlike
the mining static database, dynamic nature of WSNs data led
to the study of online mining of frequent itemset. As a result,
traditional frequent pattern mining algorithms are modi�ed
according to nature of WSNs data.


e basic frequent pattern mining technique is associ-
ation rule mining technique. 
e �rst known association
rule mining algorithm is Apriori [40]. It is based on level-
wise candidate generation and test methodology by making
several scans over database. In each iteration, the patterns
found to be frequent are used to generate possible frequent
patterns (the candidates) to be counted in the next iteration.

erefore, theApriori technique �nds the frequent patterns of
length � from the set of already generated candidate patterns
of length � − 1. In the subsequent step, the association rules
are generated by computing the support and con�dence of
each frequent item in given database � which is de�ned as
follows:

Support (�) = Sup (�)� ,
(1)

where Sup(�) is the number of occurrence of � in database
�. Consider the following:

Con�dence (� �→ 	) = Sup (� ∪ 	)
Sup (�) . (2)


is is impractical in the context of sensor networks
as it implies that all data has to be stored somewhere.
However, recently, there has been a growing amount of work
on discovering frequent item-sets from a data stream of
transactions such that every transaction is considered only
once and can be deleted a�erwards.


e other basic approach from mining association rule
is FP-growth [41] which can discover frequent patterns by
reducing the database scans by two and eliminating the
requirement of candidate generation as compared with Apri-
ori. With the �rst database scan, the algorithm �nds the
set of distinct items with respective support count (i.e.,
frequency) in the database. 
en, with the second database,
scan the algorithm summarizes the database in the form of
a frequency-descending tree (i.e., the FP-tree). 
e complete
set of frequent patterns is, then, mined from the FP-tree
by recursively applying a divide-and-conquer-based pattern
growth approach, called the FP-growth algorithm, without
additional database scan. 
e highly compact FP-tree struc-
ture introduced a new wing of research in mining frequent
patterns. However, the static nature of the FP-tree and two
database scans still limit its applicability to frequent pattern
mining over a WSNs data. Recently, several centralized and
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distributed solutions have been proposed with the aim
to maximize the WSNs’ performance and maximize the
application-based performance by applying Apriori-like and
FP-growth methods over WSNs data.

4.1.1. Centralized Approaches Aim to SolveWSNs’ Application-
Based Issues. Halatchev and Gruenwald [42] proposed a
centralized methodology called data stream association rule
mining (DSARM) to identify the missing sensor’s readings. It
uses the association rulemining algorithm to identify sensors
that report the same data for a number of times in a sliding
window called related sensors and then estimates the missing
data from a sensor by using the data reported by its related
sensors. Due to the stream nature of sensor data, applying
an association mining algorithm such as Apriori directly to
sensor data is not possible. 
is situation led the authors
to propose the DSARM framework that adapts the Apriori
algorithm to make it applicable to the data stream received
from sensor nodes.
is technique is evaluated by simulation
experiments on real data collected by the Department of
Transportation in Austin, TX, USA, to estimate missing
value in related data streams. Performance evaluations were
conducted to compare DSARM and alternative approaches.

e results show that DSARM requires more memory space
and takes longer to produce estimation than the considered
alternative approaches; it achieves better accuracy of the
estimated value than the alternative approaches do. However,
there exist some limitations in DSARM. First, it is based
on two frequent itemsets association rule mining, which
means that it can discover the relationships only between two
sensors and ignore the cases where missing values are related
with multiple sensors. Second, it �nds those relationships
only when both sensors report the same value and ignores
the cases where missing values can be estimated by the
relationships between sensors that report di�erent values.

Jiang and Gruenwald [43, 44] proposed a data estimation
technique called CARM (closed item-sets-based association
rule mining), which can derive the most recent association
rules between the sensors in the current sliding window. 
e
technique is based on the closed frequent item-sets mining
algorithmof data streams calledCFI-stream [45]. Itmaintains
an in-memory data structure called direct update (DIU) tree
to store closed item-sets. When a new transaction arrives,
the algorithm checks each item-set in the transaction over a
data stream slidingwindowonline and incrementally updates
the closed item-sets’ support. If CRAM found some missing
values in sensor reading, instead of generating all possible
association rules, it generates the rules that have strong
relationships with the current round of sensor readingswhere
one or more readings are missing. Based on these rules and
selected closed item-sets, CRAM generates the estimated
values which contain item values that are not included in
the original readings. Figure 2 redrawn from [43] shows the
DIU tree a�er receiving �rst four transactions. It shows that
currently there are four closed item-sets: C, AB, CD, andABC
in the DIU tree, and their associated supports at the right-
upper corner are 3, 3, 1, and 2. A basic set of rules is generated
from these frequent item-sets. All other rules can be inferred
from this basic rule set.
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Figure 2: Lexicographical-ordered direct update tree.

4.1.2. Centralized Approaches Aim to Maximize WSNs’ Per-
formance. Loo et al. [46] have proposed online one-pass
algorithms for mining large sensor streams. 
ey mine the
frequent value set from sensor stream data by transforming
the stream data into interval list (IL) under lossy counting
framework [47]. 
e time is divided into equal-size interval
and snapshot from the sensor reading is taken when there is
an update on sensor reading. Sensors’ value at that snapshot
constructs the value sets stored in database. An Apriori-
based strategy is used to mine the value sets. 
e analysis
of IL-based presentation of stream data showed favorable
results using synthetic data-set. However, while computing
the IL of candidate value set, redundant intersection of
IL is inevitable, which a�ects the performance in terms
of time and computation cost. 
e proposed technique is
evaluated by comparing the performance of ILB against
an application of lossy counting (LC) using a weighted
transformation method on synthetic dataset. According to
their experiments, ILB outperforms LC signi�cantly for large
sensor networks. Moreover, both the processing time and
memory consumption of ILB are more stable than those of
LC.

Chong et al., [48] proposed a rule-learning model that
�nds strong rules from sensor readings. 
e rules are used as
a trigger to control sensor network operations; for example,
they can be used to sleep sensor or reduce data transmission
to conserve energy. To mine the rules, Apriori is modi�ed to
count the number of transactions that are frequent instead
of the item-sets within transactions, and transactions are
processed in batches �1, �2, . . . , ��. Suppose, there is node
� that collects light, temperature, and microphone reading
from three other sensor streams 0, 1, and 2. Initially, �
is queried to collect all sensory values, it is used to generate
a rule of the form of �� which implies ��−1; therefore, the
rule is extracted and only �� is sent to the base station. Upon
receiving the reading �� and utilizing knowledge of the rule,
the reading of ��−1 can be inferred. All extracted rules are
stored in rule repository. 
e proposed method is validated
by using simulation implemented in C language on synthetic
dataset. In the experiment, the �rst correlated data received
from sensor is used to extract rules. For subsequent phase,
these rules are used to infer reading of sensor for the next
round.

Tanbeer et al. [49] proposed a tree-based data structure
called sensor pattern tree (SP-tree) to generate association
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rules from WSNs data with one database scan. 
e main
idea of the proposed approach is to obtain the frequency
of all event-detecting sensors’ data, construct a pre�x-tree
based on that in any canonical order, and then reorganize
the tree in a frequency descending order. 
rough the
reorganization, the SP-tree canmaintain the frequently event-
detecting sensors’ nodes at the upper part of the tree, which
in turn provides high compactness in the tree structure.
Once the SP-tree is constructed, FP-growthmining technique
is applied to �nd the frequent event-detecting sensor sets.
Experiments are performed to verify the improvement in
memory consumption and runtime that SP-tree achieves over
PLT [50]. 
e experiments show that SP-tree outperforms
PLT in time and memory consumption. 
e reason of such
gain is two folds: �rst, the PLT construction requires two
database scans, while SP-tree constructs the tree by scanning
the database only once; second, the mining phase of SP-
tree is highly e�cient due to the frequency-descending tree
structure.

4.1.3. Distributed Approaches Aim to SolveWSNs’ Application-
Based Issues. Romer [51] proposed an in-network data min-
ing technique to discover frequent patterns of events with
certain spatial and temporal properties. In this approach, user
speci�es the upper boundmaxscope andmaxhistory (variable
to be measured in seconds) for the patterns of interest. 
e
sensor collects these events and applies amining algorithm to
discover the pattern that satis�es the given parameters. Each
node in the network collects the events from its neighbors
within themaximum scope and keeps a history of their events
for duration of the maximum history. A�er that, each node
applies a mining algorithm to discover the local frequent
patterns. 
e resulting frequent patterns are converted to
association rules that describe an event of type � that occurs
at node � with support  and con�dence �. Local patterns
are sent to the sink where secondary mining is performed to
compute the global picture of entire network. 
e algorithm
is implemented on BT node (bluetooth radio) platform [52],
and the tradeo� between scope of the query and resource
consumption on real dataset is evaluated. Results show, by
reducing the scope of the query, that the proposed approach
could decrease resource consumption. Major issues in this
approach are memory consumption of itemset discovery
algorithms and the communication overhead of event collec-
tion.

4.1.4. Distributed Approaches Aim to Maximize WSNs’ Perfor-
mance. Boukerche and Samarah [15] presented a distributed
data extraction methodology to aggregate the data on sensor
node which reduced the number of messages during trans-
mission. 
e distributed solution sends some parameters
such as support, time-slot size, and historic period from sink to
all nodes within network. Each sensor node has its own bu�er
entry to set the support value. A�er each time slot, nodes
check whether there are messages received during this time
slot; if yes, then that node will set its bu�er entry. When the
historic period ended, each node will traverse its bu�er; if the
number of set value is more than or equal to support value

provided initially, then the message would be transfered to
sink. To evaluate the validity of the distributed approach, it is
compared with the centralized methodology on real dataset.

ey conducted two experiments using historical periods of 5
and 10 days with minimum support values ranging from 10%
to 90% and a time-slot size equal to 30 seconds. All of the
reported results show a reduction in the number of messages
and the data sizewhile increasing in the support values.Major
issues in thismethodology are increase in cost for node bu�er
and also delay in crucial messages in case of high support
value.

Boukerche and Samarah [50] proposed the positional
lexicographic tree (PLT) structure for mining association
rules in which the event-detecting sensors are the main
objects of the rules regardless of their values. Similar to the
FP-growth approach, PLT follows a pattern growth mining
technique. 
e mining begins with the sensor having the
maximum rank by generating the frequent patterns from its
PLT in a recursive way. 
e computation is required at each
recursion to update the PLT involved in the pre�x part of
a pattern. 
erefore, two database scans requirement and
the additional PLT update operations during mining limit
the e�cient use of this approach in handling WSNs data.

e performance evaluation is done by comparing the PLT
structure with the FP-growth algorithm. According to their
results, PLT structure outperforms FP-growth in terms of
CPU time and memory usage for all of the support values
used; the enhanced performance using PLT when compared
with FP-growth ranges from 30 percent to 50 percent.

4.2. Sequential PatternMining (SPM). Frequent patternmin-
ing has been extended to �nd more complex structure
such as sequential pattern mining. It discovers frequent
subsequences as patterns in a sequence database. A sequence
database stores a number of records, where all records are
sequences of ordered events, with orwithout concrete notions
of time. A large number of real-world domains such as user
pro�ling, medicine, local weather forecast, and bioinformat-
ics show an inherent tendency to be modeled by means of
sequences of events/objects related to each other. 
is great
variety of applications of sequential pattern mining makes
this problem one of the central topics in WSNs data mining
as shown by the research e�orts produced in the recent years.

e sequential pattern mining techniques in sensor network
based on either traditional sequential mining algorithms
such as Apriori-like algorithm [53], Apriori-based methods:
GSP [54] PSP [55], and pattern growth approaches: FreeSpan
and Pre�xSpan [56, 57] or some new algorithm are devised
speci�cally to work with sensor network environment.

4.2.1. Centralized Approaches Aim to SolveWSNs’ Application-
Based Issues. Esposito et al. [58, 59] presented a multi-
dimensional relational sequence mining framework to iden-
tify the hidden frequent temporal correlations between
sensor nodes. 
e algorithm is based on generic level-
wise search method called APRIORI [60] for discovering
correlated sensors. 
e framework exploits the relational
language to describe the temporal evolution of a sensor
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network along with contextual information by working in
two phases. Firstly, an abstraction step is to segment and
label the real-valued time series into similar subsequences
by using a kernel density estimator approach. 
en, the
knowledge is enriched by adding interval-based operators
between the subsequences obtained in the discretization step,
and the relation pattern mining algorithm has been extended
in order to deal with these new operators. By taking into
account the interval-based temporal data along with contex-
tual information about events, it discovers interesting and
more human-readable patterns. 
e framework is evaluated
on real dataset collected from a wireless sensor network
made up of 54 Mica2Dot [61] sensors deployed in the Intel
Berkeley Research Lab [62]. Each sensor collected topology
information, along with humidity, temperature, light, and
voltage values once every 31 seconds. Results show the strong
correlation among some measurements, which is useful for
anomaly detection.

Cook et al. [21] present MavHome smart home archi-
tecture which focuses on the creation of an intelligent
home, perceiving the state of the home through sensors and
acting upon the environment through device controllers. An
important characteristic of the proposed architecture is the
ability to make decisions based on predicted activities. To
predict the activities, an algorithm called episode discovery
(ED) is proposed, which is based on the work of Srikant
and Agrawal [54] for mining sequential patterns from time-
ordered transactions. Values that can be predicted include the
usage pattern of devices in the home, the movement patterns
of the inhabitants, and the typical activities of the inhabitants.

ey utilize prediction algorithms on action sequences stored
in inhabitant event history to forecast user actions. Actions
can then be automated based on the signi�cance of mined
patterns as well as the predictive accuracy of the next event.
A key disadvantage is the fact that the entire action history
must be stored and processed o� line, which is not practical
for large prediction tasks over a long period of time. Cook et
al. demonstrated the e�ectiveness of MavHome on synthetic
smart home data and real data collected by students usingX10
controllers in their homes. Experiments show a predictive
accuracy as high as 53.4% on the real data and 94.4% on the
synthetic data.

Rabatel et al. [22] presented a strategy to detect anomalies
from sensor data to improve the railway maintenance. 
ey
extract sequential pattern from real railway data and identify
the abnormal behavior. Based on these abnormal �ndings,
alarms are automatically triggered to notify potential fail-
ures. 
is abnormal behavior depends on environmental
(weather conditions, travel characteristics) and structural
(route, episode index in the route) changes in data. 
e
PSP [55] algorithm has been used to identify the sequential
patterns. To tackle the environments conditions, a contextual
knowledge-based method is proposed, which is able to
provide information on the seriousness and possible causes
of a deviation. 
e proposed technique helps in proactive
maintenance of train. However, real-time context can be
improved by providing precise and exact information for
anomaly detection.

a q k
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Figure 3: Example of sequential alarm pattern.

Guralnik and Haigh [23] use sequential pattern mining
to learn typical behaviors of humans in their homes. Human
behavior is inferred by using motion sensors, pressure pads,
door latch sensors, and toilet �ush sensors. 
ey installed
10–20 sensors of di�erent types in a home and built models
of what sensor �rings correspond to what activities, in what
order, and at what time. For example, “In 60% of the days,
the Kitchen-Motion sensor �res between 18h00 and 18h30,
and then the Living-Room-Motion sensor �res between
18h20 and 20h00, and then the Bedroom-Motion sensor �res
between 19h45 and 22h00.”
eir algorithm uses these data to
learn the sequences of rooms in which the person was acting,
and it uses domain knowledge to extract the sequences of
rooms the person was acting in. 
ese sequences are then
analyzed by a human expert to identify complex behavior
models. 
ese models can be used to select the appropriate
response plan to the action of elderly.

Wu et al. [63] proposed a new algorithm for mining
sequential alarm patterns (MSAPs) from the alarm data
generated by GSM system. Sequential events are identi�ed
from alarm data by de�ning time interval between adjacent
events. For example, if time is set as six hours, then the
sequential alarm pattern (�, �, �) indicates that �, �, and �
happen in order and that the time interval between � and
� and between � and � is less than six hours. An example
of sequential alarm sequence redrawn from [63] is shown in
Figure 3.


e number in circle represents the error ID, and ��,�
denotes the time di�erence between alarm event � and alarm
event �. 
e knowledge extracted is not only useful for
identifying relevance between two events, but it is also predict
the alarm sequence and takes proper steps to prevent the
occurrence of the alarms if at all possible. For example, if the
network operator detects that, the alarm � occurring at time �
operator should dissipate this alarm before the time �+��,� to
alleviate the abnormal situations incurred. 
e limitation in
this technique is that it cannot discover other possible time-
interval patterns between the events.

It is observed that there is none of centralized solutions
which aim to maximize the WSNs’ performance.

4.2.2. DistributedApproaches Aim to SolveWSNs’ Application-
Based Issues. Tseng and Lu [64] proposed an object tracking
strategy named themultilevel object tracking (MLOT) to dis-
cover sequential patterns in object tracking sensor networks
(OTSNs) by mining the movement log in sensor networks. A
multilevel hierarchical structure is adapted by using the clus-
tering mechanism that represents the hierarchical relations
among sensor nodes to achieve the goal of keeping track of
moving objects in a real-time manner. 
e movement logs
of the moving objects are analyzed by developing the data
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mining algorithm movement pattern generation (MPG) to
obtain themovement patterns, which are then used to predict
the next position of a moving object and to activate the least
sensor node. 
e MPG is based on Apriori which uses the
frequency of the inference pattern to evaluate the con�dence
of the pattern and which with the highest frequency serves as
the basis of the prediction.

4.2.3. Distributed Approaches Aim to Maximize WSNs’ Per-
formance. Tseng and Lin [65] proposed an object tracking
strategy named TMP-mine to discover sequential patterns
in object tracking sensor networks (OTSNs) by mining the
temporal movement patterns (TMPs) logs. 
e discovered
temporal movement rules (TMRs) are used to predict the
location of next objects for saving energy. In the proposed
model object is able to record the sensor nodes it visited
along with the arrival time at each node.
emovement log is
collected by equipping the sensor nodes with storage devices.

eWSN collects and integrates themovement log ofmoving
objects. 
e integrated movement log is used as the input to
the data mining method named the TMP-miner which uses
the pattern growth approach for discovering the TMPs. By
applying the TMP-mine algorithm, the TMPs are discovered,
and then the temporalmovement rules (TMRs) are generated
for predicting next location of moving object. Suppose that
the following two rules are discovered by vehicle tracking
system:

Rule 1. (Station A → interval 10min → Station B →
interval 5min → Station C).

Rule 2. (Station A → interval 20min → Station B →
interval 5min → Station → D).

By dispatching these rules to the corresponding sensor
nodes, the tracking can be made in energy-e�cient way. For
example, if a car moves with the pattern as (Station A →
interval 10min → Station B → interval 5min) that matches
with Rule 1, then the node in Station B has only to activate
the node in Station C rather than that in Station D or those
around Station B.

Samarah et al. [66] proposed an energy-e�cient
prediction-based tracking technique by using the sequential
patterns (PTSPs). 
is technique helps to predict the future
location of a moving object with the minimum number of
sensor nodes while keeping the other sensor nodes in the
network in sleep mode. 
e PTSP is based on the inherited
patterns of the objects movements in the network and the
utilization of sequential patterns to predict in which sensor
node the moving object will be heading next.

4.3. Clustering. Clustering is unsupervised learning, where
given data is categorized into subsets so that each subset
represents a cluster which has distinctive properties. It has
been considered a useful technique especially for applications
that require scalability to large number of sensor nodes.
Clustering also supports aggregation of data in order to
summarize the overall transmitted data.

ClustersInput sensor data

Feedback

Identi�cation of

data correlation
Grouping data

Figure 4: Data clustering for sensor networks.

In the current literatures, problems related to clustering
are addressed by node clustering or data clustering. Recently,
large numbers of node clustering algorithms have been
designed for WSNs [67–83]. 
ese clustering techniques
widely vary in their objectives depending on the node deploy-
ment and bootstrapping schemes, the pursued network
architecture, the characteristics of the cluster head (CH),
and the network operation model. Although node clustering
may be related to data clustering, for example, considering
data similarity of neighboring node, many popular node
clustering algorithms that partition the sensor nodes into a
number of small groups and elect a cluster head for every
group do not use the data mining techniques directly. In this
study, we only focus on data clustering techniques to e�cient
data mining and �nd data correlations among the nodes.
Figure 4 shows the commonly used data clustering in data
mining process.


is work adapted the K-mean, hierarchical, and data
correlation-based methods. 
e k-mean algorithm takes the
input parameter, k, and partitions a set of � objects into k
clusters so that the resulting intracluster similarity is high,
but the intercluster similarity is low. Cluster similarity is
measured with respect to the mean value of the objects
in a cluster. Hierarchical method creates a hierarchical
decomposition of the given set of data objects. It works by
grouping data objects into a tree of clusters, whereas, data
correlation-based clustering forms clusters based on spatial
and temporal correlations with similar node sensory values
within a given threshold, and these clusters remain �xed
until the sensory value threshold has changed over time.
When the threshold values change, the related sensor nodes
will then communicate with neighboring nodes associated
with other clusters to change their cluster memberships. 
e
drawback of this type of clustering is that it does not consider
node residual energy. It is observed from the survey that the
centralized and distributed clustering solutions are aim to
maximize the WSNs performance.

4.3.1. Centralized Approaches Aim to Maximize WSNs’ Per-
formance. Liu et al. [84] proposed a centralized graph-based
energy-e�cient data collection (EEDC). EEDC is on-demand
clustering algorithm that clusters node into groups such that
members have similar sensor readings, and thus the protocol
clusters the network with an awareness of the phenomena
being sensed. EEDC is a centralized approach where the
sink compares data from di�erent nodes with a user-de�ned
dissimilarity measure. EEDC models the cluster creation
process as a clique-covering problem by constructing a graph
� such that each sensor node is a vertex in the graph. An edge
(�, V) is drawn if the dissimilarity measure between vertex
� and vertex V is less than or equal to the given intracluster
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dissimilarity measure thresholdmax dst. A cluster is a clique
in the graph, and the clustering problem uses the minimum
number of cliques to cover all vertices in the graph. 
is
process minimizes the number of clusters and maximizes the
energy saving. 
e sink also dynamically adjusts the clusters
based on spatial correlation and the received data from the
sensors. 
e algorithm produces robust and well-balanced
clusters. However, due to centralized processings it is not
suitable for large-scale WSNs.

4.3.2. Distributed Approaches Aim toMaximizeWSNs’ Perfor-
mance. Guo et al. [85] proposed the H-cluster, a distributed
algorithm to cluster sensory data.
e input of this algorithm
is the set of sensory data collected by all of the sensors
from the time WSN starts working up to the current time.

e output of the algorithm is a set of cluster features
that summarize the clusters of the input sensory data-set.
Hilbert-Map mapping algorithm has been used to map a
d-dimensional sensory data space into a 2-dimensional area
covered by a given WSN. H-cluster has 2 phases: (1) it
merges connected grid features with local cluster features
of (sensory dimensional) D at each destination node; (2)
it combines the connected local clusters to global clusters.

e experiments on the centralized and distributed data
are carried out to compare the H-Cluster with C-Corner
and C-Center algorithms. During experiment, four types of
environment attributes are sensed by the sensors, which are
temperature, humidity, light, and voltage. 
e results show
thatH-Cluster algorithm ismuch e�cient in data loss, energy,
and the quality of cluster data in small WSN.
e results also
shows that as the amount of sensory data delivered increases
the amount of data loss also increases and energy e�ciency
decreases by increasing the size of WSNs.

Yeo et al. [86] proposed data correlation-based clustering
scheme (DCC) based on similarity of sensor data along a
spatial suppression scheme which helps to reduce the data
size. DCC enhances the advertisement phase of HEED [71]
in which cluster heads are selected according to probability
of becoming a cluster head; during this phase, sensor nodes
communicate with each other, and the resulting clusters
are organized by sensor nodes which have similar readings.
Spatial suppression is performed on cluster head, and it
also computes the di�erence between sensor reading and
representative value. If a cluster head has redundant data,
it will remove it except for the node identi�cation. 
e
experimental results justify the hypothesis claim that the
clustering based on data correlation has better compression
performance than ordinary clustering based on locality of
communication, they show that DCC reduces 40% of data
size through suppression and prolongs network lifetime
20%–30%. However, for the large-scale network applications
(nodes > 500), DCC is ine�cient because each cluster head
needs more energy to collect similar data readings and also
to communicate with several nodes. Also in case of low
percentage of similar data reading, DCC is ine�ective due to
higher rate of cluster head creation.

Beyens et al. [87] proposed a cluster-based architecture
for wireless sensor networks in which cluster heads spa-
tiotemporally correlate and predict the measurements of the

cluster members by executing their prediction model. In
their approach, the cluster heads execute a prediction model,
while gateway nodes at the circumference of the clusters are
responsible for the routing task. Prediction model is used to
select a suitable node of the cluster to be activated. 
e idea
is to put a sensor node to sleep when there are no objects in
its sensing region.

Yoon and Shahabi [88] present the clustered aggregation
(CAG) algorithm that forms clusters of nodes sensing similar
values within a given threshold (spatial correlation), and
these clusters remain unchanged as long as the sensor values
stay within a threshold over time (temporal correlation).
By grouping nodes on similar values, CAG only transmits
one reading per group. When the threshold values change,
the related sensor nodes will then communicate with neigh-
boring nodes associated with other clusters to change their
cluster memberships. CAG guarantees the result to be within
a user-speci�ed error-tolerance threshold. Cluster formation
is performed while queries are disseminated to the network
(query phase), where clusters group nodes sensing similar
values. Subsequently, CAG enters the response phase wherein
only one aggregated value per cluster is transmitted up the
aggregation tree. CAG is a lossy clustering algorithm (most
sensory readings are never reported) which trades a lower
result precision for a signi�cant energy, storage, computation,
and communication saving.

Taherkordi et al. [67] proposed a communication-
e�cient distributed protocol for clustering sensory data.
A distributed version of �-Mean clustering algorithm is
proposed and sends summarized data towards sink which
reduces the communication transmission, time, and power
consumption of sensor nodes. 
e sensor network is divided
into clusters and cluster head node will only communicate
with sink. Initially, base station transmits current center
locations to cluster heads. Cluster head collects data from
its sensor node and sends it to the base station including
count and vector sum of its local sensory data points as
well as sum of the squared distance from each local point
to its center. On receiving data from CH, the base station
updates the cluster mean, and the algorithm repeats until the
function convergence is met. 
e e�ciency of the algorithm
is evaluated via simulations. Several programs are run to get
the average number of transmissions over the network during
each test. According to results, the communication cost is
independent of the number of sensors (�) and increases
linearly by increasing the number of centers. Major issues
are extra memory for cluster head and computation power
for summarization of data before transmitting to sink. Also
the algorithm requires multiple rounds of message passing
between cluster heads and the base station; this may have a
serious e�ect on communication e�ciency when the number
of sensors is relatively high.

Wang et al. [89] promoted the idea of clustering the
WSNs based on the queries and attributes of the data. 
e
main motive is to achieve e�cient dissemination of data in
the network. 
e concept resembles the data-centric design
model of WSNs. 
e clustering is established by mapping
a hierarchy of data attributes to the network topology. 
e
base station starts the clustering process by asking nodes
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Figure 5: Classi�cation maps input attribute set (X) to class label
(Y).

to form clusters. 
ose nodes that hear the request decide
whether they should nominate themselves as CHs based
on their energy. A�er receiving the base-station request,
sensor nodes having intention to become CHs wait for a
random time period that is based on the remaining battery
supply. If a node nominates itself, then it broadcasts an
announcement to all nodes. A node joins the CH that it
can reach over the least number of hops. Upon hearing a
CH announcement from a node whose attribute is di�erent,
the recipient node establishes a new cluster for that attribute
and becomes a CH. To evaluate the attribute-based clustering
scheme, the authors have provided the theoretical analysis of
it with �ooding-based schemes. Analysis shows its attribute-
based clustering scheme yield that gains over �ooding-based
schemeswhen there are subregions in the sensor network that
are more targeted than others, that is, when the distribution
of inquiries is not uniformly distributed over time and space.

Ma et al. [90] the proposed distributed, hierarchical
clustering and Summarization algorithm (DHCS) for online
data analysis and mining in sensor networks. 
e proposed
method clusters sensor nodes based on their current data
values aswell as their geographical proximity, and it computes
a summary for each cluster. 
e algorithm adopts several
techniques, such as di	erence and hop count thresholds, to
model node, and distance-based clustering. Initially, each
node treats itself as an active cluster. 
en, similar adjacent
clusters are merged into larger clusters round by round. In
each round, each cluster will try to combine with its most
similar adjacent cluster simultaneously. Two clusters can be
merged only if both consider one another as the most similar
neighbor. DHCS terminates when no merging happens any
more. 
e �nal clusters, which cannot be merged any more,
are called steady clusters.

4.4. Classi�cation. Classi�cation is a task of assigning new
object into a class of prede�ned object categories. Classi�-
cation model is learned using the set of training data and
classi�es new data into one of the learned class. Figure 5
shows that classi�cation maps input attribute set (X) to class
label (Y).

Classi�cation-based approaches have adapted the tra-
ditional classi�cation techniques such as decision tree-
based, rule-based, nearest neighbor-based, and support vector
machines-based techniques based on type of the classi�cation
model that they used. Decision tree is a classi�er in the form
of tree and classi�es the instance by starting at the root of
tree and moving through it until a leaf node where class label
is assigned. 
e internal nodes are used to partition data
into subsets by applying test condition to separate instances
that have di�erent characteristics. Nearest neighbor-based
approaches classify dataset based on closet training examples.


e training examples are vectors in a multidimensional
feature space with corresponding class labels. A nearest
neighbor classi�er is a lazy learner that does not process
patterns during training [91]. To respond, a request to classify
a query vector is made to locate the closest training vectors
according to the distance metric.
e classes of these training
vectors are used to assign a class to the query vector.

Rule-based classi�er groups the dataset in prede�ned
classes by using “if. . .then. . .” rules of following form:

(Condition) → Y: condition is a conjunction of
attribute, and Y is a class label.

SVM (support vector machine) techniques partition the
data belonging to di�erent classes by �tting a hyperplane
between them which maximizes the partition. 
e data is
mapped into a higher-dimensional feature space where it can
be easily partitioned by a hyperplane. Furthermore, a kernel
function is used to approximate the dot products between the
mapped vectors in the feature space to �nd the hyperplane.

4.4.1. Centralized Approaches Aim to SolveWSNs’ Application-
Based Issues. Chikhaoui et al. [92] proposed the decision
Tree (DT-) based classi�cation technique for sensor data.

ey applied the classi�cation model to identify the persons
in ubiquitous environment. In order to identify persons,
the proposed approach �rst extracts frequent patterns called
episodes from the datasets using the Apriori algorithm [53].

e next step evaluates the extracted patterns and assigns
weights to these episodes to construct frequent episode
weight matrix (FEWM).

Finally, the classi�cation algorithm Decision tree (DT) is
applied on FEWM.DT builds pattern classi�er from a labeled
training data-set using a divide-and-conquer approach. To
build up a DT model, it recursively selects the attribute that
is used to partition the training data-set into subsets until
each leaf node in the tree has uniform class membership.

e proposed approach is validated by experiment using
data collected from the Domus Laboratory [93] and the
Testbed smart home [94]. 
e general performance and
classi�cation accuracy of algorithm are evaluated by using
the Weka framework version 3.7.0 [95]. Experiment results
show good classi�cation. However, using frequent episodes
alone without temporal constraints and deep analysis does
not guarantee good identi�cation.

Sharma et al. [96] proposed amethodology for classifying
the sensors data by using nearest neighbor trajectory clas-
si�cation (NNTC). 
e training phase simply stores every
training example with its label. To make a prediction for a
test example, �rst, its distance to every training example is
computed.
en, � closest training examples are stored,where
� is a �xed integer and � ≥ 1; among the � examples, it
looks for the label that is most frequent. 
is label is the
prediction for this test example. 
e algorithm is evaluated
by building a classi�er from the preprocessed training data
generated from NS2 [97] and test trajectory data [98] using
class labels. Experimental investigation yields a signi�cant
output in terms of the correctly classi�ed success rate, 92.3%.

Akhlaghinia et al. [99] proposed the prediction technique
in smart home environments to predict the behavior pattern
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of occupants.
e sensor NWs collect the variety of attributes
including environmental changes and occupant’s interaction
with the environment. 
e collected data is then used by the
learning approach to construct a classi�cation-based predic-
tive model to predict the ambient intelligence environment
occupancy. 
e occupancy is predicted by using the fuzzy
rules which are modeled by using the past value of time
series data. In the learning process, input from the sensor is
compared with stored rules to take appropriate action. 
e
prediction-based approach improves the energy saving in
smart homes and enhances the safety and security of occu-
pants. 
e result shows the ability of the proposed technique
to predict the combined occupancy time series. However, the
model is implemented in single-user environment and unable
to predict the complex environmental patterns in multi-user
environment over long period.

4.4.2. Centralized Approaches Aim toMaximizeWSNs’ Perfor-
mance. Gaber et al. [100] proposed the lightweight classi�ca-
tion (LWClass), a one-pass algorithm for on-board mining
of data streams in sensor networks. 
ey used the algorithm
output granularity (AOG) [101, 102] technique to preserve the
limited memory size and change the algorithm output rate
according to data rate, available memory, algorithm output
rate history, and time constraints to �ll the available memory
with generated knowledge.
e algorithmworks by searching
for the nearest instance stored in main memory when a new
element arrives. All instances are already stored in the main
memory according to a prespeci�ed distance threshold. 
e
threshold here represents the similarity measure acceptable
by the algorithm to consider two or more elements as one
element according to the elements attribute values. If the
algorithm �nds this element, then it checks the class label.
If the class label is the same, then it increases the weight
for this instance by one; otherwise, it decrements the weight
by one. If the weight becomes zero, then this element is
released from the memory. 
e algorithm is empirically
validated using synthetic streaming data under the resource-
constrained environment of a common handheld computer.

4.4.3. DistributedApproaches Aim to SolveWSNs’ Application-
Based Issues. McConnell and Skillicorn [103] presented a
distributed framework for building and deploying predictors
in sensor networks. By using the computational power of
each sensor, a powerful learning structure on whole network
is constructed. A distributed voting approach is proposed
in which each sensor is a leaf of tree (DT) to perform
local prediction. Instead of sending the raw data, the local
predictive models built on sensors transmit the target class to
the sink. At sink, the local predication models are combined
to construct global prediction model. It shows how the
local model enables sensors to respond to the change in
target by relearning local models. 
e proposed framework
is useful especially for sensor networks with limited energy,
computation, and bandwidth resources. It makes e�cient
the distributed data mining in the presence of moving
class boundaries. Data is also con�dentially achieved by
transmitting a predictivemodel instead of original data to the

sink. 
e distributed prediction model is evaluated using J48
decision tree (implemented in WEKA) on variety of dataset
for both simple and weighted voting schemes. According to
results, distributed prediction model has the potential of an
increase in accuracy combined with a reduction in model
size and runtime as compared with a centralized approach.
Major issues in this framework are the need of an expensive
CPU on each sensor node for computing and building local
predictive model, and also extra memory is required to store
local predictive model.

4.4.4. Distributed Approaches Aim to Maximize WSNs’ Per-
formance. Malhotra et al. [104] proposed a distributed clas-
si�cation scheme to generate e�ective feature vectors of low
dimension (FVLD) for wireless audio network. A distributed
cluster-based algorithm for detection and classi�cation of
vehicles has been proposed. Sensors form clusters on-
demand for the sake of running a classi�cation task based on
the produced feature vectors. 
e monitoring area is divided
into clusters, and a cluster head is selected for each cluster.
All sensors send their feature vector to cluster heads. 
e
cluster head combines all received feature vectors (including
one from itself), executes the classi�cation task using, for
example, KNN or ML classi�ers, and makes decision on the
class of the unknown vehicle. Two approacheswere proposed:
the �rst combines extracted features and the second combines
individual decisions. Classi�cation using decision fusion and
a maximum likelihood (ML) classi�er led to the best results.
ML is also compared with KNN classi�er with various
settings of data and decision fusion schemes. 
e proposed
technique produced the best classi�cation accuracy of 89.46%
as compared with all other approaches.

Flouri et al. [105–107] have proposed distributed and
incremental techniques for learning classi�cation rules using
SVM-based (support vector machine) technique in a sensor
network. 
e authors proposed two distributed algorithms:
the distributed �x partition SVM (DFP-SVM) and the
weighted distributed �x partition SVM (WDFP-SVM) for
training a SVM applied to the classi�cation problem in a
WSN. SVM is incrementally trained on example set called
support vector. 
e fact with SVM is that the number of
support vectors is very small comparedwith the number of all
sample values. Besides, the support vectors (and o�set) reveal
compressed representation of separating SVM hyperplane.

at is why sending only the support vectors instead of
all training samples to the next cluster head is obviously
very energy e�cient due to communication reduction. A�er
training, the required parameters of the kernel functions are
transferred to each node for classi�cation. 
e performance
of the proposed approach is evaluated by running number of
simulation, and comparison is made with centralized algo-
rithm. 
e results show that energy consumption decreases
when the SVM is trained incrementally as compared with the
centralized case. However, the challenges for SVM formula-
tions are computational complexity and the choice of proper
kernel function.

Rajasegarar et al. [108] proposed the SVM-based tech-
nique for outlier detection in sensor data. 
is technique
uses one-class quarter-sphere SVM to identify local outliers
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at each node and to minimize the computational complexity.

e sensor data that lies outside the quarter sphere is
considered as an outlier. Each node communicates only
the radius information of sphere with its parent for outlier
classi�cation. 
is technique identi�es outliers from the data
measurements collected a�er a long-time window and is not
performed in real time. 
e technique also ignores spatial
correlation of neighboring nodes, which makes the results of
local outliers inaccurate. 
e technique is evaluated by using
the real sensor measurement collected from deployment of
wireless sensors in the Great Duck Island Project [2] for
monitoring the habitat of sea birds. 
e algorithm is imple-
mented in Matlab and two simulations were run to measure
the computational strategy and various kernel functions.
Results reveal that the proposed technique achieves signi�-
cant energy savings in terms of communication overhead in
the network.

5. Comparison of Data Mining Techniques
for WSNs


is section identi�es several common and di�erent aspects
of data mining techniques specially designed for WSNs
discussed above. 
ese aspects will be used as metrics in the
comparative Tables 2, 3, 4, 5, and 6. First, evaluation aspects
for di�erent techniques are discussed, and, then, comparative
tables are presented to compare and di�erentiate existing data
mining techniques for WSNs data.

5.1. Input Sensor Data. Sensor data can be viewed as large
volume of real-valued data that is continuously collected
from WSNs. 
e type of input sensor data demonstrates
which data mining techniques can be used to analyze the
data. Data mining techniques usually consider following two
characteristics of data.

Attribute. Mining techniques can identify the association
between data attributes. Attributes can be homogenous [50] or
heterogeneous [33, 48]. Homogenous attribute means sensing
single-value attribute, for example, temperature only. For
heterogeneous case, each nodemay be equippedwithmultiple
sensors and can sense multiple attributes, for example, tem-
perature, humidity, and pressure. 
e data mining technique
should be able to identify the correlation between multiple
attributes.

Correlation. Two types of data correlation appear at each
sensor node. 
e �rst type is attribute correlation, that is,
dependency among data attributes. 
e second type is in
terms of time and space, that is, temporal and spatial corre-
lation. Temporal correlation indicates that the readings from
di�erent sensor node are observed at the same time instant,
and readings observed at one time instant are related to
the readings observed at the previous time instant, whereas,
spatial correlation indicates that the readings from sensor
nodes geographically close to each other are expected to
be largely correlated. Capturing spatiotemporal correlation

helps to predict future trend of sensor reading and identi�ca-
tion of dead node if reading from correlated sensor ismissing.

5.2. Processing Architecture. In order to apply data mining
technique on sensor data, we need to determine the models
of computation. 
ere are two general models. Consider the
following.

Centralized.
e simplest way to analyzeWSNs data is to use a
centralized model. In this approach, entire raw data collected
fromWSNs is transferred to central server whichmaintains a
database of readings from all of the sensors.
e central server
performs o�ine extensive analysis in order to �nd interesting
patterns from the aggregated data. With the size of WSNs
increasing, the amount of data transmitted in the system will
become huge. 
e obvious drawback of this approach is high
consumption of energy and bandwidth. Furthermore, it is not
scalable to very large number of sensors.

Distributed. Another computation approach uses distributed
model, in which sensor nodes use their processing abilities
to carry out some mining tasks locally and transmit only
the required and partially processed data called local model.
Local models contain the compact event patterns rather than
raw data. For example, data collected from di�erent sensor
can be aggregated before being transmitted to central server.
In these systems, an intermediate node called “aggregator” is
used to collect and aggregate the data from di�erent sensors.
Since sensor nodes are constrained in resources, the challenge
for this approach is how to satisfy the mining accuracy
while keeping the communication overhead, memory, and
computational cost low.

5.3. Data Mining Method. It refers to the data mining
algorithm adapted or developed for unique characteristic of
WSNs data. Distributed approaches use one-scan algorithms
for real-time processing in order to deal with the high data
arrival rate; the mining results are expected to be available
within short response times, whereas centralized approaches
collect the sensory data to single site and applies o�ine
multiscan technique for extensive data analysis.

5.4. Node Properties. 
e proposed techniques are largely
in�uenced by following types of node properties.

Connectivity. Single-hop communication is a direct commu-
nication between the sensor node and the base station. It is
simple and easy to implement but limited by communication
distance.Multihop communication uses some kinds of nodes
as relays when transmitting data packets from the source to
the sink, which is more complex.

Mobility. Node mobility increases the complexity of design-
ing an appropriate data mining technique for WSNs. 
e
majority of techniques assumes that sensor nodes are static,
only a few techniques consider the node mobility. When
nodes are mobile, maintaining a certain structure for data
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mining becomes di�cult because updates on this structure
should be persisted over time.

Node Role. Node can perform three types of role [33] as
follows.

(i) Regular Sensor. 
ese are the nodes with limited
resources, and they are used to sense the phenomena
and send the sensed data to the base station.

(ii) Cluster Head. Cluster head can be a regular sensor
node, or it can be rich in resources. In centralized
approaches, cluster head is a regular sensor node that
only controls the cluster membership. In distributed
approaches, besides responding for cluster formation,
CHs perform aggregation/fusion of collected sensors’
data. 
erefore, they are equipped with signi�cantly
more computation and communication resources.

(iii) Relay. It is the node that acts as medium to transmit
the data packet from one node to the others.

Node Task. In centralized approach, node task is to sense the
phenomena being monitored and send the sensed data to the
base station. In distributed approaches, node can perform
computation and can take action based on the detected
phenomena or target.

5.5. Application Area. We also evaluated the type of applica-
tion bene�ted fromWSNs data mining techniques. Here, we
exemplify some real-world applications as follows.

(i) First is the environmental monitoring [5–7, 51, 58,
87], in which sensors are deployed in harsh and
unattended regions to monitor the natural environ-
ment. Data mining techniques can identify when and
where an event may occur and trigger an alarm upon
detection.

(ii) Second is the habitant and health monitoring [1, 2,
99, 109], in which patients/humans are equipped with
small sensors on multiple di�erent positions of their
body tomonitor their health or behavior.Datamining
technique can identify the abnormal behavior and
help to take e�ective action.

(iii) �ird is the object tracking [3, 4, 65, 66]. in which
sensors are embedded inmoving targets to track them
in real-time. Data mining techniques help to improve
the estimation of the location of targets and also to
make tracking more e�cient and accurate.

(iv) Fourth is the WSNs performance [46, 48, 50, 51].
WSNs are usually unattended and deployed in harsh
environment. Sensor nodes are resource constrained
especially in terms of power. Data mining techniques
help to identify the faulty or dead nodes. 
ey
also help to conserve energy by using in-network
processing in which aggregated data is sent to central
side.

(v) Fi�h is the data analysis [67, 84, 90]. Data mining
techniques help to discover potentially interesting

data patterns in a sensor network for a certain
application.

(vi) Sixth is the real-time monitoring [64, 65, 85]. Data
mining techniques especially distributed techniques
help to identify certain patterns and predict future
events in a given time window, which make real-time
response and action feasible.

5.6. Implementation. Each technique is also evaluated in
terms of experimental validation, that is, which dataset is
used, which WSNs optimization objectives are achieved, and
so forth.

Evaluation Method. Analytical modeling, simulation, and
real deployment are the most commonly used techniques to
analyze the performance of data mining technique forWSNs.

(i) Analytical Modeling. 
is method is very complex,
and usually certain simpli�cations are assumed to
predict the performance of the proposed scheme.
Such assumptions and simpli�cations may lead to
imprecise results with limited con�dence.

(ii) Simulation. It is the most popular and e�ective
approach to design and test any proposed scheme
in terms of cost and time; it also provides higher
level of details as comparedwith real implementation.
However, the appropriate selection of a simulation
framework according to problem and network char-
acteristics is a critical task.

(iii) Real Deployment. It may not be feasible to evaluate
the performance of these techniques through real
deployment due to the unavailability of appropriate
hardware in terms of technical and design limitations.
Usually, the real deployment requires hundreds of
sensor nodes, and cost becomes another important
issue. In a nutshell, evaluating any technique pro-
posed for WSNs through real deployment can get
the most convincing results although the evaluating
process is complex, costly, and time consuming.

Data Source. It refers to dataset use to experimentally validate
the proposed technique. Two types of dataset are used
generally, that is, synthetic and real. It is observed from this
paper that most of the techniques use the simulation on
synthetic dataset to validate the result. In this paper it is
observed that most of the studies used the simulation due to
limited processing power of sensor nodes.

Optimization Objective. SinceWSNs are constrained in terms
of di�erent resources, the technique is also evaluated in the
optimization objective that has been achieved. Most of the
techniques consider the resource constraint and di�erent
design philosophies of network. None of them can work
e�ciently for all of the performance metrics like network
size, communication overhead, energy e�ciency, memory
consumption, node mobility, and, and so forth. 
e large
variations in the performance metrics make it a di�cult task
to present a comprehensive evaluation.
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6. Limitations of Existing Data Mining
Techniques for WSNs

Tables 2–6 show the characteristics of datamining techniques
designed for WSNs. It is observed from comparative analysis
that the existing techniques have the following shortcomings.

(i) Most of the techniques do not take into account the
heterogeneous data and assume that the sensor data is
homogenous [42, 46, 49–51, 65, 87, 110]. 
ey ignore
the fact that di�erent attributes together can improve
the mining accuracy. In some cases, homogenous
data cannot contribute appropriately toward real-
time decision.

(ii) 
e majority of techniques only considers the spatial,
or temporal or spatiotemporal correlations [65–67,
87, 88] among sensor data of neighboring nodes and
does not consider the attribute dependency among
sensor nodes. 
is in turn increases the computa-
tional complexity and reduces the accuracy of mining
technique.

(iii) 
e techniqueswhich consider spatial correlation [51]
among sensor data of neighboring nodes su�er from
the choice of appropriate neighborhood range. Tech-
niques which consider temporal correlation among
sensor data su�ers from the choice of the size of the
sliding window.

(iv) 
e majority of techniques uses centralized approach
[21, 42–44, 46, 58, 84, 101] in which all data is
transmitted to the sink node for identifying certain
patterns. 
ese techniques cause much communica-
tion overhead and delay the response time. While
the techniques that used distributed architecture opti-
mize response time and energy consumption, they
have the same problem as that of the centralized
approach if the aggregator/cluster head has a large
number of nodes under its membership.

(v) Excluding a few, the performance of all of the schemes
discussed in this paper has been evaluated with the
help of di�erent simulation tools. Although the num-
ber of simulators is available and plays an important
role for developing and testing new technique, there
is always some kind of risk involved as simulation
results may not be accurate. In order to analyze a
protocol more e�ectively, it is important to know
di�erent available tools andunderstand the associated
bene�ts and limitations.Due to di�erent performance
requirements according to speci�c applications, a
general tool for sensor networks is still lacking at
present.

(vi) 
e techniques evaluated by using analytical mod-
eling [21, 23, 46, 49, 100, 109] used certain sim-
pli�cation and assumption to evaluate the perfor-
mance of proposed technique. Such assumptions and
simpli�cations may lead to imprecise results with
limited con�dence. None of the proposed technique
is evaluated by using real deployment. Although real
deployment is complex, costly, and time consuming,

accurate results can only be obtained by using real
deployment.

(vii) Excluding a few [22, 103, 109], the majority of
techniques assumes that sensor nodes are stationary
and do not consider nodes mobility. Applying these
techniques for mobile networks or the networks with
dynamic changed topology would be challenging.

(viii) Most of the techniques used the synthetic data.
Although synthetic data is easily available, there
always been chances that results generated on syn-
thetic data are not accurate.

(ix) For the data mining techniques themselves, fre-
quent pattern mining [15–20] approaches su�er from
choice of proper and �exible support and con�dence
threshold. Clustering techniques [11–14] su�er from
the choice of an appropriate parameter of cluster
width, and computing the distance between data
instances in heterogeneous data is computationally
expensive, whereas classi�cation-based techniques
[24–26] require some prior knowledge to classify the
incoming data stream. However, learning accurate
classi�cation model is challenging if the number of
variables is large in deployed WSNs.

7. Future Research Directions

It is observed from the analysis of existing data mining work
on sensor network-based application there are still shortcom-
ings in existing techniques. By seeing these shortcomings
and special characteristics of WSNs, there is a need for data
mining technique designed for WSNs. 
e technique should
be based on the following requirements.

(i) 
e technique should combine o�ine learningmech-
anisms with distributed and online data processing.

(ii) It should also consider the resource constraint of
WSN and its special characteristics such as node
mobility and network topology.

(iii) 
e technique should consider heterogeneous data
and dependencies among spatial, temporal, and
attribute correlations which may exist between adja-
cent nodes.

(iv) During online mining, the technique should be capa-
ble for incremental learning.

(v) 
e technique should have low computation com-
plexity and be easy to be implemented.

Based on aforementioned requirements for WSN, a
hybrid data mining framework is proposed as shown in
Figure 6. In this framework, sensor nodes use their pro-
cessing abilities to locally carry out mining processing and
transmit only the required and partially processed data called
local models. Single-pass algorithms are applied for network
data processing as the data is continuously arriving and not
available for the next scan.

Local models contain the compact event patterns rather
than raw data which address the issue of communication
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Figure 6: Proposed hybrid framework for sensor network based applications.

overhead associated with data transfer. Local models are
distributed on entire network, which are integrated at special
node which is resource su�cient as compared with other
sensor nodes. As a result, a network model is computed that is
more abstract than local model and is transferred to the base
stationsink inmultihop fashion.
enetworkmodels are then
integrated at base stationsink to get the global view of entire
network named the global model. As a result, approximate
query answers are returned to endusers.


is framework addresses the following shortcomings of
the existing techniques.

(i) It combines the o�ine learning mechanisms with
distributed and online data processing. 
e dynamic
nature of WSNs data requires real-time analysis
methodologies and systems. Centralized processing
through high-end computing is also required for
generating o�ine predictive insights, which in turn
can facilitate real-time analysis. 
e applications that
require real-time response and actions can use net-
work model for decision and knowledge extraction.

e applications that need extensive data analysis for
their decision making can use global model and per-
form central processing on base the station/sink. 
e
network model forwards the processed information
to global model for extensive predictive insight.

(ii) Since the data management is a crucial issue inWSNs
data [111], in order to deal with large-scale data from
WSNs, the proposed framework splits the data pro-
cessing tasks at multiple locations, in-network pro-
cessing and processing at central server. In-network
processing splits the large task into smaller ones at
node level and cluster head which is distributed over
the entire network and executes parallelly. At the node

level, storage capacities of single nodes are used to
compute the local model, which contains aggregated
data from single node, whereas cluster head acquires
the data from group of nodes and aggregate data
readings over a certain region or period. As a result,
network model is computed at each cluster head
which contains compact data from set of nodes and
reduces data size to be transmitted. Network models
can be integrated at sink to get the global view of
real-time applications. Since the sink at network level
has restricted resource and cannot process large-scale
data for predictive analysis, therefore, network mod-
els are sent to central server where global models can
be computed for predictive o�ine analysis. Historical
query from the user can also be addressed from
central server, whereas instant query can be handled
by sink to support real-time response. In this way of
data distribution, the proposed framework is feasible
to deal with large amount of data obtained from
WSNs.

(iii) It can consider the resource constraint of sensor
node by using context-awareness techniques. Mem-
ory, energy [79], and bandwidth are considered in
the implementation of data processing on the sensors;
for example, many summarization and aggregation
techniques can be adopted to reduce energy and
bandwidth consumption.

(iv) 
e framework can address the problem quickly
changing nature of WSNs data, where characteristics
of the monitored process may change over time
and render the old models outdated. 
is problem
can be addressed using the incremental learning
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mechanism [39, 112] that helps the model to update
new information.

(v) 
e framework can identi�ed the spatial-temporal
correlation at local model by using data correlation-
based clustering, whereas attribute correlation can be
identi�ed at global model by using the multipass data
mining algorithms.

Currently, we are working on implementation of this
hybrid framework, and the implementationwill be completed
in the near future.

8. Conclusion


e emerging need for the data mining techniques in the
�eld of WSNs resulted in the development of numerous
algorithms. Each one of these algorithms solves certain
issues related to the appropriate WSNs type and application.
In this paper, we analyzed, discussed, and compared the
related existing research approaches. We observed that the
techniques intended for mining sensor data at the network
side are helpful for taking real-time decision aswell as serve as
prerequisite for development of e�ective mechanism for data
storage, retrieval, query, and transaction processing at central
side. Moreover, we have presented problem-based taxonomy,
an overall analysis and review of the past research and their
limitations which can provide insights for endusers in apply-
ing or developing an appropriate data mining method and
appropriate technology forWSNs. Based on these limitations,
we have proposed a hybrid framework which can address
the shortcomings of existing work. We have also discussed
the challenges for implementing data mining techniques in
resource-constrained WSNs. Besides, there are a number of
open issues in existing studies which need to be addressed.
Surely, the number of WSNs applications presented here
is neither complete nor exhaustive but merely a sample of
applications that demonstrate the usefulness and possible
applications of data mining method in sensor network.

We believe that WSNs applications will become more
mature and popular with the advancement of sensor tech-
nology, and sensor data will become more information
rich. Mining techniques will then be very signi�cant in
order to conduct advanced analysis, such as determining
trends and �nding interesting patterns thus enhancingWSNs
performance and operation. 
e intention to present this
paper is to stimulate interests in utilizing and developing the
previous studies into emerging applications.
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