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1. Introduction 

1.1. Data mining in a clinical pharmacology perspective 

Drug use in medicine is based on a balance between expected benefits (already investigated 
before marketing authorization) and possible risks (i.e., adverse effects), which become fully 
apparent only as time goes by after marketing authorization. Clinical pharmacology deals 
with the risk/benefit assessment of medicines as therapeutic tools. This can be done at two 
levels: the individual level, which deals with appropriate drug prescription to a given 
patient in everyday clinical care and the population level, which takes advantage of 
epidemiological tools and strategies to obtain answers from previous experience. The two 
levels are intertwined and cover complementary functions. 

Data mining has gained an important role during all stages of drug development, from drug 
discovery to post-marketing surveillance. Whereas drug discovery is probably the first step 
in drug development that resorts to data mining to exploit large chemical and biological 
databases to identify molecules of medical interest, in this chapter data mining will be 
considered within the context of long-term drug safety surveillance after marketing 
authorisation.   

A pharmacological background is essential before considering data mining as a tool to 
answer questions related to the risk/benefit assessment of drugs. As a first step, it must be 
verified whether or not the available sources of data (e.g. spontaneous reporting systems, 
claim databases, electronic medical records, see below) are the most appropriate to address 
the research question. In other words, a prior hypothesis is required and one should 
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consider which tool is the best option for the specific aim. In addition, the actual impact in 
clinical practice of any research question depends on the communication and dissemination 
strategies and relevant indicators to evaluate this impact should be developed as well.  

The use of data mining techniques in clinical pharmacology can be broadly grouped into 
two main areas, each with specific aims: 

1. identification of new effects of drugs (mostly adverse reactions, but sometimes also 
new therapeutic effects, and effects in special populations); 

2. appropriateness in drug use (e.g., frequency of use in patients with contraindications, 
concomitant prescriptions of drugs known for the risk of clinically relevant 
interactions). 

Both aims can be addressed using each of the three conventional sources of data listed 
below, although the inherent purpose for which they are created should be kept in mind 
when interpreting results: any secondary analysis of data collected for other purposes 
carries intrinsic biases.  

 Spontaneous reporting systems (SRS) are mostly addressed to identify adverse 
reactions. Virtually anywhere in the world, notification of adverse drug events is 
mandatory for health professionals, but also other subjects can report events to the 
relevant regulatory Authorities. Main Drug Agencies routinely use algorithms of data-
mining to process data periodically and to find possible unknown drug-effect 
associations. These algorithms identify drug-reaction pairs occurring with a significant 
disproportion in comparison with all other pairs. Clinical pharmacology knowledge is 
then requested to interpret those signals and to decide if further examination is needed 
(either within the same source of data or by other type of data) or specific bias affects 
the validity of the signal. More detailed description on this specific strategy will be 
provided in the next paragraphs. This source of data is currently the most frequently 
approached with data mining in pharmacovigilance [1], because of its usefulness and 
the ready availability of information. In some limited cases, also aim 2 above can be 
addressed by this source: the detailed analysis of patient related risk factors 
(demographic characteristics, concomitant disorders or medications) can show foci of 
lack of appropriateness in the use of specific drugs included in adverse event reports. 
No inference on the incidence of the adverse event among patients exposed to a specific 
drug or with risk factors can be performed.  

 Electronic medical records (namely, patient registries) are mainly collected with the 
aim to assist physicians in daily appropriate prescription. For each subject, these 
registries usually include information on socio-demographic characteristics, diagnoses, 
risk factors, treatments and outcomes. Primary care is the most frequent setting for the 
development of this kind of registry and many authoritative examples exist: GPRD 
(General Practice Research Database), HEALTH SEARCH, THIN (The Health 
Improvement Network), IPCI (Interdisciplinary Processing of Clinical Information). 
Hospital examples are also important as  they clearly cover complementary therapeutic 
areas. The high quantity of information and the high quality of data included in these 
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tools makes them valuable sources for data mining aimed to address clinical 
pharmacology questions, both in terms of new effects of drugs (especially on primary 
endpoints, to confirm premarketing evidence) and of assessment of appropriate drug 
use (closer to the main purpose of the registries). 

 Claim databases originate for administrative purposes: for instance, in many European 
countries, health care costs are provided by the National Health Service to Local Health 
Authorities on the basis of the costs of the medical interventions provided to citizens. 
Claim databases include all data useful to this purpose (e.g., diagnoses of hospital 
admissions, reimbursed prescriptions of drugs, diagnostic procedures in ambulatory 
care) and, as a secondary aim, they represent an important source for epidemiological 
questions. These data can be equally useful for both aims (1 and 2 above), provided that 
their intrinsic limitations are duly acknowledged, in particular it should be recognized 
that information on outcomes are not strictly related to drug use (namely, adverse drug 
reactions) and patho-physiological plausibility supporting drug-reaction associations 
should be more stringently verified. 

Among assessments of appropriate drug use, there is growing interest in the study of drug-
drug interactions, which are usually dealt with by analyzing claim databases searching for 
specific drug-drug pairs known to interact with clinically relevant consequences. The final 
aim of this strategy is to compare the frequency of such drug-drug pairs in different settings, 
or in different periods of time for the same setting, to quantify the risk at population level 
and the impact of specific educational interventions. Also SRSs can be mined for drug-drug 
interactions, but in this case the aim is usually quite different: specifically assessing the 
actual contribution of drug-drug interaction in the occurrence of defined ADRs [2,3]. 
Virtually, this last step (possible association between specific drug-drug interaction and 
adverse events) should be performed first in the drug evaluation process; once the risk of a 
given drug-drug interaction is documented and the percentage of patients developing the 
ADR is quantified (by using causal association methodologies), the risk at the population 
level can be evaluated for clinical and regulatory purposes. 

After identification of the most appropriate source of data to address the research question, 
the appropriate methodology to approach data analysis should be identified. From data 
cleaning (a mere data managing step, see below) to statistical methodologies (e.g., multiple 
regression analysis), all steps of data management are considered parts of data mining 
techniques. Usually, each source of data is analyzed by the own natural data mining 
approach (e.g., disproportion calculation for SRSs, multiple regression analysis for electronic 
medical records), but emergent strategies to better exploit the more accessible sources are 
now appearing in the biomedical literature (e.g., self-controlled time series [4]). In fact, data 
mining could virtually provide as many associations as possible between drug and effect, 
but, without a consensus among experts on the methodological steps and a confirmation of 
patho-physiological pathways, the association can easily conduct to interpretation errors. 
For instance, the risk of pancreatitis by antidiabetics is currently a matter of debate and 
recently Elashoff et al. [5] claimed a 6-fold increase of pancreatitis in subjects exposed to 
exenatide. This raised criticisms by several authors [6,7]. Elashoff et al., indeed, tried to 
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approach SRSs by a specific strategy for analytical studies (case-control analysis), 
disregarding the absence of pure control subjects (see below). 

Text-mining [8] and information mining [9] are also frequently used in searching possible 
associations between drugs and adverse events, although this is virtually ignored by 
regulatory agencies. Especially in this case, the source of data is a key step for a reliable 
result of the analysis: both free-text search into electronic patient records and text analysis of 
any document freely published online represent possible sources of data for these strategies. 
Because of the huge variety of information processed by this approach, a more strict 
plausibility of the associations found between drug and effect should be claimed, because of, 
for instance, the high risk of inverse causality. 

2. Definition and objectives of data mining in pharmacovigilance 
Before addressing methodological issues, we provide an overview on the potential of data 
mining in the field of pharmacovigilance. 

2.1. The need for pharmacovigilance 

Pharmacovigilance (PhV) has been defined by the World Health Organization (WHO) as 
“the science and activities relating to the detection, assessment, understanding and 
prevention of adverse effects or any other possible drug-related problems” [10]. In the past, 
it was regarded as being synonymous with post-marketing surveillance for adverse drug 
reactions. However, the concept of surveillance in pharmacovigilance and 
pharmacoepidemiology has evolved from the concept of surveillance in epidemiology. 
Surveillance and monitoring are different - surveillance involves populations, while 
monitoring involves individuals. Surveillance reflects real-world pharmacovigilance 
processes and has been recently defined “a form of non-interventional public health 
research, consisting of a set of processes for the continued systematic collection, compilation, 
interrogation, analysis, and interpretation of data on benefits and harms (including relevant 
spontaneous reports, electronic medical records, and experimental data)” [11]. 

The specific aims of pharmacovigilance are: 

 the identification of previously unrecognized Adverse Drug Reactions (ADRs, novel by 
virtue of nature, frequency and/or severity); 

 the identification of subgroups of patients at particular risk of adverse reactions; 
 the continued surveillance of a product throughout the duration of its use, to ensure 

that the balance of its benefits and harms are and remain acceptable; 
 the description of the comparative adverse reactions profile of products within the same 

therapeutic class; 
 the detection of inappropriate prescription and administration; 
 the further elucidation of a product’s pharmacological and toxicological properties and 

the mechanism(s) by which it produces adverse effects; 
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 the detection of clinically important drug–drug, drug–herb/herbal medicine, drug–food, 
and drug–device interactions; 

 the communication of appropriate information to health-care professionals; 
 the confirmation or refutation of false-positive signals that arise, whether in the 

professional or lay media, or from spontaneous reports (see below for definition of a 
“signal”) [12]. 

Therefore, PhV is becoming a holistic discipline embracing overall risk/benefit assessment, 
which necessarily takes place both at the individual patient level and at the population level 
(epidemiological perspective). It is now recognized as a key proactive approach for 
appropriate drug prescription and rational use of medicines, as it provides the tools to 
prevent, detect, monitor and counteract adverse drug reactions, by perfectly complementing 
the branch of pharmaco-epidemiology. A complete taxonomy of terminologies and 
definitions used in PhV (including medication errors) is beyond the aim of this chapter, as it 
has been extensively addressed by a number of Authors [10,13]. Indeed, the European 
Medicines Agency (EMA) has recently adopted the new pharmacovigilance legislation 
(Regulation (EU) No 1235/2010 and Directive 2010/84/EU), approved by the European 
Parliament and European Council in December 2010 [14,15]. This legislation is the biggest 
change to the regulation of human medicines in the European Union (EU) since 1995 and is 
now in force as of July 2012. Great emphasis is explicitly mentioned on the role of PhV to 
“promote and protect public health by reducing burden of ADRs and optimizing the use of 
medicines”.  

2.2. Pharmacovigilance tools: An overview 

All the objective of PhV can be achieved through different types of studies, which are 
intended to be either “hypothesis-generating” or “hypothesis-testing” or to share these 
aims. The former are represented by spontaneous reporting and prescription event 
monitoring with the aim of identifying unexpected ADRs, whereas the latter are represented 
by case-control or cohort studies, which aim to prove (by risk quantification) whether any 
previous suspicious that has been raised is justified. Although rules and regulations 
governing the spontaneous reporting of ADRs vary among Countries, there are some basic 
commonalities: 1) with the exception of pharmaceutical companies that are legally “forced” 
to report ADRs to health authorities, it is an independent voluntary notification of the 
reporter (e.g., healthcare professional, patient); 2) it is sufficient that a suspicion arises (no 
certainty is required); 3) there must be an identiable drug, patient, and event; 4) the total 
number of exposed to the drug and the total number that experiences/did not experience an 
event are unknown. In other words, the exact numerator and denominator, a pre-requisite 
for quantifying risk, are unavailable.  

Although spontaneous reports are placed at the bottom of the hierarchy of the evidence, 
they represent a timely source in the early evaluation of safety issues associated with 
specific drugs, in particular for new compounds. Clinical trials are considered as the best 
source of evidence, although they suffer of several methodological issues (e.g., limited 
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sample size, reduced follow-up, evaluation of surrogate markers) that undermine their 
fully external validity. By contrast, the analysis of spontaneous reports reflects the real-
world scenario, in which patients experienced the primary outcome in a complex 
pharmacological context. This underlines the importance of a high-quality analysis 
according to standard procedure and strengthens the need for transparency among 
different data miners (i.e. independent Research Organization, Universities, Regulators, 
Manufacturers) to provide the best outcome for patients. It is only the convergence of 
proofs which allows final conclusions and decisions in pharmacovigilance. Thus, the 
notion of ‘levels of evidence’, widely used for evaluating drug efficacy, cannot be 
actually applied in the field of ADRs; all methods are of interest in the evaluation of 
ADRs [16]. 

Spontaneous reports are collected by drug companies and at regional, national and 
international level through different databases. The Eudravigilance database (European 
Union Drug Regulating Authorities Pharmacovigilance) is held by the European Medicines 
Agency and collects/exchanges electronically ADRs coming from national regulatory 
authorities, marketing authorization holders and sponsors of interventional clinical trials 
and non-interventional studies in Europe. The Uppsala Monitoring Centre in Sweden is 
responsible for the worldwide gathering of all serious ADRs received by regulatory 
authorities and companies. The FDA Adverse Event Reporting System (FDA_AERS) collects 
ADRs from the US as well as rare and severe events from Europe. Unfortunately, only a 
minority of spontaneous reporting systems offers a public access to external 
researchers/consumers. These include the FDA_AERS and the Canada Vigilance Adverse 
Reaction Online Database [17]. At national level, several regional centers support the 
national Agency by publicly posting a list of potential signals. For instance, the Netherlands 
Pharmacovigilance Centre Lareb provides a quarterly newsletter service including new 
emerging signals [18]. 

Although SRSs have been criticized due to inherent pitfalls, a recent survey found that the 
Population-based reporting ratio (PBRR, defined as the total number of ADR reports 
collected in a safety database per year per million inhabitants) revealed an increased 
reporting activity at national level (half of the European Countries exceed the standard 
threshold of 300 for PBRR, indicating a sufficient quality for signal detection), with strong 
correlation with the relative increase at the international level [19]. 

While the analysis of multiple databases has the advantage to cover a very large population 
and heterogeneous patterns of reporting for ADRs, it is important to note that data cannot 
be simply aggregated/pooled to perform DMAs for the following reasons:  

 differences exists among databases, especially in terms of accessibility, drug and 
adverse event coding.  

 overlap are likely to exist among national and international archives, especially for rare 
and serious ADRs. The precise extent of overlap has not been assessed yet and may 
vary depending on the ADR under investigation. 
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Therefore, combination of different databases has been proposed to achieve the highest 
statistical power in signal detection [20].  

2.3. The term “signal” in pharmacovigilance: An evolving concept 

The major aim of PhV is signal detection (i.e., the identification of potential drug-event 
association that may be novel by virtue of their nature, severity and/or frequency). In the 
literature, the term signal has been subject to debate and discussion. Some authors 
attempted to provide a comprehensive overview of definitions that have been proposed and 
implemented over the years. The WHO has defined ‘signal’ as ‘‘Reported information on a 
possible causal relationship between an adverse event and a drug, the relationship being 
unknown or incompletely documented.’’ The definition is not self-contained, being followed 
by a qualifier that stipulates that ‘‘usually more than one case is required’’ [10]. This 
qualifier is important, because it implies that the information content of the signal must 
sufficiently reduce uncertainty to justify some action, and therefore partially mitigates the 
former limitation. This should be part of the definition. Meyboom et al. [21] stated that ‘‘A 
signal in pharmacovigilance is more than just a statistical association. It consists of a hypothesis 
together with data and arguments, arguments in favor and against the hypothesis. These relate to 
numbers of cases, statistics, clinical medicine, pharmacology (kinetics, actions, previous knowledge) 
and epidemiology, and may also refer to findings with an experimental character.’’ It is important to 
note that a single report or a few reports can sometimes constitute a signal of suspected 
causality. This is the case of well documented, high-quality reports with positive re-
challenge. These so-called anecdotes provide a definitive (‘between-the-eyes’) drug-related 
reactions, which do not necessarily need further formal verification [22,23]. In PhV, 
anecdotes have been also technically defined as “Designated Medical Event” (DME), which 
is a rare but serious reactions with high drug-attributable risk (i.e., a significant proportion 
of the occurrences of these events are drug induced) [24]. Stevens-Johnson Syndrome/Toxic 
Epidermal Necrolysis (SJS/TEN) and Torsade de Pointes (TdP) are typical example of DMEs, 
although a formal and universally accepted list of DMEs does not exist. The most balanced 
way to analyze DMEs is to use disproportionality in conjunction with a case-by-case 
evaluation, in order to capture all possible information from spontaneous reports [25]. 
However, in most of the cases, information that arises from one or multiple sources 
(including observations and experiments) should be taken into account for causality 
assessment [26]. Indeed, after a suspicion has been raised (signal generation), it needs to be 
corroborated by the accumulation of additional data (signal strengthening). The final step 
involves the confirmation and quantification of the relation between drug and ADR by 
epidemiological methods (signal quantification). Although in every step of the process both 
individual case reports and analytical techniques are involved, the relative importance of 
these approaches differs per step [26]. Once a signal is verified, a number of regulatory 
actions may be considered, depending on the level of priority assigned to the signal. This 
prioritization process is mainly based on the assessment of public health impact, the severity 
of the adverse event and the strength of disproportionality. Regulatory measures may range 
from close monitoring of the signal over time (without practical interventions, the so-called 
watchful waiting) to drug withdrawal from the market due to a negative risk/benefit profile.  
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2.4. The need for Data Mining Algorithms (DMAs) 

Currently, the “art” of signal detection can be performed on a case-by-case basis (traditional 
approach, especially for DMEs) or through automated procedures to support the clinical 
evaluation of spontaneous reports, the so-called “data mining approach”. In general terms, 
data mining can be considered an activity related to “knowledge discovery in databases”, 
i.e., the process of extracting information form a large database [27]. In this context, data 
mining is refereed to as the computer-assisted procedures, starting from processing of 
dataset by data “cleaning” and culminating into the application of statistical techniques, 
often known as data mining algorithms (DMAs). DMAs are currently and routinely used by 
pharmacovigilance experts for quantitative signal detection [28]. The purposes of 
quantitative signal detection are many-fold and may vary depending on the local habit of 
PhV experts. For instance, DMAs can be used as an aid to the traditional case-by-case 
assessment; as a screening tool to periodically generate a list of signals requiring in depth 
investigation (i.e., to prioritize signals); on ad hoc basis to detect complex data dependencies, 
which are difficult to be manually detected (e.g., drug-drug interactions or drug-related 
syndromes) [29]. 

2.5. The use of DMAs 

Although DMAs are relatively new as compared to clinical trials and epidemiological 
studies, the first published attempt to assess the extent of reporting in drug safety through 
disproportionality, to the best of our knowledge, was by Bruno Stricker [30]. In 1997, the 
study by Moore et al., [31] introduced the concept of “case/non case method” when 
performing pharmacovigilance analyses. They postulated that this term was a more effective 
representation than case-control: controls are not actual controls since they are all exposed 
to at least one drug, and have at least one event (there are no untreated ‘healthy’ controls). 
They are simply not cases of the event of interest: they are cases of something else [32]. 

The accuracy of data mining techniques has been already tested retrospectively to determine 
if already known safety issues would have been detected ‘earlier’ [33]. However, it is 
generally difficult to determine when a known safety concern was first detected. Moreover, 
the surrogate endpoint that have been used (e.g., the date of implementation of new 
labeling) is unlikely to truly represent the time of first detection of a new safety signal, thus 
affecting the results in favor of DMAs. Overall, DMAs often provided a high level of 
accuracy in terms of timely prediction of risk and, therefore their use have been encouraged 
as an early source of information on drug safety, particularly new drugs, thus guiding the 
proper planning of subsequent observational studies [34].  

Although the rationale and the methodology of the various approaches differ, all DMAs 
query databases for disproportionality and express the extent to which the reported ADR is 
associated with the suspected drug compared with all other drugs (or a subgroup of drugs) 
in the database. The reporting of ADRs related to other drugs in the database is used as a 
proxy for the background occurrence of ADRs. In other words, they assess whether 



Data Mining Techniques in Pharmacovigilance: Analysis  
of the Publicly Accessible FDA Adverse Event Reporting System (AERS) 273 

statistically significant differences in the reporting exist among drugs (the so-called 
“unexpectedness”) and provide an answer to the question: “does the number of observed 
cases exceed the number of expected cases?”. It is important to underline that, although 
these approaches are known as “quantitative” signal detection methodologies, no risk 
quantification can be assessed. Moreover, the presence of a statistically significant result 
does not necessarily imply an actual causal relationship between the ADR and the drug, nor 
does the absence of a statistically significant result necessarily disprove the possible 
relationship. As a matter of fact, the term “signal of disproportionate reporting” has been 
suggested by Hauben & Aronson [26] to emphasize the uncertainty in causality assessment.  

DMAs can be classified in frequentist and Bayesian approach. Among the former, the 
Reporting Odds Ratio (ROR) is applied by the Netherlands Pharmacovigilance Centre 
Lareb, whereas the Proportional Reporting Ratio (PRR) was first used by Evans et al. [35]. 
Bayesian methods such as Multi-item Gamma Poisson Shrinker (MGPS) [36] and Bayesian 
Confidence Propagation Neural network (BCPN) [37] are based on Bayes’ law to estimate 
the probability (posterior probability) that the suspected event occurs given the use of 
suspect drug.  

Frequentist or classical methods are particularly appealing and therefore widely used due to 
the fact that they are relatively easy to understand, interpret and compute as they are based 
on the same principles of calculation using the 2x2 table (see Table 1 with Figure 1).  
 

 Drug of interest All other drugs in the 
database Total 

Adverse drug reaction of interest A B A+B 
All other adverse drug reaction C D C+D 
Total A+C B+D A+B+C+D 
A= number of reports containing both the suspect drug and the suspect adverse drug reaction 
B= number of reports containing the suspect adverse drug reaction with other medications (except the drug of interest) 
C= number of reports containing the suspect drug with other adverse drug reactions (except the event of interest) 
D= number of reports containing other medications and other adverse drug reactions  

Table 1. Formal 2x2 contingency table 

The PRR involves the calculation of the rate of reporting of one specific event among all 
events for a given drug, the comparator being this reporting rate for all drugs present in the 
database (including the drug of interest). Usually, a disproportion is considered on the basis 
of three pieces of information: PRR≥2, χ2≥4 and at least 3 cases [35]. The ROR is the ratio of 
the odds of reporting of one specific event versus all other events for a given drug compared 
to this reporting odds for all other drugs present in the database. A signal is considered 
when the lower limit of the 95% confidence interval (CI) of the ROR is greater than one. 
Basically, the higher the value, the stronger the disproportion appears to be. In both these 
methods, for a given drug, the particular risk of an event being reported versus other events 
is compared to a reference risk: that observed for all drugs in the database for PRR and for 
all other drugs for ROR. This reference risk is thought to reflect the baseline risk of the 
reporting of an event in a subject taking a drug, provided that there is no specific association 
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between the drug and the event of interest. The question arises as to whether this reference 
risk always provides an accurate estimate of the baseline risk of an event for a patient 
receiving any drug, since it is obtained by considering a reference group of drugs that can 
include drugs known to be at risk for a particular event. This aspect will be specifically 
addressed in the following section of the chapter. Rothman et al., [38] proposed to treat 
spontaneous reporting system as a data source for a case-control study, thus excluding from 
the control series those events that may be related to drug exposure; therefore, the ROR may 
theoretically offer an advantage over PRR by estimating the relative risk. However, this 
apparent superiority has been called into question, because both disproportionality 
measures do not allow risk quantification, but only offer a rough indication of the strength 
of the signal [39].  

 
Figure 1. Relationships among patients exposed to drugs, experiencing ADRs and actual reporting 
(used to calculate disproportionality). Areas of circles do not necessarily reflect the precise proportion 
and relationships existing among circles. 

As compared to the view of “frequency probability”, Bayesian methods interpret the 
concept of probability as the degree to which a person believes a proposition. Bayesian 
inference starts with a pre-existing subjective personal assessment of the unknown 
parameter and the probability distribution (called prior distribution). They are based on the 
Bayes’ law, assuming that there are two events of interest (D and E), which are not 
independent. From the basic theory of probability, it is known that the conditional 
probability of E given that D has occurred is represented as P(E/D)=P(E,D)/P(D), where 
P(D)=probability of a suspected drug being reported in a case report; 

Drug used in the population
ADRs occurring in the 
population

ADRs reported in the 
database

A
BC

D
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P(E)= probability of a suspected event being reported in a case report; 
P(E,D)= probability that suspected drug and event being simultaneously reported in a case 
report; 
P(E/D)= probability that suspected event being reported given the suspected drug being 
reported; 

Assuming that the probability that D and E simultaneously occur is the same as the 
probability that D and E occur and rearranging the formula, we have 
P(E/D)=P(E,D)/P(D)=P(E)P(D/E)/P(D), which is Bayes’ law. 

The signal metric or signal score in BCPNN is the information component (IC) = log2 
P(E,D)/P(E)P(D). If drug and event are statistically independent, the ratio of the joint 
probability of drug and event [P(E,D)] to the product of the individual probabilities 
[P(E)P(D)] will equal 1 and the IC will equal zero. The use of the logarithm of the ratio is 
derived from information theory. The elementary properties of logarithms make them 
suitable for quantifying information. The IC can be conceptualized as the additional 
information obtained on the probability of the event (or the additional uncertainty 
eliminated) by specifying a drug. Separate prior probabilities are constructed to represent 
the possible unconditional probabilities of drug [P(D)], event [P(E)] and the joint probability 
of drug and event [P(E,D)]. Uninformed priors (meaning all probabilities are weighed 
equally in the absence of data) are used for the unconditional probabilities. 

The parameters of the joint probability distribution are then selected to make the limit of the 
IC approach zero for very low cell counts. As data accumulate, the influence of these priors 
will diminish more for cells with high counts. This means that, for drugs or events for which 
the counts are low, the signal score is shrunk more toward the prior probabilities based on 
statistical independence. A signal usually requires that the lower 95% CI of the IC exceed 
zero [40]. A comprehensive review of the principles subtending calculation of Bayesian 
methods is beyond the aim of this chapter and the reader is referred to Hauben & Zhou [41] 
for sophisticated, yet intuitive discussion of this issue. 

Although the discussion on performance, accuracy and reliability of different DMAs is 
fascinating, actually, there is no recognized gold standard methodology. Therefore, several 
studies have been conducted to examine and compare the performance of different DMAs, 
in terms of sensitivity, specificity, accuracy and early identification of safety issues. A 
number of investigations explored whether differences exist between frequentist and 
bayesian approaches and found that PRR is more sensitive than MGPS, although the 
estimation from the MGPS is believed to be more robust when the number of reports is 
small [42-45]. While, to the best of our knowledge, no studies has been conducted to 
compare the MGPS and BCPN, van Puijenbroek et al., [46] first attempted to compare four 
DMAs ROR, PRR, Yule’s Q and χ2 with IC. Since the IC is not the gold standard, these 
comparisons may have affected the findings, leading to an overestimation of the sensitivity. 
Notably, a high level of concordance was found, especially when the number of reports 
exceeds four. Kubota et al., [47] using a Japanese SRS, analyzed 38,731 drug-event 
combinations (DECs) and found a highly variable percentage of detected DEC among 
DMAs, ranging from 6.9% (GPS) to 54.6% (ROR). However, a misclassification bias may 
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have affected the results. It is clear, however, that the volume of signals generated by itself is 
an inadequate criterion for comparison and that the clinical nature of events and differential 
timing of signals needs to be considered [48]. In this context, a recent pilot study by Chen et 
al., [49] performed on the FDA_AERS, showed a better performance of ROR in terms of 
timing of early signal detection as compared to other DMAs, when tested on ten confirmed 
DEC. The issue of timely detection is of utmost importance in PhV, because early detection 
of safety-related problems may trigger signal substantiation and quantification through 
other pharmacoepidemiological research. 

Apart from sensitivity, specificity, positive and negative predictive value, the possibility for 
correcting for covariates should be taken into account. Due to the nature of data source 
(mainly focused on drug-related information rather than patient’s characteristics), the 
reporting of specific concomitant drugs may be used as a proxy for underlying disease, 
which may act as confounder. The use of these agents may be therefore considered in the 
multivariate regression analysis to calculate an adjusted disproportionality [50]. The ROR is 
a transparent and easily applicable technique, which allows adjustment through logistic 
regression analysis. An additional advantage of using ROR is the fact that non-selective 
underreporting of a drug or ADR has no influence on the value of the ROR compared with 
the population of patients experiencing an ADR [51]. For these reasons, our Research Unit of 
Clinical and Experimental Pharmacology at the University of Bologna at present uses the 
ROR with 95%CI to calculate disproportionality (data provided in the following section of 
the chapter are presented through this DMA). An overview on the most frequently used 
DMAs is provided in Table 2 to summarize operative information for the reader. 

The arbitrary nature of threshold criteria for signal detection could cause the identification 
of potential false positive or false negative associations. A recent review of published 
threshold criteria for defining signals of disproportionate reporting highlighted a 
considerable variation in defining a significant disproportionality among practitioners of 
pharmacovigilance data miners. For instance, ROR-1.96 Standard Error>1 may be used 
instead of 95%CI. The impact of this change is actually unexplored [52]. Indeed, changing 
the thresholds or selecting DMAs based on sensitivity considerations alone can have major 
implications: a more stringent criterion increases the sensitivity of the test by lowering the 
number of false positives, with the risk of missing credible signals. It is necessary to find an 
optimum balance, not just with regard to the use of statistics (frequentist vs Bayesian) but 
also among thresholds used for signal detection. Without a clinical evaluation of the signals, 
it is unclear how signal volume relates to signal value – the ability to identify real and 
clinically important problems earlier than they would be identified using current 
pharmacovigilance methods. In the wake of this challenging task, data mining methods 
based on false discovery rates have recently been proposed with promising results [53]. In 
addition, novel data mining techniques are emerging, such as those based on biclustering 
paradigm, which is designed to identify drug groups that share a common set of adverse 
events in SRS [54]. Another emerging issue pertains the identification of drug-drug 
interaction in a pharmacovigilance database. Very recently, a new three-way 
disproportionality measure (Omega, based on the total number of reports on two drugs and 
one ADR together) was developed within the WHO_Vigibase [55,56]. 
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DMA Computation 
Published 
threshold 
criteria 

Advantage Limitations Regulatory 
Agencies 

Bayesian methods 

Multi-item 
Gamma 
Poisson 
Shrinker 
(MGPS) [36] 

a	�a � � � � � ��
�a � ��	�a � ��  EBGM05 > 2

N>0 

Always 
applicable 
More specific as 
compared to 
frequentist 
method* 

Relatively non-
transparent for 
people non 
familiar with 
Bayesian 
statistics 
Lower sensitivity  

FDA (AERS) 

Bayesian 
Confidence 
Propagation 
Neural 
network 
(BCPN) [37] 

log�	a	�a � � � � � ��
								�a � ��	�a � �� 	 IC-2 SD>0 

Always 
applicable 
More specific as 
compared to 
frequentist 
method* 
Can be used for 
pattern 
recognition in 
higher 
dimension 

Relatively non-
transparent for 
people non 
familiar with 
Bayesian 
statistics 
Lower sensitivity 

UMC (WHO-
Vigibase) 

Frequentist methods

Proportional 
Reporting 
Ratio (PRR) 
[35] 

�������
������� 

95%CI=eln(PRR)±1.96

��
� �

�
� �

�
� �

�
�

 

PRR≥2,  
χ2≥4, 
N≥3 

Easily applicable
Easily 
interpretable 
More sensitive 
as compared to 
Bayesian 
method* 

Cannot be 
calculated for all 
drug-event 
combinations 
Lower specificity

EMA 
(Eudravigilan
ce) 
Italian 
Regulatory 
Agency 
(AIFA) 

Reporting 
Odds Ratio 
(ROR) [46] 

���
��� 

95%CI=eln(ROR)±1.96

��
� �

�
� �

�
� �

�
�

 

95%CI> 1,
N≥2 

Easily applicable
Easily 
interpretable 
More sensitive 
as compared to 
Bayesian 
method* 
Different 
adjustment for  
covariates in 
logistic 
regression 
analysis 

Odds ratio not 
calculated if 
denominator is 
zero (specific 
ADRs) 
Lower specificity

Lareb 
(Netherlands) 

* when commonly cited thresholds are used. 
χ2= chi-squared; N= number of cases; IC= Information Component; CI=Confidence Interval;  SD=Standard Deviation; 
EBGM=Empirical Bayesian Geometric Mean; 05=fifth percentile of the posterior distribution, i.e., there is a 95% 
probability that the “true” relative reporting ratio exceeds the EBGM05 

Table 2. Summary of major DMAs used for signal detection. 
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2.6. DMAs: Current debate 

In the literature, there is debate on the advantage of using the number of reports instead of 
sales/prescriptions as denominator for signaling approach. We believe that both methods 
are useful, but should be used according to the research objective. In particular, the use of 
drug utilization data is of utmost importance to calculate reporting rates for drugs with 
already known association with the event, thus estimating the lowest incidence (assuming 
the under-reporting is limited due to the notoriety of the ADR or at least equally distributed 
within the database). 

Recently, the publication of PhV analyses through disproportionality measures has been 
subject to debate and criticism [57]. Some benefits and strengths of using DMAs are 
undisputed, since they are quick and inexpensive analyses routinely performed by 
regulators and researchers for drug safety evaluation [16]. Apart from the hypothesis-
generating purpose of signal detection, other important application of this method are (a) 
validation of a pharmacological hypothesis about the mechanism of occurrence of ADRs 
[58]; (b) characterization of the safety profile of drugs [59]. Nevertheless, it is important to 
underline that the identification of potential safety issues does not necessarily imply the 
need for wider communication to healthcare professional through publication, as it may 
cause unnecessary alarm without a real safety alert. The number of papers on case/non case 
evaluation are increasing exponentially and calls for minimum requirements before 
publication in the medical literature. This would ensure dissemination of high quality 
studies, which offer innovative methodology or provide novel insight into drug safety. The 
transparency policy recently adopted by the FDA is important to share with 
pharmacovigilance experts current safety issues requiring close monitoring before publicly 
disseminating results to consumers. Likewise, disproportionality analyses submitted for 
publication to relevant journals should address (and optimistically try to circumvent) bias 
related to selective reporting, in order to provide meaningful comparison among drugs and 
allow provisional risk stratification.  

2.7. DMAs: Caveats 

When planning a pharmacovigilance analysis and discussing its results, there are a number 
of limitations requiring careful consideration in view of the potential clinical implications. 
These caveats are related both to data source, namely individual reports with relevant 
spontaneous reporting system, and the adopted DMA [48,60]. Underreporting is one the 
most important limitation on SRS as it prevents to precisely calculate the real incidence of 
the event in the population [61]. As a matter of fact, only a small proportion of the ADRs 
occurring in daily practice is reported. 

Substantial deficits in data quality and data distortion occur at two levels in SRS databases: 
at the level of the individual case records (i.e., quality and completeness of the reported 
information) and at the level of the overall sample (e.g., the framework of ADRs, which may 
vary depending on local rules for reporting). The FDA, for example, requires the reporting 
of events that occur in other countries only if they are serious and unlabeled based on the 
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US label. Hence a drug for which a serious adverse event has been included in the label 
earlier will appear to have fewer such events in the FDA AERS database than one for which 
the event was added later. The geographic distribution of market penetration of a new drug 
may also influence the apparent safety profile based on the SRS. For example, a drug whose 
use is predominantly in the U.S. may appear to have a very different profile than a drug 
whose use is predominantly in Europe, with the apparent difference potentially being due 
to differences in reporting expectations and behavior rather than real differences in the 
effects of the drugs. At present, there are also several limitations regarding the use of public-
release version of the FDA_AERS. Apart from the 6-month lag time in data release through 
the FDA website, the most significant caveats concern the presence of duplicate reports and 
missing data as well as the lack of standardization in recording drug names of active 
substances. All these technical issues must be considered when exploring the FDA_AERS 
and will be specifically discussed in the following section of the chapter. 

Another key danger in over-reliance on data mining may be described as ”seduction bias” in 
which an extensive mathematical veneer of certain algorithms may seduce the safety 
reviewer/data miner into believing that the enormous deficiencies and distortions in the 
data have been neutralized [48]. Another aspect is the so called “self-deception bias”, which 
can occur when a data miner with a strong incentive to believe in a particular outcome may 
consciously or subconsciously try to avoid results that contradict pre-existing expectations. 
In other words, the data miner may apply nonspecific case definitions of uncertain clinical 
relevance and/or sequential mining with different subsets of the database and/or candidate 
data mining parameters, until the “desired” output is achieved [48]. 

Concerning the overall quality of reports, there is still room for improvement due to the vast 
amount of missing data, especially on clinically relevant information regarding the time-to-
onset of the reaction, the dechallenge/rechallenge information (an important component of 
the causality assessment). There should also be a commitment to improving the quality of 
the data, which is ultimately the rate limiting step. A recent study address some challenges 
and limitations of current pharmacovigilance processes in terms of data completeness and 
resorted to use the case of flupirtine to exemplify the need for refined ADR reporting [62]. 

The pattern of reporting is also widely influenced by external factors, which may affect the 
reliability of detected signal. Among the most important confounders, the product age (i.e., 
the time on the market of the compound) and stimulated reporting should be 
acknowledged. It is widely accepted that when a drug first receives marketing 
authorization, there is generally a substantial increase in the spontaneous reporting of ADRs 
(especially during the first two years on the market), which then plateaus and eventually 
declines. This epidemiological phenomenon is called “Weber effect” and was repeatedly 
shown for non-steroideal antinflammatory drugs [63-65]. This aspect may be related to the 
increased attention of clinicians towards a novel drug and may intuitively imply that the 
number of new signals detected reaches a peak over time with a subsequent decline. 
However, a new therapeutic indication or dose regimen may result in a new reporting 
pattern, thus one should be aware of the lifecycle status of the drug under investigation as 
well as significant change in its use. In addition, media attention and publicity resulting 
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from advertising or regulatory actions (e.g., dear doctor letter or warnings against drug-
related safety issues) may result in increased reporting and can generate a higher-than-
expected reporting ratio, a phenomenon known as “notoriety bias” [66,67]. Notoriety bias 
can also affect drugs other than those directly involved in alerts, thus causing a sort of 
“ripple effect” [7,68]. Routine incorporation of time-trend axis should be therefore 
recommended when planning pharmacovigilance analysis to gain insight into the temporal 
appearance of the signal, especially when regulatory interventions may have affected the life 
cycle of drug. Even if all the studied drugs are similarly affected by notoriety at a given 
time, false positive signals could be generated if this notoriety effect on reporting is 
differentially diluted among prior reports for older drugs compared with more recently 
marketed drugs. This differential effect related to the time on the market was recently 
demonstrated by Pariente et al., [69] for five “old” antidepressants versus escitalopram. 
Finally, physicians’ prescribing are affected by a number of factors, including the severity of 
the disease, which create the potential for confounded drug-effect associations, the so-called 
“channeling bias” [70].  

Concerning DMAs, it should be acknowledged that disproportionality methods do not 
estimate reporting rates and cannot provide incidence (see Figure 1). No drug usage is 
involved in the calculation. Also while reporting rates can increase for all DEC, measures of 
disproportionality are interdependent: an increase in a measure of disproportionality for 
one combination causes a decrease for other related combinations. A similar scenario occurs 
when two drugs have very different reporting patterns. If one has many more reports in 
general than the other, but they have similar rates for a particular term, the drug with the 
lower overall reporting will have a disproportionality detected more easily [29]. 

2.8. DMAs: Current perspective in signal refinement 

The issue of selecting a priori a reference group (among drugs or events) as control to 
calculate disproportionality is a matter of debate in the literature, because it can significantly 
impact the results and their clinical implication [5,71,72]. Indeed, this aspect represents a 
commendable effort towards the application and implementation of novel data mining tools 
for clinical application. Under certain circumstances, this approach may be of benefit to 
provide the clinical perspective of PhV, with the attempt to move beyond mere signal 
detection. For instance, a recent study on SJS/TEN underlined several drugs with no 
association, which may be considered as alternative treatment options [73]. Basically, there 
are four scenarios deserving mention: (a) the calculation of an intraclass ROR, (b) the 
selection of specific control drugs/events, (c) the removal of already known drug-event 
associations and (d) the removal of non serious ADRs such as nausea, vomiting, abdominal 
pain, which are highly likely to be reported and may mask serious ADRs. 

a. The calculation of an intraclass ROR is based on the only analysis of reports recording 
drugs of interest instead of the entire database (e.g., calculate the ROR of pancreatitis 
for the antidiabetic drug exenatide by using ADRs reported with all antidiabetic 
agents) [7]. This would allow to assess the disproportionate reporting of a given 
compounds in comparison with other agents within the same therapeutic class, and 



Data Mining Techniques in Pharmacovigilance: Analysis  
of the Publicly Accessible FDA Adverse Event Reporting System (AERS) 281 

may therefore be viewed as a secondary sensitivity analysis to provide provisional 
risk stratification. Indeed, one of the most important aspect and a compelling need for 
a clinician is to identify safer molecules within therapeutic classes. Moreover, this 
strategy helps to mitigate the so-called “confounding by indication bias” [74], by 
limiting the analysis to a population of patients that presumably share at least a set of 
common risk factors and diseases. Nonetheless, the so-called “channeling bias” (i.e., 
the possibility that drugs may be differently prescribed in relation to the severity of 
disease) still remains.  

b. The selection of specific control group of events or drugs is currently perceived as an 
attractive strategy for signal detection, and consists in the identification and exclusion 
of a cluster of events with no proved relation with the drug of interest. From one side, 
this approach may be of benefit to detect the hidden signals, which may escape from 
identification when the standard approach including all events is employed [71]. The 
most important limitations are related to the fact that the identification of control 
events/drugs is based on the expert opinion and therefore cannot be automatically 
implemented for all ADRs. Most remarkably, the risk is to select controls on the basis of 
the lack of evidence on possible association, which does not necessarily mean evidence 
of no association. 

c. A different approach for selecting group is based on the removal of already known 
drug-event association, which are usually over-reported in a pharmacovigilance 
database and may therefore mask possible novel associations. This bias is defined in the 
literature as the “competition bias” [72]. Indeed, if the event is significantly associated 
with other drugs, this will modify the denominator by increasing the background 
reporting rate, thereby possibly decreasing the sensitivity of the signal detection 
process. However, this ad hoc strategy precludes its automated application signal 
detection. Notably, the relevance of competition bias may depend on the nature and 
severity of the ADR, as it may have significant impact for clinically serious and 
relatively common adverse events. 

d. Another approach is based on the so-called “masking” or “cloaking” effect, which has 
been largely recognized, but only recently has its impact been explored in the 
FDA_AERS [75]. One simple application could be to exclude from the analysis all non 
serious ADRs, which are often submitted by relevant manufacturers. Notably, the 
FDA_AERS database offers the possibility to identify these reports, which  are 
categorized as: 15-day reports, serious periodic reports, or non serious periodic reports 
for new molecular entity within the first 3 years following FDA approval. 

While one is particularly stimulated to publish and disseminate results on positive 
associations (i.e., statistically significant disproportionality), it is very important to report 
also negative findings, i.e., the lack of drug-event association, which may be of benefit 
especially for prescribers [73,76].  

In the light of the inherent limitations affecting pharmacovigilance analyses, the most 
important step in data mining approach is related to the a priori management of database 
before the application of DMAs (i.e., the definition and processing of the initial raw 



Data Mining Applications in Engineering and Medicine 282 

dataset). Therefore, the following section will describe key issues before applying 
statistical analysis to spontaneous reports and explore how they can impact results. We 
will provide insight into the FDA_AERS and address major methodological issues 
encountered when approaching data mining. This choice is mainly based on the fact that 
the FDA_AERS is a worldwide publicly available pharmacovigilance archive and, 
therefore, we believe that transparency may improve accuracy, allow comparison of 
results among researchers and foster implementation. By virtue of its large population 
coverage and free availability, the FDA_AERS is emerging as a cornerstone for signal 
detection in PhV and is progressively being exploited by US and European researchers 
[25,73,77,78]. In addition, a number of commercial tools, namely query engines are now 
available. For instance, the FDAble [79] and OpenVigil [80], which is a free search query 
available through the University of Kiel. Another public source on drug-induced adverse 
reactions is represented by the DrugCite [81], which allows a number of tools, such as 
mobile applications to describe the primary safety profile of drugs or calculator to assess 
the probability of an adverse event being associated with a drug. It also allows searching 
the FDA_AERS database by providing easily interpretable graphics for the adverse events 
reported over time, stratified by relevant category, ages and gender, thus offering a quick 
check for clinicians on safety information. This would be of benefit for the entire drug 
safety assessment. 

3. Methodological issues: the need for a pre-specified dataset  
According to the Medwatch Program [82] founded in 1993, the US Food and Drug 
Administration (FDA) collects spontaneous reports on adverse reactions of drug, biologic, 
medical device, dietary supplement or cosmetic. In addition to reports coming from 
products’ manufacturer, as required by regulation, FDA receives adverse event reports 
directly from healthcare professionals (such as physicians, pharmacists, nurses and others) 
and consumers (such as patients, family members, lawyers and others). Healthcare 
professionals and consumers may also report these events to the products’ manufacturers, 
which are required to send the report to FDA as specified by regulations.  

Raw data from the MedWatch system, together with ADR reports from manufacturers, are 
part of a public computerized information database called AERS (Adverse Event Reporting 
System) [83].  

The FDA_AERS database contains over 4 million reports of adverse events of worldwide 
human drugs and biological products (concerning about 3 million of patients) and reflects 
data from 1997 to the present. 

In this section we describe the anatomy of the FDA_AERS database and analytically 
illustrate dictionaries and coding systems used by this database. Furthermore, we describe 
our method to perform a systematic mapping of information originally not-codified. 
Subsequently, we discuss two important limitations that affect this dataset, duplicates and 
missing data, and we suggest a strategy for their detection and handling. 
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3.1. Anatomy of the FDA_AERS database 

FDA_AERS is a relational databases structured in compliance with the international safety 
reporting guidance (ICH E2B) [84] issued by the International Conference on 
Harmonization. FDA_AERS includes different file-organized tables linkable through 
specific items and grouped in quarterly periods. Data from first quarter of 2004 to present 
are freely available into FDA website and can be easily downloaded [85], whereas 
previous data can be purchased from NTIS (National Technical Information Service) 
website [86]. Each file-package covers reports within one quarter of year, with the 
exception of the first available year (1997) where file-package covered the November-
December 1997 period. 

All data are provided in two distinct formats: SGML and ASCII. Although the first format 
conforms to the guidelines of the ICH E2b/M2 concerning transmission of individual Case 
safety reports [84], the ASCII data files are more useable. Indeed, these files can be imported 
into all popular applications for relational database such as ORACLE®, Microsoft Office 
Access, MySQL® and IBM DB2®. 

Each quarterly file package includes, besides a text file containing a comprehensive 
description, the following 7 data files: 

 DEMO file (demographic characteristics), including information on “event date”, 
patient “age” and “gender”, “reporter country” and “reporter's type of occupation”. 

 DRUG file (information for reported medications), including role codes assigned to 
each drug: “primary suspect drug” (PS), “secondary suspect drug” (SS), “interacting” 
(I) or “concomitant” (C). 

 REACTION file, including all adverse drug reactions coded by MedDRA terminology 
[87] (for an overview of this tool see below); 

 OUTCOME file (type of outcome, such as death, life-threatening, hospitalization);  
 RPSR file, with information on the source of the reports (i.e. company, literature); 
 THERAPY file, containing drug therapy start dates and end dates for the reported 

drugs (0 or more per drug per event). 
 INDICATIONS file, containing all MedDRA terms coded for the indications of use 

(diagnoses) for the reported drugs; 

Each file will generate a specific table that is linkable to each other using “ISR number” 
(Individual Safety Report) as primary key field. The ISR is a seven digit number that 
uniquely identifies an AERS report and allows linking all data files (see Figure 2).  

Another important field is the “CASE Number” identifying an AERS case, which can 
include one or more reports (ISRs) due to possible follow-up of the same drug-reaction pair. 
If correctly linked, Case number allows identifying all ISRs of the same reports. It is though 
important to introduce this concept since this field is crucial in de-duplication process. 
Indeed "duplicate" ISRs (multiple reports of the same event) will normally have the same 
CASE number (but different ISR numbers). 
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Figure 2. FDA_AERS database structure pictured according the Unified Modeling Language (UML) 
standardization. In each object, major fields of interest are reported in the FDA_AERS data files.  

After downloading and assembling database, to proceed with pharmacovigilance data-
mining, data management is essential for specific fields reporting (i) the adverse drug 
reaction (“PT-Preferred Term” in the REACTION file) and (ii) the suspected drug 
(“DrugName” in DRUG file). Unlike the adverse event, which is coded using the Medical 
Dictionary for Regulatory Activities (MedDRA) terminology [87], drugs are entered as 
textual terms and therefore an internal mapping procedure is required. 

3.2. Adverse drug reaction identification: The multi-axial MedDRA hierarchy  

In FDA_AERS, adverse events are coded according the Medical Dictionary for Regulatory 
Activities (MedDRA) terminology, which allows to classify adverse event information 
associated with the use of pharmaceutical and other medical products (e.g., medical devices 
and vaccines). This terminology is clinically validated, developed and maintained by 
international medical experts. 

The dictionary was designed in the early 1990s for the use in the pharmaceutical industry 
and regulatory environment, to support all stages of the regulatory process concerning 
human medicines. It is owned by the International Federation of Pharmaceutical 
Manufacturers and Associations (IFPMA) and it was approved by the International 
Conference on Harmonisation (ICH) [88,89]. MedDRA is maintained by MSSO (MedDRA 
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Maintenance and Support Service Organization) [87] and JMO (Japanese Maintenance 
Organization) [90], which are independent organizations with missions to provide 
international support and continued development of terminology and to foster use of this 
tool. Access rights to MedDRA ASCII files are free for non-profit organizations (i.e. 
regulatory authorities, academic institutions, patients care providers and non-profit medical 
libraries), while a purchase subscription is required to business companies (i.e. 
pharmaceutical industries, contract research organizations, software developers). 

The MedDRA terminology contains more than 60,000 terms for medical conditions, 
syndromes, diagnosis, clinical signs, laboratory and clinical investigations and social 
circumstances. These are organized within 5 hierarchical levels that help to bring together 
similar medical conditions. The structural elements of the MedDRA terminology are: 

 SOC (System Organ Class) - Highest level of the terminology, and distinguished by 
anatomical or physiological system, etiology, or purpose  

 HLGT (High Level Group Term) – Subordinate to SOC, superordinate descriptor for 
one or more HLTs  

 HLT (High Level Term) – Subordinate to HLGT, superordinate descriptor for one or 
more PTs  

 PT (Preferred Term) – Represents a single medical concept  
 LLT (Lowest Level Term) – Lowest level of the terminology, related to a single PT as a 

synonym, lexical variant, or quasi-synonym 

Although LLTs represent the bottom of the hierarchy, they consist of synonymous, lexical 
variants and representations of similar conditions; therefore PT level is generally considered 
the favourite for use in pharmacovigilance analysis, because it coresponds to a unique 
medical concept. 

Since a PT (with its subordinate LLTs) may be represented in more than one of the 
superordinate levels, the MedDRA hierarchy is multi-axial. When a PT is included in two o 
more axes, a single SOC is designed as “primary” and others as “secondary” locations. This 
feature provides more flexibility in choosing and retrieving conditions to investigate. An 
example of the multi-axial hierarchical structure of MedDRA is shown in Figure 3. 

To assist terminology searches and data retrieval, especially when MedDRA is used in post-
marketing surveillance, utilities, called Standardised Medical Query (SMQs), were built and 
continually updated in a cooperative effort between the ICH and the Council for the 
International Organization of Medical Sciences (CIOMS). SMQs are groups of PTs and HLTs 
(with all their subordinate PTs) related to a defined medical condition or area of interest. 
SMQs may include very specific as well as less specific terms. The term lists are tested to 
verify their sensitivity and to avoid “noise” presence. SMQs may have certain specific 
design features: narrow and broad scope, algorithmic approach and hierarchical structure. 
“Narrow and broad searches” allow to identify cases that are highly likely to represent the 
condition of interest (a “narrow” scope) or to identify all possible cases, including some that 
may prove to be of little or no interest on closer inspection (a “broad” scope). In addition, for 
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some SMQs a combination of search terms from various sub-categories of the broad search 
terms is available (algorithmic search approach). This strategy is able to further refine the 
identification of cases of interest compared to the broad search category, therefore it yields 
greater sensitivity compared to the narrow search and greater specificity compared to the 
broad search. Moreover, in order to create more inclusive queries, some SMQs are a series of 
queries related to each other in a hierarchical relationship [91]. 

 
Figure 3. Example of MedDRA multi-axial structure from preferred term (PT) to system organ class 
(SOC), through high level term (HLT) and high level group term (HLGT). 

Concerning the analysis of FDA_AERS, a specific knowledge of MedDRA terminology is 
essential in order to link “PT” field of REACTION table of FDA_AERS with this 
terminology. This represents the basis for different data-mining approaches to detect 
pharmacovigilance signals. Indeed, whereas an approach based on PT level is useful to 
investigate a particular DEC, it is unfeasible for large-scale screening of all possible DEC 
[92]. Furthermore, as demonstrated by Pearson et al. [93] the performance of a 
disproportionality detection improved from PT level to HLT level and to SMQ. However, a 
broader-level terms might generate false signals because it contains disparate PTs, not all 
clinically relevant. 

3.3. Drug mapping: From free text to the ATC code  

In FDA_AERS, the drug(s) used by the patient are reported in the “DRUGNAME” field as 
free text: either brand name or generic name can be reported, but also a combination of both, 
and misspellings can be present because of the lack of drug codification. This issue 
represents an important limitation of FDA_AERS data mining, as recognized by various 
authors [54,94]. To address this aspect, an a priori mapping process to analyse the possible 
association between drug and adverse reaction is necessary. Therefore, we created an ad hoc 
drug-name archive, including all generic and trade names of drugs marketed in US and in 

PT
Myocardial infarction

HLT
Ischaemic coronary artery disorders

HLGT
Coronary artery disorders

SOC (primary)
Cardiac disorders

HLT
Coronary necrosis and vascular 

insufficiency

HLGT
Arteriosclerosis, stenosis, vascular 

insufficiency and necrosis

SOC (secondary)
Vascular disorders
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most European Countries by using public lists freely available on authoritative websites and 
public accessible drug dictionaries. In particular we used the following lists: 

 Drugs@FDA Data Files [95]: the freely downloadable version of the Drugs@FDA online 
version. It contains information about FDA-approved brand name and generic 
prescription and over-the-counter human drugs and biological therapeutic products. It 
comprises drug products approved since 1998 to present. This list supplies drug name, 
as brand or generic, with the relevant active ingredient and other information (e.g. 
dosage form, route of administration, approval date). While the online application is 
updated daily, downloadable data files are updated once per week. Data files consist in 
9 text tables, which can be imported into a database or spreadsheet. 

 WHO Drug Dictionary [96]: a computer registry containing information on all drugs 
mentioned on adverse reaction reports submitted by 70 countries participating in the 
WHO International Drug Monitoring Programme from 1968 onwards. This registry 
provides proprietary drug names together with all active ingredients and the chemical 
substances. Drugs are classified according to the Anatomical-Therapeutic-Chemical 
classification (ATC) [97] (for more details on this classification see below). Drugs 
recorded are those which have occurred in adverse reaction reports, and therefore the 
database covers most drugs used in countries involved in the WHO Programme. In 
collaboration with IMS Health, the WHO Drug Dictionary has been enhanced to 
include commonly used herbal and traditional medicines [96]. The registry is property 
of the Uppsala Monitoring Centre (UMC) and can be used by WHO collaborative 
centres or under license subscription. The Dictionary is available in different formats as 
data-files, with pre-defined relationships between the tables: a sample of registry and its 
technical description is freely available [98]. Our research group used this tool through 
the collaboration with the Pharmacology Unit of University of Verona as Reference 
Centre for Education and Communication within the WHO Programme for 
International Drug Monitoring. 

 EUROMEDSTAT (European Medicines Statistics) Project [99]: a collaborative project 
promoted by the Italian National Research Council and funded by the European 
Commission. It started in 2002 and involved academics and government agencies from 
most European Union Member States, representatives of the WHO and the Council of 
Europe. Among aims of the project there was to build a European database of licensed 
medicines in order to perform comparison of drug utilization and drug expenditure 
among European countries. This database covers only a two-year period (2002-2003) 
and includes trade names of licensed medicines with relevant active ingredients and 
ATC codes, in addition to other information (e.g. price, reimbursement rules and 
licensed country). 

The three lists are separately used to map “DrugName” reported in FDA_AERS into the 
corresponding active substance. This mapping approach allowed allocating a substance 
name to about 90% of all records in the entire database. Then, substance names have been 
indexed according to the Anatomical Therapeutic Chemical (ATC) classification [97]. This 
task was performed to facilitate data elaboration and allow analysis of database at different 
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level (from specific active substance to the broad therapeutic group). Indeed, in the ATC 
classification, the active substances are divided into different groups according to the organ 
or system on which they act and their therapeutic, pharmacological and chemical properties. 
This international classification is developed and maintained by the WHO Collaborating 
Centre for Drug Statistics Methodology (WHOCC), and was recommended as a 
standardized nomenclature since 1981. The WHOCC releases a new issue of the complete 
ATC index annually. 

In the ATC classification, drugs are divided into different groups according to the organ or 
system on which they act and/or their therapeutic and chemical characteristics. The 
classification assigns to each substance one (or more) 7-digit alphanumeric code (ATC code), 
where it can recognize 5 different levels (Table 3):  

 1st level indicates the anatomical main group and consists of one letter (there are 14 
main groups); 

 2nd level indicates the therapeutic main group and consists of two digits; 
 3rd level indicates the therapeutic/pharmacological subgroup and consists of one letter; 
 4th level indicates the chemical/therapeutic/pharmacological subgroup and consists of 

one letter; 
 5th level indicates the chemical substance and consists of two digits. 
 

Level ATC Code Description 
1st A ALIMENTARY TRACT AND METABOLISM 
2nd A10 DRUGS USED IN DIABETES 
3rd A10B BLOOD GLUCOSE LOWERING DRUGS, EXCL. INSULINS 
4th A10BA Biguanides 
5th A10BA02 Metformin 

Table 3. Example of ATC codification for the antidiabetic metformin 

Therefore, each bottom-level ATC code stands for a specific substance in a single indication 
(or use). This means that one drug, with more therapeutic uses, can have more than one 
ATC code. On the other hand, several different trade names share the same code if they 
have the same active substance and indications. 

Although the ATC classification has a particular codification for combination products, in 
our methodology we decided to split the single active substances of the combination. This 
allows to analyse risk profile of a given substance and not of a particular product.  

The drug mapping strategy described above is not the only possible to manage DrugName 
field of FDA_AERS. Indeed, other researchers used different methods and tools to index 
drugs and analyse the same database. For example, a research group of the Columbia 
University [54] first recognised drug name by using MedLEE, a text processor that translates 
clinical information from textual to vocabularies of the Unified Medical Language System 
(UMLS); afterwards they mapped drug names to generic name using RxNorm, a tool linking 
substance names (normalized names) of drugs with many drug names commonly used. A 
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Japanese research team [94] attempted to unify all drug names into generic names by 
detecting spelling errors through GNU Aspell, an open source spell checker. 

3.4. How to handle missing data 

As expected in large medical databases, also FDA_AERS is troubled by missing data, 
especially in old case reports. The fraction of missing data varies strongly with the variable 
considered and with the file analyzed. For example, in cumulative quarter DEMO files of 
2004 – 2010 period, gender is 8% missing, age is 34% missing and event_date is 34% missing. 
These percentages are higher in corresponding THERAPY files, where end_therapy_date is 
not-filled in 64% of records. Reasons for the different fractions of missing data are still 
unclear and could be related to the reporter type, as argued by Pearson [100]. Pearson 
reported a difference of 10% in completeness of age field between reports coming from 
manufacturers (21.3% of missing age data) and those directly from patients or health 
professionals (31.1%).  

Missing data is a well-recognized problem in large databases and widely discussed in the 
literature [101,102]. Various approaches have been used to deal with it with different 
consequences. Generally, these strategies fall into three classes: omission of incomplete 
records (deletion of records), imputation of missing values (single imputation) and 
computational modifications of missing fields (multiple imputation). The first approach 
(deletion of records) reduces the sample size and the subsequent statistical efficiency; it 
should be used only for small fractions of missing data. For large fractions of missing data 
one alternative is represented by single imputation of missing data on the basis of those 
available, but also this approach could modify the dataset. Another approach is the multiple 
imputation strategy, that allows to complete automatically missing information creating 
several different plausible imputed datasets and appropriately combining their results. It is 
obvious that neither this latter is free from drawbacks. 

In our studies on FDA_AERS, we preferred the single imputation approach to manage 
missing data. We applied it only to demographic data (DEMO file) in order to improve 
quality and completeness of information for each case and, subsequently, to identify and 
remove duplicates (for details see below). To this purpose, we chose the following 4 key-
fields, essential to characterize a single case: event_date, age, gender, reporter_country. 
Since each case, identified by a “CASE number”, consists of one or more reports (ISRs), 
ideally representing the follow-up reports, we firstly linked each case with owner ISRs. 
Then, when a high level of similarity was present between two records (at least 3 on 4 of 
considered key-fields), we filled missing data. On the contrary, records with more missed 
key-fields were deleted. We acknowledge that this missing data handling could generate 
some biases, but, in the intent of our analyses, we consider these possible biases less 
hazardous than the deletion of a high number of records.  

Noteworthy that FDA_AERS files different from DEMO could require other missing data 
handlings. Therefore, we advise to choose the appropriate methodology on the basis of both 
type of field and the magnitude of missing data. 



Data Mining Applications in Engineering and Medicine 290 

3.5. Detection and removal of duplicates 

A major problem in spontaneous reporting data is the presence of duplicates (i.e. the same 
report submitted by different reporters) and multiple reports (i.e. a follow-up of the same 
case with additional and updated information). Unfortunately, the exact extent of 
duplication present in FDA_AERS, and in other similar databases, is unknown. As a matter 
of fact, although this form of data corruption and its distortion in disproproportionality 
analysis are well-recognized by researchers, only a few of studies examined the issue [103]. 
There are two major reasons for duplicate generation: different sources (e.g. health 
professionals, patients and manufacturers providing separate case reports related to the 
same event) and failure in linking of follow-up case reports to first event records. Some 
circumstances could generate extreme duplication [104]. For example, the reporting of the 
same event related to various concomitant drugs by manufacturers of each suspected drug 
(manufacturers have a statutory obligation to report the adverse event to FDA and to 
forward it to other involved manufacturers). Another possible source of duplication can be 
retrieved in the transfer of reports from national centers to the FDA.  

Since in FDA_AERS the drawback of duplication is still unsolved and it can distort the final 
results, it becomes essential to mitigate this phenomenon before initiating the actual data 
mining process. To this aim, we performed a deduplication procedure firstly linking CASE 
number with relevant ISRs, secondly through the 4-key fields used in missing data handling 
(event_date, age, gender, reporter_country) and thirdly revising drug and event reported. 

 
Figure 4. Example of duplicates in FDA_AERS for the 3 same reports of syncope 
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As advised by the FDA, we link the Case number with (ISRs) because of a "case" consists of 
one or more reports (ISRs) and if correctly linked, a follow-up report will have the same 
CASE number as the initial report (but a different ISR number). Then we grouped all 
records of a given case number and we associated the demographic information 
(event_date, age, gender, reporter country) the suspected drug/s and the reported event/s. 
Starting from this dataset, we performed a semi-automated de-duplication procedure in 
order to delete reports with different case number but reporting the same event. This 
procedure is based on the assumption that two or more apparently identical events are 
unlikely to be different events if the following conditions are fulfilled: they occurred in the 
same data with the same drugs, they were reported for same patients coming from the same 
country (Figure 4 shows an example of duplication in FDA_AERS).  

The following scheme (Figure 5) summarizes all the illustrated steps of our datamining 
strategy in analyzing the FDA_AERS. 

 
Figure 5. Steps of FDA_AERS data-mining process 

4. Results of FDA_AERS data mining: some examples 
Once the dataset has been processed for duplicates and missing data, there are some issues 
requiring further considerations to perform the complete analysis.  
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First, the analysis is usually conducted in terms of drug-event pairs, where every event is 
considered as many times as the reported drugs. Each of these drug-event pairs will be 
classified as cases or non cases, depending on the event of interest.  

Second, the disproportionality can be performed at each level of MedDRA terminology (i.e., 
SOC, HLGT, HLT, PT) and the level of specificity of terms could be best defined by case-
specific clinical judgment, rather than by rigid use of one level of terminology [105]. The 
importance of the choice of the level is well represented by a study aimed to investigate the 
safety profile of thiazolidinediones by using FDA_AERS [34]: while the disproportionality 
analysis at SOC level “injuries, poisoning, …” did not find any statistically significance for 
“injury”, the analysis of immediately lower level HLGT “Bone and joint injuries” showed a 
disproportionality signal for both thiazolidinediones.  

Third, disproportionality can be referred to all drugs included in the entire database or to a 
specific therapeutic class (see also reference group issues, above), isolated through the ATC 
code. The latter approach is needed to avoid the confounding by indication that occurs 
when a given class of drugs is preferentially used in subjects who have a priori higher or 
lower risk of presenting the event under investigation [74].  

Fourth, disproportionality can be calculated by using two different approaches: a sequential 
cumulative strategy or a quarter-by-quarter approach. The cumulative analysis is the most 
adopted technique, both by regulators, academic researchers and manufacturers: it consists 
in the identification of a precise time point and a retrospective evaluation of reports, which 
are cumulatively considered. Indeed, several published papers on disproportionality cover a 
time period encompassing a number of years. Notably, this time period can be also split in 
different “time windows” (e.g., years, months), which can be analyzed for instance on a 
quarter-by-quarter basis (i.e., by calculating the ROR independently for a given window). 
While this approach may be useful to evaluate the behavior of the disproportionality over 
time and check whether the signal appears or disappears, it should be acknowledged that 
this strategy is highly influenced by fluctuations of the reporting, caused by seasonal 
changes in reporting and mostly by the typical attitude of recording the submitted reports 
and entering the database in January. This may cause an erroneous peak in reporting, which 
does not reflect the actual occurrence of the ADR. As an explanatory example, Figure 6 
compares results from the cumulative versus quarter-by-quarter analysis, performed on the 
association between exenatide and pancreatitis. Notably, the quarter-by-quarter analysis 
found a striking correspondence between the relevant FDA warning and the appearance of 
disproportionality (which, by contrast was found in the subsequent quarter in the 
cumulative analysis), but is characterized by large fluctuations of ROR (with very broad 
confidence intervals). The cumulative approach is therefore usually recommended as the 
most balanced and accurate approach for the analysis. Finally, an important aspect that 
should be kept in mind regards the selection of the time period of the analysis on the basis 
of the marketing authorization of the primary suspect drug. In Figure 6, only the period 
starting from the second quarter was described because exenatide received marketing 
approval in April 2005. 
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Figure 6. Comparison between cumulative (panel A, reprinted from [7], with permission of the 
copyright holder: Springer) and a quarter-by-quarter approach (panel B). Time trends of ROR with 
corresponding 95%CI of pancreatitis associated with exenatide use (full line) and relevant total number 
of spontaneous reports (dotted line). Boxes with relevant arrows indicate major regulatory measures in 
exenatide marketing history. Grey areas indicate the underlying epidemiological phenomena that may 
explain the observed peaks (see text for details). 
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5. Conclusions 
On the basis of our experience, we have provided insight into the FDA_AERS to exemplify 
how to address major methodological issues discussed in the first part of the chapter. 
Because the FDA_AERS is a worldwide publicly available pharmacovigilance archive, we 
believe that fostering discussion among researchers will increase transparency and facilitate  
definition of the most reliable approaches. By virtue of its large population coverage and 
free availability, the FDA_AERS has the potential to pave the way to a new way of looking 
to signal detection in PhV. The existence of private societies developing and marketing 
software to analyze FDA_AERS data calls for the need to agree on data mining approaches. 

PhV is a clinically oriented discipline, which may guide appropriate drug use through a 
balanced assessment of drug safety. Although much has been done in recent years, efforts 
are needed to expand the border of pharmacovigilance. For instance, although patients are 
important stakeholders in pharmacovigilance, little formal evaluation has been undertaken 
of existing patient reporting schemes. Notwithstanding some differences in the way various 
countries handle patient reports of ADRs, patient reporting has the potential to add value to 
pharmacovigilance by: reporting types of drugs and reactions different from those reported 
by clinicians; generating new potential signals; describing suspected ADRs in enough detail 
to provide useful information on likely causality and impact on patients' lives [106]. 

Registries (and their linkage to other data sources) have become increasingly appealing in 
postmarketing surveillance of medications, but their role is still very variable among 
countries. Notwithstanding significant limitations due to the lack of a control group and the 
need for complete case ascertainment to maintain data integrity, they are of utmost value for 
providing drug safety data through monitoring the incidence of rare adverse events 
particularly for highly specialized medications with significant financial cost [107]. Indeed, 
one of the most important aim of disease-based or drug-based registries is to promote 
appropriate use and guarantee access to innovative drugs. 

One of the most important aspects to improve accuracy of signal detection in 
pharmacovigilance is to combine multiple methods, each in a distinct perspective (e.g., 
healthcare databases, spontaneous reporting systems), to increase the precision and 
sensitivity of the approach and complement limitations of each method [108]. In this context, 
the EU-ADR [109] and ARITMO projects [110] represent examples of multidisciplinary 
consortia aiming to create a federation of databases, namely healthcare databases and 
spontaneous reporting systems, to address drug-related safety issues.  

In conclusion, our key messages are: (1) before applying statistical tools (i.e., DMAs) to 
pharmacovigilance database for signal detection, all aspects related to data quality should 
be considered (e.g., drug mapping, missing data and duplicates); (2) at present, the choice of 
a given DMA mostly relies on local habits, expertise and attitude and there is room for 
improvement in this area; (3) DMA performance may be highly situation dependent; (4) 
over-reliance on these methods may have deleterious consequences, especially with the so-
called "designated medical events", for which a case-by-case analysis is mandatory and 
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complements disproportionality; and (5) the most appropriate selection of 
pharmacovigilance tools needs to be tailored to each situation, being mindful of the 
numerous biases and confounders that may influence performance and incremental utility 
of DMAs.  

We support the implementation of DMAs, although one should not automatically assume 
that greater complexity is synonymous of greater precision and accuracy. Overall, data 
derived from DMAs should be considered with caution and guided by appropriate clinical 
evaluation. This clinical perspective should always be considered to support really 
appropriate drug use, balancing drug effectiveness, safety and, above all, actual patients’ 
needs. 
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